JP2009176762A - Organic electroluminescent element and optical interconnect module - Google Patents

Organic electroluminescent element and optical interconnect module Download PDF

Info

Publication number
JP2009176762A
JP2009176762A JP2008004881A JP2008004881A JP2009176762A JP 2009176762 A JP2009176762 A JP 2009176762A JP 2008004881 A JP2008004881 A JP 2008004881A JP 2008004881 A JP2008004881 A JP 2008004881A JP 2009176762 A JP2009176762 A JP 2009176762A
Authority
JP
Japan
Prior art keywords
light emitting
organic
emitting layer
fluorescence lifetime
dsb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008004881A
Other languages
Japanese (ja)
Inventor
Takeshi Fukuda
武司 福田
Morio Taniguchi
彬雄 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Shinshu University NUC
Original Assignee
Fujikura Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Shinshu University NUC filed Critical Fujikura Ltd
Priority to JP2008004881A priority Critical patent/JP2009176762A/en
Publication of JP2009176762A publication Critical patent/JP2009176762A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element having a response speed so high as to be used as a light emitting element for optical communication purposes such as an optical interconnect module. <P>SOLUTION: Provided is the organic electroluminescent element in which a light emitting layer is made of a material including one or more kinds selected from the group consisting of DPVBi, PBD, DSB, and BCzVBi and fluorescence lifetime of the light emitting layer is ≤3.0 ns. Also provided is the organic electroluminescent element in which the light emitting layer is made of a material including one or more kinds selected from the group consisting of DPVBi, PBD and DSB, and fluorescence lifetime of the light emitting layer is ≤0.6 ns. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す。)に関し、特に、応答機能を向上せしめ、光通信機能を持たせた有機EL素子、及び該有機EL素子を発光素子として用いた光配線モジュールに関する。   The present invention relates to an organic electroluminescence element (hereinafter referred to as an organic EL element), and in particular, an organic EL element having an improved response function and an optical communication function, and the organic EL element used as a light emitting element. The present invention relates to an optical wiring module.

有機EL素子は、透明なガラス基板又は透明な樹脂基板の表面に、第1電極層(陽極)、発光層を含む有機層、第2電極層(陰極)が順に積層された基本構造を有する。
有機EL素子は、コントラスト比が高い、視野角が広い、薄型化が可能であるといった特徴を有しており、ディスプレイなどの分野に応用され始めている。また、有機EL素子を利用したディスプレイでは、駆動用のトランジスタ回路上に発光部を形成するために、通常の素子構造ではトランジスタ部分で発光した光が吸収もしくは散乱されてしまい、外部への取り出し効率が悪化するという問題がある。この問題を解決するために、ガラス基板上に陰極、有機層、陽極の順番に積層されたトップエミッション構造と呼ばれる構造も検討されている。
The organic EL element has a basic structure in which a first electrode layer (anode), an organic layer including a light emitting layer, and a second electrode layer (cathode) are sequentially laminated on the surface of a transparent glass substrate or a transparent resin substrate.
Organic EL elements have features such as a high contrast ratio, a wide viewing angle, and a reduction in thickness, and are beginning to be applied to fields such as displays. Further, in a display using an organic EL element, since a light emitting part is formed on a driving transistor circuit, light emitted from the transistor part is absorbed or scattered in a normal element structure, and the extraction efficiency to the outside is increased. There is a problem that gets worse. In order to solve this problem, a structure called a top emission structure in which a cathode, an organic layer, and an anode are laminated in this order on a glass substrate has been studied.

第1電極層(陽極)は、ITO(スズ添加酸化インジウム)に代表される透明導電材料から形成される。有機層は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などの複数増から構成される。第2電極層(陰極)は、Mg:Ag、Al、Caなどの金属材料で構成される。   The first electrode layer (anode) is formed from a transparent conductive material typified by ITO (tin-added indium oxide). The organic layer is composed of a plurality of layers such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. The second electrode layer (cathode) is made of a metal material such as Mg: Ag, Al, or Ca.

これまで有機EL素子は、多くの研究機関で研究開発が進められており、その発光特性(発光効率、最大輝度、消費電力)は飛躍的に向上してきている。例えば、従来の蛍光材料よりも発光効率の高い燐光材料、低い仕事関数を有する陰極材料、電子と正孔のキャリアバランスの最適化など、多くの研究開発が行われている。また、低コスト化が実現可能な製造方法として、従来の真空蒸着法だけではなく、スクリーン印刷やグラビア印刷、インクジェット印刷法などを用いた脱真空プロセスが検討されている。   Until now, organic EL devices have been researched and developed by many research institutions, and their light emission characteristics (light emission efficiency, maximum luminance, power consumption) have been dramatically improved. For example, many researches and developments have been conducted, such as phosphorescent materials having higher luminous efficiency than conventional fluorescent materials, cathode materials having a low work function, and optimization of electron and hole carrier balance. Further, as a manufacturing method capable of realizing cost reduction, not only a conventional vacuum vapor deposition method but also a vacuum removal process using a screen printing, a gravure printing, an ink jet printing method or the like has been studied.

一方、この有機EL素子の新しい応用として、光配線モジュール用の光源が期待されている。光配線モジュールは、光ファイバやポリマー光導波路の両端に発光素子や受光素子を実装した構造を有しており、発光素子を用いて電気信号を光信号に変換し、この光信号を光ファイバやポリマー光導波路を通して受光素子に送る。最後に、受光素子で光信号を電気信号に変換して通信を行っている。   On the other hand, a light source for an optical wiring module is expected as a new application of the organic EL element. The optical wiring module has a structure in which a light emitting element and a light receiving element are mounted on both ends of an optical fiber or a polymer optical waveguide, and an electric signal is converted into an optical signal using the light emitting element. It is sent to the light receiving element through the polymer optical waveguide. Finally, the light receiving element converts the optical signal into an electric signal for communication.

従来、有機EL素子を用いた光配線モジュールとして、例えば、特許文献1,2に開示された技術が提案されている。これらの特許文献1,2に開示された従来技術を用いると、光ファイバやポリマー光導波路に光を伝送するための発光素子として有機EL素子を利用できる。また、有機EL素子は蒸着などの方法を用いて、耐熱性がそれほど高くないポリマー光導波路が形成された基板上に直接形成できるので、複雑な光軸調整や光導波路端面の加工を必要とせず、簡単に光導波路と有機EL素子を結合できるという利点がある。
さらに、光導波路や有機EL素子を一体形成してモノシリックに集積することも可能であり、光配線モジュールの実装工程を大幅に短縮でき、低コスト化を実現できる。
Conventionally, as an optical wiring module using an organic EL element, for example, techniques disclosed in Patent Documents 1 and 2 have been proposed. When the conventional techniques disclosed in these Patent Documents 1 and 2 are used, an organic EL element can be used as a light emitting element for transmitting light to an optical fiber or a polymer optical waveguide. In addition, since organic EL elements can be directly formed on a substrate on which a polymer optical waveguide having a low heat resistance is formed using a method such as vapor deposition, complicated optical axis adjustment and processing of the end face of the optical waveguide are not required. There is an advantage that the optical waveguide and the organic EL element can be easily combined.
Furthermore, the optical waveguide and the organic EL element can be integrally formed and integrated monolithically, so that the mounting process of the optical wiring module can be greatly shortened and the cost can be reduced.

また従来、有機EL素子の応答速度を向上させる方法として、例えば、特許文献3〜5に開示された技術が提案されている。特許文献3に開示された方法では、有機EL素子の静電容量を小さくすることで有機EL素子の応答速度を向上させることができる。また、特許文献4では、バイアス電圧とパルス電圧を重畳した電圧を印加して、100MHzの応答速度を実現している。さらに、特許文献5では、発光層の隣に正孔障壁層や電子注入層を設けて応答速度の向上を実現している。
特開2003−149541号公報 特開2003−14995号公報 特開平5−29080号公報 特開2003−243157号公報 特開2002−313553号公報
Conventionally, for example, techniques disclosed in Patent Documents 3 to 5 have been proposed as methods for improving the response speed of organic EL elements. In the method disclosed in Patent Document 3, the response speed of the organic EL element can be improved by reducing the capacitance of the organic EL element. Moreover, in patent document 4, the voltage which superimposed the bias voltage and the pulse voltage is applied, and the response speed of 100 MHz is implement | achieved. Further, in Patent Document 5, an improvement in response speed is realized by providing a hole barrier layer or an electron injection layer next to the light emitting layer.
JP 2003-149541 A JP 2003-14995 A Japanese Patent Laid-Open No. 5-29080 JP 2003-243157 A JP 2002-31553 A

しかしながら、特許文献3〜5に開示された従来技術では、有機EL素子の応答速度をある程度向上させることはできるが、光配線モジュールに適用させるためには未だ応答速度が不十分である。光通信用途の場合、実用的な応答速度は、遮断周波数で100MHz以上の応答速度が必要であり、これらの特許文献に記載された方法では、その応答速度を得ることは困難である。従って、光配線用途に適用させるために、100MHz以上の応答速度を持つ有機EL素子の提供が要求されている。   However, with the conventional techniques disclosed in Patent Documents 3 to 5, the response speed of the organic EL element can be improved to some extent, but the response speed is still insufficient for application to an optical wiring module. In the case of optical communication applications, a practical response speed requires a response speed of 100 MHz or higher at the cutoff frequency, and it is difficult to obtain the response speed by the methods described in these patent documents. Therefore, in order to be applied to optical wiring applications, it is required to provide an organic EL element having a response speed of 100 MHz or higher.

本発明は、前記事情に鑑みてなされ、光配線モジュール等の光通信用途の発光素子として利用可能な高い応答速度を持った有機EL素子の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an organic EL element having a high response speed that can be used as a light emitting element for optical communication such as an optical wiring module.

前記目的を達成するため、本発明は、発光層がDPVBi、PBD、DSB、BCzVBiからなる群から選択される1種又は2種以上を含む材料からなり、発光層の蛍光寿命が3.0ns以下であることを特徴とする有機EL素子を提供する。   In order to achieve the above object, the present invention provides a light emitting layer made of a material containing one or more selected from the group consisting of DPVBi, PBD, DSB, and BCzVBi, and the light emitting layer has a fluorescence lifetime of 3.0 ns or less. An organic EL element is provided.

また本発明は、発光層がDPVBi、PBD、DSBからなる群から選択される1種又は2種以上を含む材料からなり、発光層の蛍光寿命が0.6ns以下であることを特徴とする有機EL素子を提供する。   Further, the present invention is characterized in that the light emitting layer is made of a material containing one or more selected from the group consisting of DPVBi, PBD, and DSB, and the fluorescent lifetime of the light emitting layer is 0.6 ns or less. An EL element is provided.

本発明の有機EL素子において、発光層がホスト材料とゲスト材料とを混合した材料からなり、発光層の蛍光寿命が3.0ns以下であることが好ましい。   In the organic EL device of the present invention, it is preferable that the light emitting layer is made of a material in which a host material and a guest material are mixed, and the fluorescence lifetime of the light emitting layer is 3.0 ns or less.

本発明の有機EL素子において、発光層のホスト材料がCBP又はPBDであることが好ましい。   In the organic EL device of the present invention, the host material of the light emitting layer is preferably CBP or PBD.

本発明の有機EL素子において、発光層のゲスト材料がDSB,DPVBi,BCzVBi、Pelyreneからなる群から選択される1種又は2種以上であることが好ましい。   In the organic EL device of the present invention, the guest material of the light emitting layer is preferably one or more selected from the group consisting of DSB, DPVBi, BCzVBi, and Pelylene.

また、本発明は、前述した本発明に係る有機EL素子を発光素子として用いたことを特徴とする光配線モジュールを提供する。   The present invention also provides an optical wiring module using the above-described organic EL device according to the present invention as a light emitting device.

本発明によれば、蛍光寿命の短い発光層材料を用いることで、有機EL素子の応答速度を向上させることができる。
また、2つ以上の有機材料を混合させた発光層を用いることで、出力光強度も向上できるので、高出力かつ高速応答可能な有機EL素子を実現できる。
また、本発明の光配線モジュールは、高速応答が可能な本発明の有機EL素子を発光素子として用いたものなので、耐熱性がそれほど高くないポリマー光導波路が形成された基板上に直接形成できるので、複雑な光軸調整や光導波路端面の加工を必要とせず、簡単に光導波路と有機EL素子を結合できる。さらに、光導波路や有機EL素子を一体形成してモノシリックに集積することも可能であり、光配線モジュールの実装工程を大幅に短縮でき、低コスト化を実現できる。
According to the present invention, the response speed of the organic EL element can be improved by using a light emitting layer material having a short fluorescence lifetime.
Further, by using a light emitting layer in which two or more organic materials are mixed, the output light intensity can be improved, so that an organic EL element capable of high output and high speed response can be realized.
In addition, since the optical wiring module of the present invention uses the organic EL element of the present invention capable of high-speed response as a light emitting element, it can be directly formed on a substrate on which a polymer optical waveguide with low heat resistance is formed. The optical waveguide and the organic EL element can be easily combined without requiring complicated optical axis adjustment or processing of the end face of the optical waveguide. Furthermore, the optical waveguide and the organic EL element can be integrally formed and integrated monolithically, so that the mounting process of the optical wiring module can be greatly shortened and the cost can be reduced.

本発明の有機EL素子の一実施形態は、発光層がDPVBi、PBD、DSBからなる群から選択される1種又は2種以上を含む材料からなり、発光層の蛍光寿命が2.5ns以下であることを特徴とする。   In one embodiment of the organic EL device of the present invention, the light emitting layer is made of a material containing one or more selected from the group consisting of DPVBi, PBD, and DSB, and the light emission layer has a fluorescence lifetime of 2.5 ns or less. It is characterized by being.

本発明の有機EL素子の他の実施形態は、発光層がホスト材料とゲスト材料とを混合した材料からなり、発光層の蛍光寿命が2.5ns以下であることを特徴とする。
本実施形態において、発光層のホスト材料は、CBP又はPBDであることが好ましい。また発光層のゲスト材料は、DSB,BCzVBi、Pelyreneからなる群から選択される1種又は2種以上であることが好ましい。
Another embodiment of the organic EL device of the present invention is characterized in that the light emitting layer is made of a material in which a host material and a guest material are mixed, and the fluorescence lifetime of the light emitting layer is 2.5 ns or less.
In the present embodiment, the host material of the light emitting layer is preferably CBP or PBD. Moreover, it is preferable that the guest material of a light emitting layer is 1 type, or 2 or more types selected from the group which consists of DSB, BCzVBi, and Pelyrene.

本発明の有機EL素子は、発光層の材料が前記各実施形態に記載した特徴を有していれば良く、他の構成要素は特に限定されず、従来周知の有機EL素子と同等の構成とすることができる。例えば、本発明の有機EL素子は、ガラス基板や透明樹脂基板などの透明基板上に、ITO等の透明導電材料からなる第1電極層(陰極)、発光層を含む有機層、金属薄膜からなる第2電極層(陽極)を順に積層した基本構成とすることができ、またはガラス基板上に陰極、有機層、陽極の順番に積層されたトップエミッション構造とすることもできる。   The organic EL element of the present invention is not limited as long as the material of the light emitting layer has the characteristics described in each of the above embodiments, and other constituent elements are not particularly limited, and have the same structure as a conventionally known organic EL element. can do. For example, the organic EL element of the present invention comprises a first electrode layer (cathode) made of a transparent conductive material such as ITO, an organic layer including a light emitting layer, and a metal thin film on a transparent substrate such as a glass substrate or a transparent resin substrate. A basic configuration in which the second electrode layers (anodes) are sequentially stacked may be employed, or a top emission structure in which a cathode, an organic layer, and an anode are sequentially stacked on a glass substrate may be employed.

有機EL素子の応答速度には、素子の時定数や電極からのキャリア移動時間などが影響を与えるが、後述する実施例において詳述した通り、本発明によって、蛍光寿命の大きさと有機EL素子の応答速度に関する関係が初めて明らかにされた。そこで、実施例1では、蛍光寿命だけの影響を直接評価することで、具体的に100MHz以上の遮断周波数を実現するために必要な蛍光寿命の値を見積もった。   The response speed of the organic EL element is affected by the time constant of the element, the carrier movement time from the electrode, and the like. As described in detail in the examples described later, according to the present invention, the magnitude of the fluorescence lifetime and the organic EL element The relationship regarding the response speed was revealed for the first time. Therefore, in Example 1, the value of the fluorescence lifetime necessary for specifically realizing the cutoff frequency of 100 MHz or more was estimated by directly evaluating the influence of only the fluorescence lifetime.

[実施例1]
ここでは、有機発光層の蛍光寿命と有機EL素子の応答速度の関係を直接調べるために、ストリークカメラを用いた蛍光寿命の測定結果と有機発光材料を青色レーザで励起した時の蛍光強度の周波数依存性を測定した結果を比較して、遮断周波50MHzおよび100MHzを実現するために必要な蛍光寿命の値を評価した。
[Example 1]
Here, in order to directly investigate the relationship between the fluorescence lifetime of the organic light-emitting layer and the response speed of the organic EL element, the measurement result of the fluorescence lifetime using a streak camera and the frequency of the fluorescence intensity when the organic light-emitting material is excited with a blue laser The result of measuring the dependence was compared, and the value of the fluorescence lifetime necessary for realizing the cutoff frequencies of 50 MHz and 100 MHz was evaluated.

具体的に有機薄膜の蛍光寿命を本発明方法で測定した結果を示す。ガラス基板上に1,4−ビス[2−[4−[N,N−ジ(p−トリル)アミノ]フェニル]ビニル]ベンゼン(DSB)、トリス(8−ヒドロキシキノリン)アルミニウム(Alq)、4−(ジシアノメチレン)2−メチル−6−(ユロリジン−4−イル−ビニル)−4H−ピル(DCM2)ドープのAlq、5,6,11,12−テトラフェニル−テトラセン(rubrene)を0.5質量%ドープしたAlqの4種類の有機薄膜をそれぞれ100nmの膜厚で蒸着した。 The result of having measured the fluorescence lifetime of the organic thin film specifically by the method of this invention is shown. 1,4-bis [2- [4- [N, N-di (p-tolyl) amino] phenyl] vinyl] benzene (DSB), tris (8-hydroxyquinoline) aluminum (Alq 3 ) on a glass substrate, 4- (dicyanomethylene) 2-methyl-6- (urolidine-4-yl-vinyl) -4H-pyr (DCM2) doped Alq 3 , 5,6,11,12-tetraphenyl-tetracene 0 Four kinds of organic thin films of Alq 3 doped with 0.5 mass% were each deposited with a film thickness of 100 nm.

蛍光寿命測定装置の構成図を図1に示す。図1中、符号1は有機薄膜、2はガラス基板、3は半導体レーザ、4はレーザ光、5は蛍光、6はフォトダイオード、7はオシロスコープ、8はシグナルジェネレータである。中心波長405nmの半導体レーザにシグナルジェネレータ(KENWOOD社製の商品名SG−7200)を用いて正弦波電圧を印加した。そのため強度が時間的に変調された光が発生した。その強度変調された光を有機薄膜に照射して蛍光を発生させた。発生した蛍光をフォトディテクタ(浜松フォトニクス社製の商品名S−5343)で電気信号とし、オシロスコープ(横川電気社製の商品名DL1740)で強度を測定した。ここで、シグナルジェネレータで発生させる正弦波電圧の周波数を変化させて、それぞれの周波数に対する蛍光強度を計測した。   A block diagram of the fluorescence lifetime measuring apparatus is shown in FIG. In FIG. 1, reference numeral 1 is an organic thin film, 2 is a glass substrate, 3 is a semiconductor laser, 4 is laser light, 5 is fluorescent light, 6 is a photodiode, 7 is an oscilloscope, and 8 is a signal generator. A sine wave voltage was applied to a semiconductor laser having a central wavelength of 405 nm using a signal generator (trade name SG-7200, manufactured by KENWOOD). Therefore, light whose intensity was temporally modulated was generated. The organic thin film was irradiated with the intensity-modulated light to generate fluorescence. The generated fluorescence was converted into an electrical signal with a photodetector (trade name S-5343, manufactured by Hamamatsu Photonics), and the intensity was measured with an oscilloscope (trade name, DL1740, manufactured by Yokogawa Electric). Here, the frequency of the sinusoidal voltage generated by the signal generator was changed, and the fluorescence intensity for each frequency was measured.

図2に、DSB薄膜の蛍光強度の周波数依存性を示す。ここでは変調周波数を1MHzから200MHzの範囲で変化させた。ここで、縦軸(蛍光強度)と横軸(周波数)は、それぞれ対数で表示している。また、蛍光強度が50%の値になる周波数を遮断周波数として求めた。DSB薄膜の場合、遮断周波数は160MHzとなった。さらに同じ測定対象物を、ストリークカメラ(浜松フォトニクス社製の商品名FESCA−200)で蛍光寿命を測定したところ、2nsという結果になった。つまり、遮断周波数160MHzは、蛍光寿命2nsに対応することが分かる。   FIG. 2 shows the frequency dependence of the fluorescence intensity of the DSB thin film. Here, the modulation frequency was changed in the range of 1 MHz to 200 MHz. Here, the vertical axis (fluorescence intensity) and the horizontal axis (frequency) are each expressed in logarithm. Further, the frequency at which the fluorescence intensity was 50% was determined as the cutoff frequency. In the case of the DSB thin film, the cutoff frequency was 160 MHz. Furthermore, when the same measurement object was measured for the fluorescence lifetime with a streak camera (trade name FESCA-200 manufactured by Hamamatsu Photonics), the result was 2 ns. That is, it can be seen that the cutoff frequency of 160 MHz corresponds to the fluorescence lifetime of 2 ns.

また、図3に前記4種類の薄膜の遮断周波数と蛍光寿命の関係を示す。ここで、蛍光寿命の値は、ストリークカメラ(浜松フォトニクス社製の商品名FESCA−200)を用いて測定した結果である。蛍光寿命と遮断周波数の間には、明確な関係があり、この図3の結果を元に遮断周波数から蛍光寿命を見積もることができる。この結果から、50MHzおよび100MHz以上の高い応答速度を実現するためには、それぞれ3.0nsおよび0.6ns以下の蛍光寿命が必要であることが分かる。   FIG. 3 shows the relationship between the cutoff frequency and the fluorescence lifetime of the four types of thin films. Here, the value of the fluorescence lifetime is a result of measurement using a streak camera (trade name FESCA-200 manufactured by Hamamatsu Photonics). There is a clear relationship between the fluorescence lifetime and the cutoff frequency, and the fluorescence lifetime can be estimated from the cutoff frequency based on the result of FIG. From this result, it can be seen that a fluorescence lifetime of 3.0 ns and 0.6 ns or less is necessary to achieve high response speeds of 50 MHz and 100 MHz or higher, respectively.

[実施例2]
Alq、DSB、4,4’−ビス(9−エチル−3−カルバゾビニレン)−1,1’−ビフェニル(BCzVBi)、4,4−ビス(2,2−ジトリルビニル)ビフェニル(DPVBi)、Perylene、4,4’−ビス(9−ジカルバゾリル)−2,2’−ビフェニル(CBP)、2−(4−tert−ブチルフェニル)−5−(4−ビフェニル)−1,3,4−オキサジアゾール(PBD)、3−(2−Benzothiazolyl)−N,N−diethylumbelliferylamine(coumarin 6)、4−(Dicyanomethylene)2−methyl−6−(julolidin−4−yl−vinyl)−4H−pyran(DCM2)、5,6,11,12−tetraphenyltetracene(rubrene)、2−(4−tert−butylphenyl)−5−(4−biphenylyl)−1,3,4−oxadiazole(PBD)、4,7−Diphenyl−1,10−phenanthroline(BPhen)、Bis−(2−methyl−8−quinolinolate)−4−(phenylphenolate)aluminum(BAlq)、4,4’−bis[N−(1−napthyl)−N−phenyl−amino]−biphenyl(α−NPD)をそれぞれ抵抗線加熱の蒸着機を用いて100nmの膜厚で蒸着した。
[Example 2]
Alq 3 , DSB, 4,4′-bis (9-ethyl-3-carbazovinylene) -1,1′-biphenyl (BCzVBi), 4,4-bis (2,2-ditolylvinyl) biphenyl (DPVBi), Perylene, 4,4′-bis (9-dicarbazolyl) -2,2′-biphenyl (CBP), 2- (4-tert-butylphenyl) -5- (4-biphenyl) -1,3,4-oxadiazole (PBD), 3- (2-Benzothiazolyl) -N, N-diethylumbelliferylamine (coumarin 6), 4- (Dicyanomethylene) 2-methyl-6- (julolidin-4-yl-vinyl) -4H-pyran (DCM2) 5,6,11,12-tetraphenyltet racene (rubrene), 2- (4-tert-butylphenyl) -5- (4-biphenylyl) -1,3,4-oxadiazole (PBD), 4,7-Diphenyl-1,10-phenanthroline (BPhen), Bis -(2-methyl-8-quinolinolate) -4- (phenylphenolate) aluminum (BAlq), 4,4'-bis [N- (1-napthyl) -N-phenyl-amino] -biphenyl (α-NPD) Each of them was deposited with a film thickness of 100 nm using a resistance wire heating deposition machine.

作製した薄膜の蛍光寿命をストリークカメラ法で測定し、結果を表1に示す。蛍光寿命の測定には、Ti:サファイアレーザの第二次高調波を励起光として利用しており、励起光の波長は380nmとした。励起光を有機薄膜に照射し、発生した蛍光をストリークカメラ(浜松フォトニクス社製の商品名FESCA−200)で受光して、蛍光強度の時間変化から蛍光寿命を見積もった。   The fluorescence lifetime of the prepared thin film was measured by the streak camera method, and the results are shown in Table 1. For the measurement of the fluorescence lifetime, the second harmonic of a Ti: sapphire laser was used as the excitation light, and the wavelength of the excitation light was 380 nm. The organic thin film was irradiated with excitation light, and the generated fluorescence was received by a streak camera (trade name FESCA-200 manufactured by Hamamatsu Photonics Co., Ltd.), and the fluorescence lifetime was estimated from the change in fluorescence intensity over time.

Figure 2009176762
Figure 2009176762

表1の結果から、DSB、BCzVBi、PBD、DPVBiの4種類の材料において蛍光寿命3.0nm以下を実現した。また、DSB、BCzVBi、DPVBiの3種類の材料において蛍光寿命0.6nm以下を実現した。   From the results in Table 1, a fluorescence lifetime of 3.0 nm or less was realized in four types of materials, DSB, BCzVBi, PBD, and DPVBi. In addition, a fluorescence lifetime of 0.6 nm or less was realized with three types of materials, DSB, BCzVBi, and DPVBi.

[実施例3]
表2に、rubreneドープAlq、DSBドープCBP、BCzVBiドープCBP、DPVBiドープCBP、BCzVBiドープPBD、PeryleneドープPBD、DSBドープAlq、BCzVBiドープAlq、DPVBiドープAlq、PeryleneドープAlq、DSBドープPBD、DPVBiドープPBDの有機薄膜における蛍光寿命の測定結果を示す。ここでドーパント(rubrene、DSB、BCzVBi、DPVBi、Perylene)の濃度は、すべてのサンプルにおいて0.5質量%とした。
[Example 3]
Table 2, rubrene doped Alq 3, DSB doped CBP, BCzVBi doped CBP, DPVBi doped CBP, BCzVBi doped PBD, Perylene doped PBD, DSB-doped Alq 3, BCzVBi doped Alq 3, DPVBi doped Alq 3, Perylene doped Alq 3, DSB The measurement result of the fluorescence lifetime in the organic thin film of dope PBD and DPVBi dope PBD is shown. Here, the concentration of the dopants (rubrene, DSB, BCzVBi, DPVBi, Perylene) was 0.5% by mass in all the samples.

Figure 2009176762
Figure 2009176762

表2の結果から、2つの材料を混合(ドープ)した場合、DSBドープCBP、BCzVBiドープCBP,DPVBiドープCBP、BCzVBiドープPBD、PeryleneドープPBDという5種類の材料の組み合わせにおいて蛍光寿命3.0ns以下を実現した。ここで、2つの材料を混合(ドープ)した場合には、濃度消光による蛍光寿命が長くなることを抑えることができ、その結果として短い蛍光寿命を実現したと考えられる。さらに、この濃度消光を抑えることで、発光効率などの他の特性も向上することが知られており、通信用の有機EL素子として適した構造であると言える。   From the results of Table 2, when two materials are mixed (doped), the fluorescence lifetime is 3.0 ns or less in a combination of five types of materials: DSB-doped CBP, BCzVBi-doped CBP, DPVBi-doped CBP, BCzVBi-doped PBD, and Perylene-doped PBD. Realized. Here, when two materials are mixed (doped), it is possible to suppress an increase in the fluorescence lifetime due to concentration quenching, and as a result, it is considered that a short fluorescence lifetime is realized. Furthermore, it is known that by suppressing the concentration quenching, other characteristics such as light emission efficiency are improved, and it can be said that the structure is suitable as an organic EL element for communication.

実施例1で用いた蛍光寿命測定装置の構成図である。1 is a configuration diagram of a fluorescence lifetime measuring apparatus used in Example 1. FIG. 実施例1の結果のうち、DSB薄膜の蛍光強度の周波数依存性を示すグラフである。It is a graph which shows the frequency dependence of the fluorescence intensity of a DSB thin film among the results of Example 1. 実施例1での結果のうち、4種類の薄膜の遮断周波数と蛍光寿命の関係を示すグラフである。It is a graph which shows the relationship between the cutoff frequency and fluorescence lifetime of four types of thin films among the results in Example 1.

符号の説明Explanation of symbols

1…有機薄膜、2…ガラス基板、3…半導体レーザ、4…レーザ光、5…蛍光、6…フォトダイオード、7…オシロスコープ、8…シグナルジェネレータ。 DESCRIPTION OF SYMBOLS 1 ... Organic thin film, 2 ... Glass substrate, 3 ... Semiconductor laser, 4 ... Laser beam, 5 ... Fluorescence, 6 ... Photodiode, 7 ... Oscilloscope, 8 ... Signal generator.

Claims (6)

発光層がDPVBi、PBD、DSB、BCzVBiからなる群から選択される1種又は2種以上を含む材料からなり、発光層の蛍光寿命が3.0ns以下であることを特徴とする有機エレクトロルミネッセンス素子。   An organic electroluminescent device characterized in that the light emitting layer is made of a material containing one or more selected from the group consisting of DPVBi, PBD, DSB, and BCzVBi, and the fluorescence lifetime of the light emitting layer is 3.0 ns or less . 発光層がDPVBi、PBD、DSBからなる群から選択される1種又は2種以上を含む材料からなり、発光層の蛍光寿命が0.6ns以下であることを特徴とする有機エレクトロルミネッセンス素子。   An organic electroluminescent element, wherein the light emitting layer is made of a material containing one or more selected from the group consisting of DPVBi, PBD, and DSB, and the light emitting layer has a fluorescence lifetime of 0.6 ns or less. 発光層がホスト材料とゲスト材料とを混合した材料からなり、発光層の蛍光寿命が3.0ns以下であることを特徴とする有機エレクトロルミネッセンス素子。   An organic electroluminescent device, wherein the light emitting layer is made of a material in which a host material and a guest material are mixed, and the fluorescence lifetime of the light emitting layer is 3.0 ns or less. 発光層のホスト材料がCBP又はPBDであることを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent element according to claim 3, wherein the host material of the light emitting layer is CBP or PBD. 発光層のゲスト材料がDSB,DPVBi,BCzVBi、Pelyreneからなる群から選択される1種又は2種以上であることを特徴とする請求項3又は4に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent element according to claim 3 or 4, wherein the guest material of the light emitting layer is one or more selected from the group consisting of DSB, DPVBi, BCzVBi, and Pelylene. 請求項1〜4のいずれかに記載の有機エレクトロルミネッセンス素子を発光素子として用いたことを特徴とする光配線モジュール。

An optical wiring module, wherein the organic electroluminescence element according to claim 1 is used as a light emitting element.

JP2008004881A 2007-01-11 2008-01-11 Organic electroluminescent element and optical interconnect module Pending JP2009176762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008004881A JP2009176762A (en) 2007-01-11 2008-01-11 Organic electroluminescent element and optical interconnect module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007003334 2007-01-11
JP2007340100 2007-12-28
JP2008004881A JP2009176762A (en) 2007-01-11 2008-01-11 Organic electroluminescent element and optical interconnect module

Publications (1)

Publication Number Publication Date
JP2009176762A true JP2009176762A (en) 2009-08-06

Family

ID=41031594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004881A Pending JP2009176762A (en) 2007-01-11 2008-01-11 Organic electroluminescent element and optical interconnect module

Country Status (1)

Country Link
JP (1) JP2009176762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524803A (en) * 2015-06-03 2018-08-30 ユー・ディー・シー アイルランド リミテッド Highly efficient OLED device with extremely short decay time

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209988A (en) * 1989-02-10 1990-08-21 Idemitsu Kosan Co Ltd Thin-film electroluminescence element
JPH04117485A (en) * 1990-09-07 1992-04-17 Idemitsu Kosan Co Ltd Electroluminescent element
JPH0529080A (en) * 1990-11-28 1993-02-05 Idemitsu Kosan Co Ltd Organic electroluminescence element and light emitter suing the same
JPH0790255A (en) * 1993-09-21 1995-04-04 Mitsubishi Chem Corp Organic electroluminescent device
JPH113783A (en) * 1997-06-10 1999-01-06 Ricoh Co Ltd Organic thin film electroluminescent element
JPH1121551A (en) * 1997-07-03 1999-01-26 Ricoh Co Ltd Organic thin film el element
JP2004284181A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Displaying medium
JP2005285470A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Organic electroluminescent device
WO2006134758A1 (en) * 2005-06-14 2006-12-21 Seiko Epson Corporation Light emitting device and electronic device
WO2007145719A1 (en) * 2006-06-05 2007-12-21 The Trustees Of Princeton University Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209988A (en) * 1989-02-10 1990-08-21 Idemitsu Kosan Co Ltd Thin-film electroluminescence element
JPH04117485A (en) * 1990-09-07 1992-04-17 Idemitsu Kosan Co Ltd Electroluminescent element
JPH0529080A (en) * 1990-11-28 1993-02-05 Idemitsu Kosan Co Ltd Organic electroluminescence element and light emitter suing the same
JPH0790255A (en) * 1993-09-21 1995-04-04 Mitsubishi Chem Corp Organic electroluminescent device
JPH113783A (en) * 1997-06-10 1999-01-06 Ricoh Co Ltd Organic thin film electroluminescent element
JPH1121551A (en) * 1997-07-03 1999-01-26 Ricoh Co Ltd Organic thin film el element
JP2004284181A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Displaying medium
JP2005285470A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Organic electroluminescent device
WO2006134758A1 (en) * 2005-06-14 2006-12-21 Seiko Epson Corporation Light emitting device and electronic device
WO2007145719A1 (en) * 2006-06-05 2007-12-21 The Trustees Of Princeton University Organic light-emitting device with a phosphor-sensitized fluorescent emission layer
JP2009540563A (en) * 2006-06-05 2009-11-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic light-emitting device having phosphorescent-sensitized fluorescent light-emitting layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524803A (en) * 2015-06-03 2018-08-30 ユー・ディー・シー アイルランド リミテッド Highly efficient OLED device with extremely short decay time

Similar Documents

Publication Publication Date Title
JP2008028371A (en) Organic light emitting device
KR20080090988A (en) Organic electroluminescent device
KR20120077301A (en) White organic light emitting device
KR20080110486A (en) Light-emitting device, electronic device, and manufacturing method of light-emitting device
WO2011010696A1 (en) Organic electroluminescent element
JP2011204801A (en) Organic electroluminescence apparatus
EP2182563B1 (en) Organic light-emitting diode device and manufacturing method thereof
JP2011216861A (en) Organic light emitting diode device
TW201022375A (en) Color conversion film using polymeric dye, and multicolor light emitting organic el device
JP2007335214A (en) Organic light-emitting element
JP2013500585A (en) OLED device with stabilized yellow light emitting layer
Chen et al. Color-stable and efficient stacked white organic light-emitting devices comprising blue fluorescent and orange phosphorescent emissive units
JP2023126912A (en) organic electroluminescent device
JP2004281087A (en) Organic el device and organic el display
JP2020505768A (en) Organic EL device
JP2012059962A (en) Organic el element
US20080182126A1 (en) Organic electroluminescence and optical interconnect module
JP2007036127A (en) Organic electroluminescent element
EP1978576A2 (en) Organic light-emitting diode element and optical interconnection module
TWI220101B (en) Organic electroluminescence device and fabricating method thereof
JP2009176762A (en) Organic electroluminescent element and optical interconnect module
JP2006210747A (en) Organic electroluminescent element
JP2008294200A (en) Organic el element and optical interconnection module
JP2005216705A (en) Organic el display device and its manufacturing method
JP2008277799A (en) Organic electroluminescent element and module for optical communication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925