JP2009172495A - Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals - Google Patents

Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals Download PDF

Info

Publication number
JP2009172495A
JP2009172495A JP2008012274A JP2008012274A JP2009172495A JP 2009172495 A JP2009172495 A JP 2009172495A JP 2008012274 A JP2008012274 A JP 2008012274A JP 2008012274 A JP2008012274 A JP 2008012274A JP 2009172495 A JP2009172495 A JP 2009172495A
Authority
JP
Japan
Prior art keywords
roasting
adjusting agent
basicity
heavy metals
basicity adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008012274A
Other languages
Japanese (ja)
Inventor
Norimasa Onodera
紀允 小野寺
Noriaki Senba
範明 仙波
Shigetaka Odaka
成貴 小高
Makiko Nakagawa
麻希子 中川
Hirotami Yamamoto
洋民 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority to JP2008012274A priority Critical patent/JP2009172495A/en
Publication of JP2009172495A publication Critical patent/JP2009172495A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of treating ash and an incinerator each capable of volatilizing and separating heavy metals without melting ash. <P>SOLUTION: The incinerator equipped with an incineration furnace 2 that is kept in a reducing atmosphere and heats a material to be treated comprising heavy metals in the presence of a chlorine-containing substance at a temperature lower than the melting point of the heavy metals to volatilize and separate them is characterized by comprising a feeder for feeding an alkalinity controlling agent to the material to be treated in the preceding step of the incinerator 2 or in the upstream of the incinerator 2, with the feeder allowed to feed the alkalinity controlling agent to the material to be treated in such an amount that its alkalinity after the addition of the alkalinity controlling agent thereinto becomes not higher than 0.4 or not lower than 1.1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、重金属類を含む灰、土壌等の被処理物を還元性雰囲気下にて加熱処理し、該重金属類を揮散分離して無害化する重金属類含有物質の焙焼処理方法及び焙焼設備に関し、特に、被処理物に塩素含有物質を添加して重金属類を塩化物化して揮散分離する重金属類含有物質の焙焼処理方法及び焙焼設備に関する。   The present invention relates to a method for roasting a heavy metal-containing substance, which comprises subjecting an object to be treated such as ash or soil containing heavy metals to heat treatment in a reducing atmosphere and volatilizing and separating the heavy metals to render them harmless. In particular, the present invention relates to a roasting treatment method and roasting equipment for heavy metal containing materials, in which a chlorine containing material is added to an object to be processed to chlorinate heavy metals to volatilize and separate them.

一般廃棄物、産業廃棄物を焼却処理することにより発生する焼却灰、飛灰中には様々な種類の重金属類が含有されている。また、重金属類の処理設備を具備しない焼却設備からは大気、土壌、地下水に重金属類含有物質が漏出する惧れがあり、他にも工場跡地、廃棄物埋立地等の土壌中には環境基準で定められた濃度以上の重金属類が存在していることがある。重金属類は毒性が強いものが多く、環境に悪影響を与えるのみならず生体内に蓄積され害を及ぼす。近年は、焼却灰、飛灰、土壌等に含有される重金属類の環境基準が制定されるなど、重金属類に対する規制が厳しくなる傾向にある。特に焼却灰由来の資源化物として、該焼却灰を溶融スラグ化して再利用する方法があるが、溶融スラグ中の重金属類に関しては、従来の溶出の規制に加えて含有量の規制が新たに設定された。   Various types of heavy metals are contained in incineration ash and fly ash generated by incineration of general waste and industrial waste. Incinerators that do not have heavy metal treatment facilities may leak heavy metal-containing substances into the atmosphere, soil, and groundwater. In addition, there are environmental standards in soils such as factory sites and landfills. Heavy metals may be present in concentrations higher than those specified in. Many heavy metals are highly toxic and not only adversely affect the environment but also accumulate in the body and cause harm. In recent years, regulations on heavy metals tend to be stricter, such as the establishment of environmental standards for heavy metals contained in incineration ash, fly ash, soil, and the like. In particular, there is a method of recycling the incinerated ash from molten slag as a resource product derived from incinerated ash, but for heavy metals in the molten slag, in addition to the conventional elution control, a new content control has been set. It was done.

重金属類を含有する物質を無害化する方法の一つとして、融点以下に保持した焙焼炉にて被処理物を還元性雰囲気下で加熱し、重金属類を揮散させて分離除去する方法がある。また、重金属類の中でも特にPbが問題となるが、Pbを含む重金属類の除去効率を向上させる方法として、焙焼炉に塩素を供給して加熱処理することにより重金属類を塩化物化して揮散分離する方法が提案されている。   As one method for detoxifying substances containing heavy metals, there is a method in which the object to be treated is heated in a reducing atmosphere in a roasting furnace kept below the melting point, and the heavy metals are volatilized and removed. . In addition, Pb is a problem among heavy metals, but as a method for improving the removal efficiency of heavy metals containing Pb, chlorine is supplied to the roasting furnace and heat treated to convert the heavy metals into chlorides and volatilized. A method of separation has been proposed.

図9に、焙焼炉を用いて重金属類を無害化する装置構成を示す。同図に示すように本装置においては、灰や土壌等の重金属類を含有した被処理物をホッパ51から焙焼キルン52内に投入し、還元性雰囲気下にて950〜1050℃の高温で加熱処理し、重金属類を揮散分離する。重金属類が分離された焙焼灰は冷却された後、再利用又は埋め立て等に供される。一方、焙焼キルン52にて発生した排ガスは、重金属類が濃縮された飛灰を含んだ状態で焙焼キルン52から排出され、後段に設けられた排ガス処理設備54にて処理される。   FIG. 9 shows an apparatus configuration for detoxifying heavy metals using a roasting furnace. As shown in the figure, in this apparatus, an object to be treated containing heavy metals such as ash and soil is put into a roasting kiln 52 from a hopper 51, and at a high temperature of 950 to 1050 ° C. in a reducing atmosphere. Heat treatment to volatilize and separate heavy metals. The roasted ash from which heavy metals have been separated is cooled and then used for reuse or landfill. On the other hand, the exhaust gas generated in the roasting kiln 52 is discharged from the roasting kiln 52 in a state containing fly ash enriched with heavy metals, and is processed by an exhaust gas treatment facility 54 provided at a subsequent stage.

例えば特許文献1(特開2004−181323号公報)には、廃棄物焼却炉から排出される塩化水素を含む燃焼排ガスを、焼却灰の処理を行う灰処理炉に導入し、焼却灰中に含まれる重金属類を塩化物として揮散させて除去する方法が開示されている。
また、特許文献2(特開2005−288433号公報)には、ロータリーキルンに塩素含有物質或いは塩素系排ガスを導入し、被処理物中の重金属類を塩化物化して沸点を低下させた後、該重金属類を揮散分離して除去する方法が開示されている。
For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-181323), combustion exhaust gas containing hydrogen chloride discharged from a waste incinerator is introduced into an ash treatment furnace for treating incineration ash and is included in the incineration ash. The method of volatilizing and removing the heavy metals to be removed as chlorides is disclosed.
Further, in Patent Document 2 (Japanese Patent Laid-Open No. 2005-288433), after introducing a chlorine-containing substance or a chlorine-based exhaust gas into a rotary kiln, chlorinating heavy metals in an object to be treated to lower the boiling point, A method for volatilizing and removing heavy metals is disclosed.

特開2004−181323号公報JP 2004-181323 A 特開2005−288433号公報JP 2005-288433 A

しかしながら、特許文献1及び特許文献2に記載されるように、被処理物に塩素を添加して重金属類を塩化物化しても、その塩化物の沸点は大幅に下降することはなく、重金属類を揮散分離するには高い温度に設定する必要がある。例えば、Pbの塩化物であるPbClの沸点は950℃であり、従来の溶出防止法以上に厳しい温度管理が必要となる。
また、被処理物に塩酸を添加して焙焼する方法では、塩酸添加により灰の融点降下をもたらし、灰が溶融し易くなってしまう。
さらに、灰の溶融がおきない状況での焙焼処理を実施しようとした場合、従来の処理温度でのPbの除去が困難となり、Pb除去性能の低下を引き起こす。
また、焙焼灰中の細かい灰(飛灰)は排ガスに同伴し処理設備へ排出されるが、灰の粒径によっては飛散しきれずに焙焼灰に混入する可能性があり、焙焼灰のPb除去性能が低下する惧れがある。飛灰は粒径が細かいほど高いPb濃度を示す傾向がある。
従って、本発明は上記従来技術の問題点に鑑み、灰を溶融することなく重金属類を揮散分離でき、重金属類の除去性能を向上させることを可能とした焙焼炉の灰処理方法及び焙焼設備を提供することを目的とする。
However, as described in Patent Document 1 and Patent Document 2, even if chlorine is added to the object to be processed to convert the heavy metal to chloride, the boiling point of the chloride does not drop significantly, and heavy metals In order to volatilize and separate, it is necessary to set a high temperature. For example, the boiling point of PbCl 2 , which is a Pb chloride, is 950 ° C., and stricter temperature control is required than the conventional elution prevention method.
Further, in the method of adding hydrochloric acid to the object to be processed and baking it, the addition of hydrochloric acid causes the melting point of the ash to drop, and the ash is likely to melt.
Furthermore, when trying to carry out the roasting process in a situation where ash does not melt, it becomes difficult to remove Pb at the conventional processing temperature, causing a decrease in Pb removal performance.
In addition, fine ash (fly ash) in the roasted ash is accompanied by the exhaust gas and discharged to the processing equipment, but depending on the particle size of the ash, it may not be scattered and may be mixed in the roasted ash. There is a concern that the Pb removal performance of the steel may deteriorate. Fly ash tends to exhibit a higher Pb concentration as the particle size becomes finer.
Therefore, in view of the above-mentioned problems of the prior art, the present invention is capable of volatilizing and separating heavy metals without melting ash and improving the removal performance of heavy metals and improving the ash treatment method and roasting of the roasting furnace. The purpose is to provide equipment.

そこで、本発明はかかる課題を解決するために、
重金属類を含有する被処理物を、塩素含有物質とともに還元性雰囲気に保持された焙焼炉にて融点以下の温度で加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類の焙焼処理方法において、
前記焙焼炉より前段若しくは該焙焼炉の上流側で、前記被処理物に塩基度調整剤を添加するようにし、前記塩基度調整剤の添加量を、塩基度調整剤添加後の被処理物の塩基度が0.4以下若しくは1.1以上となる添加量としたことを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
Heavy metals that are to be treated containing heavy metals are heated at a temperature below the melting point in a roasting furnace maintained in a reducing atmosphere together with chlorine-containing substances, and the heavy metals are chlorinated and then stripped and removed. In the roasting method of
A basicity adjusting agent is added to the object to be processed before or on the upstream side of the roasting furnace, and the amount of the basicity adjusting agent is adjusted after the basicity adjusting agent is added. The addition amount is such that the basicity of the product is 0.4 or less or 1.1 or more.

本発明によれば、被処理物の塩基度を0.4以下若しくは1.1以上とすることにより被処理物の融点を高くすることができ、被処理物を溶融することなく重金属類を揮散分離する焙焼処理を行うことが可能となる。即ち、融点の低い被処理物に対しても溶融することなく、例えば950℃以上に加熱することができ、Pb等の重金属類を低減することが可能となる。また、それ以外の被処理物に対しては、例えば1200℃以上の高い温度域での焙焼処理が可能となり、焙焼灰の重金属類除去性能を向上させることが可能となる。
また、本発明によれば、被処理物の融点を高温側に移行させることができるため、焙焼温度範囲が広がるため、温度管理が容易となる。
According to the present invention, by setting the basicity of the object to be treated to 0.4 or less or 1.1 or more, the melting point of the object to be treated can be increased, and heavy metals are volatilized without melting the object to be treated. It becomes possible to perform the baking process which isolate | separates. That is, it can be heated to, for example, 950 ° C. or higher without melting even an object to be processed having a low melting point, and heavy metals such as Pb can be reduced. For other objects to be processed, for example, roasting can be performed in a high temperature range of 1200 ° C. or higher, and the heavy metal removal performance of the roasted ash can be improved.
In addition, according to the present invention, the melting point of the object to be processed can be shifted to the high temperature side, and the roasting temperature range is widened, so that temperature management is facilitated.

また、前記塩基度調整剤が、SiOを含有する砂若しくは砂利であることを特徴とする。このように、塩基度調整剤としてSiOを含有する砂若しくは砂利を用いることにより、塩基度調整剤が残留する焙焼灰をセメント原料等の資源化材として好適に再利用することが可能となる。
さらに、前記被処理物が焼却灰であり、前記塩基度調整剤が前記被処理物とは異なる塩基度を有する焼却灰であることを特徴とする。このように、異なる塩基度を有する焼却灰を混合して上記塩基度の範囲に調整することにより、灰の処理量を増加させることができるとともに、外部から塩基度調整剤を添加する必要がなくなりコスト低減が図れる。
Further, the basicity adjusting agent is sand or gravel containing SiO 2 . Thus, by using sand or gravel containing SiO 2 as the basicity adjusting agent, the roasted ash in which the basicity adjusting agent remains can be suitably reused as a resource recycling material such as a cement raw material. Become.
Further, the object to be treated is incinerated ash, and the basicity adjusting agent is incinerated ash having a basicity different from that of the object to be treated. In this way, by mixing incinerated ash having different basicity and adjusting it to the above basicity range, the amount of ash treated can be increased, and there is no need to add a basicity adjusting agent from the outside. Cost reduction can be achieved.

また、前記塩基度調整剤の少なくとも一部が、硬質の塩基度調整剤であることを特徴とする。このように、被処理物に対して硬質の塩基度調整剤を添加することにより、焙焼炉内で焙焼灰が硬質の塩基度調整剤と接触して粉砕し、微細化するため、重金属類が飛灰側に移行して排ガスとともに排出されるため、重金属類の除去性能が向上する。微細化には硬質の塩基度調整剤を用いているため、外部から新たに微細化材を添加する必要がない。
また、前記塩基度調整剤とともに硬質の微細化材を前記被処理物に添加することを特徴とする。これにより、上記と同様に焙焼灰が粉砕して微細化し、重金属類の除去性能が向上する。
Further, at least a part of the basicity adjusting agent is a hard basicity adjusting agent. In this way, by adding a hard basicity adjusting agent to the object to be treated, the roasted ash comes into contact with the hard basicity adjusting agent in the roasting furnace and is pulverized and refined. Since the metal moves to the fly ash side and is discharged together with the exhaust gas, the heavy metal removal performance is improved. Since a hard basicity adjusting agent is used for miniaturization, it is not necessary to add a new micronizer from the outside.
Further, a hard micronizing material is added to the object to be treated together with the basicity adjusting agent. Thereby, the roasted ash is pulverized and refined similarly to the above, and the removal performance of heavy metals is improved.

さらに、前記塩基度調整剤が、前記被処理物の平均粒径以下の粒径範囲を有することを特徴とする。このように、塩基度調整剤として被処理物の平均粒径以下の粒径範囲を有する塩基度調整剤を用いることにより、被処理物に対して塩基度調整剤が均一に混ざり合い、被処理物の融点を確実に高温側へ移行させることが可能となる。
さらにまた、前記硬質の塩基度調整剤若しくは前記硬質の微細化材が、前記被処理物と略同等の粒径範囲及び粒度分布を有することを特徴とする。これにより、被処理物の粉砕性能を向上させることが可能である。
Furthermore, the basicity adjusting agent has a particle size range equal to or smaller than the average particle size of the workpiece. Thus, by using a basicity adjusting agent having a particle size range equal to or smaller than the average particle size of the object to be processed as the basicity adjusting agent, the basicity adjusting agent is uniformly mixed with the object to be processed, It is possible to reliably shift the melting point of the object to the high temperature side.
Furthermore, the hard basicity adjusting agent or the hard refining material has a particle size range and particle size distribution substantially equivalent to those of the object to be processed. Thereby, it is possible to improve the grinding | pulverization performance of a to-be-processed object.

また、還元性雰囲気に保持され、重金属類を含有した被処理物を塩素含有物質の存在下にて融点以下の温度で加熱することにより該重金属類を揮散分離する焙焼炉を備えた焙焼設備において、
前記焙焼炉より前段若しくは該焙焼炉の上流側で、前記被処理物に塩基度調整剤を添加する塩基度調整剤添加手段を備え、該塩基度調整剤添加手段が、塩基度調整剤添加後の被処理物の塩基度が0.4以下若しくは1.1以上となる量の塩基度調整剤を添加する手段であることを特徴とする。
さらに、前記焙焼炉が、ロータリーキルンであることが好適である。
Also, a roasting furnace equipped with a roasting furnace that is maintained in a reducing atmosphere and volatilizes and separates the heavy metals by heating the object containing the heavy metals in the presence of a chlorine-containing substance at a temperature below the melting point. In equipment,
A basicity adjusting agent adding means for adding a basicity adjusting agent to the object to be treated is provided upstream of the roasting furnace or upstream of the roasting furnace, and the basicity adjusting agent adding means is a basicity adjusting agent. It is a means for adding a basicity adjusting agent in such an amount that the basicity of the object to be treated after addition becomes 0.4 or less or 1.1 or more.
Furthermore, it is preferable that the roasting furnace is a rotary kiln.

以上記載のごとく本発明によれば、被処理物の塩基度を0.4以下若しくは1.1以上とすることにより被処理物の融点を高くすることができ、被処理物を溶融することなく重金属類を揮散分離する焙焼処理を行うことが可能となる。即ち、融点の低い被処理物に対しても溶融することなく、例えば950℃以上に加熱することができ、Pb等の重金属類を低減することが可能となる。また、それ以外の被処理物に対しては、例えば1200℃以上の高い温度域での焙焼処理が可能となり、焙焼灰の重金属類除去性能を向上させることが可能となる。
また、本発明によれば、被処理物の融点を高温側に移行させることができるため、焙焼温度範囲が広がるため、温度管理が容易となる。
As described above, according to the present invention, by setting the basicity of the object to be processed to 0.4 or less or 1.1 or more, the melting point of the object to be processed can be increased, without melting the object to be processed. It is possible to perform a roasting process for volatilizing and separating heavy metals. That is, it can be heated to, for example, 950 ° C. or higher without melting even an object to be processed having a low melting point, and heavy metals such as Pb can be reduced. For other objects to be processed, for example, roasting can be performed in a high temperature range of 1200 ° C. or higher, and the heavy metal removal performance of the roasted ash can be improved.
In addition, according to the present invention, the melting point of the object to be processed can be shifted to the high temperature side, and the roasting temperature range is widened, so that temperature management is facilitated.

以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施形態に係る焙焼設備の概略構成図、図2〜図4は灰の塩基度と溶融性に関する実測データを示す図、図5は焙焼キルン内の温度分布を示すグラフ、図6〜図8は灰の粒径に関する実測データを示す図である。
本実施形態はPb、Zn、As、Cd、Cr、Se、Hg、Sb、Cuなどの重金属類を分離除去する技術であり、特にPbの除去に好適に用いられる。また、被処理物としては、例えば汚染土壌、焼却灰、飛灰等の重金属類を含有する物質が挙げられる。
(実施形態)
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a schematic configuration diagram of a roasting facility according to an embodiment of the present invention, FIGS. 2 to 4 are diagrams showing actual measurement data regarding ash basicity and meltability, and FIG. 5 is a temperature distribution in the roasting kiln. Graphs and FIGS. 6 to 8 are diagrams showing actual measurement data relating to the particle size of ash.
This embodiment is a technique for separating and removing heavy metals such as Pb, Zn, As, Cd, Cr, Se, Hg, Sb, and Cu, and is particularly suitable for removing Pb. Moreover, as a to-be-processed object, the substance containing heavy metals, such as contaminated soil, incineration ash, fly ash, is mentioned, for example.
(Embodiment)

図1を参照して、本実施形態に係る装置構成につき説明する。
本実施形態に係る焙焼設備は、重金属類を含有する被処理物を受け入れ、焙焼キルン(焙焼炉)2に供給するホッパ1と、該ホッパ1に接続されて被処理物を還元性雰囲気下にて融点以下の温度で加熱し、該被処理物中に含まれる重金属類を揮散分離する焙焼炉2と、該焙焼炉2のホッパ1とは他端側に設けられた灰排出シュート3と、前記焙焼炉2の排ガス出口23に接続された排ガス処理設備5と、を備えている。
With reference to FIG. 1, it demonstrates per apparatus structure concerning this embodiment.
The roasting facility according to the present embodiment receives a workpiece containing heavy metals and supplies it to a roasting kiln (roasting furnace) 2 and is connected to the hopper 1 to reduce the workpiece to be treated. A roasting furnace 2 that is heated at a temperature below the melting point in an atmosphere to volatilize and separate heavy metals contained in the object to be treated, and a hopper 1 of the roasting furnace 2 is provided on the other end side. A discharge chute 3 and an exhaust gas treatment facility 5 connected to the exhaust gas outlet 23 of the roasting furnace 2 are provided.

前記焙焼キルン2は、回転式のロータリーキルンが好適に用いられ、円筒横置型の炉本体21と、該炉本体21の一端側に設けられ、ホッパ1から被処理物を炉本体内に投入する被処理物投入口22と、ホッパ1に対して炉本体21の他端側に設けられた灰排出シュート3と、炉本体21の灰排出シュート3側に設けられたバーナ24と、被処理物投入口22側に設けられ、炉本体21内で発生した排ガスを排出する排ガス出口23とを備えた構成を有する。前記炉本体21は、被処理物投入口22から灰排出シュート3に向けて軸方向に被処理物を移送する移送手段(図示略)を備えており、焙焼キルン2内に導入された被処理物は、灰排出シュート3に向けて移送されながら、バーナ24の火炎によって焙焼される。このとき、焙焼キルン2内は、酸素不足状態若しくは無酸素状態の還元性雰囲気とし、被処理物が酸化燃焼されないようになっている。また、焙焼キルン2内は、温度が500〜1200℃程度、好適には950〜1050℃程度であるとともに、負圧に維持される。また、   As the roasting kiln 2, a rotary rotary kiln is preferably used. The roasting kiln 2 is provided on a cylindrical horizontal furnace body 21 and one end side of the furnace body 21, and an object to be processed is introduced into the furnace body from the hopper 1. A workpiece inlet 22, an ash discharge chute 3 provided on the other end side of the furnace body 21 with respect to the hopper 1, a burner 24 provided on the ash discharge chute 3 side of the furnace body 21, and a workpiece It has a configuration including an exhaust gas outlet 23 that is provided on the input port 22 side and exhausts exhaust gas generated in the furnace body 21. The furnace body 21 is provided with transfer means (not shown) for transferring the workpiece in the axial direction from the workpiece inlet 22 toward the ash discharge chute 3, and the furnace body 21 introduced into the roasting kiln 2. The processed product is roasted by the flame of the burner 24 while being transferred toward the ash discharge chute 3. At this time, the roasting kiln 2 has a reducing atmosphere in an oxygen-deficient state or an oxygen-free state so that the object to be treated is not oxidized and burned. Moreover, while the temperature in the roasting kiln 2 is about 500-1200 degreeC, Preferably it is about 950-1050 degreeC, and is maintained at a negative pressure. Also,

一方、バーナ24からの熱により被処理物が熱反応して発生した排ガスは、被処理物の移送方向とは逆に、灰排出シュート3から被処理物投入口22側に向けて搬送され、被処理物の移送方向と対向する向流流れを形成し、排ガス出口23より排出される。焙焼キルン2より排出される排ガス中には、高濃度の重金属類を含有する飛灰が存在するため、該排ガスは後段側の排ガス処理設備5にて処理される。該排ガス処理設備5は、排ガスの性状、成分に基づき、適宜処理装置を選択して排ガスを無害化するために最適な構成に設定される。一例として排ガス処理設備は、排ガス中に含まれるダイオキシン類等の分解を行う再燃焼室と、該再燃焼室から排出される高温排ガスを熱交換により冷却する熱交換器(又は減温塔)と、該冷却された排ガス中の飛灰を捕集するバグフィルタと、を備えた構成が挙げられる。   On the other hand, the exhaust gas generated by the thermal reaction of the object to be processed by heat from the burner 24 is conveyed from the ash discharge chute 3 toward the object to be processed inlet 22 side in the opposite direction to the object to be processed. A counter-current flow that opposes the transfer direction of the workpiece is formed and discharged from the exhaust gas outlet 23. In the exhaust gas discharged from the roasting kiln 2, fly ash containing high-concentration heavy metals is present, so that the exhaust gas is processed by the exhaust gas treatment facility 5 on the rear stage side. The exhaust gas treatment facility 5 is set to an optimum configuration for making the exhaust gas harmless by appropriately selecting a treatment device based on the properties and components of the exhaust gas. As an example, an exhaust gas treatment facility includes a recombustion chamber that decomposes dioxins and the like contained in exhaust gas, and a heat exchanger (or a temperature reducing tower) that cools high-temperature exhaust gas discharged from the recombustion chamber by heat exchange. And a bag filter that collects fly ash in the cooled exhaust gas.

また、前記焙焼設備は、塩素含有物質(塩素源)を炉本体21内に供給する塩素源供給手段を備えている。図1にはホッパ1から被処理物とともに供給する構成につき示しているが、これに限定されるものではない。塩素源供給手段は、予め被処理物に供給して混合した後ホッパ1から被処理物とともに炉本体21内に供給する手段、ホッパ1に塩素含有物質を直接投入して炉本体21内に供給する手段、又は炉本体21の何れかの部位から塩素含有物質を直接炉本体21内に供給する手段等が挙げられる。塩素含有物質は固体でも気体でもよく、例えば塩素ガス、塩化水素ガス等の塩素系ガス又は該塩素系ガスを含有した排ガスが好適に用いられるが、該塩素系ガスの他に、トリクロロエチレン、テトラクロロエチレン等の塩素系溶剤、若しくは固体の塩素ガス発生物質等のように、高温下で塩素系ガスを発生する液体、固体も好適に用いることができる。   Further, the roasting equipment includes a chlorine source supply means for supplying a chlorine-containing substance (chlorine source) into the furnace body 21. Although FIG. 1 shows a configuration in which the material to be processed is supplied from the hopper 1, the present invention is not limited to this. The chlorine source supply means is a means for supplying the material to be processed in advance and mixing it, and supplying it from the hopper 1 together with the material to be processed into the furnace main body 21. A chlorine-containing substance is directly fed into the hopper 1 and supplied into the furnace main body 21. Or a means for supplying a chlorine-containing substance directly into the furnace body 21 from any part of the furnace body 21. Chlorine-containing substances may be solid or gas. For example, chlorine gas such as chlorine gas and hydrogen chloride gas or exhaust gas containing the chlorine gas is preferably used. In addition to the chlorine gas, trichloroethylene, tetrachloroethylene, etc. A liquid or solid that generates a chlorine-based gas at a high temperature, such as a chlorine-based solvent or a solid chlorine gas-generating substance, can be suitably used.

さらに本実施形態では、上記構成に加えて、被処理物の塩基度を調整する塩基度調整剤を供給する塩基度調整剤添加手段を備えている。
塩基度調整剤添加手段は、少なくとも炉本体21の被処理物投入口22側で被処理物と塩基度調整剤が接触する位置に該塩基度調整剤を供給する手段とする。好適には、ホッパ1の前段側で被処理物に塩基度調整剤を供給し、混合した後ホッパ1に混合物を投入する構成とする。また、ホッパ1に被処理物とともに塩基度調整剤を供給する構成としてもよい。
塩基度調整剤としては、SiOを含む砂や砂利等のSiを多く含む物質、消石灰(Ca(OH))等のCaを多く含む物質、重金属を多く含まないSi又はCaを主とする灰、土壌などが用いられる。
Furthermore, in this embodiment, in addition to the above-described configuration, a basicity adjusting agent adding means for supplying a basicity adjusting agent for adjusting the basicity of the object to be processed is provided.
The basicity adjusting agent adding means is means for supplying the basicity adjusting agent to a position where the object to be processed and the basicity adjusting agent are in contact with each other at least on the object inlet 22 side of the furnace body 21. Preferably, a basicity adjusting agent is supplied to the object to be processed on the front side of the hopper 1 and mixed, and then the mixture is charged into the hopper 1. Moreover, it is good also as a structure which supplies a basicity regulator to the hopper 1 with a to-be-processed object.
As the basicity adjusting agent, a substance containing a large amount of Si such as sand or gravel containing SiO 2 , a substance containing a large amount of Ca such as slaked lime (Ca (OH) 2 ), Si or Ca containing no heavy metal is mainly used. Ash, soil, etc. are used.

このような焙焼設備において、重金属類を含有する被処理物は、ホッパ1前段又は該ホッパ1内にて塩基度調整剤が添加され、被処理物投入口22を介して焙焼キルン2の炉本体21内に投入される。該塩基度調整剤は、直接焙焼キルン2の上流側に供給してもよい。
また、被処理物と同時に、塩素源供給手段により塩素含有物質が炉本体21内に供給される。焙焼キルン2の炉本体21内は、還元性雰囲気に保持されるとともに、塩基度調整剤により塩基度調整された被処理物の融点以下の温度となるように加熱される。
被処理物は、被処理物投入口22から灰排出シュート3に向けて混合されながら移送され、還元性雰囲気下にて前記温度で加熱されることにより、被処理物中に含まれる重金属類と塩素含有物質とが反応して塩化物を生成し、該塩化物化した重金属類は揮散して排ガスに伴送されて排ガス出口23より排出され、排ガス処理設備5にて処理される。揮散した重金属類のうち飛灰に濃縮された重金属類は、排ガスに伴送されて排ガス処理設備5に送られる。また発生した焙焼灰は、灰排出シュート3より排出されて灰冷却装置(図示略)に送られる。
In such a roasting facility, the object to be processed containing heavy metals is added with a basicity adjusting agent in the front stage of the hopper 1 or in the hopper 1, and the roasting kiln 2 of the roasting kiln 2 is connected to the object to be processed. It is put into the furnace body 21. The basicity adjusting agent may be directly supplied to the upstream side of the roasting kiln 2.
Simultaneously with the object to be processed, a chlorine-containing substance is supplied into the furnace body 21 by the chlorine source supply means. The inside of the furnace body 21 of the roasting kiln 2 is maintained in a reducing atmosphere, and is heated to a temperature equal to or lower than the melting point of the workpiece whose basicity is adjusted by the basicity adjusting agent.
The object to be processed is transported while being mixed from the object input 22 toward the ash discharge chute 3 and heated at the above temperature in a reducing atmosphere, whereby the heavy metals contained in the object to be processed Chlorine-containing substances react with each other to produce chlorides, and the chlorinated heavy metals are volatilized and accompanied by exhaust gas, discharged from the exhaust gas outlet 23, and processed in the exhaust gas treatment facility 5. The heavy metals concentrated in the fly ash among the stripped heavy metals are accompanied by the exhaust gas and sent to the exhaust gas treatment facility 5. The generated roasted ash is discharged from the ash discharge chute 3 and sent to an ash cooling device (not shown).

本実施形態において、前記塩基度調整剤添加手段は、被処理物の塩基度が0.4以下若しくは1.1以上となるように塩基度調整剤を供給する手段とする。
これは、被処理物のSi、Ca濃度をX線(蛍光X線分析装置)やレーザ(LIBS:レーザー誘導分光分析装置)等の成分分析装置にて検出し、該検出された数値に応じて、被処理物の塩基度が上記範囲内となるように塩基度調整剤の添加量を調整する。
In this embodiment, the basicity adjusting agent adding means is means for supplying the basicity adjusting agent so that the basicity of the object to be processed is 0.4 or less or 1.1 or more.
This is because the Si and Ca concentrations of the object to be processed are detected by a component analyzer such as an X-ray (fluorescence X-ray analyzer) or a laser (LIBS: laser-induced spectroscopic analyzer), and the detected numerical values are used. The addition amount of the basicity adjusting agent is adjusted so that the basicity of the workpiece is within the above range.

ここで、一例として灰を用いて、塩基度と溶融性の関係を測定した実験結果を図2〜図4に示す。図2は主灰に塩基度調整剤を供給した時の溶融性試験の結果を示す表で、図3は塩基度に対する各温度を示すグラフである。これらの図において、主灰はごみ焼却炉から回収された主灰を用い、融点調整剤にはSiOを主成分とする珪砂を用いている。CaO、SiO、塩基度(CaO/SiO)は夫々蛍光X線検量線法により測定した半定量分析値データである。塩基度0.94の主灰に対して珪砂を添加して塩基度調整し、異なる塩基度33%、50%における溶融性について試験を行った。溶融性を表す測定項目として、軟化点、融点、溶流点を測定した。
図2及び図3に示されるように、珪砂を添加しない主灰の融点が1190℃であるのに対して、塩基度0.31(珪砂33%添加)の灰は融点が1210℃となり、塩基度0.19(珪砂50%添加)の灰は融点が1295℃となった。また、軟化点及び溶流点の何れにおいても、珪砂を添加することにより温度が上昇することがわかる。
Here, the experimental result which measured the relationship between basicity and a meltability using ash as an example is shown in FIGS. FIG. 2 is a table showing the results of a meltability test when a basicity adjusting agent is supplied to the main ash, and FIG. 3 is a graph showing each temperature with respect to basicity. In these figures, the main ash is the main ash recovered from the waste incinerator, and the melting point modifier is silica sand containing SiO 2 as a main component. CaO, SiO 2 and basicity (CaO / SiO 2 ) are semi-quantitative analysis value data measured by the fluorescent X-ray calibration curve method, respectively. Silica sand was added to the main ash having a basicity of 0.94 to adjust the basicity, and tests were conducted for meltability at different basicities of 33% and 50%. As measurement items representing meltability, a softening point, a melting point, and a melting point were measured.
As shown in FIG. 2 and FIG. 3, the melting point of the main ash without addition of silica sand is 1190 ° C., whereas the ash with a basicity of 0.31 (addition of 33% silica sand) has a melting point of 1210 ° C. The ash having a degree of 0.19 (addition of 50% silica sand) had a melting point of 1295 ° C. Moreover, it turns out that temperature rises by adding silica sand in any of a softening point and a melting point.

図4に、灰の塩基度と融点の関係を示す。同図は実測データである。
同図から、灰の塩基度と融点の間には、下に凸の二次曲線的な関係があることがわかる。即ち、ある塩基度以上の灰は融点が高くなっていき、一方ある塩基度以下の灰も同様に融点が高くなっていく。重金属類が好適に揮散する温度として1200℃以上となるとき、同図から灰の塩基度は0.4以下、又は1.1以上となる。
従って、被処理物の塩基度を0.4以下若しくは1.1以上とすることにより融点を高くすることができ、被処理物を溶融することなく重金属類を揮散分離する加熱処理を行うことが可能となる。即ち、融点の低い被処理物に対しても溶融することなく、例えば950℃以上に加熱することができ、Pb等の重金属類を低減することが可能となる。また、それ以外の被処理物に対しては、例えば1200℃以上の高い温度域での焙焼処理が可能となり、焙焼灰の重金属類除去性能を向上させることが可能となる。
また、本実施形態によれば、被処理物の融点を高温側に移行させることができるため、焙焼温度範囲が広がるため、温度管理が容易となる。
FIG. 4 shows the relationship between the basicity of ash and the melting point. This figure shows actual measurement data.
From the figure, it can be seen that there is a downwardly convex quadratic curve relationship between the basicity and melting point of ash. That is, ash having a certain basicity or higher has a higher melting point, while ash having a certain basicity or less also has a higher melting point. When the temperature at which heavy metals are suitably volatilized is 1200 ° C. or higher, the basicity of the ash is 0.4 or lower, or 1.1 or higher from FIG.
Therefore, by setting the basicity of the object to be processed to 0.4 or less or 1.1 or more, the melting point can be increased, and heat treatment for volatilizing and separating heavy metals can be performed without melting the object to be processed. It becomes possible. That is, it can be heated to, for example, 950 ° C. or higher without melting even an object to be processed having a low melting point, and heavy metals such as Pb can be reduced. For other objects to be processed, for example, roasting can be performed in a high temperature range of 1200 ° C. or higher, and the heavy metal removal performance of the roasted ash can be improved.
Moreover, according to this embodiment, since melting | fusing point of a to-be-processed object can be shifted to the high temperature side, since the roasting temperature range spreads, temperature management becomes easy.

図5に、焙焼キルン2内の温度分布を示す。これは、焼却灰の焙焼処理において、灰層各部位における温度を熱電対により計測した結果である。同図に示されるように、キルン内気相部と焙焼灰内部の間には約150℃の温度差が生じている。従って、十分な重金属類の揮散効果を得るためには、灰の融点付近への温度確保が必要となる。
本実施形態では、上記した構成により被処理物の融点を高温側に移行させることができるため、被処理物を焙焼処理するときに、被処理物表面温度が、塩基度調整により高温側に移行した融点の近傍となるように加熱することが好ましい。これにより、被処理物内部においても重金属類を揮散させる温度域まで加熱することができ、重金属類の除去性能を向上させることが可能となる。
FIG. 5 shows the temperature distribution in the roasting kiln 2. This is the result of measuring the temperature at each part of the ash layer with a thermocouple in the incineration ash roasting process. As shown in the figure, a temperature difference of about 150 ° C. occurs between the gas phase portion in the kiln and the inside of the roasted ash. Therefore, in order to obtain a sufficient volatilization effect of heavy metals, it is necessary to secure a temperature near the melting point of ash.
In the present embodiment, since the melting point of the object to be processed can be shifted to the high temperature side by the above-described configuration, when the object to be processed is roasted, the surface temperature of the object to be processed is increased to the high temperature side by adjusting the basicity. Heating is preferably performed so as to be in the vicinity of the transferred melting point. Thereby, it can heat to the temperature range which volatilizes heavy metals also in a to-be-processed object, and it becomes possible to improve the removal performance of heavy metals.

また本実施形態において、塩基度調整剤の最適粒度は、被処理物の平均粒径以下の粒径域とすることが好ましい。
一例として、焼却灰の粒径分布を図6に示す。この焼却灰は粒径0.2mm〜5mmの粒径範囲を有するが、その平均粒径を求め、該平均粒径以下の粒径域の塩基度調整剤を用いる。
被処理物に添加する塩基度調整剤の粒径が大きいと、融点が上がらない場合が想定されるが、上記したように、塩基度調整剤として被処理物の平均粒径以下の粒径域を有する塩基度調整剤を用いることにより、被処理物に対して塩基度調整剤が均一に混ざり合い、被処理物の融点を確実に高くすることが可能となる。
Moreover, in this embodiment, it is preferable that the optimal particle size of a basicity adjusting agent shall be a particle size range below the average particle size of a to-be-processed object.
As an example, the particle size distribution of incinerated ash is shown in FIG. The incinerated ash has a particle size range of 0.2 mm to 5 mm, and the average particle size is obtained and a basicity adjuster having a particle size range equal to or less than the average particle size is used.
When the particle size of the basicity adjusting agent added to the object to be processed is large, it is assumed that the melting point does not increase, but as described above, the particle size region of the average particle diameter of the object to be processed or less as the basicity adjusting agent By using the basicity adjusting agent having the above, the basicity adjusting agent is uniformly mixed with the object to be processed, and the melting point of the object to be processed can be reliably increased.

さらに、本実施形態において塩基度調整剤のうち少なくとも一部を、硬質の塩基度調整剤とすることが好ましい。飛灰の粒径は約0.6〜30μmの範囲で分布しており、この粒径分布の中で特に細かい粒径を有する飛灰にPb等の重金属類が濃縮されやすい傾向にあるため、硬質の塩基度調整剤を添加することにより被処理物を粉砕して微細化し、重金属類を飛灰側に移行させ易くする。   Furthermore, in this embodiment, it is preferable that at least a part of the basicity adjusting agent is a hard basicity adjusting agent. Since the fly ash particle size is distributed in the range of about 0.6 to 30 μm, and heavy metals such as Pb tend to be concentrated in the fly ash having a particularly fine particle size in this particle size distribution, By adding a hard basicity adjuster, the object to be processed is pulverized and refined, and heavy metals are easily transferred to the fly ash side.

図7に、灰粒径とPb濃度の関係を示す。同グラフは実測データである。これによれば、灰粒径が2μmを超えると灰中のPb濃度が極めて低くなる。従って、灰中にPbが高濃度で含有される場合は、10μm以下の細かい粒径の飛灰であり、10μmより粒径が大きい灰には殆どPbが含まれていないことがわかる。
本実施形態ではこの結果に基づき、焙焼キルン2内にて焙焼灰の微細化を図り、重金属類をより飛灰側へ移行させやすくする。
そこで、被処理物に対して硬質の塩基度調整剤を添加することにより、焙焼キルン内で焙焼灰は硬質の塩基度調整剤と接触して粉砕し、微細化するため、重金属類が飛灰側に移行して排ガスとともに排出されるため、重金属類の除去性能が向上する。
また別の方法として、塩基度調整剤とは別に、被処理物を微細化するための硬質の微細化材を添加してもよい。該微細化材としては砂利、砂等が好適に用いられる。
FIG. 7 shows the relationship between the ash particle size and the Pb concentration. The graph is actual measurement data. According to this, when the ash particle diameter exceeds 2 μm, the Pb concentration in the ash becomes extremely low. Therefore, when Pb is contained in the ash at a high concentration, the fly ash has a fine particle diameter of 10 μm or less, and the ash having a particle diameter larger than 10 μm contains almost no Pb.
In the present embodiment, based on this result, the roasted ash is refined in the roasting kiln 2 so that heavy metals can be more easily transferred to the fly ash side.
Therefore, by adding a hard basicity adjusting agent to the object to be processed, the roasted ash is brought into contact with the hard basicity adjusting agent in the roasting kiln and pulverized and refined. Since it moves to the fly ash side and is discharged together with the exhaust gas, the heavy metal removal performance is improved.
As another method, a hard refining material for refining the object to be processed may be added separately from the basicity adjusting agent. As the fine material, gravel, sand or the like is preferably used.

さらに、前記硬質の塩基度調整剤又は前記硬質の微細化材の最適粒度は、被処理物と同等レベルの粒径範囲、分布であることが好ましい。
図8に、焼却灰の粒径分布に対する硬質の塩基度調整剤又は前硬質の微細化材の最適粒度範囲を示す。
このように、硬質の塩基度調整剤又は前硬質の微細化材を、被処理物と同等レベルの粒径範囲且つ粒径分布とすることにより、被処理物の粉砕性が向上し、重金属類の除去性能を向上させることができる。
Furthermore, it is preferable that the optimum particle size of the hard basicity adjusting agent or the hard refining material has a particle size range and distribution equivalent to those of the workpiece.
FIG. 8 shows the optimum particle size range of the hard basicity adjusting agent or the pre-hard refined material with respect to the particle size distribution of the incinerated ash.
In this way, by setting the hard basicity adjusting agent or the pre-hard micronized material to a particle size range and particle size distribution equivalent to the object to be processed, the grindability of the object to be processed is improved, and heavy metals The removal performance can be improved.

本発明の実施形態に係る焙焼設備の概略構成図である。It is a schematic structure figure of roasting equipment concerning an embodiment of the present invention. 主灰に塩基度調整剤を供給したときの溶融性試験の結果を示す表である。It is a table | surface which shows the result of a meltability test when supplying a basicity regulator to main ash. 図2の溶融性試験の結果をグラフ化した図で、塩基度に対応した溶融性を示すグラフである。It is the figure which made the result of the meltability test of FIG. 2 into a graph, and is a graph which shows the meltability corresponding to basicity. 灰の塩基度と融点の関係を示すグラフである。It is a graph which shows the relationship between the basicity of ash, and melting | fusing point. 焙焼キルン内の温度分布を示すグラフである。It is a graph which shows the temperature distribution in a roasting kiln. 灰の粒径分布に対する塩基度調整剤の最適粒度を示す図である。It is a figure which shows the optimal particle size of the basicity modifier with respect to the particle size distribution of ash. 灰の粒径とPb濃度の関係を示すグラフである。It is a graph which shows the relationship between the particle size of ash, and Pb density | concentration. 灰の粒径分布に対する硬質材の最適粒度を示す図である。It is a figure which shows the optimal particle size of the hard material with respect to the particle size distribution of ash. 従来の焙焼炉を備えた処理装置の概略構成図である。It is a schematic block diagram of the processing apparatus provided with the conventional roasting furnace.

符号の説明Explanation of symbols

1 ホッパ
2 焙焼炉(焙焼キルン)
3 灰排出シュート
4 排ガス処理設備
21 炉本体
22 被処理物投入口
23 排ガス出口
24 バーナ
1 Hopper 2 Roasting furnace (roasting kiln)
3 Ash discharge chute 4 Exhaust gas treatment equipment 21 Furnace main body 22 Processed object inlet 23 Exhaust gas outlet 24 Burner

Claims (9)

重金属類を含有する被処理物を、塩素含有物質とともに還元性雰囲気に保持された焙焼炉にて融点以下の温度で加熱し、前記重金属類を塩化物化した後に揮散させて分離除去する重金属類の焙焼処理方法において、
前記焙焼炉より前段若しくは該焙焼炉の上流側で、前記被処理物に塩基度調整剤を添加するようにし、前記塩基度調整剤の添加量を、塩基度調整剤添加後の被処理物の塩基度が0.4以下若しくは1.1以上となる添加量としたことを特徴とする重金属類含有物質の焙焼処理方法。
Heavy metals that are to be treated containing heavy metals are heated at a temperature below the melting point in a roasting furnace maintained in a reducing atmosphere together with chlorine-containing substances, and the heavy metals are chlorinated and then stripped and removed. In the roasting method of
A basicity adjusting agent is added to the object to be processed before or on the upstream side of the roasting furnace, and the amount of the basicity adjusting agent is adjusted after the basicity adjusting agent is added. A method for roasting a heavy metal-containing substance, characterized in that the addition amount is such that the basicity of the product is 0.4 or less or 1.1 or more.
前記塩基度調整剤が、SiOを含有する砂若しくは砂利であることを特徴とする請求項1記載の重金属類含有物質の焙焼処理方法。 The method for roasting a heavy metal-containing material according to claim 1, wherein the basicity adjusting agent is sand or gravel containing SiO 2 . 前記被処理物が焼却灰であり、前記塩基度調整剤が前記被処理物とは異なる塩基度を有する焼却灰であることを特徴とする請求項1記載の重金属類含有物質の焙焼処理方法。   The method for roasting heavy metal-containing substances according to claim 1, wherein the object to be treated is incinerated ash, and the basicity adjusting agent is incinerated ash having a basicity different from that of the object to be treated. . 前記塩基度調整剤の少なくとも一部が、硬質の塩基度調整剤であることを特徴とする請求項1記載の重金属類含有物質の焙焼処理方法。   The method for roasting a heavy metal-containing material according to claim 1, wherein at least a part of the basicity adjusting agent is a hard basicity adjusting agent. 前記塩基度調整剤とともに硬質の微細化材を前記被処理物に添加することを特徴とする請求項1記載の重金属類含有物質の焙焼処理方法。   The method for roasting a heavy metal-containing material according to claim 1, wherein a hard refining material is added to the object to be treated together with the basicity adjusting agent. 前記塩基度調整剤が、前記被処理物の平均粒径以下の粒径範囲を有することを特徴とする請求項1記載の重金属類含有物質の焙焼処理方法。   The method for roasting a heavy metal-containing material according to claim 1, wherein the basicity adjusting agent has a particle size range equal to or less than an average particle size of the object to be processed. 前記硬質の塩基度調整剤若しくは前記硬質の微細化材が、前記被処理物と略同等の粒径範囲及び粒度分布を有することを特徴とする請求項1記載の重金属類含有物質の焙焼処理方法。   2. The roasting treatment of a heavy metal-containing substance according to claim 1, wherein the hard basicity adjusting agent or the hard refining material has a particle size range and a particle size distribution substantially equal to those of the workpiece. Method. 還元性雰囲気に保持され、重金属類を含有した被処理物を塩素含有物質の存在下にて融点以下の温度で加熱することにより該重金属類を揮散分離する焙焼炉を備えた焙焼設備において、
前記焙焼炉より前段若しくは該焙焼炉の上流側で、前記被処理物に塩基度調整剤を添加する塩基度調整剤添加手段を備え、該塩基度調整剤添加手段が、塩基度調整剤添加後の被処理物の塩基度が0.4以下若しくは1.1以上となる量の塩基度調整剤を添加する手段であることを特徴とする焙焼設備。
In a roasting facility equipped with a roasting furnace that volatilizes and separates heavy metals by heating a workpiece containing heavy metals in a reducing atmosphere and heating it in the presence of a chlorine-containing substance at a temperature below the melting point. ,
A basicity adjusting agent adding means for adding a basicity adjusting agent to the object to be treated is provided upstream of the roasting furnace or upstream of the roasting furnace, and the basicity adjusting agent adding means is a basicity adjusting agent. A roasting facility, which is a means for adding a basicity adjusting agent in an amount such that the basicity of an object to be treated after addition is 0.4 or less or 1.1 or more.
前記焙焼炉が、ロータリーキルンであることを特徴とする請求項7記載の焙焼設備。   The roasting equipment according to claim 7, wherein the roasting furnace is a rotary kiln.
JP2008012274A 2008-01-23 2008-01-23 Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals Pending JP2009172495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012274A JP2009172495A (en) 2008-01-23 2008-01-23 Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012274A JP2009172495A (en) 2008-01-23 2008-01-23 Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals

Publications (1)

Publication Number Publication Date
JP2009172495A true JP2009172495A (en) 2009-08-06

Family

ID=41028234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012274A Pending JP2009172495A (en) 2008-01-23 2008-01-23 Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals

Country Status (1)

Country Link
JP (1) JP2009172495A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076690A (en) * 2011-09-13 2013-04-25 Taiheiyo Cement Corp Method for removing radioactive cesium and method for manufacturing burned product
JP2013100938A (en) * 2011-11-08 2013-05-23 Kobelco Eco-Solutions Co Ltd Method of melting incinerated ash and waste melting facility
JP2016224055A (en) * 2012-10-29 2016-12-28 太平洋セメント株式会社 Method for removing radioactive cesium and method for manufacturing calcined product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321743A (en) * 2000-05-15 2001-11-20 Natl Inst Of Advanced Industrial Science & Technology Meti Method for using incineration residue as recycling resources
JP2004162141A (en) * 2002-11-14 2004-06-10 Energy Kankyo Sekkei Kk Method for separating and recovering heavy metal and lead
JP2004306012A (en) * 2003-03-26 2004-11-04 Taiheiyo Cement Corp Treatment method of soil containing heavy metal
JP2005320218A (en) * 2004-05-11 2005-11-17 Taiheiyo Cement Corp Manufacturing method of cement feed material
JP2006314987A (en) * 2005-04-14 2006-11-24 Taiheiyo Cement Corp Method for treating chlorine-containing dust
JP2007275724A (en) * 2006-04-04 2007-10-25 Kobelco Eco-Solutions Co Ltd Heavy metal concentration and basicity control method for incineration ash, and system for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321743A (en) * 2000-05-15 2001-11-20 Natl Inst Of Advanced Industrial Science & Technology Meti Method for using incineration residue as recycling resources
JP2004162141A (en) * 2002-11-14 2004-06-10 Energy Kankyo Sekkei Kk Method for separating and recovering heavy metal and lead
JP2004306012A (en) * 2003-03-26 2004-11-04 Taiheiyo Cement Corp Treatment method of soil containing heavy metal
JP2005320218A (en) * 2004-05-11 2005-11-17 Taiheiyo Cement Corp Manufacturing method of cement feed material
JP2006314987A (en) * 2005-04-14 2006-11-24 Taiheiyo Cement Corp Method for treating chlorine-containing dust
JP2007275724A (en) * 2006-04-04 2007-10-25 Kobelco Eco-Solutions Co Ltd Heavy metal concentration and basicity control method for incineration ash, and system for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076690A (en) * 2011-09-13 2013-04-25 Taiheiyo Cement Corp Method for removing radioactive cesium and method for manufacturing burned product
JP2013100938A (en) * 2011-11-08 2013-05-23 Kobelco Eco-Solutions Co Ltd Method of melting incinerated ash and waste melting facility
JP2016224055A (en) * 2012-10-29 2016-12-28 太平洋セメント株式会社 Method for removing radioactive cesium and method for manufacturing calcined product

Similar Documents

Publication Publication Date Title
US9744575B2 (en) Treatment of waste
JP5843877B2 (en) Recycling method of organic waste
JP2009172495A (en) Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals
JP5268918B2 (en) Contaminated metal residue treatment method
JP5105993B2 (en) Detoxification treatment apparatus and method for treated ash
US6796251B2 (en) Process for treating incineration residues from an incineration plant
JP4686227B2 (en) Treatment method of sulfuric acid pitch
JP2005288433A (en) Detoxifying treatment method for heavy metal-containing substance and apparatus therefor
JP6541039B2 (en) Incineration ash processing apparatus and incineration ash processing method
JP4243661B2 (en) Dust disposal method
JP4350485B2 (en) Method and apparatus for firing and detoxifying multiple / mixed contaminants
JP2009172523A (en) Ash treating method of roasting furnace, and roasting equipment
JP2006183998A (en) Method of improving properties of incineration residues produced in incineration plant, and method of treating the residues
JP2007277726A (en) Treatment device and treatment method for zinc-containing iron oxide
JP4777025B2 (en) Method and apparatus for treating sulfuric acid-containing oily waste
JP3917775B2 (en) Recycling method of incineration ash
JP2003212618A (en) Method for treating organic contaminated soil
WO2013156832A1 (en) Pyrometallurgical treatment of slags
JP2009050776A (en) Method of rendering heavy metal-containing contaminant harmless
JP2003071429A (en) Method for treating polluted soil
JP2007303722A (en) Incinerated ash-melting method
JP2008272599A (en) Method and device for treating fly ash, and method and device for treating waste substances from waste incinerator using the same
JP4008430B2 (en) Processing system and method for improving combustion residue characteristics
JP2004077037A (en) Melting treatment method for incineration residue and its device
JP2006043660A (en) Method for cleaning contaminated soil

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417