JP2009178638A - Arsenic removing agent - Google Patents

Arsenic removing agent Download PDF

Info

Publication number
JP2009178638A
JP2009178638A JP2008018516A JP2008018516A JP2009178638A JP 2009178638 A JP2009178638 A JP 2009178638A JP 2008018516 A JP2008018516 A JP 2008018516A JP 2008018516 A JP2008018516 A JP 2008018516A JP 2009178638 A JP2009178638 A JP 2009178638A
Authority
JP
Japan
Prior art keywords
arsenic
iii
removing agent
manganese
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008018516A
Other languages
Japanese (ja)
Other versions
JP4936559B2 (en
Inventor
Qi Feng
旗 馮
Mitsunari Sonoda
晃成 苑田
Takahiro Hirotsu
孝弘 廣津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Kagawa University NUC
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Kagawa University NUC filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008018516A priority Critical patent/JP4936559B2/en
Publication of JP2009178638A publication Critical patent/JP2009178638A/en
Application granted granted Critical
Publication of JP4936559B2 publication Critical patent/JP4936559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an arsenic removing agent which can be easily and commonly used, and can treat arsenic at a high speed. <P>SOLUTION: The arsenic removing agent for removing arsenic contained in water contains trivalent manganese and trivalent iron as effective components. The Mn(III) component oxidizes As(III) to generate As(V), so that even As(III), which is hardly adsorbed, can be adsorbed to the arsenic removing agent without using an oxidizing agent. The Fe(III) component has a high selective adsorptivity to As(V). As a result, arsenic can be effectively removed with small treatment man-hour and a small amount of treatment material. Low-cost compounds of iron and manganese are used as raw materials, which reduces a cost of production raw materials and facilitates production, thereby enabling the effective removal of arsenic at a low cost. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒ素除去剤に関する。近年、地下水や河川、湖沼水、更には各種工業排水などに含まれる汚染物質としてヒ素(As)が注目されている。ヒ素は発がん性を有し、長期的には慢性中毒を引き起こすことから、水質基準においてもヒ素濃度は必須の検査項目となっている。例えば、水道法によるヒ素濃度の水質基準値は0.01mg/L以下とされている。このため、地下水、河川、湖沼水、各種工業排水などのヒ素濃度が前記基準値を超える場合は、地下水等を利用する前に、また、各種工業排水等を排出する前に、水中からヒ素を除去する必要がある。本発明は、かかるヒ素に汚染された、地下水や河川水、湖沼水、各種排水などの液体からヒ素を除去するのに適したヒ素除去剤に関する。   The present invention relates to an arsenic removing agent. In recent years, arsenic (As) has attracted attention as a pollutant contained in groundwater, rivers, lake water, and various industrial wastewater. Since arsenic has carcinogenicity and causes chronic poisoning in the long term, the arsenic concentration is an essential test item even in the water quality standard. For example, the water quality standard value of the arsenic concentration by the water supply law is set to 0.01 mg / L or less. For this reason, if the arsenic concentration of groundwater, rivers, lake water, various industrial wastewater, etc. exceeds the standard value, arsenic is removed from the water before using the groundwater, etc., and before discharging various industrial wastewater, etc. Need to be removed. The present invention relates to an arsenic removing agent suitable for removing arsenic from liquids such as ground water, river water, lake water, and various waste waters contaminated with arsenic.

ヒ素の代表的な除去法としては、凝集沈殿法と吸着法が知られている。
凝集沈殿法として、例えば、ヒ素によって汚染された水にアルミニウム塩や鉄塩などの無機質凝集剤を添加した後、pH調整して金属水酸化物の凝集フロックを沈殿させる際に、このフロックにヒ素を取り込んで共沈させて分離する方法が採用される。
しかし、凝集沈殿法は、ヒ素濃度によってはその処理に多量の凝集剤を必要とし、しかも、生成するヒ素含有スラッジは嵩高いアモルファス状であるため沈降させるのに大掛かりな設備と多大な時間を要する。
As typical methods for removing arsenic, an aggregation precipitation method and an adsorption method are known.
As a coagulation precipitation method, for example, when an inorganic flocculant such as an aluminum salt or an iron salt is added to water contaminated with arsenic, and then the pH is adjusted to precipitate the metal hydroxide coagulation floc, arsenic is added to the floc. The method of taking in and co-precipitating is used.
However, the coagulation sedimentation method requires a large amount of coagulant for the treatment depending on the arsenic concentration, and the arsenic-containing sludge to be produced is bulky amorphous and requires a large amount of equipment and a large amount of time for sedimentation. .

一方、吸着法は、ヒ素を含む被処理水を吸着剤に接触させて吸着除去する方法であり、吸着剤を選択することで優れた除去効率を得ることができるという利点があるため、様々な吸着剤が開発されている(例えば、特許文献1〜3、非特許文献1)。   On the other hand, the adsorption method is a method in which water to be treated containing arsenic is brought into contact with an adsorbent and adsorbed and removed, and there is an advantage that excellent removal efficiency can be obtained by selecting an adsorbent. Adsorbents have been developed (for example, Patent Documents 1 to 3, Non-Patent Document 1).

特許文献1〜3および非特許文献1には、水中等にイオンの状態で存在するヒ素を直接吸着する吸着剤として、S(硫黄)を含む還元性の海綿鉄(特許文献1)、二酸化マンガン(Mn(IV))(特許文献2)、ビスマスを含むマンガン化合物(特許文献3)、FeSO4、MnSO4の混合溶液とKMnO4溶液との反応で合成したFe−Mn複合酸化物(非特許文献1)、が開示されている。 Patent Documents 1 to 3 and Non-Patent Document 1 disclose reducing sponge iron containing S (sulfur) (Patent Document 1), manganese dioxide as an adsorbent that directly adsorbs arsenic existing in an ionic state in water or the like. (Mn (IV)) (patent document 2), manganese compound containing bismuth (patent document 3), Fe-Mn composite oxide synthesized by reaction of a mixed solution of FeSO 4 and MnSO 4 and a KMnO 4 solution (non-patent document) Document 1) is disclosed.

また、特許文献4には、ヒ素を直接吸着する吸着剤ではないが、ヒ素を間接的に吸着する吸着剤として炭素系接触濾材を使用する技術が開示されている。この技術では、炭素系接触濾材の存在下においてヒ素が溶存している井戸水などの原水に第一鉄塩を注入し、当該原水を弱酸性とした雰囲気下で溶存酸素の作用により第一鉄塩からオキシ水酸化鉄を生成させている。同時に生成したオキシ水酸化鉄に対するヒ素の吸着が進行し、ヒ素が吸着したオキシ水酸化鉄は炭素系接触濾材に被着するから、原水中のヒ素を間接的に炭素系接触濾材に吸着することができる。   Patent Document 4 discloses a technique that uses a carbon-based contact filter medium as an adsorbent that indirectly adsorbs arsenic, although it is not an adsorbent that directly adsorbs arsenic. In this technology, ferrous salt is injected into raw water such as well water in which arsenic is dissolved in the presence of a carbon-based contact filter medium, and the ferrous salt is formed by the action of dissolved oxygen in an atmosphere in which the raw water is weakly acidic. To produce iron oxyhydroxide. The adsorption of arsenic to the iron oxyhydroxide produced at the same time progresses, and the iron oxyhydroxide adsorbed to arsenic adheres to the carbon-based contact filter medium. Can do.

ところで、地下水や河川、湖沼水、各種工業排水等において、ヒ素(As)は、酸化された状態で存在し、主に3価の状態(以下、As(III)で示す)や、5価の状態(以下、As(V)で示す)で存在する。とくに、As(III)は毒性が高く、このAs(III)を効率よく確実に除去することが求められている。   By the way, arsenic (As) exists in an oxidized state in groundwater, rivers, lake water, various industrial wastewater, etc., and is mainly in a trivalent state (hereinafter referred to as As (III)) or pentavalent. Exists in the state (hereinafter referred to as As (V)). In particular, As (III) is highly toxic and it is required to remove this As (III) efficiently and reliably.

しかるに、特許文献1、2の吸着剤は、As(III)を直接吸着できないので、酸化処理してAs(V)に変えてから吸着処理が行われる。このため、処理工数が多くなるので、ヒ素濃度が水質基準値以下となるまでに長時間を要する上、As(III)を酸化するための酸化剤が必要となるため、処理コストも高くなる。   However, since the adsorbents of Patent Documents 1 and 2 cannot directly adsorb As (III), the adsorbing treatment is performed after the oxidation treatment and changing to As (V). For this reason, since the number of processing steps is increased, it takes a long time for the arsenic concentration to fall below the water quality reference value, and an oxidizing agent for oxidizing As (III) is required, which increases the processing cost.

特許文献3、4および非特許文献1の吸着剤は、原水中のAs(III)を酸化してから処理する必要はない。
しかし、非特許文献1の吸着剤は、As(III)を吸着する速度が遅いという問題がある。
また、特許文献3の吸着剤は、主成分の炭酸マンガン(MnCO3)が不安定であり、酸性溶液中で溶解する上、ビスマスは毒性を有することからその使用できる状況が限られるという問題もある。
さらに、特許文献4の吸着剤は、原水のpHを第一鉄塩がオキシ水酸化鉄に変換するのに適した弱酸性に調節する必要があるし、原水の溶存酸素濃度を高めるために原水に対して曝気処理を施す必要があるため操作が煩雑である。そして、高価な炭素系接触濾材を用いる必要があるため処理コストが高くなるという問題もある。
The adsorbents of Patent Documents 3 and 4 and Non-Patent Document 1 do not need to be treated after oxidizing As (III) in raw water.
However, the adsorbent of Non-Patent Document 1 has a problem that the rate of adsorbing As (III) is slow.
In addition, the adsorbent of Patent Document 3 has a problem that manganese carbonate (MnCO 3 ) as a main component is unstable, dissolves in an acidic solution, and bismuth has toxicity, so that the situation where it can be used is limited. is there.
Further, the adsorbent of Patent Document 4 needs to adjust the pH of the raw water to a weak acid suitable for the ferrous salt to be converted to iron oxyhydroxide, and to increase the dissolved oxygen concentration of the raw water. The operation is complicated because it is necessary to perform the aeration process. And since it is necessary to use an expensive carbon-type contact filter medium, there also exists a problem that processing cost becomes high.

特開2006−312163号公報JP 2006-312163 A 特開平8−267053号公報JP-A-8-267053 特開2003−160338号公報JP 2003-160338 A 特開平11−47763号公報JP 11-47763 A G. Zhang, J. Qu, H. Liu, R. Liu, R. Wu, Water Research Vol. 41, pp. 1921-1928 (2007)。G. Zhang, J. Qu, H. Liu, R. Liu, R. Wu, Water Research Vol. 41, pp. 1921-1928 (2007).

本発明は上記事情に鑑み、簡便かつ一般的に使用でき、しかも、ヒ素を処理する速度が速いヒ素除去剤を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an arsenic removing agent that can be used simply and generally and has a high speed for treating arsenic.

第1発明のヒ素除去剤は、液体に含まれるヒ素を除去するための除去剤であって、3価のマンガンと3価の鉄とを有効成分として含むことを特徴とする。
第2発明のヒ素除去剤は、第1発明において、3価のマンガンと3価の鉄とが複合体の状態で存在する複合化合物を有効成分として含むことを特徴とする。
第3発明のヒ素除去剤は、第2発明において、前記複合化合物が、鉄マンガン複合オキシ水酸化物または鉄マンガン複合含水酸化物であることを特徴とする。
The arsenic removing agent of the first invention is a removing agent for removing arsenic contained in a liquid, and is characterized by containing trivalent manganese and trivalent iron as active ingredients.
The arsenic removing agent of the second invention is characterized in that, in the first invention, it contains a complex compound in which trivalent manganese and trivalent iron exist in a complex state as an active ingredient.
The arsenic removing agent of the third invention is characterized in that, in the second invention, the composite compound is an iron manganese composite oxyhydroxide or an iron manganese composite hydrous oxide.

第1発明によれば、Mn(III)成分がAs(III)を酸化してAs(V)とするため、吸着性の悪いAs(III)であっても、酸化剤を使用することなくヒ素除去剤に吸着させることができる。しかも、Fe(III)成分はAs(V)に対して高い選択吸着性を有する。よって、少ない処理工数、かつ、少ない処理物質により、効果的にヒ素を除去することができる。また、ヒ素除去剤は鉄とマンガンを原材料としており、いずれも低廉な材料であるから、製造原料が安くなりかつ製造も容易になるから、低コストで効果的にヒ素を除去することができる。
第2発明によれば、Fe(III)成分とMn(III)成分とが複合化されているので、Fe(III)成分とMn(III)成分とが近傍に位置する。すると、ヒ素(As(III))を酸化する反応と酸化されたヒ素(As(V))を吸着する反応とが連続的に進行するので、ヒ素除去剤によるヒ素の吸着速度を速くすることができる。
第3発明によれば、鉄マンガン複合オキシ水酸化物または鉄マンガン複合含水酸化物では、Fe(III)成分とMn(III)成分とが均一に複合されている。しかも、鉄マンガン複合オキシ水酸化物または鉄マンガン複合含水酸化物は、大きな比表面積を有する。よって、他の複合物に比べて、ヒ素を吸着する量とその吸着速度をともに増大させることができる。
According to the first invention, since the Mn (III) component oxidizes As (III) to As (V), even if As (III) has poor adsorptivity, arsenic can be used without using an oxidizing agent. It can be adsorbed by a remover. Moreover, the Fe (III) component has a high selective adsorption property for As (V). Therefore, arsenic can be effectively removed with a small number of processing steps and a small amount of processing material. Further, since the arsenic removing agent is made of iron and manganese as raw materials, both are inexpensive materials, the production raw material becomes cheap and the production becomes easy, so that arsenic can be effectively removed at low cost.
According to the second invention, since the Fe (III) component and the Mn (III) component are combined, the Fe (III) component and the Mn (III) component are located in the vicinity. Then, the reaction of oxidizing arsenic (As (III)) and the reaction of adsorbing oxidized arsenic (As (V)) proceed continuously, so that the adsorption rate of arsenic by the arsenic removal agent can be increased. it can.
According to the third invention, the Fe (III) component and the Mn (III) component are uniformly combined in the ferromanganese composite oxyhydroxide or the ferromanganese composite hydrated oxide. Moreover, ferromanganese composite oxyhydroxide or ferromanganese composite hydrated oxide has a large specific surface area. Therefore, both the amount of adsorption of arsenic and its adsorption rate can be increased compared to other composites.

本発明のヒ素除去剤は、地下水や河川、湖沼水、更には各種工業排水、飲料水、生活排水等の液体中に含まれる汚染物質としてヒ素(As)を除去するための除去剤であり、ヒ素を含む液体と接触させたときに、液体中のヒ素(As)を吸着して液体から除去するものである。   The arsenic remover of the present invention is a remover for removing arsenic (As) as a contaminant contained in liquids such as groundwater, rivers, lake water, various industrial wastewater, drinking water, domestic wastewater, When contacted with a liquid containing arsenic, arsenic (As) in the liquid is adsorbed and removed from the liquid.

本発明のヒ素除去剤は、3価のマンガン(以下、Mn(III)で示す)と3価の鉄(Fe(III)で示す)とを有効成分として含んでいる。
このヒ素除去剤に含まれるFe(III)は、ヒ素のうち、5価のヒ素(以下、As(V)で示す)に対して高い選択吸着性を有している。また、Fe(III)だけでなく、Mn(III)もAs(V)に対して吸着性を有している。
このため、本発明のヒ素除去剤を、As(V)を含む液体に接触させれば、Fe(III)およびMn(III)によって、液体中のAs(V)を効率よく吸着して、As(V)を液体中から除去することができる。
The arsenic removing agent of the present invention contains trivalent manganese (hereinafter referred to as Mn (III)) and trivalent iron (indicated as Fe (III)) as active ingredients.
Fe (III) contained in this arsenic removing agent has a high selective adsorption property to pentavalent arsenic (hereinafter referred to as As (V)) of arsenic. Further, not only Fe (III) but also Mn (III) has an adsorptivity to As (V).
For this reason, when the arsenic removing agent of the present invention is brought into contact with a liquid containing As (V), As (V) in the liquid is efficiently adsorbed by Fe (III) and Mn (III). (V) can be removed from the liquid.

ここで、ヒ素は、液体中において、As(V)の状態だけでなく、3価のヒ素(以下、As(III)で示す)としても存在する。Fe(III)やMn(III)は、As(III)を吸着する能力はそれほど高くない。   Here, arsenic exists not only in the state of As (V) but also as trivalent arsenic (hereinafter referred to as As (III)) in the liquid. Fe (III) and Mn (III) are not so high in the ability to adsorb As (III).

しかし、本発明のヒ素除去剤では、Mn(III)を有効成分として含んでおり、このMn(III)は、As(III)を酸化する能力も有している。
このため、As(III)を含む液体を本発明のヒ素除去剤に接触させると、液体中のAs(III)はMn(III)によって酸化され、As(V)となる。酸化されたAs(V)は、Mn(III)およびFe(III)によって吸着できる。
However, the arsenic removing agent of the present invention contains Mn (III) as an active ingredient, and this Mn (III) also has an ability to oxidize As (III).
For this reason, when a liquid containing As (III) is brought into contact with the arsenic removing agent of the present invention, As (III) in the liquid is oxidized by Mn (III) to become As (V). Oxidized As (V) can be adsorbed by Mn (III) and Fe (III).

以上のごとくであるから、本発明のヒ素除去剤は、液体中に含まれるヒ素が、As(III)であってもAs(V)であっても、効率よく吸着して液体中から除去することができる。   As described above, the arsenic removing agent of the present invention efficiently adsorbs and removes arsenic from the liquid regardless of whether the arsenic contained in the liquid is As (III) or As (V). be able to.

また、本発明のヒ素除去剤は、有効成分であるMn(III)がAs(III)を酸化する酸化剤としても機能する。ヒ素の吸着除去のために、本発明のヒ素除去剤とは別に、As(III)を酸化する酸化剤が不要になるから、ヒ素の除去処理に使用する処理物質を少なくすることができる。しかも、吸着処理の前に液体中のヒ素を酸化する処理が不要になるから、ヒ素除去の処理工数も少なくすることができる。   The arsenic removing agent of the present invention also functions as an oxidizing agent in which Mn (III) as an active ingredient oxidizes As (III). In order to adsorb and remove arsenic, an oxidizing agent that oxidizes As (III) is not required in addition to the arsenic removing agent of the present invention, so that the amount of processing material used for the arsenic removing treatment can be reduced. In addition, since the process of oxidizing arsenic in the liquid is not required before the adsorption process, the number of processes for removing arsenic can be reduced.

さらに、本発明のヒ素除去剤は鉄とマンガンを原材料としており、いずれも低廉な材料であるから、製造原料が安くなりかつ製造も容易になる。よって、低コストで効果的にヒ素を除去することができる。
そして、鉄とマンガンの化合物から形成されているので、毒性も少なく簡便かつ一般的に使用できる
Furthermore, since the arsenic removing agent of the present invention uses iron and manganese as raw materials, both of which are inexpensive materials, the production raw material is reduced and the production is facilitated. Therefore, arsenic can be effectively removed at low cost.
And because it is formed from iron and manganese compounds, it is less toxic and can be used easily and generally.

本発明のヒ素除去剤は、Mn(III)とFe(III)とを有効成分として含んでいればよいのであるが、Mn(III)とFe(III)とが複合体の状態で存在する複合化合物を有効成分として含んでいることが好ましい。
Fe(III)とMn(III)とが複合化されている場合、両者が複合化されていない場合に比べて、Fe(III)とMn(III)とが近傍に位置する。As(III)の大部分はMn(III)によってAs(V)に酸化されてからFe(III)に吸着されるのであるが、Fe(III)とMn(III)とが近傍に位置していれば、Mn(III)によるAs(III)を酸化する反応と、Fe(III)によるAs(V)を吸着する反応とが連続的に進行するから、ヒ素の吸着速度を速くすることができる。
The arsenic removing agent of the present invention only needs to contain Mn (III) and Fe (III) as active ingredients, but a complex in which Mn (III) and Fe (III) exist in a complex state. It is preferable to contain a compound as an active ingredient.
When Fe (III) and Mn (III) are complexed, Fe (III) and Mn (III) are located closer to each other than when they are not complexed. Most of As (III) is oxidized to As (V) by Mn (III) and then adsorbed to Fe (III), but Fe (III) and Mn (III) are located in the vicinity. As a result, the reaction of oxidizing As (III) by Mn (III) and the reaction of adsorbing As (V) by Fe (III) proceed continuously, so that the arsenic adsorption rate can be increased. .

とくに、Mn(III)とFe(III)とが複合体の状態で存在する複合化合物が、分子式FenMnmOxHy またはFenMnmOx・yH2Oで表すことができる鉄マンガン複合オキシ水酸化物または鉄マンガン複合含水酸化物であれば、より好ましい。
かかる鉄マンガン複合オキシ水酸化物や鉄マンガン複合含水酸化物では、Fe(III)とMn(III)とが、複合化合物内で均一に複合されている。すると、複合化合物と液体に含まれるヒ素との接触状況によらず、上述した酸化吸着反応を効率的に進行させることができる。しかも、鉄マンガン複合オキシ水酸化物や鉄マンガン複合含水酸化物は、大きな比表面積を有しており、Fe(III)およびMn(III)とヒ素との接触確率も高くなる。
よって、本発明のヒ素除去剤に含まれる複合化合物が、鉄マンガン複合オキシ水酸化物や鉄マンガン複合含水酸化物の場合には、他の複合化合物に比べて、ヒ素を吸着する量とその吸着速度とをともに増大させることができるから、ヒ素を含んだ液体の処理効率を高くすることができる。
なお、上記分子において、符号n,m,x,yは、全て0ではない正の整数である。
In particular, a complex compound in which Mn (III) and Fe (III) are present in a complex state is an iron that can be represented by the molecular formula Fe n Mn m O x H y or Fe n Mn m O x · yH 2 O. It is more preferable if it is a manganese composite oxyhydroxide or an iron manganese composite hydroxide.
In such iron-manganese composite oxyhydroxide and iron-manganese composite hydrous oxide, Fe (III) and Mn (III) are uniformly combined in the composite compound. Then, regardless of the contact state between the complex compound and arsenic contained in the liquid, the above-described oxidation adsorption reaction can be efficiently advanced. In addition, ferromanganese composite oxyhydroxide and ferromanganese composite hydrated hydroxide have a large specific surface area, and the contact probability between Fe (III) and Mn (III) and arsenic increases.
Therefore, when the composite compound contained in the arsenic removing agent of the present invention is an ferromanganese composite oxyhydroxide or an ferromanganese composite hydrated oxide, the amount of arsenic adsorbed and its adsorption compared to other composite compounds. Since both the speed and the speed can be increased, the processing efficiency of the liquid containing arsenic can be increased.
In the numerator, the signs n, m, x, and y are positive integers that are not all zero.

本発明のヒ素除去剤のヒ素吸着性能に、ヒ素除去剤中のFe/Mnモル比が与える影響を確認した。
実験では、ヒ素を含む被処理溶液100mLに本発明のヒ素除去剤25mgを投入し、緩やかに撹拌しながら室温で8時間保った後、撹拌を止めて吸着剤と上澄液を分離し、この上澄液中の残留ヒ素濃度をICP-MS装置(SEIKO Instruments Inc SPQ 9000)によって測定した。そして、上澄液中の残留ヒ素濃度からヒ素除去剤のヒ素吸着量およびヒ素吸着率を算出した。
The influence of the Fe / Mn molar ratio in the arsenic removal agent on the arsenic adsorption performance of the arsenic removal agent of the present invention was confirmed.
In the experiment, 25 mg of the arsenic removing agent of the present invention was added to 100 mL of a solution to be treated containing arsenic, kept at room temperature for 8 hours with gentle stirring, and then the stirring was stopped to separate the adsorbent and the supernatant. The residual arsenic concentration in the supernatant was measured with an ICP-MS apparatus (SEIKO Instruments Inc SPQ 9000). Then, the arsenic adsorption amount and arsenic adsorption rate of the arsenic remover were calculated from the residual arsenic concentration in the supernatant.

実験には、Fe/Mnモル比=8:2、6:4、4:6、2:8である本発明のヒ素除去剤と、Fe/Mnモル比=10:0、0:10である比較物質を使用した。本発明のヒ素除去剤および比較物質は、以下の方法で調整した。
(1)本発明のヒ素除去剤
Fe(NO33とMn(NO32の溶液を混合して、Fe(NO33+Mn(NO32の濃度が0.2Mとなるように混合溶液を調製する。ついで、この混合溶液をFe(NO33とMn(NO32のモル比が2:8となるように調製して調製溶液とし、この調製溶液100mLに、0.2MのNaOHと3%過酸化水素(H22)を含む添加溶液200mLを激しく攪拌しながら、添加する。すると、激しく反応した後、沈殿物を得られるので、この沈殿物をろ過、水洗、室温乾燥すれば、Fe/Mnモル比=2:8のヒ素除去剤が得られる。
また、上記方法において、Fe(NO33+Mn(NO32の濃度が0.2M、かつ、Fe(NO33とMn(NO32のモル比が、8:2、6:4、4:6である調製溶液を使用すれば、Fe/Mnモル比=8:2、6:4、4:6のヒ素除去剤が得られる。
上記調製方法において、調製溶液と添加溶液とが反応して生成される反応溶液のpHが10より低い場合には沈殿物が生成されない。よって、この場合には、反応溶液にさらに0.2MのNaOHと3%過酸化水素(H22)を含む溶液を加え、反応溶液のpHを10付近に調製すると、沈殿物を得ることができる。
(2)比較物質
Fe(NO33またはMn(NO32の0.2Mとなるように調製した調製溶液100mLに、0.2MのNaOHと3%過酸化水素(H22)を含む添加溶液200mLと反応させると、激しく反応した後、沈殿物を得られる。この沈殿物をろ過、水洗、室温乾燥すれば、Fe/Mnモル比=10:0または0:10の比較物質が得られる。
なお、この場合も反応溶液のpHが10より低い場合には沈殿物が生成されないので、反応溶液にさらに0.2MNaOHと3%過酸化水素(H22)を含む溶液を加え、反応溶液のpHを10付近に調製すれば、沈殿物を得ることができる。
In the experiment, the arsenic removal agent of the present invention with Fe / Mn molar ratio = 8: 2, 6: 4, 4: 6, 2: 8, and Fe / Mn molar ratio = 10: 0, 0:10. A comparative material was used. The arsenic removing agent and the comparative substance of the present invention were prepared by the following method.
(1) Arsenic removing agent of the present invention
A solution of Fe (NO 3 ) 3 and Mn (NO 3 ) 2 is mixed to prepare a mixed solution so that the concentration of Fe (NO 3 ) 3 + Mn (NO 3 ) 2 is 0.2M. Next, this mixed solution was prepared so that the molar ratio of Fe (NO 3 ) 3 and Mn (NO 3 ) 2 was 2: 8 to prepare a prepared solution. To 100 mL of the prepared solution, 0.2 M NaOH and 3% Add 200 mL of an additive solution containing hydrogen peroxide (H 2 O 2 ) with vigorous stirring. Then, since a precipitate is obtained after vigorous reaction, an arsenic removing agent having a Fe / Mn molar ratio of 2: 8 can be obtained by filtering, washing with water and drying at room temperature.
In the above method, the concentration of Fe (NO 3 ) 3 + Mn (NO 3 ) 2 is 0.2M, and the molar ratio of Fe (NO 3 ) 3 and Mn (NO 3 ) 2 is 8: 2, 6: When the prepared solution having a ratio of 4: 4: 6 is used, an arsenic removing agent having a Fe / Mn molar ratio of 8: 2, 6: 4, 4: 6 can be obtained.
In the above preparation method, when the pH of the reaction solution produced by reacting the preparation solution with the added solution is lower than 10, no precipitate is produced. Therefore, in this case, if a solution containing 0.2 M NaOH and 3% hydrogen peroxide (H 2 O 2 ) is further added to the reaction solution, and the pH of the reaction solution is adjusted to around 10, a precipitate may be obtained. it can.
(2) Comparative substances
Reaction with 200 mL of an additive solution containing 0.2 M NaOH and 3% hydrogen peroxide (H 2 O 2 ) in 100 mL of a prepared solution prepared to 0.2 M of Fe (NO 3 ) 3 or Mn (NO 3 ) 2 In this case, a precipitate is obtained after vigorous reaction. If this precipitate is filtered, washed with water, and dried at room temperature, a comparative substance having an Fe / Mn molar ratio of 10: 0 or 0:10 is obtained.
In this case as well, no precipitate is formed when the pH of the reaction solution is lower than 10. Therefore, a solution containing 0.2 M NaOH and 3% hydrogen peroxide (H 2 O 2 ) is further added to the reaction solution, If the pH is adjusted to around 10, a precipitate can be obtained.

ここで、上記方法によって調製された物質の組成構造を確認した。
(1)まず、上記方法によって調製された物質の結晶構造を、X線回折計(X-Ray Diffractmeter : XRD、SHIMADZU XRD-6100)によって調べた。
図1に示しているように、Fe/Mnモル比が2:8のヒ素除去剤、および、Fe/Mnモル比が0:10の比較物質では、β―MnOOHのX線回折ピークが見られており、β―MnOOH成分を含有することが確認できる。
即ち、Fe/Mnモル比が0:10の比較物質および、Fe/Mnモル比が2:8のヒ素除去剤は、+3価のマンガン(Mn(III))が存在する、鉄マンガン複合オキシ水酸化物を含んでいることが確認できる。
(2)一方、Fe/Mnモル比が8:2、6:4、4:6であるヒ素除去剤では、回折ピークが観測されないことから、非晶質構造であることが確認できる。これら非晶質構造の場合、XRDだけではヒ素除去剤に含まれるマンガンの酸化数を特定できないので、Fe/Mnモル比が6:4、4:6であるヒ素除去剤では、ヒ素除去剤に含まれるマンガンの活性酸素量を日本工業規格の酸化還元滴定法(JIS M8233)で測定し、また、ヒ素除去剤のマンガン含有量を原子吸光法で測定し、両測定結果から、ヒ素除去剤に含まれるマンガンの酸化数を求めた。
また、示唆熱分析法(TG-DTA)を用いた室温から600℃までの重量減少に基づいて、含水率も測定した。
図2に示すように、Fe/Mnモル比が6:4、4:6であるヒ素除去剤中におけるマンガンの平均酸化数が、それぞれ2.8、2.9であり、かつ、含水率も10%以上であることが確認できた。
つまり、Fe/Mnモル比が6:4、4:6であるヒ素除去剤も、+3価のマンガン(Mn(III))が存在する水分を含む非晶質構造であることが確認できる。つまり、Fe/Mnモル比が6:4、4:6であるヒ素除去剤は、+3価のマンガン(Mn(III))が存在する鉄マンガン複合オキシ水酸化物または鉄マンガン複合含水酸化物を含んでいることが確認できる。
Here, the composition structure of the substance prepared by the above method was confirmed.
(1) First, the crystal structure of the substance prepared by the above method was examined with an X-ray diffractometer (XRD, SHIMADZU XRD-6100).
As shown in FIG. 1, an X-ray diffraction peak of β-MnOOH is observed with an arsenic removing agent having a Fe / Mn molar ratio of 2: 8 and a comparative material having an Fe / Mn molar ratio of 0:10. It can be confirmed that it contains a β-MnOOH component.
In other words, the comparative material having a Fe / Mn molar ratio of 0:10 and the arsenic removing agent having a Fe / Mn molar ratio of 2: 8 are ferromanganese composite oxywater containing trivalent manganese (Mn (III)). It can be confirmed that the oxide is contained.
(2) On the other hand, in the arsenic removal agent having Fe / Mn molar ratios of 8: 2, 6: 4, and 4: 6, since a diffraction peak is not observed, it can be confirmed that it has an amorphous structure. In the case of these amorphous structures, since the oxidation number of manganese contained in the arsenic removal agent cannot be specified only by XRD, the arsenic removal agent having a Fe / Mn molar ratio of 6: 4, 4: 6 is not suitable as an arsenic removal agent. The amount of active oxygen contained in manganese was measured by the Japanese Industrial Standard redox titration method (JIS M8233), and the manganese content of the arsenic removal agent was measured by atomic absorption spectrometry. The oxidation number of manganese contained was determined.
The moisture content was also measured based on weight loss from room temperature to 600 ° C. using suggested thermal analysis (TG-DTA).
As shown in FIG. 2, the average oxidation numbers of manganese in the arsenic removal agents having Fe / Mn molar ratios of 6: 4 and 4: 6 are 2.8 and 2.9, respectively, and the water content is 10% or more. It was confirmed that there was.
That is, it can be confirmed that the arsenic removing agent having a Fe / Mn molar ratio of 6: 4 or 4: 6 also has an amorphous structure containing moisture in which + trivalent manganese (Mn (III)) is present. In other words, the arsenic removal agent with the Fe / Mn molar ratio of 6: 4, 4: 6 is an iron-manganese composite oxyhydroxide or iron-manganese composite hydrated hydroxide containing + trivalent manganese (Mn (III)). It can be confirmed that it contains.

つぎに、本発明のヒ素除去剤と比較物質のヒ素吸着性能を比較した実験結果を説明する。
図3は、ヒ素除去剤と比較物質のヒ素吸着性能を比較した実験結果を示した表である。
FeおよびMnを両方有効成分として含有する本発明のヒ素除去剤(Fe/Mnモル比=8:2、6:4、4:6、2:8)では、残留ヒ素濃度が低くヒ素の吸着率も99%以上を示しており、ヒ素を吸着する性能が高いことが確認できる。そして、Fe/Mnモル比=6:4、4:6、2:8の本発明のヒ素除去剤では、水中に含まれるヒ素濃度が2mg/L(2000ppb )以下であれば、水道法において規定された飲料水のヒ素濃度の規制値である0.01mg/L以下とすることができることが確認できる。
一方、Fe組成のみまたはMn組成のみを成分として含む比較物質(Fe/Mnモル比=0:10、10:0)では、残留ヒ素濃度が高く、Mn組成のみを成分として含む比較物質に到っては、ヒ素の吸着率は70%以下である。
以上のことから、ヒ素の吸着性能を高くするためには、Fe(III)およびMn(III)を両方有効成分として含有することが必要であり、Fe/Mnモル比=6:4、4:6、2:8、とくに、Fe/Mnモル比=4:6であるヒ素除去剤の吸着性能が高いことが確認できる。
Next, experimental results comparing the arsenic adsorption performance of the arsenic removing agent of the present invention and the comparative substance will be described.
FIG. 3 is a table showing experimental results comparing the arsenic adsorption performance of the arsenic removal agent and the comparative substance.
The arsenic removal agent of the present invention containing both Fe and Mn as active ingredients (Fe / Mn molar ratio = 8: 2, 6: 4, 4: 6, 2: 8) has a low residual arsenic concentration and an arsenic adsorption rate 99% or more, indicating that the performance of adsorbing arsenic is high. And, in the arsenic removing agent of the present invention of Fe / Mn molar ratio = 6: 4, 4: 6, 2: 8, if the concentration of arsenic contained in water is 2 mg / L (2000 ppb) or less, it is specified in the Waterworks Law. It can be confirmed that it can be made 0.01 mg / L or less, which is the regulated value of the arsenic concentration of the drinking water.
On the other hand, the comparative material containing only the Fe composition or only the Mn composition (Fe / Mn molar ratio = 0: 10, 10: 0) has a high residual arsenic concentration and reaches the comparative material containing only the Mn composition as a component. The adsorption rate of arsenic is 70% or less.
From the above, in order to increase the adsorption performance of arsenic, it is necessary to contain both Fe (III) and Mn (III) as active ingredients, and Fe / Mn molar ratio = 6: 4, 4: It can be confirmed that the adsorption performance of the arsenic removal agent with 6, 2: 8, particularly Fe / Mn molar ratio = 4: 6 is high.

本発明のヒ素除去剤のヒ素吸着性能を、被処理溶液に含まれるヒ素濃度を変化させて確認した。
実験では、ヒ素を含む被処理溶液100mLに本発明のヒ素除去剤25mgを投入し、緩やかに撹拌しながら室温で8時間保った後、撹拌を止めて吸着剤と上澄液を分離し、該上澄液中の残留ヒ素濃度をICP-MS装置によって測定した。そして、上澄液中の残留ヒ素濃度からヒ素除去剤のヒ素吸着量およびヒ素吸着率を算出した。
The arsenic adsorption performance of the arsenic removing agent of the present invention was confirmed by changing the concentration of arsenic contained in the solution to be treated.
In the experiment, 25 mg of the arsenic removing agent of the present invention was added to 100 mL of a solution to be treated containing arsenic, kept at room temperature for 8 hours while gently stirring, and then the stirring was stopped to separate the adsorbent and the supernatant, The residual arsenic concentration in the supernatant was measured with an ICP-MS apparatus. Then, the arsenic adsorption amount and arsenic adsorption rate of the arsenic remover were calculated from the residual arsenic concentration in the supernatant.

本発明のヒ素除去剤には、実施例1において最も吸着性能の優れていたFe/Mnモル比=4:6のヒ素除去剤を使用した。
また、被処理溶液には、水に亜ヒ酸(H3AsO3)を混合して、As(III)濃度が0.2、1、2、4、8mg/Lとなるように調整した溶液を使用した。なお、被処理溶液は、pHが6.6となるように調製している。
As the arsenic removing agent of the present invention, an arsenic removing agent having an Fe / Mn molar ratio of 4: 6, which had the best adsorption performance in Example 1, was used.
The solution to be treated is a solution prepared by mixing arsenous acid (H 3 AsO 3 ) in water and adjusting the As (III) concentration to 0.2, 1, 2, 4, 8 mg / L. did. The solution to be treated is prepared so that the pH is 6.6.

図4はヒ素濃度の違いによるヒ素除去剤のヒ素吸着性能を確認した実験結果を示した表である。図4に示すように、ヒ素濃度2mg/L(2000ppb)以下では、被処理溶液のヒ素濃度が0.0012mg/L(1.2ppb)以下に低下している。つまり、被処理溶液中のヒ素濃度2mg/L(2000ppb)以下であれば、本発明のヒ素除去剤(Fe/Mnモル比=4:6)によって、被処理溶液中のヒ素濃度を、水道法において規定された飲料水のヒ素濃度の規制値である0.01mg/L以下とすることができることが確認できる。
また、ヒ素濃度が4mg/L以上の場合には、上記規制値まではヒ素濃度を低下させることはできないものの、それぞれヒ素吸着率は98%、97%であり、非常に高い吸着率が維持されていることが確認できる。
つまり、本発明のヒ素除去剤(Fe/Mnモル比=4:6)は、低濃度から高濃度までの広い濃度範囲でAs(III)を高い吸着率で吸着除去することができることが確認できる。
FIG. 4 is a table showing experimental results for confirming the arsenic adsorption performance of the arsenic remover depending on the arsenic concentration. As shown in FIG. 4, when the arsenic concentration is 2 mg / L (2000 ppb) or less, the arsenic concentration of the solution to be treated is lowered to 0.0012 mg / L (1.2 ppb) or less. That is, if the arsenic concentration in the solution to be treated is 2 mg / L (2000 ppb) or less, the arsenic concentration in the solution to be treated is determined by the water supply method using the arsenic removing agent (Fe / Mn molar ratio = 4: 6) of the present invention. It can be confirmed that it can be made 0.01 mg / L or less, which is the regulation value of the arsenic concentration of drinking water defined in 1.
In addition, when the arsenic concentration is 4 mg / L or more, the arsenic concentration cannot be decreased up to the above-mentioned regulation value, but the arsenic adsorption rates are 98% and 97%, respectively, and a very high adsorption rate is maintained. Can be confirmed.
That is, it can be confirmed that the arsenic removing agent (Fe / Mn molar ratio = 4: 6) of the present invention can adsorb and remove As (III) with a high adsorption rate in a wide concentration range from low concentration to high concentration. .

本発明のヒ素除去剤のヒ素吸着速度を確認した。
実験は、亜ヒ酸(H3AsO3)をAs濃度で0.1mg/Lを含む被処理水100mL(pHは6.6)をビーカーに量り取り、本発明のヒ素除去剤25mgを投入し、緩やかに撹拌しながら、室温で5、10、30、60分経過後、上澄液を採取し、この上澄液中の残留ヒ素濃度を測定し、吸着速度を調べた。
The arsenic adsorption rate of the arsenic removing agent of the present invention was confirmed.
In the experiment, 100 mL (pH 6.6) of water to be treated containing arsenous acid (H 3 AsO 3 ) containing 0.1 mg / L of As was measured in a beaker, and 25 mg of the arsenic removing agent of the present invention was added. After stirring for 5, 10, 30, and 60 minutes at room temperature, the supernatant was collected, the residual arsenic concentration in the supernatant was measured, and the adsorption rate was examined.

なお、本発明のヒ素除去剤には、実施例1において最も吸着性能の優れていたFe/Mnモル比=4:6のヒ素除去剤を使用した。
比較のために、従来から吸着剤に使用されているβ-FeOOH吸着剤とα-FeOOH吸着剤についても同じ実験を実施した。
As the arsenic removing agent of the present invention, an arsenic removing agent having an Fe / Mn molar ratio of 4: 6, which had the best adsorption performance in Example 1, was used.
For comparison, the same experiment was carried out for β-FeOOH adsorbent and α-FeOOH adsorbent that have been used for adsorbents.

図5はヒ素除去剤と比較物質のヒ素吸着速度を比較した実験結果を示した図である。
図5に示すように、Fe/Mnモル比=4:6の本発明のヒ素除去剤は、従来の吸着剤β-FeOOHとα-FeOOH よりヒ素の吸着速度が速く、5分後、ヒ素の吸着率が90%以上となっている。言い換えれば、水中に残留しているヒ素が、処理前の10%以下、つまり、水道法において規定された飲料水のヒ素濃度の規制値である0.01mg/L以下を達成していることが確認できる。
一方、β-FeOOH吸着剤とα-FeOOH吸着剤は、0.01mg/L以下(吸着率が90%以上)を達成するには、それぞれ、10分、30分がかかり、本発明のヒ素除去剤に比べて2倍以上の時間を要している。
以上のことから、本発明のヒ素除去剤では、従来の吸着剤に比べてヒ素吸着速度が速く、水道水などの除去に使用すれば、処理速度を速くできると考えられる。
FIG. 5 is a diagram showing experimental results comparing the arsenic adsorption rates of the arsenic removing agent and the comparative substance.
As shown in FIG. 5, the arsenic removal agent of the present invention having an Fe / Mn molar ratio = 4: 6 has a higher arsenic adsorption rate than the conventional adsorbents β-FeOOH and α-FeOOH, and after 5 minutes, The adsorption rate is 90% or more. In other words, it is confirmed that arsenic remaining in the water achieves 10% or less before treatment, that is, 0.01 mg / L or less, which is the regulated value of the arsenic concentration of drinking water stipulated in the Water Supply Law. it can.
On the other hand, the β-FeOOH adsorbent and the α-FeOOH adsorbent require 10 minutes and 30 minutes to achieve 0.01 mg / L or less (adsorption rate of 90% or more), respectively. It takes more than twice as long.
From the above, the arsenic removing agent of the present invention has a higher arsenic adsorption rate than conventional adsorbents, and it is considered that the treatment rate can be increased if used for removing tap water or the like.

本発明のヒ素除去剤は、ヒ素に汚染された地下水や河川水、湖沼水、各種排水などからヒ素を効率よく除去する、カラム、吸着床、フィルタなどの設備に使用するヒ素除去剤に適している。   The arsenic removal agent of the present invention is suitable for arsenic removal agents used in equipment such as columns, adsorption beds, and filters that efficiently remove arsenic from groundwater, river water, lake water, and various wastewaters contaminated with arsenic. Yes.

本発明のヒ素除去剤と比較物質のXRDパターンを示した図である。It is the figure which showed the XRD pattern of the arsenic removal agent of this invention, and a comparison substance. 本発明のヒ素除去剤における平均酸化数および含水率を示した表である。It is the table | surface which showed the average oxidation number and moisture content in the arsenic removal agent of this invention. ヒ素除去剤と比較物質のヒ素吸着性能を比較した実験結果を示した表である。It is the table | surface which showed the experimental result which compared the arsenic adsorption | suction performance of an arsenic removal agent and a comparison substance. ヒ素濃度の違いによるヒ素除去剤のヒ素吸着性能を確認した実験結果を示した表である。It is the table | surface which showed the experimental result which confirmed the arsenic adsorption performance of the arsenic removal agent by the difference in an arsenic density | concentration. ヒ素除去剤と比較物質のヒ素吸着速度を比較した実験結果を示した図である。It is the figure which showed the experimental result which compared the arsenic adsorption rate of an arsenic removal agent and a comparison substance.

Claims (3)

液体に含まれるヒ素を除去するための除去剤であって、
3価のマンガンと3価の鉄とを有効成分として含む
ことを特徴とするヒ素除去剤。
A remover for removing arsenic contained in a liquid,
An arsenic removing agent comprising trivalent manganese and trivalent iron as active ingredients.
3価のマンガンと3価の鉄とが複合体の状態で存在する複合化合物を有効成分として含む
ことを特徴とする請求項1記載のヒ素除去剤。
2. The arsenic removing agent according to claim 1, comprising a composite compound in which trivalent manganese and trivalent iron exist in a complex state as an active ingredient.
前記複合化合物が、鉄マンガン複合オキシ水酸化物または鉄マンガン複合含水酸化物である
ことを特徴とする請求項2記載のヒ素除去剤。
The arsenic removing agent according to claim 2, wherein the complex compound is an iron manganese complex oxyhydroxide or an iron manganese complex hydrous oxide.
JP2008018516A 2008-01-30 2008-01-30 Arsenic remover Active JP4936559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018516A JP4936559B2 (en) 2008-01-30 2008-01-30 Arsenic remover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018516A JP4936559B2 (en) 2008-01-30 2008-01-30 Arsenic remover

Publications (2)

Publication Number Publication Date
JP2009178638A true JP2009178638A (en) 2009-08-13
JP4936559B2 JP4936559B2 (en) 2012-05-23

Family

ID=41033025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018516A Active JP4936559B2 (en) 2008-01-30 2008-01-30 Arsenic remover

Country Status (1)

Country Link
JP (1) JP4936559B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540093A (en) * 2011-05-27 2013-10-31 コリア インスティチュート オブ ゲオサイエンス アンド ミネラル リソーセズ Agglomerated mixture of magnetite and birnessite, synthesis method thereof, and water treatment method using the mixture
CN112142112A (en) * 2020-09-28 2020-12-29 湖北富邦科技股份有限公司 Iron-manganese-sulfur ternary micron material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003776A (en) * 2019-12-30 2020-04-14 昆明理工大学 Method for treating nonferrous smelting arsenic-containing wastewater by using ferromanganese ore

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513153A (en) * 1978-07-15 1980-01-30 Yasumasa Shigetomi Ion adsorbent consisting of magnetic hydrous iron oxide
JPH10309434A (en) * 1997-05-13 1998-11-24 Nippon Sanso Kk Method for detoxicating waste gas
JP2004255376A (en) * 2003-02-05 2004-09-16 Ishihara Sangyo Kaisha Ltd Environmental purification material and environmental purification method using the same
JP2007014826A (en) * 2005-06-10 2007-01-25 Asahi Kasei Chemicals Corp Porous molding and its producing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513153A (en) * 1978-07-15 1980-01-30 Yasumasa Shigetomi Ion adsorbent consisting of magnetic hydrous iron oxide
JPH10309434A (en) * 1997-05-13 1998-11-24 Nippon Sanso Kk Method for detoxicating waste gas
JP2004255376A (en) * 2003-02-05 2004-09-16 Ishihara Sangyo Kaisha Ltd Environmental purification material and environmental purification method using the same
JP2007014826A (en) * 2005-06-10 2007-01-25 Asahi Kasei Chemicals Corp Porous molding and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540093A (en) * 2011-05-27 2013-10-31 コリア インスティチュート オブ ゲオサイエンス アンド ミネラル リソーセズ Agglomerated mixture of magnetite and birnessite, synthesis method thereof, and water treatment method using the mixture
CN112142112A (en) * 2020-09-28 2020-12-29 湖北富邦科技股份有限公司 Iron-manganese-sulfur ternary micron material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4936559B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
Wen et al. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI)
Kang et al. Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite
US20150001155A1 (en) Methods and apparatus for synthesis of stabilized zero valent nanoparticles
CN110894084B (en) Nano zero-valent iron load material, preparation method thereof and purification method of hexavalent chromium in sewage
KR101354409B1 (en) Method of preparing organic-Inorganic adsorbent by impregnating oxides inside nano pores of activated carbon and use of the adsorbent for water treatment
WO2012056826A1 (en) Method for processing toxic matter-containing water and processing device
KR20090007493A (en) Method for treating wastewater and wastewater treatment apparatus
Wen et al. Simultaneous oxidation and immobilization of arsenite from water by nanosized magnetic mesoporous iron manganese bimetal oxides (Nanosized-MMIM): Synergistic effect and interface catalysis
KR101185877B1 (en) Water treatment method of arsenic-containing water by using layered double hydroxide
Thakur et al. Removal of heavy metals using bentonite clay and inorganic coagulants
Li et al. Removal of lead complexes by ferrous phosphate and iron phosphate: Unexpected favorable role of ferrous ions
CN109592821A (en) A kind of method of EDTA- thallium complex in removal waste water
Shan et al. Decontamination of arsenite by a nano-sized lanthanum peroxide composite through a simultaneous treatment process combined with spontaneously catalytic oxidation and adsorption reactions
Lichtfouse et al. Methods for selenium removal from contaminated waters: a review
JP4936559B2 (en) Arsenic remover
Fang et al. Highly efficient in-situ purification of Fe (II)-rich high-arsenic groundwater under anoxic conditions: Promotion mechanisms of PMS on oxidation and adsorption
JP2009056379A (en) Heavy metals-containing water treatment method and apparatus
WO2012056825A1 (en) Purification material for toxic matter-containing water and production method for same
CN111085159B (en) Magnetic nano adsorbent for removing arsenic and preparation method and application thereof
JP2009148750A (en) Heavy metal-containing water treating method
Xiao et al. Disodium N, N-bis-(dithiocarboxy) ethanediamine: synthesis, performance, and mechanism of action toward trace ethylenediaminetetraacetic acid copper (II)
Krupińska The impact of potassium manganate (VII) on the effectiveness of coagulation in the removal of iron and manganese from groundwater with an increased content of organic substances
Luo et al. Acetylacetone promoted high-efficiency coagulation toward arsenite through a synchronous photooxidation process
WO2004096433A1 (en) Adsorbent and process for producing the same
JP2004290777A (en) Method for treating arsenic-containing water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250