JP2009178155A - SIMPLE AND PRECISE QUANTITATIVE ANALYSIS OF siRNA DISTRIBUTED IN LIVING BODY OR siRNA INCORPORATED IN CELL - Google Patents

SIMPLE AND PRECISE QUANTITATIVE ANALYSIS OF siRNA DISTRIBUTED IN LIVING BODY OR siRNA INCORPORATED IN CELL Download PDF

Info

Publication number
JP2009178155A
JP2009178155A JP2008046817A JP2008046817A JP2009178155A JP 2009178155 A JP2009178155 A JP 2009178155A JP 2008046817 A JP2008046817 A JP 2008046817A JP 2008046817 A JP2008046817 A JP 2008046817A JP 2009178155 A JP2009178155 A JP 2009178155A
Authority
JP
Japan
Prior art keywords
sirna
cell
silica
living body
labeling substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008046817A
Other languages
Japanese (ja)
Inventor
Sadanao Namiki
禎尚 並木
Tama Namiki
珠 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008046817A priority Critical patent/JP2009178155A/en
Publication of JP2009178155A publication Critical patent/JP2009178155A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and precise quantitative analysis of siRNA distributed in a living body or siRNA uptaken in cells. <P>SOLUTION: Provided is the simple and precise quantitative analysis of siRNA distributed in the living body or siRNA incorporated in the cells by the steps of: (A) administering a siRNA binding a marker substance to the living body or adding to a culture solution of the cells; (B)simultaneously purifying and extracting total RNA including the siRNA from the living body or the cells; and (C) measuring the marker substance in the extracted RNA. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生体内に分布したsiRNA、もしくは細胞に取り込まれたsiRNAの簡便な精密定量法に関する。  The present invention relates to a simple precise quantification method for siRNA distributed in a living body or siRNA taken into cells.

医学分野において、薬物の病巣部への運搬を目指した薬物送達システムが開発されてきたが、未だ決定的なものは存在しない。特に、2006年度ノーベル賞受賞テーマであるsiRNAの機能の解明以降、siRNAは疾患の原因遺伝子を破壊する新規核酸医薬としても大変期待されているが、患部へのsiRNAの送達法の開発は非常に遅れている。  In the medical field, a drug delivery system aimed at transporting a drug to a lesion site has been developed, but nothing decisive exists yet. In particular, since elucidation of the function of siRNA, the 2006 Nobel Prize-winning theme, siRNA is also highly expected as a new nucleic acid drug that destroys the causative gene of the disease, but the development of a method for delivering siRNA to the affected area is very much Running late.

その一因として、実験動物等の生体内に分布したsiRNAを蛍光顕微鏡等により定性的に検出する方法は存在するものの、生体内に分布したsiRNAを簡便、かつ精密に定量する有効な手段が存在しないことがあげられる。  As one of the reasons, although there is a method for qualitatively detecting siRNA distributed in living organisms such as experimental animals with a fluorescence microscope or the like, there is an effective means for quantifying siRNA distributed in living organisms easily and precisely. Not to mention.

その状況の中で、最近、蛍光色素等によるsiRNAの標識技術、カラム等によるRNAの精製抽出技術、及び蛍光色素の高感度測定技術が開発されている。  In that situation, recently, siRNA labeling technology with fluorescent dyes, RNA purification and extraction technology with columns and the like, and high sensitivity measurement technology of fluorescent dyes have been developed.

本発明の課題は、生体内に分布したsiRNA、もしくは細胞に取り込まれたsiRNAを簡便、かつ精密に定量する方法を提供することにある。特に、標識物質として放射性同位元素等の危険な物質を使用しない場合には、どこでも安全に使用できる方法となる。  An object of the present invention is to provide a method for easily and precisely quantifying siRNA distributed in a living body or siRNA taken into cells. In particular, when a dangerous substance such as a radioisotope is not used as a labeling substance, the method can be used safely anywhere.

出願人は先に、siRNA等の核酸医薬を磁気送達可能な磁性ナノ粒子、及びその製造方法を提案している(特願2007−198104)。該発明過程において、10〜18塩基対以上のRNAを精製抽出可能なカラムを用いて、標識物質を結合したsiRNAを含むトータルRNAを同時に、生物、もしくは細胞から精製抽出後、標識物質の定量を行うことにより上記課題を解決しうるという知見を得た。  The applicant has previously proposed a magnetic nanoparticle capable of magnetically delivering a nucleic acid drug such as siRNA and a production method thereof (Japanese Patent Application No. 2007-198104). In the process of the invention, using a column capable of purifying and extracting RNA of 10-18 base pairs or more, total RNA containing siRNA bound to the labeling substance is simultaneously purified and extracted from organisms or cells, and then the labeling substance is quantified. The knowledge that the above-mentioned problem can be solved by doing was obtained.

本発明は、上記知見に基づいてなされたものであり、(A)標識物質を結合したsiRNAを生物に投与する、もしくは細胞の培養液に添加する工程;(B)該生物、もしくは該細胞から該siRNAを含むトータルRNAを同時に精製抽出する工程;及び(C)該抽出RNA中の標識物質を測定することにより、生体に分布したsiRNA、もしくは細胞に取り込まれたsiRNAを簡便、かつ精密に定量する方法を提供する。  The present invention has been made on the basis of the above findings, and (A) a step of administering siRNA bound with a labeling substance to an organism or adding it to a culture medium of a cell; (B) from the organism or the cell A step of simultaneously purifying and extracting the total RNA containing the siRNA; and (C) measuring the labeling substance in the extracted RNA, thereby quantifying siRNA distributed in the living body or siRNA taken into the cell easily and precisely. Provide a way to do it.

本発明の生体内に分布したsiRNA、もしくは細胞内に取り込まれたsiRNAの精密な簡便定量法は、(A)標識物質を結合したsiRNAを生物に投与する、もしくは細胞の培養液に添加する工程;(B)該生物、もしくは該細胞から該siRNAを含むトータルRNAを同時に精製抽出する工程;及び(C)該抽出RNA中の標識物質を測定することにより、生体に分布したsiRNA、もしくは細胞に取り込まれたsiRNAを簡便、かつ精密に定量することを特徴とする。  According to the present invention, an accurate and simple method for quantifying siRNA distributed in a living body or siRNA taken into a cell is a step of (A) administering an siRNA bound to a labeling substance to a living organism or adding it to a cell culture medium. (B) a step of simultaneously purifying and extracting total RNA containing the siRNA from the organism or the cell; and (C) siRNA or cells distributed in the living body by measuring a labeling substance in the extracted RNA. It is characterized in that the incorporated siRNA is quantified simply and precisely.

本発明の生体内に分布したsiRNA、もしくは細胞内に取り込まれたsiRNAの精密な簡便定量においては、(A)標識物質を結合したsiRNAを生物に投与する、もしくは細胞の培養液に添加する工程;(B)該生物、もしくは該細胞から該siRNAを含むトータルRNAを同時に精製抽出する工程;及び(C)該抽出RNA中の標識物質を測定することにより、生体に分布したsiRNA、もしくは細胞に取り込まれたsiRNAを定量する工程からなる。  In precise and simple quantification of siRNA distributed in the living body of the present invention or siRNA taken into cells, (A) a step of administering siRNA bound to a labeling substance to an organism or adding it to a cell culture medium. (B) a step of simultaneously purifying and extracting total RNA containing the siRNA from the organism or the cell; and (C) siRNA or cells distributed in the living body by measuring a labeling substance in the extracted RNA. It consists of a step of quantifying the incorporated siRNA.

先ず、本発明において用いられるsiRNAについて述べる。siRNAは、通常、19〜23塩基対からなる短い2本鎖RNAで、哺乳動物細胞内において遺伝子配列特異的に遺伝子発現を抑制する機能をもつことが知られている。即ち、siRNAを用いて狙った遺伝子の発現を特異的に制御することが可能である。しかし、siRNAは不安定、かつ高価であるため、目的部位にsiRNAを効率良く送達する技術の開発が望まれている。  First, siRNA used in the present invention will be described. siRNA is usually a short double-stranded RNA consisting of 19 to 23 base pairs, and is known to have a function of specifically suppressing gene expression in mammalian cells. That is, it is possible to specifically control the expression of the targeted gene using siRNA. However, since siRNA is unstable and expensive, development of a technique for efficiently delivering siRNA to a target site is desired.

しかし、siRNAを生体内に投与した後の、siRNAの生体内分布を簡便、かつ精密に定量する有効な手段が現在まで存在しなかったことが一因となり、siRNAの患部への送達法の開発は非常に遅れている。  However, the development of a method for delivering siRNA to the affected area is due in part to the fact that there has been no effective means to quantify siRNA biodistribution in vivo in a simple and precise manner. Is very late.

次に、本発明の生体内に分布したsiRNA、もしくは細胞に取り込まれたsiRNAの簡便な精密定量法について、工程毎に説明する。先ず、上記工程(A)について説明する。上記工程(A)は、標識物質を結合したsiRNAを生物に投与する、もしくは細胞の培養液に添加する工程である。  Next, a simple precise quantification method of siRNA distributed in the living body of the present invention or siRNA taken into cells will be described step by step. First, the step (A) will be described. The step (A) is a step of administering siRNA to which a labeling substance is bound to an organism or adding it to a cell culture solution.

本発明において用いられるsiRNAの標識物質については、例えば、Cy3、Cy3.5、Cy5、Cy5.5、FAM、Fluorescein、HEX、TET、Texas Red、TAMRA、R6G、ROX,JOE、Yakima yellow、Biodipy FL、Biodipy 530/550、Biodipy TR、Biodipy TMR、Alexa Fluor350、Alexa Fluor430、Alexa Fluor488、Alexa Fluor532、Alexa Fluor546、Alexa Fluor555、Alexa Fluor568、Alexa Fluor594、Alexa Fluor633、Alexa Fluor660、Alexa Fluor667、Alexa Fluor680、Alexa Fluor700、Alexa Fluor750、Cascade Blue、Marina Blue、Pacific Blue等の蛍光色素、Biotin、Digoxigenin、Dinitrophenol等の非放射性物質、もしくは、放射性同位元素等、特に限定されず、siRNAを標識することのできるものは全て用いることができるが、蛍光色素であることが好ましい。  For siRNA labeling substances used in the present invention, for example, Cy3, Cy3.5, Cy5, Cy5.5, FAM, Fluorescein, HEX, TET, Texas Red, TAMRA, R6G, ROX, JOE, Yakima yellow, Biodipy FL , Biodipy 530/550, Biodipy TR, Biodipy TMR, Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 555, Alexa Fluor 556, Alexa Fluor 553 fluor 680, Alexa Fluor 700, Alexa Fluor 750, Cascade Blue, Marina Blue, Pacific Blue and other non-radioactive substances such as Biotin, Digixigenin, Dintrophenol, and radioactive isotopes are not particularly limited. Anything that can be used can be used, but a fluorescent dye is preferred.

本発明において用いられるsiRNAの標識物質の結合部位については、siRNAの3’末端、5’末端等、特に限定されず、siRNAを標識することのできる結合部位は全て用いることができる。  The binding site of the siRNA labeling substance used in the present invention is not particularly limited, such as the 3 ′ end and 5 ′ end of siRNA, and any binding site capable of labeling siRNA can be used.

標識物質を結合したsiRNAは、生体内、生体外のいずれにおいても使用することができる。生体内で使用する場合、投与経路としては、例えば、静脈内、実質臓器内(例えば、脳、目、甲状腺、乳腺、心臓、肺、肝臓、膵臓、腎臓、副腎、卵巣、精巣等)、管腔臓器の管腔内(例えば、食道、胃、十二指腸、空腸、回腸、大腸、胆嚢、尿管、膀胱内等)、脳脊髄腔内、胸腔内、腹腔内、筋肉内、関節内、皮下、皮内等、特に限定されない。  The siRNA to which the labeling substance is bound can be used both in vivo and in vitro. When used in vivo, administration routes include, for example, intravenous, intraparenchymal organs (eg, brain, eyes, thyroid, mammary gland, heart, lung, liver, pancreas, kidney, adrenal gland, ovary, testis, etc.), duct Intraluminal (eg, esophagus, stomach, duodenum, jejunum, ileum, large intestine, gallbladder, ureter, intravesical, etc.), intracerebral spinal cavity, intrathoracic, intraperitoneal, intramuscular, intraarticular, subcutaneous, It is not particularly limited such as intradermal.

標識物質を結合したsiRNAの投与を行う生物種は、例えば、動物、植物、微生物等、特に限定されることはないが、動物由来であることが好ましく、例えば、ヒト、サル、ウシ、ヒツジ、ヤギ、ウマ、ブタ、ウサギ、イヌ、ネコ、マウス、ラット、モルモット等、哺乳動物であることがより好ましい。また、siRNAを取り込む細胞の種類は、例えば、体細胞、生殖細胞、幹細胞又はこれらの培養細胞等、特に限定されない。  The biological species to which the siRNA to which the labeling substance is bound is administered is not particularly limited, for example, animals, plants, microorganisms and the like, but is preferably derived from animals, for example, humans, monkeys, cows, sheep, More preferred are mammals such as goats, horses, pigs, rabbits, dogs, cats, mice, rats, and guinea pigs. Moreover, the kind of cell which takes in siRNA is not specifically limited, for example, a somatic cell, a germ cell, a stem cell, or these cultured cells.

標識物質を結合したsiRNAの投与、もしくは添加時に、リポソーム、脂質ナノ粒子、ポリマー等、特に限定されず併用することができる。また、これらを併用せずに、標識物質を結合したsiRNA単独で、投与、もしくは添加することも可能である。  At the time of administration or addition of siRNA bound to a labeling substance, liposomes, lipid nanoparticles, polymers and the like are not particularly limited and can be used in combination. Moreover, it is also possible to administer or add siRNA alone to which a labeling substance is bound without using these in combination.

上述した工程(A)により、標識物質を結合したsiRNAを生物に投与する、もしくは細胞の培養液に添加する。  By the step (A) described above, siRNA to which a labeling substance is bound is administered to an organism or added to a cell culture solution.

次に、上記工程(B)について説明する。上記工程(B)は、上記工程(A)で標識物質を結合したsiRNAを投与、もしくは添加した生物、もしくは細胞から該siRNAを含むトータルRNAを同時に精製抽出する工程である。  Next, the said process (B) is demonstrated. The step (B) is a step of simultaneously purifying and extracting the total RNA containing the siRNA from the organism or cell to which the siRNA bound with the labeling substance in the step (A) has been administered or added.

本発明において用いられる生物、もしくは細胞からのトータルRNAの抽出には、例えば、チオシアン酸グアニジン等のカオトロピック塩、硫酸アンモニウム等のアンチカオトロピック塩、酸性フェノール/クロロホルム混合液等が用いられるが、トータルRNAの抽出が可能であれば特に制限なく使用することができる。  For extraction of total RNA from organisms or cells used in the present invention, for example, a chaotropic salt such as guanidine thiocyanate, an antichaotropic salt such as ammonium sulfate, an acidic phenol / chloroform mixed solution, and the like are used. If extraction is possible, it can be used without particular limitation.

本発明において用いられる生物からのトータルRNAの抽出には、生物の一部、もしくは全部を用いて抽出することが可能である。  Extraction of total RNA from the organism used in the present invention can be performed using a part or all of the organism.

本発明において用いられるsiRNAを含むトータルRNAの精製には、例えば、アルコール沈殿、グラスファイバー担体、シリカ担体、セラミック担体等が用いられるが、効率の高いグラスファイバー担体、シリカ担体、セラミック担体が好ましく、10〜18塩基以上の長さの全てのRNAを精製可能なグラスファイバー担体、シリカ担体、セラミック担体の使用がより好ましい。但し、siRNAを含むトータルRNAの精製が可能であれば、特に制限なく使用することができる。  For purification of total RNA including siRNA used in the present invention, for example, alcohol precipitation, glass fiber carrier, silica carrier, ceramic carrier and the like are used. Highly efficient glass fiber carrier, silica carrier and ceramic carrier are preferable, It is more preferable to use a glass fiber carrier, a silica carrier, or a ceramic carrier capable of purifying all RNAs having a length of 10 to 18 bases or more. However, as long as the total RNA containing siRNA can be purified, it can be used without particular limitation.

上述した工程(B)により、該生物、もしくは該細胞から標識物質を結合したsiRNAを含むトータルRNAを同時に精製抽出する。  By the step (B) described above, total RNA containing siRNA bound with a labeling substance is simultaneously purified and extracted from the organism or the cell.

次に、上記工程(C)について説明する。上記工程(C)は、上記工程(B)で精製抽出した標識物質を結合したsiRNAを含むトータルRNA中の標識物質を測定することにより、生体に分布したsiRNA、もしくは細胞に取り込まれたsiRNAを定量する工程である。  Next, the said process (C) is demonstrated. In the step (C), the siRNA distributed in the living body or the siRNA taken into the cell is measured by measuring the labeling material in the total RNA containing the siRNA bound with the labeling substance purified and extracted in the step (B). It is a process of quantifying.

本発明において用いられるsiRNAに結合した標識物質の定量は、標識物質が蛍光色素の場合、蛍光色素固有の励起波長光を蛍光色素に照射し、発生した蛍光強度を測定する。該目的のため、蛍光測定装置、蛍光プレートリーダー等が用いられるが、微量の蛍光物質を定量することが可能であれば特に制限なく使用できる。  In the quantification of the labeling substance bound to siRNA used in the present invention, when the labeling substance is a fluorescent dye, the fluorescent dye is irradiated with excitation wavelength light unique to the fluorescent dye, and the generated fluorescence intensity is measured. For this purpose, a fluorescence measuring device, a fluorescence plate reader, and the like are used, and any fluorescent substance can be used without particular limitation as long as it is possible to quantify a trace amount of fluorescent substance.

本発明において用いられるsiRNAに結合した標識物質の定量は、標識物質がBiotin、もしくはBiotin化合物の場合、AvidinがBiotin、もしくはBiotin化合物に特異的に結合することを利用する。即ち、ペルオキシダーゼ結合Avidin、アルカリフォスファターゼ結合Avidin等を用いることにより、Avidinに結合した該酵素の基質の分解による呈色反応、発光反応等を、吸光度計、プレートリーダー、ルミノメーター等を用いて定量する。  The quantification of the labeled substance bound to siRNA used in the present invention utilizes the fact that Avidin specifically binds to Biotin or Biotin compound when the labeled substance is Biotin or a Biotin compound. That is, by using peroxidase-conjugated avidin, alkaline phosphatase-conjugated avidin, etc., the color reaction, luminescence reaction, etc. due to decomposition of the substrate of the enzyme bound to avidin is quantified using an absorptiometer, plate reader, luminometer, etc. .

本発明において用いられるsiRNAに結合した標識物質の定量は、標識物質がBiotin、Biotin化合物、Digoxigenin、Digoxigenin化合物、Dinitrophenol、Dinitrophenol化合物等の場合、これらに対しそれぞれ特異的に結合する抗体を用いる、ELISA法(Enzyme−Linked Immunosorbent assay)等公知の方法を制限なく使用できる。  Quantification of the labeling substance bound to siRNA used in the present invention is carried out by using an antibody that specifically binds to each of the labeling substances such as Biotin, Biotin compound, Digixigenin, Digixigenin compound, Dinitrophenol, Dinitrophenol compound, etc. A known method such as a method (Enzyme-Linked Immunosorbent assay) can be used without limitation.

本発明において用いられるsiRNAに結合した標識物質の定量は、標識物質が放射性同位元素の場合、液体シンチレーションカウンタ、プレートシンチレーションカウンタ、ガンマカウンタ等公知の方法を制限なく使用できる。  For quantification of the labeling substance bound to siRNA used in the present invention, when the labeling substance is a radioisotope, a known method such as a liquid scintillation counter, a plate scintillation counter, or a gamma counter can be used without limitation.

本発明において用いられるトータルRNAの定量は、分光光度計を用いて260nmの波長における吸光度(A260)を測定し、計算により行う。具体的には、トータルRNA濃度(μg/mL)=(A260)×40×10/光路長(mm)と計算される。但し、トータルRNAの定量は、公知の方法を制限なく使用することができる。  The quantification of the total RNA used in the present invention is carried out by calculating the absorbance (A260) at a wavelength of 260 nm using a spectrophotometer. Specifically, the total RNA concentration (μg / mL) = (A260) × 40 × 10 / optical path length (mm) is calculated. However, for quantification of total RNA, a known method can be used without limitation.

発明の効果The invention's effect

本発明の生体内に分布したsiRNA、もしくは細胞に取り込まれたsiRNAの簡便な精密定量法を用いて、実験動物等におけるsiRNAの生体内分布を簡便、かつ精密に定量することが可能になるので、病変部へのsiRNAの送達法の開発等に大きく貢献する。  Since it is possible to easily and precisely quantify the in vivo distribution of siRNA in laboratory animals or the like using the simple precise quantification method of siRNA distributed in the living body of the present invention or siRNA incorporated into cells. It greatly contributes to the development of siRNA delivery methods to lesions.

以下、本発明を実施例により更に詳細に説明する。なお本発明の範囲は、かかる実施例に限定されないことはいうまでもない。  Hereinafter, the present invention will be described in more detail with reference to examples. Needless to say, the scope of the present invention is not limited to such examples.

(工程A)
5週齢の雄ヌードマウス(系統BALB/C nu/nu)30匹の尾静脈に、Alexa Fluoro488で標識したコントロールsiRNA(キアゲン社より購入)(300nM)と26.8μgの陽性荷電脂質ナノ粒子(O,O‘−ditetradecanoyl−N−(α−trimethylammonioacetyl)diethanolamine chloride、(DC−6−14)及びdioleoylphosphatidylethanolamine(DOPE)(モル比;1:1)から構成される)の混合物(0.5mL)を投与した。
(Process A)
Control siRNA (purchased from Qiagen) (300 nM) labeled with Alexa Fluoro488 (300 nM) and 26.8 μg of positively charged lipid nanoparticles (strain) of 30-week-old male nude mice (strain BALB / C nu / nu) A mixture (0.5 mL) of O, O′-ditetradecanoyl-N- (α-trimethylamylaminoacetyl) diethanolamine chloride, (DC-6-14) and dioleoylphosphatidylethanolamine (DOPE) (molar ratio; 1: 1). Administered.

(工程B)
上記の投与を行い、0.5時間後、1.5時間後、4.5時間後、13.5時間後、40.5時間後に、それぞれ6匹のマウスを屠殺し、肺、脾臓、肝臓、腎臓、筋肉、心臓、胃、小腸、脳の各臓器を摘出し、TRIZOL(フェノール/チオシアン酸グアニジン混合液;Invitrogen社より購入)を臓器25mgあたり0.7mL加え、激しく攪拌することにより、均一なホモジネートを得た。さらに、該ホモジネートに0.14mLのクロロホルムを添加し、激しく攪拌したのち4℃、12000G(重力加速度)にて15分間遠心分離を行い、上層のトータルRNAを含む水層を採取した。
(Process B)
After the above administration, 6 mice were sacrificed 0.5 hours, 1.5 hours, 4.5 hours, 13.5 hours, 40.5 hours later, and the lung, spleen, liver The kidney, muscle, heart, stomach, small intestine, and brain organs were removed, and TRIZOL (phenol / guanidine thiocyanate mixed solution; purchased from Invitrogen) was added in an amount of 0.7 mL per organ of 25 mg and stirred vigorously. Homogenate. Further, 0.14 mL of chloroform was added to the homogenate, and after vigorous stirring, centrifugation was performed at 4 ° C. and 12000 G (gravity acceleration) for 15 minutes to collect an aqueous layer containing the upper total RNA.

該水層0.35mLと100%エタノール0.525mLを混合後、混合液0.7mLをシリカメンブレンの充填されたカラム(miRNeasyスピンカラム(キアゲン社製))に添加し、室温、8000Gにて15秒間遠心分離することにより、シリカメンブレンにトータルRNAを吸着させた。  After mixing 0.35 mL of the aqueous layer and 0.525 mL of 100% ethanol, 0.7 mL of the mixed solution was added to a column filled with a silica membrane (miRNeasy spin column (Qiagen)), and 15 at 8000 G at room temperature. The total RNA was adsorbed on the silica membrane by centrifuging for 2 seconds.

シリカメンブレンに付着した不純物を除去するため、RWT緩衝液(キアゲン社製)0.7mLをスピンカラムに添加し、室温、8000Gにて15秒間遠心分離することによりシリカメンブレンを洗浄した。さらに、この洗浄をもう一度、繰り返した後、PRE緩衝液(キアゲン社製)0.5mLをスピンカラムに添加し、室温、8000Gにて2分間遠心分離することによりシリカメンブレンを強力に洗浄するとともに、乾燥させた。  In order to remove impurities adhering to the silica membrane, 0.7 mL of RWT buffer (Qiagen) was added to the spin column, and the silica membrane was washed by centrifuging at 8000 G for 15 seconds at room temperature. Furthermore, after repeating this washing once more, 0.5 ml of PRE buffer (Qiagen) was added to the spin column, and the silica membrane was washed strongly by centrifugation at 8000 G for 2 minutes at room temperature. Dried.

該スピンカラムにRNA分解酵素除去水(ワコー純薬製)を60μL添加し、シリカメンブレンに付着した、蛍光標識siRNAを含むトータルRNAを溶出した。  60 μL of RNA-degrading enzyme-removed water (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the spin column, and total RNA containing fluorescently labeled siRNA attached to the silica membrane was eluted.

(工程C)
各トータルRNA溶出液50μLを96well蛍光測定用黒色プレート(ファルコン社製)のwell内に入れ、蛍光プレートリーダー(パーキンエルマー社製:model 1420)を用いて、励起波長495nm、蛍光波長518nmの蛍光強度を測定した。
(Process C)
50 μL of each total RNA eluate is placed in a well of a 96-well fluorescence black plate (manufactured by Falcon), and using a fluorescence plate reader (Perkin Elmer: model 1420), the fluorescence intensity at an excitation wavelength of 495 nm and a fluorescence wavelength of 518 nm. Was measured.

同時に、Alexa Fluoro488で標識したコントロールsiRNA10pg、100pg、1ng、10ng、100ng、1μgを50μL中に含む希釈系列をRNA分解酵素除去水で作製し、これらの希釈系列における蛍光強度を同様にして測定し、図2に示すような標準曲線を作成した。  At the same time, a dilution series containing 50 pg of control siRNA labeled with Alexa Fluoro 488 (10 pg, 100 pg, 1 ng, 10 ng, 100 ng, 1 μg) in RNase-free water was prepared, and the fluorescence intensity in these dilution series was measured in the same manner. A standard curve as shown in FIG. 2 was prepared.

各溶出液の蛍光強度、及び該標準曲線から各溶出液に含まれる蛍光標識siRNAの量を計算した。さらに、残りの溶出液5μLを、それぞれ0.245mLのRNA分解酵素除去水で希釈後、A260を計算することにより、各溶出液のトータルRNAの濃度を計算した。  The amount of fluorescently labeled siRNA contained in each eluate was calculated from the fluorescence intensity of each eluate and the standard curve. Furthermore, the concentration of the total RNA in each eluate was calculated by calculating A260 after diluting the remaining 5 μL of the eluate with 0.245 mL of RNA-degrading enzyme-removed water.

最終的に、各溶出液に含まれる蛍光標識siRNAの量を各溶出液のトータルRNAの濃度で除することにより、図3に示すように、各組織に分布したsiRNA量を比較した。  Finally, the amount of siRNA distributed in each tissue was compared by dividing the amount of fluorescently labeled siRNA contained in each eluate by the concentration of total RNA in each eluate, as shown in FIG.

以上説明したように、本発明の、生体内に分布したsiRNA、もしくは細胞に取り込まれたsiRNAの簡便な精密定量法は、siRNAが医薬品として利用される上での最重要課題である患部への運搬法を開発するうえで非常に有用な手段となる。そのため、siRNAの各種送達法の開発、及び様々な疾患治療に対応する新規siRNAの開発に利用可能である。  As described above, the simple precise quantification method of siRNA distributed in a living body or siRNA taken up into a cell according to the present invention can be applied to an affected area, which is the most important issue when siRNA is used as a medicine. This is a very useful tool for developing a transportation method. Therefore, the present invention can be used for development of various delivery methods of siRNA and development of new siRNA corresponding to various disease treatments.

Alexa Fluoro488で標識したコントロールsiRNA10pg、100pg、1ng、10ng、100ng、1μgを50μL中に含む希釈系列を用いて作成した標準曲線を示したものである。この範囲において、蛍光標識siRNA量と蛍光強度の間の直線性を確認した。A standard curve prepared using a dilution series containing 10 pg, 100 pg, 1 ng, 10 ng, 100 ng, and 1 μg of control siRNA labeled with Alexa Fluoro488 in 50 μL is shown. In this range, the linearity between the amount of fluorescently labeled siRNA and the fluorescence intensity was confirmed. Alexa Fluoro488で標識したコントロールsiRNA(300nM)と26.8μgの陽性荷電脂質ナノ粒子(DC−6−14、及びDOPE(モル比;1:1)から構成される)の混合物(0.5mL)をマウスに静脈内投与した際の、siRNAの各臓器における分布の経時的変化を示したものである。それぞれ、投与後0.5時間(a)、1.5時間(b)、4.5時間(c)、13.5時間(d)、40.5時間(e)を示す。A mixture (0.5 mL) of control siRNA (300 nM) labeled with Alexa Fluoro488 and 26.8 μg of positively charged lipid nanoparticles (composed of DC-6-14 and DOPE (molar ratio; 1: 1)). 3 shows changes over time in the distribution of siRNA in each organ when intravenously administered to mice. The figures show 0.5 hours (a), 1.5 hours (b), 4.5 hours (c), 13.5 hours (d), and 40.5 hours (e) after administration, respectively.

Claims (3)

(A)標識物質を結合したsiRNA(small interfering RNA;短鎖干渉RNA)を生物に投与する、もしくは細胞の培養液に添加する工程;(B)該生物、もしくは該細胞から該siRNAを含むトータルRNAを同時に精製抽出する工程;及び(C)該抽出RNA中の標識物質を測定することにより、生体に分布したsiRNA、もしくは細胞に取り込まれたsiRNAを定量することを特徴とする、siRNAの簡便な精密定量法。  (A) A step of administering siRNA (small interfering RNA; short interfering RNA) bound to a labeling substance to an organism or adding it to a culture medium of a cell; (B) total containing the siRNA from the organism or the cell; A step of simultaneously purifying and extracting RNA; and (C) a simplified siRNA characterized by quantifying siRNA distributed in a living body or siRNA taken into a cell by measuring a labeling substance in the extracted RNA. Accurate quantitative method. 上記標識物質には、蛍光色素、Biotin、Biotin化合物、Digoxigenin、Digoxigenin化合物、Dinitrophenol、Dinitrophenol化合物、放射性同位元素のいずれか、もしくはこれらの組み合わせを用いる請求項1に記載のsiRNAの簡便な精密定量法。  The simple labeling method of siRNA according to claim 1, wherein the labeling substance is a fluorescent dye, Biotin, Biotin compound, Digixigenin, Digixigenin compound, Dinitrophenol, Dinitrophenol compound, radioisotope, or a combination thereof. . 上記トータルRNAの精製抽出には、シリカ粒子、シリカ粉末、シリカ繊維(グラスファイバー)、シリカメンプレン、シリカクロス、一体型多孔質シリカ、セラミック粒子、セラミック粉末、セラミック繊維、セラミックメンプレン、セラミッククロス、一体型多孔質セラミックのいずれか、もしくはこれらを混成したもの、もしくはこれらを混合したものを用いる請求項1に記載のsiRNAの簡便な精密定量法。  For purification and extraction of the above total RNA, silica particles, silica powder, silica fiber (glass fiber), silica membrane, silica cloth, integrated porous silica, ceramic particles, ceramic powder, ceramic fiber, ceramic membrane, ceramic cloth The simple and accurate method for quantifying siRNA according to claim 1, wherein any one of the integral porous ceramics, a mixture thereof, or a mixture thereof is used.
JP2008046817A 2008-01-31 2008-01-31 SIMPLE AND PRECISE QUANTITATIVE ANALYSIS OF siRNA DISTRIBUTED IN LIVING BODY OR siRNA INCORPORATED IN CELL Pending JP2009178155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046817A JP2009178155A (en) 2008-01-31 2008-01-31 SIMPLE AND PRECISE QUANTITATIVE ANALYSIS OF siRNA DISTRIBUTED IN LIVING BODY OR siRNA INCORPORATED IN CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046817A JP2009178155A (en) 2008-01-31 2008-01-31 SIMPLE AND PRECISE QUANTITATIVE ANALYSIS OF siRNA DISTRIBUTED IN LIVING BODY OR siRNA INCORPORATED IN CELL

Publications (1)

Publication Number Publication Date
JP2009178155A true JP2009178155A (en) 2009-08-13

Family

ID=41032620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046817A Pending JP2009178155A (en) 2008-01-31 2008-01-31 SIMPLE AND PRECISE QUANTITATIVE ANALYSIS OF siRNA DISTRIBUTED IN LIVING BODY OR siRNA INCORPORATED IN CELL

Country Status (1)

Country Link
JP (1) JP2009178155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227003A (en) * 2009-03-27 2010-10-14 Jikei Univ Method for quantitative determination of nucleic acid and apparatus for quantitative determination of nucleic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227003A (en) * 2009-03-27 2010-10-14 Jikei Univ Method for quantitative determination of nucleic acid and apparatus for quantitative determination of nucleic acid

Similar Documents

Publication Publication Date Title
Röthlisberger et al. Nucleic acid aptamers: Emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery
Lennaárd et al. Optimised electroporation for loading of extracellular vesicles with doxorubicin
Lin et al. NIR light-propelled janus-based nanoplatform for cytosolic-fueled microRNA imaging
KR102026096B1 (en) Graphene biosensor with fluorescence-labeled nucleic acid nanostructure for detecting nucleic acid
Bart et al. Characterization of nucleic acids from extracellular vesicle-enriched human sweat
Hwang et al. Development of a quadruple imaging modality by using nanoparticles
Kodera et al. Zebrafish, Medaka and turquoise killifish for understanding human neurodegenerative/neurodevelopmental disorders
Baril et al. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities
Hong et al. Semipermeable functional DNA-encapsulated nanocapsules as protective bioreactors for biosensing in living cells
Zhang et al. Neuron-radial glial cell communication via BMP/Id1 signaling is key to long-term maintenance of the regenerative capacity of the adult zebrafish telencephalon
Xie et al. Reversible and quantitative Photoregulation of target proteins
Kansara et al. In vivo sojourn of DNA nanodevices: Taking stock of the past and perspective for future challenges & applications
Hsu et al. L-Carnitine ameliorates congenital myopathy in a tropomyosin 3 de novo mutation transgenic zebrafish
Gao et al. Biosensors for the detection of enzymes based on aggregation-induced emission
Kim et al. SYNCRIP controls miR-137 and striatal learning in animal models of methamphetamine abstinence
Zhou et al. Upconverting nanoparticles based nanodevice for DNAzymes amplified miRNAs detection and artificially controlled chemo-gene therapy
TW201732040A (en) Dna aptamer binding to molecular targeting drug and method for detecting molecular targeting drug using same
JP2009178155A (en) SIMPLE AND PRECISE QUANTITATIVE ANALYSIS OF siRNA DISTRIBUTED IN LIVING BODY OR siRNA INCORPORATED IN CELL
Xiang et al. Peptosome Coadministration Improves Nanoparticle Delivery to Tumors through NRP1-Mediated Co-Endocytosis
Aravindraja et al. Global noncoding microRNA profiling in mice infected with partial human mouth microbes (PAHMM) using an ecological time-sequential polybacterial periodontal infection (ETSPPI) model reveals sex-specific differential microRNA expression
Jagdale et al. Zebrafish: a laboratory model to evaluate nanoparticle toxicity
Schachner-Nedherer et al. Lipid nanoparticles as a shuttle for anti-adipogenic miRNAs to human adipocytes
Rahman et al. Topoisomerase iiiβ deficiency induces neuro-behavioral changes and brain connectivity alterations in mice
Xie et al. Tissular localization and excretion of intravenously administered silica nanoparticles of different sizes
Dunkel Photoremovable Protecting Groups