JP2009176827A - Electromagnetic wave absorbing film and forming method thereof - Google Patents

Electromagnetic wave absorbing film and forming method thereof Download PDF

Info

Publication number
JP2009176827A
JP2009176827A JP2008011697A JP2008011697A JP2009176827A JP 2009176827 A JP2009176827 A JP 2009176827A JP 2008011697 A JP2008011697 A JP 2008011697A JP 2008011697 A JP2008011697 A JP 2008011697A JP 2009176827 A JP2009176827 A JP 2009176827A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
film
wave absorbing
thin film
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008011697A
Other languages
Japanese (ja)
Other versions
JP4976316B2 (en
Inventor
Seiji Kagawa
清二 加川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008011697A priority Critical patent/JP4976316B2/en
Publication of JP2009176827A publication Critical patent/JP2009176827A/en
Application granted granted Critical
Publication of JP4976316B2 publication Critical patent/JP4976316B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorbing film which is superior in electromagnetic wave absorbing capacity and workability and light in weight. <P>SOLUTION: The electromagnetic wave absorbing film includes a plastic film 10, a first metal thin film 11a provided on one surface of the plastic film, and a second metal vapor-deposited thin film 11b formed thereon. The first and second metals are non-magnetic and magnetic, respectively, and a number of substantially parallel linear marks are formed on the side of the second metal thin film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電磁波吸収能に優れた軽量な電磁波吸収フィルム及びその製造方法に関する。   The present invention relates to a lightweight electromagnetic wave absorbing film excellent in electromagnetic wave absorbing ability and a method for producing the same.

携帯電話、パーソナルコンピュータ等の電気・電子機器には、電磁波ノイズの漏洩及び進入を防止するシールド材が使用されているが、使用周波数の高周波化や、電気・電子機器の小型化及び軽量化によりシールド材に一層のシールド性の向上及び軽量化が求められている。特開平11-40980号(特許文献1)は、高分子フィルムと、その一面に形成した厚さ0.2〜2μmの銅蒸着層と、その上に形成した厚さ0.05〜0.2μmのニッケル蒸着層とを有する軽量な電磁波シ−ルド材を提案している。しかしこのシ−ルド材は、電磁波吸収能が十分とはいえない。   Shielding materials that prevent leakage and intrusion of electromagnetic wave noise are used in electric and electronic devices such as mobile phones and personal computers. However, due to the increase in operating frequency and the reduction in size and weight of electric and electronic devices. Shielding materials are required to have further improved shielding properties and light weight. Japanese Patent Laid-Open No. 11-40980 (Patent Document 1) discloses a polymer film, a copper deposition layer having a thickness of 0.2 to 2 μm formed on one surface thereof, and a nickel deposition layer having a thickness of 0.05 to 0.2 μm formed thereon. We propose a lightweight electromagnetic shielding material with However, this shield material does not have sufficient electromagnetic wave absorbing ability.

特開平11-40980号公報Japanese Unexamined Patent Publication No. 11-40980

従って本発明の目的は、電磁波吸収能及び加工性に優れた軽量な電磁波吸収フィルム、及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a lightweight electromagnetic wave absorbing film excellent in electromagnetic wave absorbing ability and processability, and a method for producing the same.

上記目的に鑑み鋭意研究の結果、本発明者は、プラスチックフィルムに二層の金属薄膜を形成した後、多数の実質的に平行な線状痕を形成すると、電磁波吸収能及び加工性に優れた軽量な電磁波吸収フィルムが得られることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventor was excellent in electromagnetic wave absorption ability and workability when a large number of substantially parallel linear traces were formed after forming a two-layer metal thin film on a plastic film. The inventors have found that a light-weight electromagnetic wave absorbing film can be obtained and have arrived at the present invention.

すなわち、本発明の電磁波吸収フィルムは、プラスチックフィルムと、その一面に設けた第一の金属の薄膜と、その上に形成した第二の金属の蒸着薄膜とを有し、前記第一及び第二の金属の一方が非磁性金属で他方が磁性金属であり、前記第二の金属の薄膜の側に多数の実質的に平行な線状痕が形成されていることを特徴とする。   That is, the electromagnetic wave absorbing film of the present invention comprises a plastic film, a first metal thin film provided on one surface thereof, and a second metal vapor-deposited thin film formed thereon, and the first and second One of the metals is a non-magnetic metal and the other is a magnetic metal, and a number of substantially parallel line marks are formed on the second metal thin film side.

前記非磁性金属は銅であるのが好ましく、前記磁性金属はニッケルであるのが好ましい。   The nonmagnetic metal is preferably copper, and the magnetic metal is preferably nickel.

前記線状痕の幅の分布は0.5〜10μmであるのが好ましい。前記線状痕の平均分布密度は1,000〜5,000本/cm幅であるのが好ましい。   The distribution of the width of the linear marks is preferably 0.5 to 10 μm. The average distribution density of the linear marks is preferably 1,000 to 5,000 / cm width.

本発明の好ましい例では、前記第一の金属の薄膜は蒸着層である。   In a preferred example of the present invention, the first metal thin film is a vapor deposition layer.

本発明の別の好ましい例では、前記第一の金属の薄膜はメッキ層又は箔であり、前記第二の金属の薄膜は蒸着層と、その上に形成したメッキ層とからなる。   In another preferred example of the present invention, the first metal thin film is a plating layer or a foil, and the second metal thin film is composed of a vapor deposition layer and a plating layer formed thereon.

第二の金属の薄膜の上にプラスチック層が設けられているのが好ましい。   A plastic layer is preferably provided on the second metal thin film.

本発明の電磁波吸収フィルムは、前記線状痕の延在方向に対して直交する方向の抵抗が、前記線状痕の延在方向の抵抗より大きいので、電磁波吸収能の異方性を有する。   The electromagnetic wave absorbing film of the present invention has anisotropy in electromagnetic wave absorbing ability because the resistance in the direction orthogonal to the extending direction of the linear traces is larger than the resistance in the extending direction of the linear traces.

本発明の電磁波吸収フィルムの製造方法は、プラスチックフィルムの少なくとも一面に第一の金属の薄膜及び第二の金属の薄膜を順に形成し、得られた複合フィルムを多数の高硬度の微粒子を表面に有するロールに摺接させることにより、前記第二の金属薄膜の側に多数の実質的に平行な線状痕を形成することを特徴とする。   In the method for producing an electromagnetic wave absorbing film of the present invention, a thin film of a first metal and a thin film of a second metal are sequentially formed on at least one surface of a plastic film, and the resulting composite film is coated with a number of high-hardness fine particles on the surface. A large number of substantially parallel linear marks are formed on the second metal thin film side by being brought into sliding contact with the roll having the same.

前記ロールを前記複合フィルムの進行方向と逆方向に回転させるのが好ましい。   It is preferable to rotate the roll in the direction opposite to the traveling direction of the composite film.

前記線状痕を形成した後に、プラスチック層を形成するのが好ましい。   It is preferable to form a plastic layer after forming the linear marks.

本発明の電磁波吸収フィルムは、電磁波吸収能に優れ、軽量であるので、小型軽量化が要求される電気・電子機器における電磁波シールド材に適している。   Since the electromagnetic wave absorbing film of the present invention is excellent in electromagnetic wave absorbing ability and lightweight, it is suitable for an electromagnetic wave shielding material in electrical / electronic devices that are required to be reduced in size and weight.

[1] 電磁波吸収フィルム
図1(a)〜(d)は、本発明の電磁波吸収フィルムの一例を示す。この電磁波吸収フィルムでは、プラスチックフィルム10の一面に第一及び第二の金属の薄膜11a,11bが形成されており、第一及び第二の金属の一方が非磁性金属で他方が磁性金属であり、第二の金属の薄膜11bの側に多数の実質的に平行な線状痕14が全面的に形成されている。
[1] Electromagnetic wave absorbing film FIGS. 1A to 1D show an example of the electromagnetic wave absorbing film of the present invention. In this electromagnetic wave absorbing film, the first and second metal thin films 11a and 11b are formed on one surface of the plastic film 10, and one of the first and second metals is a nonmagnetic metal and the other is a magnetic metal. A large number of substantially parallel line marks 14 are formed on the entire surface of the second metal thin film 11b.

(1) プラスチックフィルム
プラスチックフィルム10を形成する樹脂は、絶縁性、変形性及び加工性を有する限り特に制限されず、例えばポリエステル、ポリアリーレンサルファイド(ポリフェニレンサルファイド等)、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、アクリル樹脂、ポリスチレン、ABS樹脂、ポリウレタン、フッ素樹脂、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリ塩化ビニル、熱可塑性エラストマー等が挙げられる。中でもポリエステル、ポリアリーレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン及びポリエーテルエーテルケトンのような高耐熱性樹脂が好ましく、特にポリエステル、ポリフェニレンサルファイド及びポリイミドが好ましい。ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられる。中でもPET及びPBTはフィルムとして安価に市販されているので好ましい。
(1) Plastic film The resin forming the plastic film 10 is not particularly limited as long as it has insulating properties, deformability, and processability. For example, polyester, polyarylene sulfide (polyphenylene sulfide, etc.), polyamide, polyimide, polyamideimide, poly Examples include ether sulfone, polyether ether ketone, polycarbonate, acrylic resin, polystyrene, ABS resin, polyurethane, fluororesin, polyolefin (polyethylene, polypropylene, etc.), polyvinyl chloride, and thermoplastic elastomer. Among them, high heat resistant resins such as polyester, polyarylene sulfide, polyamide, polyimide, polyamideimide, polyethersulfone and polyetheretherketone are preferable, and polyester, polyphenylene sulfide and polyimide are particularly preferable. Examples of the polyester include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate, and polybutylene naphthalate. Among these, PET and PBT are preferable because they are commercially available as films at low cost.

(2) 金属薄膜
電界及び磁界の両方を吸収するため、第一及び第二の金属薄膜11a,11bの一方を磁性金属で形成し、他方を非磁性金属で形成するのが好ましい。磁性金属として、ニッケル、コバルト、クロム又はこれらの合金が挙げられる。非磁性金属として、銅、銀、アルミニウム、錫等が挙げられる。好ましい組合せは銅とニッケルである。非磁性金属薄膜の厚さは0.1〜10μmが好ましく、磁性金属薄膜の厚さは0.01〜10μmが好ましい。
(2) Metal thin film In order to absorb both an electric field and a magnetic field, it is preferable that one of the first and second metal thin films 11a and 11b is formed of a magnetic metal and the other is formed of a nonmagnetic metal. Examples of the magnetic metal include nickel, cobalt, chromium, and alloys thereof. Nonmagnetic metals include copper, silver, aluminum, tin and the like. A preferred combination is copper and nickel. The thickness of the nonmagnetic metal thin film is preferably 0.1 to 10 μm, and the thickness of the magnetic metal thin film is preferably 0.01 to 10 μm.

プラスチックフィルムと接する第一の金属薄膜11aは蒸着層、めっき層又は箔で良いが、第一の金属薄膜11aと接する第二の金属薄膜11bは蒸着により形成するのが好ましい。ただし第一の金属薄膜11aと接する側が蒸着膜である限り、その上に第二の金属のめっき層を形成しても良い。   The first metal thin film 11a in contact with the plastic film may be a vapor deposition layer, a plating layer or a foil, but the second metal thin film 11b in contact with the first metal thin film 11a is preferably formed by vapor deposition. However, as long as the side in contact with the first metal thin film 11a is a deposited film, a second metal plating layer may be formed thereon.

(3) 傾斜組成層
図1(d)に示すように、第一の金属の薄膜11aと第二の金属の薄膜11bとの間では、蒸着された第二の金属原子11b'が第一の金属原子11a'の間に部分的に進入し、いわゆる傾斜組成層12を形成していると考えられる。傾斜組成層12では、第二の金属原子11b'の組成比(濃度)は第二の金属の薄膜11bから第一の金属の薄膜11aにかけて徐々に減少している。このため、傾斜組成層12は非晶質であると推定される。
(3) Gradient composition layer As shown in FIG. 1 (d), between the first metal thin film 11a and the second metal thin film 11b, the deposited second metal atoms 11b ' It is considered that a so-called gradient composition layer 12 is formed by partially entering between the metal atoms 11a ′. In the gradient composition layer 12, the composition ratio (concentration) of the second metal atoms 11b ′ gradually decreases from the second metal thin film 11b to the first metal thin film 11a. For this reason, it is estimated that the gradient composition layer 12 is amorphous.

(4) 線状痕
優れた電磁波吸収能を得るために、第二の金属の薄膜11bの側に多数の実質的に平行な線状痕14を形成する。線状痕14は、後述するようにロール上に設けた高硬度微粒子による第二の金属の薄膜11bの塑性変形により生ずる。ロール上での高硬度微粒子の分布はランダムであるので、線状痕14の配列もランダムである。第二の金属の薄膜11bは薄いので、図1(c)に示すように、線状痕14の形成により第一の金属の薄膜11aも塑性変形し、両金属11a'、11b'が部分的に混合すると考えられる。
(4) Linear traces In order to obtain excellent electromagnetic wave absorption ability, a number of substantially parallel linear traces 14 are formed on the second metal thin film 11b side. As will be described later, the linear trace 14 is generated by plastic deformation of the second metal thin film 11b by the high-hardness fine particles provided on the roll. Since the distribution of the high hardness fine particles on the roll is random, the arrangement of the linear marks 14 is also random. Since the second metal thin film 11b is thin, as shown in FIG. 1C, the first metal thin film 11a is also plastically deformed by the formation of the linear marks 14, and both the metals 11a 'and 11b' are partially deformed. It is thought to be mixed.

線状痕14の長さはロール及びフィルムの周速により決まり、線状痕14の深さはロール表面に設けた高硬度の微粒子の高さにより決まる。第一及び第二の金属薄膜11a,11bの塑性変形域を十分に確保するために、線状痕14の長さは0.5〜50 mm程度が好ましく、線状痕14の深さは0.1〜10μm程度が好ましく、0.1〜5μmがより好ましい。なお、高硬度微粒子がロール上にランダムに設けられているために、線状痕14に深さの分布はあるが、大半の線状痕14はほぼ同じ長さを有する。また高硬度の微粒子の外径により決まる線状痕14の幅の分布は、0.1〜50μmであるのが好ましく、0.3〜20μmであるのがより好ましい。さらに線状痕14の平均分布密度は1,000〜5,000本/cm幅であるのが好ましい。線状痕14の平均分布密度が1,000本/cm幅未満であると、電磁波吸収能の向上効果が十分でない。一方5,000本/cm幅超としても、電磁波吸収能のさらなる向上は得られない。線状痕14の長さ、深さ、幅及び平均分布密度は、電磁波吸収フィルム1の原子間力顕微鏡写真の観察により求めることができる。   The length of the linear mark 14 is determined by the peripheral speed of the roll and the film, and the depth of the linear mark 14 is determined by the height of the high hardness fine particles provided on the roll surface. In order to sufficiently secure the plastic deformation region of the first and second metal thin films 11a and 11b, the length of the linear mark 14 is preferably about 0.5 to 50 mm, and the depth of the linear mark 14 is 0.1 to 10 μm. The degree is preferable, and 0.1 to 5 μm is more preferable. In addition, since the high hardness fine particles are randomly provided on the roll, the linear trace 14 has a depth distribution, but most of the linear traces 14 have substantially the same length. Further, the distribution of the width of the linear mark 14 determined by the outer diameter of the high hardness fine particles is preferably 0.1 to 50 μm, and more preferably 0.3 to 20 μm. Further, the average distribution density of the linear marks 14 is preferably 1,000 to 5,000 / cm width. If the average distribution density of the linear marks 14 is less than 1,000 / cm width, the effect of improving the electromagnetic wave absorbing ability is not sufficient. On the other hand, even if the width exceeds 5,000 / cm, further improvement in electromagnetic wave absorption ability cannot be obtained. The length, depth, width and average distribution density of the linear marks 14 can be determined by observing an atomic force micrograph of the electromagnetic wave absorbing film 1.

図2(a)及び図2(b)は、上記電磁波吸収フィルムにおいて第一の金属薄膜11aが金属箔からなる場合を示す。第一の金属薄膜11aとプラスチックフィルム10との間に接着層13が設けられている。   2A and 2B show a case where the first metal thin film 11a is made of a metal foil in the electromagnetic wave absorbing film. An adhesive layer 13 is provided between the first metal thin film 11a and the plastic film 10.

(5) 微細孔
図3(a)〜(c)は電磁波吸収フィルムの別の例を示す。この電磁波吸収フィルム1は、第二の金属薄膜11bの側から線状痕14の他に多数の微細孔15も設けられている以外、図1に示すものと同じである。多数の微細孔15は、ロール上に設けた高硬度微粒子による第二の金属の薄膜11bの塑性変形により生ずる。第二の金属の薄膜11bは薄いので、図3(c)に示すように、微細孔15の形成により第一の金属の薄膜11aも塑性変形し、両金属11a'、11b'が部分的に混合すると考えられる。微細孔15の平均開口径は0.1〜100μmが好ましく、0.5〜50μmがより好ましい。平均開口径の上限に関しては、20μmがさらに好ましく、10μmが最も好ましい。また微細孔15は0.1〜10μm程度の深さ分布を有しても良い。この深さ分布は0.1〜5μmが好ましい。微細孔15の平均密度は500個/cm2以上であるのが好ましく、1×104〜3×105個/cm2であるのがより好ましく、1×104〜2×105個/cm2であるのが最も好ましい。微細孔15の平均開口径、深さ及び平均密度は、電磁波吸収フィルム1の原子間力顕微鏡写真の観察により求めることができる。
(5) Micropores FIGS. 3A to 3C show another example of the electromagnetic wave absorbing film. This electromagnetic wave absorbing film 1 is the same as that shown in FIG. 1 except that many fine holes 15 are provided in addition to the linear traces 14 from the second metal thin film 11b side. The large number of fine holes 15 are generated by plastic deformation of the second metal thin film 11b by the high-hardness fine particles provided on the roll. Since the second metal thin film 11b is thin, as shown in FIG. 3 (c), the first metal thin film 11a is also plastically deformed by the formation of the fine holes 15, so that both metals 11a 'and 11b' are partially formed. It is thought to mix. The average opening diameter of the micropores 15 is preferably 0.1 to 100 μm, and more preferably 0.5 to 50 μm. Regarding the upper limit of the average opening diameter, 20 μm is more preferable, and 10 μm is most preferable. The fine holes 15 may have a depth distribution of about 0.1 to 10 μm. This depth distribution is preferably 0.1 to 5 μm. The average density of the fine holes 15 is preferably 500 / cm 2 or more, more preferably 1 × 10 4 to 3 × 10 5 / cm 2 , and 1 × 10 4 to 2 × 10 5 / Most preferred is cm 2 . The average opening diameter, depth, and average density of the fine holes 15 can be determined by observing an atomic force micrograph of the electromagnetic wave absorbing film 1.

(6) プラスチック層
図4に示すように、第二の金属の薄膜11bの上に、線状痕14(及び微細孔15)を覆うようにプラスチック層10'が形成されているのが好ましい。プラスチック層10'は、第二のプラスチックフィルムを熱ラミネート法等で第二の金属の薄膜11bに接着することにより形成できる。プラスチック層の厚さは10〜100μmが好ましい。
(6) Plastic Layer As shown in FIG. 4, a plastic layer 10 ′ is preferably formed on the second metal thin film 11b so as to cover the linear marks 14 (and the fine holes 15). The plastic layer 10 ′ can be formed by adhering the second plastic film to the second metal thin film 11b by a thermal laminating method or the like. The thickness of the plastic layer is preferably 10 to 100 μm.

[2] 電磁波吸収フィルムの製造方法
電磁波吸収フィルム1は、プラスチックフィルム10の一面に蒸着法、めっき法又は箔接合法により第一の金属薄膜11aを形成し、その上に蒸着法又は蒸着法及びめっき法により第二の金属薄膜11bを形成し、得られた複合フィルムの第二の金属薄膜11bの側を多数の高硬度の微粒子を表面に有するロールに摺接させることにより、多数の実質的に平行な線状痕14を形成することにより製造する。
[2] Method for producing electromagnetic wave absorbing film Electromagnetic wave absorbing film 1 is formed by forming first metal thin film 11a on one surface of plastic film 10 by vapor deposition, plating or foil bonding, A second metal thin film 11b is formed by a plating method, and the second metal thin film 11b side of the obtained composite film is brought into sliding contact with a roll having a large number of high-hardness fine particles on the surface. It is manufactured by forming a linear mark 14 parallel to the.

(1) 金属薄膜の形成
金属の蒸着は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、プラズマCVD法、熱CVD法、光CVD法等の化学気相蒸着法等により行うことができる。
(1) Formation of metal thin film Metal vapor deposition is performed by, for example, physical vapor deposition such as vacuum vapor deposition, sputtering, or ion plating, chemical vapor deposition such as plasma CVD, thermal CVD, or photo CVD. It can be carried out.

(2) 線状痕の形成
線状痕14は、例えばWO2003/091003号に記載されている方法により形成することができる。図5(a)及び図5(b)に示すように、鋭い角部を有する多数の高硬度(例えば、モース硬度5以上)の微粒子(例えば、ダイヤモンド微粒子)が表面に付着したロール2に、複合フィルム1'の第二の金属薄膜11bの側を摺接させるのが好ましい。ロール2を、複合フィルム1'の進行方向と逆方向に回転させるのが好ましい。ロール2の前後に設けたニップロール3,3により、複合フィルム1'に張力を掛けるのが好ましい。図5(b)に示すように、ロール2の微粒子が複合フィルム1'のロール摺接面に接触する間に、長さLの線状痕が形成される。このようにして、図1(b)に示すように、多数の実質的に平行な線状痕14がランダムな配列で形成される。線状痕14は複合フィルム1'の全面に均一に設けるのが好ましい。
(2) Formation of linear traces The linear traces 14 can be formed, for example, by the method described in WO2003 / 091003. As shown in FIGS. 5 (a) and 5 (b), a roll 2 on which a large number of high hardness (for example, Mohs hardness of 5 or more) fine particles having sharp corners (for example, diamond fine particles) are attached to the surface, The second metal thin film 11b side of the composite film 1 ′ is preferably brought into sliding contact. It is preferable to rotate the roll 2 in the direction opposite to the traveling direction of the composite film 1 ′. It is preferable to apply tension to the composite film 1 ′ by nip rolls 3 and 3 provided before and after the roll 2. As shown in FIG. 5 (b), while the fine particles of the roll 2 are in contact with the roll sliding contact surface of the composite film 1 ′, a linear trace having a length L is formed. In this way, as shown in FIG. 1B, a large number of substantially parallel line marks 14 are formed in a random arrangement. The linear traces 14 are preferably provided uniformly on the entire surface of the composite film 1 ′.

以上のような線状痕14の形成により、抵抗が増加し、優れた電磁波吸収能が得られる。限定的ではないが、複合フィルム1'の進行速度は5〜200 m/分が好ましく、ロール2の周速は10〜300 m/分が好ましく、複合フィルム1'に掛ける張力は、0.05〜5 kgf/cm幅が好ましい。   By forming the linear scar 14 as described above, the resistance is increased and an excellent electromagnetic wave absorbing ability is obtained. Although not limited, the traveling speed of the composite film 1 'is preferably 5 to 200 m / min, the peripheral speed of the roll 2 is preferably 10 to 300 m / min, and the tension applied to the composite film 1' is 0.05 to 5 A kgf / cm width is preferred.

(3) 微細孔の形成
図3に示すように電磁波吸収フィルム1の金属薄膜11a,11bに多数の微細孔15も形成する場合、いわゆるポーラス加工法を用いる。微細孔15は線状痕14より前に形成するのが好ましい。ポーラス加工法は、例えば特許第2063411号、特許第2542772号、特許第2643730号、特許第2703151号、特開平9-99492号、特開平9-57860号、特開2002-059487号等に記載されている。例えば、鋭い角部を有する多数のモース硬度5以上の粒子が表面に付着した第一ロール(上記線状痕形成用ロールと同じ)と、表面が平滑な第二ロールとの間に、金属薄膜11a,11bを第一ロールの側にして、複合フィルム1'を均一な押圧力下で通過させる。第二ロールとしては、例えば鉄系ロール、Niメッキ、Crメッキ等を施した鉄系ロール、ステンレス系ロール、特殊鋼ロール等を用いることができる。微細孔15の平均開口径及び平均密度は、第一ロールの微粒子の粒径及び密度を調整することにより調整できる。第一ロール及び第二ロール間の押圧力により、微細孔15の深さ、及び電磁波吸収フィルムを貫通するか否かが決まる。微細孔15は電磁波吸収フィルム1に均一に設けるのが好ましい。微細孔15を高密度に形成する場合、第一及び第二のロールからなる二つ以上のユニットをタンデムに設けたポーラス加工装置を用いるのが好ましい。
(3) Formation of micropores When a large number of micropores 15 are also formed in the metal thin films 11a and 11b of the electromagnetic wave absorbing film 1 as shown in FIG. The fine holes 15 are preferably formed before the linear marks 14. The porous processing method is described in, for example, Japanese Patent No. 2063411, Japanese Patent No. 2547772, Japanese Patent No. 2643730, Japanese Patent No. 2703151, Japanese Unexamined Patent Publication No. 9-99492, Japanese Unexamined Patent Publication No. 9-57860, Japanese Unexamined Patent Publication No. 2002-059487, and the like. ing. For example, a metal thin film between a first roll (same as the above-mentioned linear trace forming roll) on which a large number of particles having a Mohs hardness of 5 or more having sharp corners adhere to the surface and a second roll having a smooth surface The composite film 1 ′ is passed under a uniform pressing force with 11 a and 11 b facing the first roll. As the second roll, for example, an iron-based roll, an iron-based roll subjected to Ni plating, Cr plating or the like, a stainless-based roll, a special steel roll, or the like can be used. The average opening diameter and average density of the fine holes 15 can be adjusted by adjusting the particle diameter and density of the fine particles of the first roll. The pressing force between the first roll and the second roll determines the depth of the fine holes 15 and whether or not to penetrate the electromagnetic wave absorbing film. The fine holes 15 are preferably provided uniformly in the electromagnetic wave absorbing film 1. When forming the fine holes 15 with high density, it is preferable to use a porous processing apparatus in which two or more units composed of first and second rolls are provided in tandem.

多数の微細孔15が形成される際、微細孔15の壁面金属薄膜11a,11bは塑性変形し、微細孔15の壁面を少なくとも部分的に覆う。   When a large number of fine holes 15 are formed, the wall surface metal thin films 11a and 11b of the fine holes 15 are plastically deformed to at least partially cover the wall surfaces of the fine holes 15.

(4) プラスチック層の形成
図4に示すように、第二の金属の薄膜11bの上に、プラスチック層10'を形成する場合、複合フィルム1'に線状痕14(及び微細孔15)を形成した後、第二のプラスチックフィルムを熱ラミネート法等で第二の金属の薄膜11bに接着すればよい。
(4) Formation of Plastic Layer As shown in FIG. 4, when the plastic layer 10 ′ is formed on the second metal thin film 11b, the linear marks 14 (and the fine holes 15) are formed on the composite film 1 ′. After the formation, the second plastic film may be bonded to the second metal thin film 11b by a heat laminating method or the like.

[3] 電磁波吸収フィルムの特性及び用途
第二の金属の薄膜11bは、自由空間の特性インピーダンス(377Ω)に近い面抵抗を有するので、電磁波の反射を抑制することができ、高い電磁波吸収能が得られる。具体的には、電磁波吸収フィルム1の、線状痕14の延在方向に対して直交する方向の面抵抗は、金属薄膜11a,11bが銅とニッケルの組合せの場合、10〜500Ωが好ましく、200〜400Ωがより好ましい。面抵抗は、図6に示すように、30 cm×15 cmの電磁波吸収フィルム1(線状痕14は長手方向に延在する)の両長辺1a,1a間の抵抗値である。
[3] Characteristics and applications of electromagnetic wave absorbing film The second metal thin film 11b has a surface resistance close to the characteristic impedance (377Ω) of free space, so it can suppress the reflection of electromagnetic waves and has a high electromagnetic wave absorbing ability. can get. Specifically, when the metal thin films 11a and 11b are a combination of copper and nickel, the sheet resistance in the direction orthogonal to the extending direction of the linear scar 14 of the electromagnetic wave absorbing film 1 is preferably 10 to 500Ω, 200 to 400Ω is more preferable. As shown in FIG. 6, the sheet resistance is a resistance value between both long sides 1 a and 1 a of the electromagnetic wave absorbing film 1 of 30 cm × 15 cm (the linear scar 14 extends in the longitudinal direction).

電磁波吸収フィルム1は、線状痕14の延在方向に対して直交する方向の抵抗が、線状痕14の延在方向の抵抗より大きい。具体的には、上記面抵抗は、線状痕14の延在方向の抵抗(図6に示す30 cm×15 cmの電磁波吸収フィルム1の両短辺1b,1b間の抵抗値)の2〜10倍程度である。そのため電磁波吸収フィルム1は、電磁波吸収能の異方性を有する。   In the electromagnetic wave absorbing film 1, the resistance in the direction orthogonal to the extending direction of the linear trace 14 is larger than the resistance in the extending direction of the linear trace 14. Specifically, the sheet resistance is 2 to 2 of the resistance in the extending direction of the linear scar 14 (resistance value between both short sides 1b and 1b of the 30 cm × 15 cm electromagnetic wave absorbing film 1 shown in FIG. 6). About 10 times. Therefore, the electromagnetic wave absorbing film 1 has anisotropy of electromagnetic wave absorbing ability.

本発明の電磁波吸収フィルムは、電磁波吸収能及び加工性に優れ、軽量である。電磁波吸収フィルムが優れた電磁波吸収能を有するのは、10〜500Ωの適度な面抵抗により電磁波が反射され難く、多数の線状痕において電磁波が干渉することにより減衰することによると考えられる。電磁波吸収フィルムは、携帯電話、パーソナルコンピュータ等の電気・電子機器における電磁波ノイズの漏洩及び進入の防止や情報の漏洩防止、健康管理機器への電磁波ノイズの進入防止、テレビゴースト防止、高度道路交通システム用レーダや室内無線LAN等の電波の虚像防止等の用途に適している。電磁波吸収フィルムは、電子機器筺体の内外壁、建築物の内外壁、乗物内の壁、バンパー筺体内部等に配置することができる。   The electromagnetic wave absorbing film of the present invention is excellent in electromagnetic wave absorbing ability and processability and is lightweight. The reason why the electromagnetic wave absorbing film has an excellent electromagnetic wave absorbing ability is considered to be that the electromagnetic wave is hardly reflected by an appropriate surface resistance of 10 to 500Ω and is attenuated by interference of the electromagnetic wave in a large number of linear marks. Electromagnetic wave absorption films are used to prevent leakage and entry of electromagnetic noise and information leakage in electrical and electronic equipment such as mobile phones and personal computers, prevention of electromagnetic noise from entering health care equipment, TV ghost prevention, and advanced road traffic systems. It is suitable for applications such as prevention of virtual images of radio waves such as radar for indoor use and indoor wireless LAN. The electromagnetic wave absorbing film can be disposed on the inner and outer walls of the electronic device casing, the inner and outer walls of the building, the wall in the vehicle, the inside of the bumper casing, and the like.

電子機器筺体の内壁に電磁波吸収フィルムを設ける場合、例えば金属部品等とともに電磁波吸収フィルムを予め金型内に設置し、そこに樹脂を充填するインサート成形法を用いることができる。複数の電磁波吸収フィルムを、線状痕の延在方向が直交するように積層したり、面上に配列したりしてもよい。複数の電磁波吸収フィルムを積層する場合、各々の金属薄膜を電気的に接続するのが好ましい。   When an electromagnetic wave absorbing film is provided on the inner wall of the electronic device housing, for example, an insert molding method in which an electromagnetic wave absorbing film is previously placed in a mold together with metal parts and the like, and a resin is filled therein can be used. A plurality of electromagnetic wave absorbing films may be laminated so that the extending direction of the linear traces is orthogonal, or may be arranged on the surface. When laminating a plurality of electromagnetic wave absorbing films, it is preferable to electrically connect each metal thin film.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
(1) 電磁波吸収フィルムの作製
(a) 複合フィルムの作製
二軸延伸PETフィルム[厚さ:12μm、誘電率:3.2(1 MHz)、誘電正接:1.0%(1 MHz)、融点:265℃、ガラス転移温度:75℃]の一面に、真空蒸着法により厚さ0.6μmの銅層を形成し、その上に真空蒸着法により厚さ0.05μmのニッケル層を形成した。
Example 1
(1) Production of electromagnetic wave absorbing film
(a) Preparation of composite film Biaxially stretched PET film [thickness: 12 μm, dielectric constant: 3.2 (1 MHz), dielectric loss tangent: 1.0% (1 MHz), melting point: 265 ° C, glass transition temperature: 75 ° C] A copper layer having a thickness of 0.6 μm was formed on one surface by a vacuum evaporation method, and a nickel layer having a thickness of 0.05 μm was formed thereon by a vacuum evaporation method.

(b) 線状痕の形成
図5に示す装置を用い、粒径の分布が50〜80μmのダイヤモンド微粒子を電着したロール2に、ニッケル層をロール2の側にして複合フィルム1'を摺接させた。複合フィルム1'の進行速度を10 m/分とし、ロール2の周速を20 m/分とし、複合フィルム1'に掛ける張力を0.1 kgf/cm幅とした。得られた電磁波吸収フィルムの原子間力顕微鏡写真を図7に示す。電磁波吸収フィルムの線状痕の深さの分布は0.1〜1μmであり、線状痕の幅の分布は0.5〜5μmであり、平均分布密度は4,200本/cm幅であった。線状痕が形成された際に、ダイヤモンド微粒子で線状痕の両側に押しやられた部分が塑性変形し、***しているのが分かる。原子間力顕微鏡により表層を観察した結果、線状痕の長さの分布は0.5〜10 mmであった。電磁波吸収フィルムを、長手方向に線状痕が延在するように30 cm×15 cmにカットした試験片の面抵抗(図6参照。両長辺間の抵抗を測定)は250Ωであった。
(b) Formation of linear marks Using the apparatus shown in FIG. 5, the composite film 1 'is slid onto the roll 2 electrodeposited with diamond fine particles having a particle size distribution of 50 to 80 μm with the nickel layer facing the roll 2 side. Touched. The traveling speed of the composite film 1 ′ was 10 m / min, the peripheral speed of the roll 2 was 20 m / min, and the tension applied to the composite film 1 ′ was 0.1 kgf / cm width. An atomic force microscope photograph of the obtained electromagnetic wave absorbing film is shown in FIG. The depth distribution of the linear traces of the electromagnetic wave absorbing film was 0.1 to 1 μm, the width distribution of the linear traces was 0.5 to 5 μm, and the average distribution density was 4,200 lines / cm width. It can be seen that when the linear traces are formed, the portions of the diamond fine particles pushed to both sides of the linear trace are plastically deformed and raised. As a result of observing the surface layer with an atomic force microscope, the distribution of lengths of the linear marks was 0.5 to 10 mm. The surface resistance of the test piece obtained by cutting the electromagnetic wave absorbing film into 30 cm × 15 cm so that the linear traces extend in the longitudinal direction (see FIG. 6, measuring the resistance between both long sides) was 250Ω.

(2) 電磁波吸収能の評価
電磁波吸収フィルムの電磁波吸収能を以下の方法により評価した。
(a) 高周波発振器のスプリアス特性測定
(i) スプリアス特性測定用高周波伝送線路の作製
二軸延伸PETフィルムの一面に、真空蒸着法により厚さ0.3μmの銅層を形成し、5 mmの幅d1にスリットした。図8に示すように、長さ50 cmの2本の帯状の銅/PETフィルム100'を、PETフィルムを下にして塩化ビニル樹脂製基板(長さ50 cm、凸部400の高さh2mm)40に3 mmの間隔d2で平行に接着し、平行線路型のスプリアス特性測定用高周波伝送線路を作製した。
(2) Evaluation of electromagnetic wave absorbing ability The electromagnetic wave absorbing ability of the electromagnetic wave absorbing film was evaluated by the following method.
(a) Measuring spurious characteristics of high-frequency oscillators
(i) Production of high-frequency transmission line for measuring spurious characteristics A copper layer having a thickness of 0.3 μm was formed on one surface of a biaxially stretched PET film by a vacuum deposition method and slit into a width d 1 of 5 mm. As shown in FIG. 8, two strips of copper / PET film 100 'with a length of 50 cm are placed on a vinyl chloride resin substrate with a PET film facing down (length: 50 cm, height of convex part 400: h2 mm). A parallel line type high-frequency transmission line for measuring spurious characteristics was fabricated by bonding to 40 in parallel with a spacing d 2 of 3 mm.

(ii) スプリアス特性測定
図9に示すように、ケーブル70及び鰐口クリップ7を介して、スプリアス特性測定用高周波伝送線路4の銅/PETフィルム100',100'の一端に高周波発振器5を接続し、他端に高周波受信器6を接続した。インピーダンスを整合し、高周波伝送率を精確に測定するために、整合器8を高周波発振器5の直後及び受信器6の直前に設けた。図10に示すように、高周波発振器5は、電圧制御発振器(VCO)51、伝送する信号の周波数に応じて切り替えるようになっている3個の高周波発振モジュール52,52',52''及び2個の高周波アンプ53,53'を具備している。高周波発振器5は、100〜200 MHz、260〜550 MHz及び600〜1,050 MHzの範囲の信号を伝送することができる。発振器5から100、200、300、500、700及び1,000 MHzの信号を伝送し、スプリアス特性を調べた。結果を表1に示す。この高周波発振器5は高調波の発生が少なく、高調波以外のスプリアスがなかった。
(ii) Spurious characteristic measurement As shown in FIG. 9, a high frequency oscillator 5 is connected to one end of the copper / PET films 100 'and 100' of the spurious characteristic measurement high frequency transmission line 4 via a cable 70 and a hook clip 7. The high frequency receiver 6 was connected to the other end. In order to match the impedance and accurately measure the high-frequency transmission rate, the matching unit 8 is provided immediately after the high-frequency oscillator 5 and immediately before the receiver 6. As shown in FIG. 10, the high-frequency oscillator 5 includes a voltage-controlled oscillator (VCO) 51 and three high-frequency oscillation modules 52, 52 ′, 52 ″ and 2 which are switched according to the frequency of a signal to be transmitted. A plurality of high-frequency amplifiers 53 and 53 ′ are provided. The high frequency oscillator 5 can transmit signals in the range of 100 to 200 MHz, 260 to 550 MHz, and 600 to 1,050 MHz. Signals of 100, 200, 300, 500, 700 and 1,000 MHz were transmitted from the oscillator 5, and the spurious characteristics were examined. The results are shown in Table 1. The high-frequency oscillator 5 generated less harmonics and had no spurious other than the harmonics.

(b) 伝送係数の設定
ケーブル70(図9参照)で発振器5と受信器6を接続し、1.0 Vの出力振幅で、120 MHzから1,050 MHzまで2〜6 MHz間隔で周波数を上げながら、発振器5から信号を伝送した。図11(a)に示すように、発振器5の出力端子50,50から信号が(+)側から出力するように伝送した場合(信号パターン1)と、図11(b)に示すように、発振器5の出力端子50,50から信号が(−)側から出力するように伝送した場合(信号パターン2:信号パターン1に対して位相が1/2波長ずれている)との両方について入力振幅を求めた。式:伝送係数=入力振幅(V)/出力振幅(V)に従い、各周波数における伝送係数を求め、信号パターン1及び2の各々について周波数−伝送係数曲線を作成した。
(b) Transmission coefficient setting Oscillator 5 and receiver 6 are connected by cable 70 (see FIG. 9), and the oscillator is set at an output amplitude of 1.0 V while increasing the frequency from 120 MHz to 1,050 MHz at intervals of 2 to 6 MHz. 5 signal was transmitted. As shown in FIG. 11 (a), when the signal is transmitted from the output terminals 50, 50 of the oscillator 5 so as to output from the (+) side (signal pattern 1), as shown in FIG. 11 (b), Input amplitude when both signals are transmitted from the output terminals 50 and 50 of the oscillator 5 so as to be output from the (−) side (signal pattern 2: phase shifted by 1/2 wavelength with respect to signal pattern 1). Asked. According to the formula: transmission coefficient = input amplitude (V) / output amplitude (V), the transmission coefficient at each frequency was obtained, and a frequency-transmission coefficient curve was created for each of the signal patterns 1 and 2.

(c) 電磁波吸収能評価用高周波伝送線路の作製
二軸延伸PETフィルムの一面に、真空蒸着法により厚さ0.3μmの銅層を形成し、その上に真空蒸着法により厚さ0.02 μmのニッケル層を形成し、5mmの幅d1にスリットした。長さ25 cmの2本の帯状のニッケル/銅/PETフィルムを、PETフィルムを下にして塩化ビニル樹脂製基板(長さ25 cm、凸部400の高さh2mm)40に接着した以外上記と同様にして、平行線路型の電磁波吸収能評価用高周波伝送線路を作製した。
(c) Preparation of a high-frequency transmission line for evaluating electromagnetic wave absorption ability A copper layer with a thickness of 0.3 μm was formed on one side of a biaxially stretched PET film by vacuum evaporation, and nickel with a thickness of 0.02 μm was formed thereon by vacuum evaporation. A layer was formed and slit to a width d 1 of 5 mm. Other than adhering two strips of nickel / copper / PET film with a length of 25 cm to a vinyl chloride resin substrate (length 25 cm, height h2 mm of convex part 400) 40 with the PET film facing down Similarly, a parallel line type high-frequency transmission line for evaluating electromagnetic wave absorption ability was produced.

(d) 高周波伝送率の測定
図12(a)及び図12(b)に示すように、電磁波吸収フィルムの試験片(30 cm×15 cm)100をニッケル層を上にして置き、その線状痕14の延在方向に沿って、電磁波吸収能評価用高周波伝送線路4'を、ニッケル/銅/PETフィルム101'を下にして配置し、伝送線路4'に、発振器5及び受信器6を接続し、整合器8を発振器5の直後及び受信器6の直前に設けた。1.0 Vの出力振幅(V)で、120 MHzから1,050 MHzまで2〜6 MHz間隔で周波数を上げながら、発振器5から信号(信号パターン1及び2)を伝送し、入力振幅(V)を求めた。上記周波数−伝送係数曲線から求められる伝送係数を用い、各測定周波数における高周波伝送率(%)を、式:高周波伝送率(%)=入力振幅(V)/(出力振幅(V)×伝送係数)×100に従い、算出した。周波数と高周波伝送率の関係をプロットした結果を図13に示す。信号パターン1に対して、高周波伝送率が、概ね120〜650 MHz、800〜900MHz及び1,000〜1,050 MHzの広い帯域でほぼ0%であった。信号パターン2に対して、高周波伝送率が、概ね120〜180 MHz、260〜650 MHz、800〜870 MHz及び1,000〜1,050 MHzの広い帯域でほぼ0%であった。電磁波吸収フィルムは、信号パターン1及び2に対して、電磁波吸収能に優れていた。
(d) Measurement of high-frequency transmission rate As shown in Fig. 12 (a) and Fig. 12 (b), an electromagnetic wave absorption film test piece (30 cm x 15 cm) 100 is placed with the nickel layer on top, and the linear shape Along with the extending direction of the mark 14, a high-frequency transmission line 4 ′ for evaluating electromagnetic wave absorption ability is arranged with the nickel / copper / PET film 101 ′ facing down, and the oscillator 5 and the receiver 6 are placed on the transmission line 4 ′. The matching unit 8 is provided immediately after the oscillator 5 and immediately before the receiver 6. The signal (signal patterns 1 and 2) was transmitted from the oscillator 5 while increasing the frequency from 120 MHz to 1,050 MHz at intervals of 2 to 6 MHz with an output amplitude (V) of 1.0 V, and the input amplitude (V) was obtained. . Using the transmission coefficient obtained from the above-mentioned frequency-transmission coefficient curve, the high frequency transmission rate (%) at each measurement frequency is expressed by the formula: high frequency transmission rate (%) = input amplitude (V) / (output amplitude (V) × transmission coefficient. ) × 100. FIG. 13 shows the result of plotting the relationship between the frequency and the high frequency transmission rate. For signal pattern 1, the high-frequency transmission rate was approximately 0% in a wide band of approximately 120 to 650 MHz, 800 to 900 MHz, and 1,000 to 1,050 MHz. For signal pattern 2, the high-frequency transmission rate was approximately 0% in a wide band of approximately 120 to 180 MHz, 260 to 650 MHz, 800 to 870 MHz, and 1,000 to 1,050 MHz. The electromagnetic wave absorbing film was excellent in electromagnetic wave absorbing ability with respect to the signal patterns 1 and 2.

電磁波吸収フィルムを、幅方向に線状痕が延在するように30 cm×15 cmにカットし、試験片を得た。試験片の両長辺間の抵抗は10.5Ωであった。図14に示すように、試験片101の線状痕14の延在方向に直交するように、電磁波吸収能評価用高周波伝送線路4'を配置した以外実施例1と同様にして、高周波伝送率を測定した。結果を図15に示す。伝送線路4'を線状痕14の延在方向に沿って配置した場合に比べて、信号パターン1及び2のいずれに対しても、高周波伝送率が0%の帯域が明らかに狭く、電磁波吸収フィルムは電磁波吸収能の異方性を有することが分かった。   The electromagnetic wave absorbing film was cut into a size of 30 cm × 15 cm so that linear traces extended in the width direction, and a test piece was obtained. The resistance between both long sides of the test piece was 10.5Ω. As shown in FIG. 14, the high-frequency transmission rate was the same as in Example 1 except that the high-frequency transmission line 4 ′ for evaluating electromagnetic wave absorption ability was arranged so as to be orthogonal to the extending direction of the linear mark 14 of the test piece 101. Was measured. The results are shown in FIG. Compared with the case where the transmission line 4 ′ is arranged along the extending direction of the line mark 14, the band with a high frequency transmission rate of 0% is clearly narrower for both the signal patterns 1 and 2, and the electromagnetic wave absorption. The film was found to have anisotropy in electromagnetic wave absorption ability.

実施例2
上記複合フィルムを、定位置に固定した第一ロール(粒径15〜30μmのダイヤモンド微粒子を電着したもの)と金属製第二ロールとの間に、ニッケル層が第一ロール側となるようにして通過させた。得られた多孔質複合フィルムは、ニッケル層及び銅層にのみ微細孔が形成され、微細孔の平均開口径が3μmであり、微細孔の平均密度が5×104個/cm2であった。多孔質複合フィルムについて、実施例1と同様にして線状痕を形成することにより、電磁波吸収フィルムを作製した。この電磁波吸収フィルムを、長手方向に線状痕が延在するように30 cm×15 cmにカットした試験片(面抵抗:1.9Ω)を用いた以外実施例1と同様にして、高周波伝送率を測定した。結果を図16に示す。信号パターン1に対して、高周波伝送率が、概ね120〜170 MHz、260〜320 MHz、480〜650 MHz、800〜900 MHz及び1,000〜1,050 MHzの広い帯域でほぼ0%であった。信号パターン2に対して、高周波伝送率が、概ね120〜180 MHz、260〜380 MHz、520〜650 MHz、800〜870 MHz及び1,000〜1,050 MHzの広い帯域でほぼ0%であった。電磁波吸収フィルムは、信号パターン1及び2に対して、電磁波吸収能に優れていた。
Example 2
The nickel layer is placed on the first roll side between the first roll (electrodeposited with diamond fine particles having a particle size of 15 to 30 μm) and the metal second roll, the composite film being fixed in place. And let it pass. The obtained porous composite film had micropores formed only in the nickel layer and the copper layer, the average aperture diameter of the micropores was 3 μm, and the average density of micropores was 5 × 10 4 pieces / cm 2 . . About the porous composite film, the electromagnetic wave absorption film was produced by forming a linear trace similarly to Example 1. FIG. A high-frequency transmission rate was obtained in the same manner as in Example 1 except that a test piece (surface resistance: 1.9Ω) cut into 30 cm × 15 cm so that linear traces extend in the longitudinal direction of this electromagnetic wave absorbing film was used. Was measured. The results are shown in FIG. For signal pattern 1, the high-frequency transmission rate was approximately 0% in a wide band of approximately 120 to 170 MHz, 260 to 320 MHz, 480 to 650 MHz, 800 to 900 MHz, and 1,000 to 1,050 MHz. For the signal pattern 2, the high-frequency transmission rate was approximately 0% in a wide band of approximately 120 to 180 MHz, 260 to 380 MHz, 520 to 650 MHz, 800 to 870 MHz, and 1,000 to 1,050 MHz. The electromagnetic wave absorbing film was excellent in electromagnetic wave absorbing ability with respect to the signal patterns 1 and 2.

比較例1
上記複合フィルムを30 cm(MD)×15 cm(TD)にカットした試験片(面抵抗:1.3Ω)を用いた以外実施例1と同様にして、高周波伝送率を測定した。結果を図17に示す。複合フィルムは線状痕を有さないので、信号パターン1及び2のいずれに対しても、高周波伝送率が0%の帯域が、実施例1及び2の電磁波吸収フィルムに比べて明らかに狭く、電磁波吸収能が劣っていた。
Comparative Example 1
The high-frequency transmission rate was measured in the same manner as in Example 1 except that a test piece (surface resistance: 1.3Ω) obtained by cutting the composite film into 30 cm (MD) × 15 cm (TD) was used. The results are shown in FIG. Since the composite film does not have a linear mark, the band with a high-frequency transmission rate of 0% for both the signal patterns 1 and 2 is clearly narrower than the electromagnetic wave absorbing films of Examples 1 and 2, The electromagnetic wave absorption ability was inferior.

比較例2
実施例2で得た多孔質複合フィルムを30 cm(MD)×15 cm(TD)にカットした試験片(面抵抗:1.9Ω)を用いた以外実施例1と同様にして、高周波伝送率を測定した。結果を図18に示す。多孔質複合フィルムは多数の微細孔を有するものの、線状痕を有さないので、信号パターン1及び2のいずれに対しても、高周波伝送率が0%の帯域が、実施例1及び2の電磁波吸収フィルムに比べて明らかに狭く、電磁波吸収能が劣っていた。
Comparative Example 2
In the same manner as in Example 1 except that a test piece (surface resistance: 1.9Ω) obtained by cutting the porous composite film obtained in Example 2 into 30 cm (MD) × 15 cm (TD) was used. It was measured. The results are shown in FIG. Although the porous composite film has a large number of micropores but does not have a linear trace, the band with a high-frequency transmission rate of 0% for either of the signal patterns 1 and 2 is the same as that of Examples 1 and 2. It was clearly narrower than the electromagnetic wave absorbing film, and the electromagnetic wave absorbing ability was inferior.

比較例3
二軸延伸ポリイミドフィルム[厚さ:25μm、誘電率:3.3(1 MHz)、誘電正接:0.0079(1 MHz)、ガラス転移温度:280℃以上]の一面に、無電解めっき法により厚さ3μmの銅層を形成し、その上に電解めっき法により厚さ10μmのニッケル層を形成した。得られた複合フィルムを30 cm(MD)×15 cm(TD)にカットした試験片(面抵抗:0.9Ω)を用いた以外実施例1と同様にして、高周波伝送率を測定した。結果を図19に示す。この複合フィルムは、ニッケル層がめっき法により形成されており、しかも線状痕を有さないので、信号パターン1及び2のいずれに対しても、高周波伝送率が0%の帯域が、実施例1及び2の電磁波吸収フィルムに比べて狭く、電磁波吸収能が劣っていた。
Comparative Example 3
Biaxially stretched polyimide film [thickness: 25 μm, dielectric constant: 3.3 (1 MHz), dielectric loss tangent: 0.0079 (1 MHz), glass transition temperature: 280 ° C. or higher] with a thickness of 3 μm by electroless plating A copper layer was formed, and a nickel layer having a thickness of 10 μm was formed thereon by electrolytic plating. The high-frequency transmission rate was measured in the same manner as in Example 1 except that a test piece (surface resistance: 0.9Ω) obtained by cutting the obtained composite film into 30 cm (MD) × 15 cm (TD) was used. The results are shown in FIG. In this composite film, the nickel layer is formed by a plating method and does not have a linear trace. Therefore, for both of the signal patterns 1 and 2, the band with a high-frequency transmission rate of 0% It was narrower than the electromagnetic wave absorbing films of 1 and 2, and the electromagnetic wave absorbing ability was inferior.

比較例4
比較例3で得た複合フィルムについて、実施例1と同様にして線状痕を形成した。この複合フィルムを、長手方向に線状痕が延在するように30 cm×15 cmにカットした試験片(面抵抗:0.9Ω)を用いた以外実施例1と同様にして、高周波伝送率を測定した。結果を図20に示す。この複合フィルムは、線状痕を有するものの、ニッケル層がめっき法により形成されているので、信号パターン1及び2のいずれに対しても、高周波伝送率が0%の帯域が、実施例1及び2の電磁波吸収フィルムに比べて狭く、電磁波吸収能が劣っていた。
Comparative Example 4
About the composite film obtained by the comparative example 3, it carried out similarly to Example 1, and formed the linear trace. In the same manner as in Example 1 except that a test piece (surface resistance: 0.9Ω) cut into 30 cm × 15 cm so that linear traces extend in the longitudinal direction was used for this composite film, the high frequency transmission rate was It was measured. The results are shown in FIG. Although this composite film has a linear mark, since the nickel layer is formed by a plating method, the band having a high-frequency transmission rate of 0% for both signal patterns 1 and 2 is It was narrower than the electromagnetic wave absorbing film of 2, and the electromagnetic wave absorbing ability was inferior.

比較例5
銅線の織布を用いた市販の電磁波吸収材(商品名「OAエプロン」、エレコム株式会社製)を30 cm×15 cmにカットした試験片(面抵抗:0.4Ω)を用いた以外実施例1と同様にして、高周波伝送率を測定した。結果を図21に示す。信号パターン1及び2のいずれに対しても、高周波伝送率が0%の帯域が、実施例1の電磁波吸収フィルムに比べて明らかに狭く、電磁波吸収能が劣っていた。
Comparative Example 5
Examples other than using a test piece (sheet resistance: 0.4Ω) obtained by cutting a commercially available electromagnetic wave absorber (trade name “OA Apron”, manufactured by Elecom Co., Ltd.) using copper wire woven fabric into 30 cm × 15 cm The high frequency transmission rate was measured in the same manner as in 1. The results are shown in FIG. For both signal patterns 1 and 2, the band with a high frequency transmission rate of 0% was clearly narrower than the electromagnetic wave absorbing film of Example 1, and the electromagnetic wave absorbing ability was inferior.

本発明の一実施例による電磁波吸収フィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave absorption film by one Example of this invention. 図1(a)のフィルムの平面図である。FIG. 2 is a plan view of the film of FIG. 1 (a). 図1(a)のA部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a portion A in FIG. 図1(c)のA'部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a portion A ′ of FIG. 1 (c). 本発明の別の実施例による電磁波吸収フィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave absorption film by another Example of this invention. 図2(a)のB部分を概略的に示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view schematically showing a B part in FIG. 2 (a). 本発明のさらに別の実施例による電磁波吸収フィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave absorption film by another Example of this invention. 図3(a)のフィルムの平面図である。It is a top view of the film of Fig.3 (a). 図3(a)のC部分を概略的に示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view schematically showing a portion C in FIG. 本発明のさらに別の実施例による電磁波吸収フィルムを示す断面図である。It is sectional drawing which shows the electromagnetic wave absorption film by another Example of this invention. 複合フィルムに線状痕を形成する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which forms a linear trace in a composite film. 図5(a)の装置において、フィルムがロールと摺接する様子を示す部分拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view showing a state where a film is in sliding contact with a roll in the apparatus of FIG. 5 (a). 面抵抗を測定する電磁波吸収フィルムの一例を示す平面図である。It is a top view which shows an example of the electromagnetic wave absorption film which measures surface resistance. 実施例1の電磁波吸収フィルムの原子間力顕微鏡写真である。2 is an atomic force microscope photograph of the electromagnetic wave absorbing film of Example 1. 高周波発振器のスプリアス特性の測定に使用した高周波伝送線路を示す斜視図である。It is a perspective view which shows the high frequency transmission line used for the measurement of the spurious characteristic of a high frequency oscillator. 高周波伝送線路に発振器及び受信器を接続した状態を示す概略図である。It is the schematic which shows the state which connected the oscillator and the receiver to the high frequency transmission line. 高周波伝送率の測定に使用した発振器の構成を概略的に示す回路図である。It is a circuit diagram which shows roughly the structure of the oscillator used for the measurement of a high frequency transmission rate. 発振器から信号が(+)側から出力するように伝送した場合の信号パターンを示す概略図である。It is the schematic which shows the signal pattern at the time of transmitting so that a signal may be output from the (+) side from an oscillator. 発振器から信号が(−)側から出力するように伝送した場合の信号パターンを示す概略図である。It is the schematic which shows the signal pattern at the time of transmitting so that a signal may be output from the (-) side from an oscillator. 電磁波吸収能の評価のために、電磁波吸収フィルムの試験片上に、高周波伝送線路を配置した状態を概略的に示す平面図である。It is a top view which shows roughly the state which has arrange | positioned the high frequency transmission line on the test piece of an electromagnetic wave absorption film for evaluation of electromagnetic wave absorptivity. 図12(a)のD−D断面図である。FIG. 13 is a sectional view taken along the line DD in FIG. 実施例1の電磁波吸収フィルム上に配置した高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship between the frequency in the high frequency transmission line arrange | positioned on the electromagnetic wave absorption film of Example 1, and a high frequency transmission rate. 電磁波吸収能の評価のために、電磁波吸収フィルムの試験片上に、高周波伝送線路を配置した状態を概略的に示す別の平面図である。It is another top view which shows roughly the state which has arrange | positioned the high frequency transmission line on the test piece of an electromagnetic wave absorption film for evaluation of electromagnetic wave absorptivity. 実施例1の電磁波吸収フィルム上に配置した高周波伝送線路における周波数と高周波伝送率の関係を示す別のグラフである。It is another graph which shows the relationship between the frequency in the high frequency transmission line arrange | positioned on the electromagnetic wave absorption film of Example 1, and a high frequency transmission rate. 実施例2の電磁波吸収フィルム上に配置した高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship between the frequency in the high frequency transmission line arrange | positioned on the electromagnetic wave absorption film of Example 2, and a high frequency transmission rate. 比較例1の複合フィルム上に配置した高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship between the frequency in the high frequency transmission line arrange | positioned on the composite film of the comparative example 1, and a high frequency transmission rate. 比較例2の多孔質複合フィルム上に配置した高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。6 is a graph showing a relationship between a frequency and a high-frequency transmission rate in a high-frequency transmission line disposed on a porous composite film of Comparative Example 2. 比較例3の複合フィルム上に配置した高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship between the frequency in the high frequency transmission line arrange | positioned on the composite film of the comparative example 3, and a high frequency transmission rate. 比較例4の線状痕を有する複合フィルム上に配置した高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship between the frequency in the high frequency transmission line arrange | positioned on the composite film which has the linear trace of the comparative example 4, and a high frequency transmission rate. 比較例5の電磁波吸収材上に配置した高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship between the frequency in the high frequency transmission line arrange | positioned on the electromagnetic wave absorber of the comparative example 5, and a high frequency transmission rate.

符号の説明Explanation of symbols

1・・・電磁波吸収フィルム
10,10’・・・プラスチックフィルム
11a,11b・・・金属薄膜
11a'',11b''・・・金属原子
12・・・傾斜組成層
13・・・接着層
14・・・線状痕
15・・・微細孔
1'・・・複合フィルム
100,101・・・試験片
2・・・ロール
3・・・ニップロール
4,4'・・・高周波伝送線路
40・・・基板
400・・・凸部
5・・・高周波発振器
50・・・出力端子
51・・・電圧制御発振器
52,52',52''・・・高周波発振モジュール
53,53'・・・高周波アンプ
6・・・高周波受信器
7・・・鰐口クリップ
8・・・整合器
70・・・ケーブル
100'・・・銅/PETフィルム
101'・・・ニッケル/銅/PETフィルム
1 ... Electromagnetic wave absorbing film
10, 10 '... Plastic film
11a, 11b ・ ・ ・ Metal thin film
11a '', 11b '' ... metal atoms
12 ... Gradient composition layer
13 ... Adhesive layer
14 ... Linear marks
15 ... Micropore
1 '・ ・ ・ Composite film
100, 101 ... test piece 2 ... roll 3 ... nip roll 4, 4 '... high frequency transmission line
40 ... Board
400 ... convex part 5 ... high frequency oscillator
50 ... Output terminal
51 ・ ・ ・ Voltage controlled oscillator
52, 52 ', 52''・ ・ ・ High frequency oscillation module
53, 53 '... High frequency amplifier 6 ... High frequency receiver 7 ... Higuchi clip 8 ... Matching device
70 ・ ・ ・ Cable
100 '・ ・ ・ Copper / PET film
101 '... Nickel / Copper / PET film

Claims (10)

プラスチックフィルムと、その一面に設けた第一の金属の薄膜と、その上に形成した第二の金属の蒸着薄膜とを有し、前記第一及び第二の金属の一方が非磁性金属で他方が磁性金属であり、前記第二の金属の薄膜の側に多数の実質的に平行な線状痕が形成されていることを特徴とする電磁波吸収フィルム。 A plastic film, a first metal thin film provided on one surface thereof, and a second metal deposited thin film formed thereon, wherein one of the first and second metals is a non-magnetic metal and the other Is a magnetic metal, and a large number of substantially parallel linear marks are formed on the second metal thin film side. 請求項1に記載の電磁波吸収フィルムにおいて、前記非磁性金属が銅であり、前記磁性金属がニッケルであることを特徴とする電磁波吸収フィルム。 2. The electromagnetic wave absorbing film according to claim 1, wherein the nonmagnetic metal is copper and the magnetic metal is nickel. 請求項1又は2に記載の電磁波吸収フィルムにおいて、前記線状痕の幅の分布が0.5〜10μmであり、前記線状痕の平均分布密度が1,000〜5,000本/cm幅であることを特徴とする電磁波吸収フィルム。 3. The electromagnetic wave absorbing film according to claim 1, wherein the width distribution of the linear trace is 0.5 to 10 μm, and the average distribution density of the linear trace is 1,000 to 5,000 / cm width. Electromagnetic wave absorbing film. 請求項1〜3のいずれかに記載の電磁波吸収フィルムにおいて、前記第一の金属の薄膜が蒸着層であることを特徴とする電磁波吸収フィルム。 4. The electromagnetic wave absorbing film according to claim 1, wherein the first metal thin film is a vapor deposition layer. 5. 請求項1〜3のいずれかに記載の電磁波吸収フィルムにおいて、前記第一の金属の薄膜がメッキ層又は箔であり、前記第二の金属の薄膜が蒸着層と、その上に形成したメッキ層とからなることを特徴とする電磁波吸収フィルム。 The electromagnetic wave absorbing film according to any one of claims 1 to 3, wherein the first metal thin film is a plating layer or a foil, the second metal thin film is a vapor deposition layer, and a plating layer formed thereon. An electromagnetic wave absorbing film comprising: 請求項1〜5のいずれかに記載の電磁波吸収フィルムにおいて、前記第二の金属の薄膜の上にプラスチック層が設けられていることを特徴とする電磁波吸収フィルム。 6. The electromagnetic wave absorbing film according to claim 1, wherein a plastic layer is provided on the second metal thin film. 請求項1〜6のいずれかに記載の電磁波吸収フィルムにおいて、前記線状痕の延在方向に対して直交する方向の抵抗が、前記線状痕の延在方向の抵抗より大きいことを特徴とする電磁波吸収フィルム。 The electromagnetic wave absorbing film according to any one of claims 1 to 6, wherein a resistance in a direction orthogonal to the extending direction of the linear trace is larger than a resistance in the extending direction of the linear trace. Electromagnetic wave absorbing film. プラスチックフィルムの少なくとも一面に第一の金属の薄膜及び第二の金属の薄膜を順に形成し、得られた複合フィルムを多数の高硬度の微粒子を表面に有するロールに摺接させることにより、前記第二の金属薄膜の側に多数の実質的に平行な線状痕を形成することを特徴とする電磁波吸収フィルムの製造方法。 The first metal thin film and the second metal thin film are sequentially formed on at least one surface of the plastic film, and the obtained composite film is brought into sliding contact with a roll having a number of high-hardness fine particles on the surface. A method for producing an electromagnetic wave absorbing film, wherein a plurality of substantially parallel linear marks are formed on the second metal thin film side. 請求項8に記載の電磁波吸収フィルムの製造方法において、前記ロールを、前記複合フィルムの進行方向と逆方向に回転させることを特徴とする方法。 The method for producing an electromagnetic wave absorbing film according to claim 8, wherein the roll is rotated in a direction opposite to a traveling direction of the composite film. 請求項8又は9に記載の電磁波吸収フィルムの製造方法において、前記線状痕を形成した後に、プラスチック層を形成することを特徴とする方法。 The method for producing an electromagnetic wave absorbing film according to claim 8 or 9, wherein a plastic layer is formed after forming the linear trace.
JP2008011697A 2008-01-22 2008-01-22 Electromagnetic wave absorbing film Expired - Fee Related JP4976316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011697A JP4976316B2 (en) 2008-01-22 2008-01-22 Electromagnetic wave absorbing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011697A JP4976316B2 (en) 2008-01-22 2008-01-22 Electromagnetic wave absorbing film

Publications (2)

Publication Number Publication Date
JP2009176827A true JP2009176827A (en) 2009-08-06
JP4976316B2 JP4976316B2 (en) 2012-07-18

Family

ID=41031644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011697A Expired - Fee Related JP4976316B2 (en) 2008-01-22 2008-01-22 Electromagnetic wave absorbing film

Country Status (1)

Country Link
JP (1) JP4976316B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010093027A1 (en) * 2009-02-13 2010-08-19 Kagawa Seiji Metal thin film-plastic film composite film with linear streaks and apparatus for producing same
US20110268925A1 (en) * 2009-12-25 2011-11-03 Seiji Kagawa Composite electromagnetic-wave-absorbing film
JP2012015381A (en) * 2010-07-01 2012-01-19 Seiji Kagawa Electromagnetic wave absorber and interior material using the same
JP2012099665A (en) * 2010-11-02 2012-05-24 Seiji Kagawa Electromagnetic wave absorber
WO2012090586A1 (en) * 2010-12-27 2012-07-05 Kagawa Seiji Near-field electromagnetic wave absorber
JP5038497B2 (en) * 2008-06-26 2012-10-03 清二 加川 Electromagnetic wave absorbing film and electromagnetic wave absorber using the same
CN103568441A (en) * 2013-10-24 2014-02-12 复旦大学 Thin film super absorber with low cost and large area and preparation method of film
JP2017069341A (en) * 2015-09-29 2017-04-06 積水化学工業株式会社 Thermally conductive sheet for electronic apparatus
KR20210014608A (en) * 2019-07-30 2021-02-09 미래첨단소재 주식회사 Alloy Film Shielding Electromagnetic Field by Frequency Band and Manufacturing Method Thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764732A (en) * 2015-04-09 2015-07-08 复旦大学 Surface-enhanced raman scattering base on basis of special-material superabsorbers and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240798A (en) * 1991-01-24 1992-08-28 Kitagawa Ind Co Ltd Member for electromagnetic wave attenuation
JPH0542623A (en) * 1991-08-13 1993-02-23 Central Glass Co Ltd Laminated sheet having low radio reflectivity characteristic
JPH1140980A (en) * 1997-07-23 1999-02-12 Matsushita Electric Ind Co Ltd Shielding material
JP2002232184A (en) * 2001-02-07 2002-08-16 Nisshin Steel Co Ltd Electromagnetic wave shielding material
JP2003264393A (en) * 2002-03-11 2003-09-19 Univ Osaka Electromagnetic wave shield and device equipped therewith
WO2003091003A1 (en) * 2002-04-25 2003-11-06 Seiji Kagawa Linearly easy-to-rupture thermoplastic resin film, and method and device for manufacturing the resin film
JP2007221107A (en) * 2006-01-17 2007-08-30 Toyo Kohan Co Ltd Composite electromagnetic wave shielding material and method for fabrication thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240798A (en) * 1991-01-24 1992-08-28 Kitagawa Ind Co Ltd Member for electromagnetic wave attenuation
JPH0542623A (en) * 1991-08-13 1993-02-23 Central Glass Co Ltd Laminated sheet having low radio reflectivity characteristic
JPH1140980A (en) * 1997-07-23 1999-02-12 Matsushita Electric Ind Co Ltd Shielding material
JP2002232184A (en) * 2001-02-07 2002-08-16 Nisshin Steel Co Ltd Electromagnetic wave shielding material
JP2003264393A (en) * 2002-03-11 2003-09-19 Univ Osaka Electromagnetic wave shield and device equipped therewith
WO2003091003A1 (en) * 2002-04-25 2003-11-06 Seiji Kagawa Linearly easy-to-rupture thermoplastic resin film, and method and device for manufacturing the resin film
JP2007221107A (en) * 2006-01-17 2007-08-30 Toyo Kohan Co Ltd Composite electromagnetic wave shielding material and method for fabrication thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038497B2 (en) * 2008-06-26 2012-10-03 清二 加川 Electromagnetic wave absorbing film and electromagnetic wave absorber using the same
WO2010093027A1 (en) * 2009-02-13 2010-08-19 Kagawa Seiji Metal thin film-plastic film composite film with linear streaks and apparatus for producing same
JP4685977B2 (en) * 2009-02-13 2011-05-18 清二 加川 Metal film with thin line-plastic composite film and manufacturing apparatus thereof
US9238351B2 (en) 2009-02-13 2016-01-19 Seiji Kagawa Composite film of linearly-scratched, thin metal film and plastic film, and its production apparatus
US9616640B2 (en) 2009-02-13 2017-04-11 Seiji Kagawa Composite film of linearly-scratched, thin metal film and plastic film, and its production apparatus
EP2519091A1 (en) * 2009-12-25 2012-10-31 Seiji Kagawa Composite electromagnetic wave absorption film
CN102415230A (en) * 2009-12-25 2012-04-11 加川清二 Composite electromagnetic wave absorption film
KR20120100699A (en) * 2009-12-25 2012-09-12 세이지 까가와 Composite electromagnetic-wave-absorbing film
US9326433B2 (en) * 2009-12-25 2016-04-26 Seiji Kagawa Composite electromagnetic-wave-absorbing film
KR101725470B1 (en) * 2009-12-25 2017-04-10 세이지 까가와 Composite electromagnetic-wave-absorbing film
JP5542139B2 (en) * 2009-12-25 2014-07-09 清二 加川 Composite electromagnetic wave absorbing film
EP2519091A4 (en) * 2009-12-25 2014-12-17 Seiji Kagawa Composite electromagnetic wave absorption film
TWI562717B (en) * 2009-12-25 2016-12-11 Seiji Kagawa Composite electromagnetic wave absorption film
US20110268925A1 (en) * 2009-12-25 2011-11-03 Seiji Kagawa Composite electromagnetic-wave-absorbing film
JP2012015381A (en) * 2010-07-01 2012-01-19 Seiji Kagawa Electromagnetic wave absorber and interior material using the same
JP2012099665A (en) * 2010-11-02 2012-05-24 Seiji Kagawa Electromagnetic wave absorber
JP5726903B2 (en) * 2010-12-27 2015-06-03 加川 清二 Near-field electromagnetic wave absorber
WO2012090586A1 (en) * 2010-12-27 2012-07-05 Kagawa Seiji Near-field electromagnetic wave absorber
CN103568441A (en) * 2013-10-24 2014-02-12 复旦大学 Thin film super absorber with low cost and large area and preparation method of film
JP2017069341A (en) * 2015-09-29 2017-04-06 積水化学工業株式会社 Thermally conductive sheet for electronic apparatus
KR20210014608A (en) * 2019-07-30 2021-02-09 미래첨단소재 주식회사 Alloy Film Shielding Electromagnetic Field by Frequency Band and Manufacturing Method Thereof
KR102442175B1 (en) * 2019-07-30 2022-09-08 미래첨단기술 주식회사 Alloy Film Shielding Electromagnetic Field by Frequency Band and Manufacturing Method Thereof

Also Published As

Publication number Publication date
JP4976316B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4976316B2 (en) Electromagnetic wave absorbing film
JP4685977B2 (en) Metal film with thin line-plastic composite film and manufacturing apparatus thereof
JP5038497B2 (en) Electromagnetic wave absorbing film and electromagnetic wave absorber using the same
TWI613955B (en) Composite electromagnetic wave absorbing sheet
JP5542139B2 (en) Composite electromagnetic wave absorbing film
JP5771275B2 (en) Electromagnetic wave absorbing film with high heat dissipation
KR101515693B1 (en) Noise absorbing fabric
JP6208394B1 (en) Electromagnetic wave absorption filter
JP5203295B2 (en) Electromagnetic wave absorbing film
Danlée et al. Flexible multilayer combining nickel nanowires and polymer films for broadband microwave absorption
JP5214541B2 (en) Visible light transmitting electromagnetic wave absorbing film and visible light transmitting electromagnetic wave absorber using the same
US20240061474A1 (en) Near-field electromagnetic wave absorber
KR102168863B1 (en) Electromagnetic-wave-absorbing composite sheet
JP5410094B2 (en) Conductive film, method for producing the same, and high-frequency component
JP5186375B2 (en) Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same
JP4803838B2 (en) Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line
JP2005251918A (en) Electromagnetic wave noise suppressor
JP2004335769A (en) Electromagnetic wave absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Ref document number: 4976316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees