JP2009179527A - Method for producing spherical silicon crystal - Google Patents

Method for producing spherical silicon crystal Download PDF

Info

Publication number
JP2009179527A
JP2009179527A JP2008021319A JP2008021319A JP2009179527A JP 2009179527 A JP2009179527 A JP 2009179527A JP 2008021319 A JP2008021319 A JP 2008021319A JP 2008021319 A JP2008021319 A JP 2008021319A JP 2009179527 A JP2009179527 A JP 2009179527A
Authority
JP
Japan
Prior art keywords
alp
crystal
silicon
spherical silicon
silicon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008021319A
Other languages
Japanese (ja)
Other versions
JP4461236B2 (en
Inventor
Kazuhiko Kuribayashi
一彦 栗林
Kosuke Nagashio
晃輔 長汐
Hitoshi Ando
等 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2008021319A priority Critical patent/JP4461236B2/en
Publication of JP2009179527A publication Critical patent/JP2009179527A/en
Application granted granted Critical
Publication of JP4461236B2 publication Critical patent/JP4461236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a spherical silicon crystal by which the spherical silicon crystal containing a low supercooling degree type crystal in a high ratio can be obtained with good reproducibility. <P>SOLUTION: The method for producing the spherical silicon crystal includes a process for heating and melting a silicon material kept in a vessel, a process for adding a fine powder of AlP to the molten silicon material, and a process for allowing droplets of the molten silicon material containing the fine powder of AlP to fall into a vapor phase from the vessel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は球状シリコン結晶の製造方法に関し、特に、低過冷度型の結晶を高い割合で含む球状シリコン結晶を、高い再現性をもって得ることの可能な、球状シリコン結晶の製造方法に関する。   The present invention relates to a method for producing a spherical silicon crystal, and more particularly to a method for producing a spherical silicon crystal capable of obtaining a spherical silicon crystal containing a low supercooling-type crystal at a high ratio with high reproducibility.

本発明者らは、これまでにドロップチューブによるシリコンの結晶化の実験から得られた試料は、表面形状の観点から(a)平滑な表面形状(teardrop crystal)、(b)平滑な面からなる多面体的な表面形状(facetted polyhedral crystal)、(c)夏みかん状の表面形状の3種類に分類できることを明らかにしてきた。
また、これらの試料を電磁浮遊において得られた試料の表面形状と比較することにより、これらの試料がそれぞれ(a)低過冷度、(b)中過冷度、(c)高過冷度での結晶化に対応することを、本発明者らは示してきた。
さらに、走査型電子顕微鏡による結晶粒の観察から、上記各試料が、(a)1〜2個の結晶粒からなる(疑似)単結晶、(b)直線的な粒界形状の粗大粒結晶、(c)微細粒結晶であることを示し、単結晶を得るには、低過冷度での結晶化が鍵となることを明らかにした。
そして、これら3種類の結晶の比率は、直径が600 〜 1800 μmの試料でそれぞれ10%、28%、62%であり、単結晶の比率が小さいことから、通常のドロップチューブプロセスでは過冷度の制御が困難なことも示した。
The present inventors have so far obtained samples from experiments of crystallization of silicon using a drop tube from the viewpoint of surface shape (a) a smooth surface shape (teardrop crystal) and (b) a smooth surface. It has been clarified that it can be classified into three types: facetted polyhedral crystal and (c) summer orange shape.
In addition, by comparing these samples with the surface shape of the samples obtained in electromagnetic levitation, these samples are (a) low supercooling, (b) medium supercooling, (c) high supercooling, respectively. The inventors have shown that this corresponds to crystallization at.
Furthermore, from the observation of the crystal grains with a scanning electron microscope, each of the above samples is (a) a (pseudo) single crystal consisting of 1 to 2 crystal grains, (b) a coarse grain crystal with a linear grain boundary shape, (c) It was shown that it was a fine-grained crystal, and crystallization with low supercooling was the key to obtaining a single crystal.
The ratio of these three types of crystals is 10%, 28%, and 62% for samples with a diameter of 600 to 1800 μm, respectively, and the ratio of single crystals is small. It was also shown that it is difficult to control.

特開2007-99577は、噴射前に予め結晶化の際に核となる固相を含ませた状態、すなわち semi-solid状態での噴射を提案している。具体的には、メルトを融点に保つことにより、固液共存状態とし、機械的撹拌により固相を粉砕・微細化した状態からの噴射を行うことが記載されている。そして、このような手法を採用することにより、低過冷度型、中過冷度型、高過冷度型の割合が、それぞれ30%、23%、47%と、融点以上に加熱されたメルトの単純噴射に比べて低過冷度型の割合が大きく改善されることが記載されている。   Japanese Patent Application Laid-Open No. 2007-99577 proposes injection in a semi-solid state in which a solid phase as a nucleus is included in advance during crystallization before injection. Specifically, it is described that by maintaining the melt at the melting point, a solid-liquid coexistence state is achieved, and injection is performed from a state where the solid phase is pulverized and refined by mechanical stirring. And by adopting such a method, the ratio of low supercooling type, medium supercooling type, and high supercooling type was 30%, 23%, 47%, respectively, and heated above the melting point It is described that the ratio of the low supercooling type is greatly improved as compared with the simple injection of the melt.

特開2007-99577に提案されているプロセスは、単結晶の比率が増加する点で優れているものの、噴射可能なsemi-solid状態の実現は容易ではない。また、固相の割合が大きいsemi-solid状態では撹拌が困難になるなど、実験の困難さに伴う再現性に問題がある。   Although the process proposed in Japanese Patent Laid-Open No. 2007-99577 is excellent in that the ratio of single crystals is increased, it is not easy to realize a semi-solid state that can be jetted. In addition, there is a problem in reproducibility due to the difficulty of experiments such as stirring becomes difficult in the semi-solid state where the ratio of the solid phase is large.

特開平2007−99577号公報Japanese Patent Laid-Open No. 2007-99577

したがって、本発明は、低過冷度型の結晶を高い割合で含む球状シリコン結晶を、高い再現性をもって得ることを可能とするような、球状シリコン結晶の製造方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a method for producing a spherical silicon crystal, which makes it possible to obtain a spherical silicon crystal containing a high degree of low supercooling type crystals with high reproducibility. Is.

本発明は、この観点から、semi-solid状態に替わる状態、すなわち固相シリコンと同様に、結晶化の際の核になり得る、シリコンとは異質の物質を混入させた状態からの噴射を採用することにより、上記問題の解決を図ったものである。   From this point of view, the present invention adopts injection from a state that replaces the semi-solid state, that is, a state in which a substance different from silicon can be mixed, which can be a nucleus during crystallization, as with solid phase silicon. By doing so, the above problem is solved.

上記課題の解決手段について考える上で注意すべき点として、混入させる異物質としては、優先核生成サイトとしての働きはもとより、半導体としてのシリコンの機能を損なわないものでなければならない、ということが挙げられる。
この点に鑑み、本発明者らは、上記異物質は、次のとおりの要件を満たすものである必要があることに着目した:
(イ)結晶シリコン中において電子的に不活性であること;
(ロ)溶融シリコン中において化学的に安定であること;
(ハ)結晶学的disregistryが小さいこと(結晶構造、格子定数等のミスマッチが小さいこと);及び
(ニ)溶融シリコンとの密度差が小さいこと。
例えば、高融点の酸化物は、上記要件(イ)及び(ロ)の点からすれば、上記異物質の候補となり得るとも考えられるが、他の要件を必ずしも満たすものではない。
そこで、本発明者らはまず、上記要件(ハ)をさらに満たすものとして閃亜鉛鉱型の化合物半導体に着目した。具体的には、以下の表1にまとめた化合物半導体を対象として、その物性値について検討した。
It should be noted when considering the means for solving the above problems that foreign substances to be mixed must not only impair the function of silicon as a semiconductor, but also function as a preferential nucleation site. Can be mentioned.
In view of this point, the inventors focused on the fact that the foreign substance must satisfy the following requirements:
(B) electronically inactive in crystalline silicon;
(B) being chemically stable in molten silicon;
(C) Small crystallographic disregistry (small mismatch in crystal structure, lattice constant, etc.); and (d) Small density difference from molten silicon.
For example, it is considered that a high-melting-point oxide can be a candidate for the foreign substance in terms of the above requirements (A) and (B), but does not necessarily satisfy other requirements.
Therefore, the present inventors first focused on a zinc blende type compound semiconductor as further satisfying the above requirement (c). Specifically, the physical properties of the compound semiconductors summarized in Table 1 below were examined.

Figure 2009179527
D: ダイアモンド格子型結晶構造、ZB: 閃亜鉛鉱型結晶構造
Figure 2009179527
D: Diamond lattice crystal structure, ZB: Sphalerite crystal structure

そして、本発明者らは、AlPは格子定数のミスマッチが小さく、また密度も近い(すなわち、上記要件(ハ)及び(ニ)を満たす)ことから、結晶化の際の有力な核になることが予想されるとの知見に基づき、本発明に至ったものである。   The present inventors have found that AlP has a small lattice constant mismatch and close density (that is, satisfies the above requirements (c) and (d)), so that it becomes a dominant nucleus for crystallization. Based on the knowledge that is expected, the present invention has been achieved.

すなわち、本発明は、容器内に保持したシリコン材料を加熱して、溶融する工程、溶融したシリコン材料に、AlPを添加する工程、及び、AlPを含む溶融シリコン材料の液滴を、前記容器から気相中へ落下させる工程を含む、球状シリコン結晶の製造方法を提供する。   That is, the present invention includes a step of heating and melting the silicon material held in the container, a step of adding AlP to the molten silicon material, and a droplet of the molten silicon material containing AlP from the container. Provided is a method for producing a spherical silicon crystal comprising a step of dropping into a gas phase.

本発明においては、前記AlPを添加する工程において、溶融シリコン材料の液滴に対する前記AlPのモル比が1×10-2〜1×10-8となるように、前記AlPの添加量を調整するのが望ましい。 In the present invention, in the step of adding the AlP, the addition amount of the AlP is adjusted so that the molar ratio of the AlP to the droplets of the molten silicon material is 1 × 10 −2 to 1 × 10 −8. Is desirable.

また、前記AlPを添加する工程において、平均直径が10 μm〜100 μmであるAlPの微粉末を添加するのが望ましい。   In the step of adding AlP, it is desirable to add AlP fine powder having an average diameter of 10 μm to 100 μm.

本発明によれば、低過冷度型の結晶を高い割合で含む球状シリコン結晶を、高い再現性をもって得ることが可能となる。   According to the present invention, it is possible to obtain a spherical silicon crystal containing a low supercooling type crystal in a high ratio with high reproducibility.

本発明は、結晶化の際の核になり得るシリコンとは異質の物質としてAlPを採用し、これを溶融したシリコン材料に微粉末として添加して、気相中へ噴射(落下)させることを特徴とする、球状シリコン結晶の製造方法である。
本発明による球状シリコン結晶の製造方法においては、AlPを次のとおり添加するのが望ましい。
平均直径がRである溶融シリコンの噴射液滴中には、平均直径がrであるAlP粒子が1個含まれるものとする。液滴と粒子の密度をそれぞれρα、ρβ、分子量をwα、wβとすると、液滴に対する粒子のモル比mは、次式により与えられる:
The present invention adopts AlP as a substance different from silicon that can be a nucleus during crystallization, and adds it as a fine powder to a molten silicon material to be injected (dropped) into the gas phase. A feature is a method for producing a spherical silicon crystal.
In the method for producing a spherical silicon crystal according to the present invention, it is desirable to add AlP as follows.
It is assumed that one molten AlP particle having an average diameter of r is contained in a jet of molten silicon having an average diameter of R. If the density of droplets and particles is ρ α and ρ β , and the molecular weights are w α and w β , then the molar ratio m of particles to droplets is given by:

Figure 2009179527
Figure 2009179527

例えば、AlPの平均直径として60 μmのものを使用する場合、シリコン液滴の平均直径を1 mm とすると、表1から噴射液滴中に一個のAlP粒子を含むのに必要なmの値は1.07×10-4となる。
式(1)はAlP粒子の平均直径を小さくすることにより添加量の低減が図れることが示唆する。ただし実際のプロセスではメルト中のAlP粒子の凝集あるいは不均一分布により、純シリコンでは見られなかった多角型の結晶が現れ、添加量の増加に伴ってその比率は増加する。多角型の結晶は、必ずしも忌避するものではないが、回避にはAlP粒子サイズを小さくすることで添加量を下げ、加えて十分に撹拌することが一つの方途となる。
なお、AlP粒子の平均直径を30 μmとした場合のm値は1.34×10-5となり、20 μmでは3.98×10-6、10 μmでは4.98×10-7となる。
For example, if the average diameter of AlP is 60 μm, and the average diameter of silicon droplets is 1 mm, the value of m required to include one AlP particle in the ejected droplet from Table 1 is 1.07 × 10 -4 .
Equation (1) suggests that the addition amount can be reduced by reducing the average diameter of the AlP particles. However, in the actual process, due to the aggregation or non-uniform distribution of AlP particles in the melt, polygonal crystals that were not found in pure silicon appear, and the ratio increases as the amount added increases. Polygonal crystals are not necessarily avoided, but one way to avoid them is to reduce the amount of addition by reducing the size of the AlP particles and to add sufficient stirring.
When the average diameter of the AlP particles is 30 μm, the m value is 1.34 × 10 −5 , 20.98 × 10 −6 at 20 μm and 4.98 × 10 −7 at 10 μm.

図1は、本発明における球状シリコン結晶の製造方法に使用可能な装置の概略図である。本装置は、不活性ガスへの置換が可能なドロップチューブと、その上部に設置された高周波加熱炉から構成される。試料は、坩堝の外側に設けられたカーボンサセプターのRFコイルによる間接加熱により溶融され、坩堝上部からの加圧によりドロップチューブ内に噴射される。坩堝には窒化硼素製の噴射ノズル付きのものを用い、さらにAlPとシリコン材料が完全に混合するように同じく窒化硼素製のロッドにより撹拌できる構造となっている。材料の温度は坩堝に取り付けられた熱電対により測定される。なお加熱温度は材料が完全に溶融し、かつシリコンの蒸発によるAlPの濃度変化が無視できる範囲、すなわちシリコンの融点(1693K)より50〜100K高い程度が望ましい。   FIG. 1 is a schematic view of an apparatus that can be used in the method for producing a spherical silicon crystal according to the present invention. This apparatus is composed of a drop tube that can be replaced with an inert gas, and a high-frequency heating furnace installed on the drop tube. The sample is melted by indirect heating by an RF coil of a carbon susceptor provided outside the crucible, and is injected into the drop tube by pressurization from the upper part of the crucible. The crucible with a boron nitride injection nozzle is used, and the structure can be stirred by a rod made of boron nitride so that AlP and silicon material are thoroughly mixed. The temperature of the material is measured by a thermocouple attached to the crucible. The heating temperature is preferably in a range where the material is completely melted and the change in the concentration of AlP due to the evaporation of silicon is negligible, that is, about 50 to 100K higher than the melting point of silicon (1693K).

添加するAlPは粉末状のものが多いため、ノズル付き坩堝ではノズルを詰まらせたり加熱前に抜け落ちたりするので、予めモル比で0.1×0.01の母合金のバルクを作りそれを希釈することで所定の濃度とするのが良い。   AlP to be added is often in the form of powder, so in a crucible with a nozzle, the nozzle is clogged or falls off before heating, so a bulk of a master alloy with a molar ratio of 0.1 x 0.01 is created in advance and diluted to obtain a predetermined value. It is good to set it as the density.

所定の濃度となるように母合金とシリコン材料を秤量、坩堝に入れる。その坩堝を加熱炉チャンバー内の所定の位置に装着し、チャンバー内の雰囲気を不活性ガス(Ar)に置換し温度を測りながら加熱する。
材料が完全に溶融しさらに十分に撹拌した後、温度を融点より20〜50K高い1713〜1743Kまで下げ、坩堝上部からの加圧(圧力差は0.1気圧程度)によりドロップチューブ内に噴射する。この際の坩堝のノズルの径は、得たい結晶のサイズを〜1mmとすればそれよりやや小さい0.5〜0.8mm程度が適当である。
The mother alloy and silicon material are weighed and put into a crucible so as to have a predetermined concentration. The crucible is mounted at a predetermined position in the heating furnace chamber, and the atmosphere in the chamber is replaced with an inert gas (Ar) and heated while measuring the temperature.
After the material is completely melted and further sufficiently stirred, the temperature is lowered to 1713 to 1743 K, which is 20 to 50 K higher than the melting point, and sprayed into the drop tube by pressurization from the crucible top (pressure difference is about 0.1 atm). The diameter of the crucible nozzle at this time is suitably about 0.5 to 0.8 mm, which is a little smaller than the desired crystal size of ~ 1 mm.

[実施例1]
本発明による球状シリコン結晶の製造方法に従い、まず、窒化硼素坩堝に秤量したシリコンインゴットとAlPのモル比が0.05の母合金インゴットを入れ、RFコイルによって窒化硼素坩堝の外側面に配置したカーボンサセプターをシリコンの融点を70〜80K程度超える温度まで加熱して、完全に溶融させた。なお秤量はAlPのモル比が1×10-6、1×10-4、1×10-2となるように調整し、対照のため添加量0(純Si、参考例)のものも用意した。
そして、坩堝上方に設けられたガス供給口からArガスを供給して、AlPを含む溶融シリコン材料の坩堝の下部に設けられたノズルから噴射させた。ノズルの大きさは、直径0.5 mmとした。
結果を図2に示す。図2に示すように、低過冷度型、中過冷度型、高過冷度型の比率は、AlPの添加量に応じて異なっていた。特に高過冷型は1 ppmの添加で大幅に減少し、逆に低過冷度型は0.01 mol%の添加で50%近くにまで増加している。これはAlPが核生成の優先サイトとして強力に機能していることを示唆するものである。
[Example 1]
In accordance with the method for producing a spherical silicon crystal according to the present invention, first, a weighed silicon ingot and a master alloy ingot having a molar ratio of AlP of 0.05 are placed in a boron nitride crucible, and a carbon susceptor disposed on the outer surface of the boron nitride crucible by an RF coil. The silicon was heated to a temperature exceeding the melting point of silicon by about 70-80K and completely melted. Weighing was adjusted so that the molar ratio of AlP was 1 × 10 −6 , 1 × 10 −4 , 1 × 10 −2, and a sample with an addition amount of 0 (pure Si, Reference Example) was also prepared for control. .
And Ar gas was supplied from the gas supply port provided above the crucible, and was injected from the nozzle provided in the lower part of the crucible of the molten silicon material containing AlP. The size of the nozzle was 0.5 mm in diameter.
The results are shown in FIG. As shown in FIG. 2, the ratio of the low supercooling type, the medium supercooling type, and the high supercooling type was different depending on the amount of AlP added. In particular, the high supercooled type significantly decreases with the addition of 1 ppm, while the low supercooled type increases to nearly 50% with the addition of 0.01 mol%. This suggests that AlP functions as a preferred site for nucleation.

[実施例2]
得られた試料の半導体としての性能の評価を、フォトルミネッセンス(Photoluminescence)により行なった。フォトルミネッセンスとは光の刺激に因る発光現象であり、不純物や欠陥に固有な発光の測定によりそれらの定量的評価を可能にする手法である。シリコンでは〜1.1 eVにband edge (BE)に対応した固有の発光があり、この発光の強度が半導体としての性能の目安とされている。
(参考例)
図3は、純シリコン試料のフォトルミネッセンスの測定結果である。図から明らかなように、低過冷度型および中過冷度型では〜1.1 eVにシャープな発光が観察されるのに対して、高過冷度型ではシリコン固有のピークはほとんど観察されない。
(実施例)
図4に、図2で得られたAlPを添加した試料(AlPの微粉末のモル比が1×10-2のもの)についての結晶粒マップ(EBSPイメージ)を図4に、フォトルミネッセンスの測定結果図5に、それぞれ示す。結晶粒マップから、試料が多角型であることが認められる。また、AlPの添加量の増加に伴い、ピークの半価幅が拡がる傾向が認められたが、ピークの位置はほとんど変化しなかった。しかも、図4に示すように、モル比で1×10-2の添加を行なった多角型の試料においても、同様の発光が観察されたことは、AlPが、上記(イ)〜(ニ)の4要件を充足する最適な異物質であることを意味している。
以上の結果から明らかなように、ドロップチューブプロセスを典型とする液滴の自由落下による球状シリコン結晶の育成において、低過冷度型の結晶を得るには、優先核生成サイトとして優れた触媒効果を示すAlP粒子の添加が極めて有効といえる。
[Example 2]
The performance of the obtained sample as a semiconductor was evaluated by photoluminescence. Photoluminescence is a light emission phenomenon caused by light stimulation, and is a technique that enables quantitative evaluation of light emission by measuring light emission unique to impurities and defects. Silicon has intrinsic light emission corresponding to band edge (BE) at ˜1.1 eV, and the intensity of this light emission is regarded as a standard for performance as a semiconductor.
(Reference example)
FIG. 3 is a measurement result of photoluminescence of a pure silicon sample. As is clear from the figure, sharp emission is observed at ˜1.1 eV in the low supercooling type and medium supercooling type, whereas in the high supercooling type, silicon-specific peaks are hardly observed.
(Example)
4, 4 grains map (EBSP images) for the samples with the addition of AlP obtained in FIG. 2 (that molar ratio of the fine powder of AlP is 1 × 10 -2), the measurement of photoluminescence Results are shown in FIG. From the grain map, it can be seen that the sample is polygonal. Moreover, although the half-width of the peak tended to increase as the amount of AlP added increased, the position of the peak hardly changed. Moreover, as shown in FIG. 4, even in the polygonal sample to which 1 × 10 −2 was added in the molar ratio, similar luminescence was observed. This means that it is the most suitable foreign substance that satisfies the four requirements.
As can be seen from the above results, in the growth of spherical silicon crystals by free-falling droplets, which is typical of the drop tube process, an excellent catalytic effect as a preferential nucleation site is necessary to obtain low supercooling type crystals. It can be said that the addition of AlP particles showing is extremely effective.

本発明の球状シリコン結晶の製造方法に使用可能な装置の概略図である。It is the schematic of the apparatus which can be used for the manufacturing method of the spherical silicon crystal of this invention. 低過冷度型、中過冷度型、高過冷度型の結晶の比率とAlP添加量の関係を示す図である。It is a figure which shows the relationship between the ratio of the crystal of a low supercooling type, a medium supercooling type, and a high supercooling type, and the amount of AlP addition. 純シリコンのフォトルミネッセンスの測定結果を示す図である。It is a figure which shows the measurement result of the photoluminescence of pure silicon. AlP添加量10-2の多角型の試料の結晶粒マップ(EBSPイメージ)を示す図である。Is a diagram showing an AlP amount 10-2 grain map of polygonal sample (EBSP images). AlP添加量10-2の多角型の試料のフォトルミネッセンス測定結果を示す図である。It is a diagram showing a photoluminescence measurement results of the samples of the polygonal-type AlP amount 10-2.

Claims (2)

容器内に保持したシリコン材料を加熱して、溶融する工程、
溶融したシリコン材料に、AlPを添加する工程、及び、
AlPを含む溶融シリコン材料の液滴を、前記容器から気相中へ落下させる工程、
を含む、球状シリコン結晶の製造方法。
Heating and melting the silicon material held in the container,
Adding AlP to the molten silicon material; and
Dropping a droplet of molten silicon material containing AlP from the vessel into the gas phase;
A method for producing a spherical silicon crystal.
前記AlPを添加する工程において、溶融シリコン材料の液滴に対する前記AlPのモル比が1×10-2〜1×10-8となるように、前記AlPの添加量を調整する、請求項1に記載の製造方法。 In the step of adding the AlP, the addition amount of the AlP is adjusted so that a molar ratio of the AlP to droplets of the molten silicon material is 1 × 10 −2 to 1 × 10 −8. The manufacturing method as described.
JP2008021319A 2008-01-31 2008-01-31 Method for producing spherical silicon crystal Expired - Fee Related JP4461236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021319A JP4461236B2 (en) 2008-01-31 2008-01-31 Method for producing spherical silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021319A JP4461236B2 (en) 2008-01-31 2008-01-31 Method for producing spherical silicon crystal

Publications (2)

Publication Number Publication Date
JP2009179527A true JP2009179527A (en) 2009-08-13
JP4461236B2 JP4461236B2 (en) 2010-05-12

Family

ID=41033785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021319A Expired - Fee Related JP4461236B2 (en) 2008-01-31 2008-01-31 Method for producing spherical silicon crystal

Country Status (1)

Country Link
JP (1) JP4461236B2 (en)

Also Published As

Publication number Publication date
JP4461236B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US7635413B2 (en) Method for preparing silicon carbide single crystal
US11346016B2 (en) System for introducing dopant into a melt of semiconductor or solar-grade material via a feed tube
JP5273130B2 (en) Method for producing SiC single crystal
TWI554659B (en) Method of producing sic single crystal
JP5273131B2 (en) Method for producing SiC single crystal
CN101981155B (en) Transparent phosphor and process for producing transparent phosphor
JP2011190127A (en) Gallium oxide single crystal and method for producing the same
EP3333287A1 (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
JP2020063163A (en) Apparatus for manufacturing single crystal
WO2014189008A1 (en) Silicon carbide single crystal and manufacturing method therefor
CN108728897A (en) The method for preparing SiC single crystal
JP4461236B2 (en) Method for producing spherical silicon crystal
JP5636353B2 (en) Method for producing SiC single crystal
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP2012041200A (en) Crystal growth method
Krukowski et al. Growth of AlN, GaN and InN from the solution
JP6935738B2 (en) Method for manufacturing SiC single crystal
US20210222318A1 (en) Single-Crystal Production Equipment and Single-Crystal Production Method
JP2015020942A (en) Apparatus and method for growing crystal
He et al. Preparation of YAG glass-ceramic by combustion synthesis under high gravity
JP2005350324A (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
CN110578170B (en) ScAlMgO4Single crystal and device
Grab et al. Influence of TiB2 particles on growth of eutectic silicon in aluminium–silicon alloys
TWI793167B (en) Gallium Arsenide Compound Semiconductor Crystal and Wafer Group
JP6623736B2 (en) Compound single crystal manufacturing apparatus and compound single crystal manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees