JP2009170716A - Cooling vessel of superconducting coil - Google Patents

Cooling vessel of superconducting coil Download PDF

Info

Publication number
JP2009170716A
JP2009170716A JP2008008273A JP2008008273A JP2009170716A JP 2009170716 A JP2009170716 A JP 2009170716A JP 2008008273 A JP2008008273 A JP 2008008273A JP 2008008273 A JP2008008273 A JP 2008008273A JP 2009170716 A JP2009170716 A JP 2009170716A
Authority
JP
Japan
Prior art keywords
superconducting coil
peripheral wall
outer peripheral
inner peripheral
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008008273A
Other languages
Japanese (ja)
Inventor
Takeshi Niisato
剛 新里
Hitoshi Oyama
仁 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008008273A priority Critical patent/JP2009170716A/en
Publication of JP2009170716A publication Critical patent/JP2009170716A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent welding heat from influencing a superconducting coil by setting welding positions at positions distant from the superconducting coil housed in the inside, in a cooling vessel assembled by connecting respective wall parts constituting the cooling vessel to one another by welding. <P>SOLUTION: This cooling vessel wherein the superconducting coil formed by winding a superconducting wire and a cooling medium are housed, and the superconducting coil is cooled with the cooling medium is provided with: a cylindrical inner peripheral wall arranged on the inner peripheral side of the superconducting coil; a cylindrical outer peripheral wall arranged on the outer peripheral side of the superconducting coil; and annular sidewalls connecting both axial edges of the inner peripheral wall and the outer peripheral wall, and respectively arranged on both axial sides of the superconducting coil. Welding parts projecting outward in the axis direction are arranged throughout the total circumference of the inner periphery or/and the outer periphery of the sidewalls, and the welding parts are connected to the axial edges of the inner peripheral wall or/and the outer peripheral wall by welding. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超電導コイルを超電導温度に冷却する冷却容器に関するものである。   The present invention relates to a cooling vessel that cools a superconducting coil to a superconducting temperature.

従来、超電導コイルを超電導温度の極低温に冷却するための冷却容器が多数提供されている。
例えば、特開平6−283328号公報(特許文献1)に開示された冷却容器1は、図9に示すように、超電導コイル2の内周側に配置される円筒状の内周壁1aと、超電導コイル2の外周側に配置される円筒状の外周壁1bと、内周壁1aと外周壁1bの軸線方向両端縁を連結すると共に超電導コイル1の軸線方向の両側にそれぞれ配置される円環状の側壁1cからなるリング状としている。該冷却容器1の内周壁1aに超電導コイル2を外嵌して、冷却容器1内に超電導コイル2を収容し、冷却容器1内に貯留した液体ヘリウムからなる冷媒3で超電導コイル2を冷却する構成としている。
Conventionally, many cooling containers for cooling a superconducting coil to a cryogenic temperature of a superconducting temperature have been provided.
For example, as shown in FIG. 9, a cooling container 1 disclosed in Japanese Patent Laid-Open No. 6-283328 (Patent Document 1) includes a cylindrical inner peripheral wall 1a disposed on the inner peripheral side of a superconducting coil 2, and a superconducting A cylindrical outer peripheral wall 1b disposed on the outer peripheral side of the coil 2, and annular side walls disposed on both sides in the axial direction of the superconducting coil 1 while connecting both axial end edges of the inner peripheral wall 1a and the outer peripheral wall 1b. It is made into the ring shape which consists of 1c. The superconducting coil 2 is fitted on the inner peripheral wall 1a of the cooling container 1, the superconducting coil 2 is accommodated in the cooling container 1, and the superconducting coil 2 is cooled by the refrigerant 3 made of liquid helium stored in the cooling container 1. It is configured.

この種の冷却容器1では、内周壁1a、外周壁1b、側壁1cをそれぞれ別体として設け、内部に超電導コイル2を配置した状態で内周壁1a、外周壁1b、側壁1cをそれぞれ溶接することにより組み立てる場合が多い。
その場合、前記溶接位置と超電導コイルへの端子取付位置が近接すると、溶接の熱により超電導線が劣化したり、超電導コイルへの端子取り付けに用いた半田が溶融して端子の位置ズレや脱落が生じるおそれがある。
In this type of cooling container 1, the inner peripheral wall 1a, the outer peripheral wall 1b, and the side wall 1c are provided as separate bodies, and the inner peripheral wall 1a, the outer peripheral wall 1b, and the side wall 1c are welded with the superconducting coil 2 disposed therein. It is often assembled by.
In that case, if the welding position and the terminal mounting position to the superconducting coil are close to each other, the superconducting wire deteriorates due to the heat of welding, or the solder used for terminal mounting to the superconducting coil melts and the terminal is misaligned or dropped. May occur.

特開平6−283328号公報JP-A-6-283328

本発明は前記問題に鑑みてなされたものであり、冷却容器を構成する各壁部を溶接により接続して組み立てる冷却容器において、該溶接位置を内部に収容する超電導コイルからできるだけ離れた位置とすることにより、溶接時の熱が超電導コイルへ影響を与えるのを防止することを課題としている。   The present invention has been made in view of the above problems, and in the cooling container assembled by connecting the wall portions constituting the cooling container by welding, the welding position is set as far as possible from the superconducting coil accommodated therein. Therefore, it is an object to prevent the heat during welding from affecting the superconducting coil.

前記課題を解決するため、本発明は、第1の発明として、超電導線が巻回されて形成された超電導コイルを収容し、導入した冷媒で前記超電導コイルを超電導温度に冷却する冷却容器であって、
前記超電導コイルの内周側に配置する円筒状の内周壁と、
前記超電導コイルの外周側に配置する円筒状の外周壁と、
前記内周壁と外周壁の軸線方向両端縁と連続して前記超電導コイルの軸線方向の両端面側に配置する円環状の両側端壁とを備え、
前記円環状の両側端壁の内周縁あるいは/および外周縁の全周に、前記軸線方向の外方に向けて突出する溶接部を設け、該溶接部と前記内周壁あるいは/および外周壁の軸線方向の端縁とを溶接していることを特徴とする超電導コイルの冷却容器を提供している。
In order to solve the above-mentioned problems, the present invention provides, as a first invention, a cooling container that contains a superconducting coil formed by winding a superconducting wire and cools the superconducting coil to a superconducting temperature with the introduced refrigerant. And
A cylindrical inner peripheral wall disposed on the inner peripheral side of the superconducting coil;
A cylindrical outer peripheral wall disposed on the outer peripheral side of the superconducting coil;
An annular both side end wall disposed on both end surfaces in the axial direction of the superconducting coil continuously with the axial end ends of the inner peripheral wall and the outer peripheral wall;
A welded portion projecting outward in the axial direction is provided on the entire circumference of the inner peripheral edge and / or outer peripheral edge of the annular side walls, and the axis of the welded part and the inner peripheral wall and / or outer peripheral wall is provided. A cooling container for a superconducting coil is provided in which a direction end edge is welded.

また、本発明は、第2の発明として、超電導線が巻回されて形成された超電導コイルを収容し、導入した冷媒で前記超電導コイルを超電導温度に冷却する冷却容器であって、
前記超電導コイルの内周側に配置する円筒状の内周壁と、
前記超電導コイルの外周側に配置する円筒状の外周壁と、
前記内周壁と外周壁の軸線方向両端縁と連続して前記超電導コイルの軸線方向の両端面側に配置する円環状の両側端壁とを備え、
前記内周壁の軸線方向の両側端縁の全周に内径方向へ突出する溶接部を設け、あるいは/および前記外周壁の軸線方向の両側端縁の全周に外径方向へ突出する溶接部を設け、
前記溶接部と前記両側端壁の周縁とを溶接していることを特徴とする超電導コイルの冷却容器を提供している。
The present invention, as a second invention, is a cooling container that accommodates a superconducting coil formed by winding a superconducting wire and cools the superconducting coil to a superconducting temperature with an introduced refrigerant,
A cylindrical inner peripheral wall disposed on the inner peripheral side of the superconducting coil;
A cylindrical outer peripheral wall disposed on the outer peripheral side of the superconducting coil;
An annular both side end wall disposed on both end surfaces in the axial direction of the superconducting coil continuously with the axial end ends of the inner peripheral wall and the outer peripheral wall;
A weld that protrudes in the inner diameter direction is provided on the entire circumference of both end edges in the axial direction of the inner peripheral wall, and / or a weld portion that protrudes in the outer diameter direction on the entire circumference of both end edges in the axial direction of the outer peripheral wall. Provided,
A superconducting coil cooling vessel is provided in which the welded portion and the peripheral edges of both side end walls are welded.

本発明の円環形状とした超電導コイルを収容する冷却容器では、超電導コイルを内部に配置した状態で各壁部を溶接して組み立てている。
即ち、まず両側端壁のうちの一方の壁部に内周壁と外周壁を溶接して一端開口の容器を作製し、この容器に超電導コイルを収容した後、前記開口に両側端壁の他方の壁部を被せて、該壁部を内周壁と外周壁に溶接している。
また、容器の内周壁に超電導コイルを外嵌した状態で、円環形状とした両側端壁の内周縁を前記内周壁の軸線方向の端縁に溶接し、ついで、該両側端壁の外周縁を外周壁の軸線方向の端縁と溶接してもよい。
このように、超電導コイルを収容した状態で冷却容器の壁材を溶接して組み立てるため、溶接時において超電導コイルへの熱影響をできるだけ低減する必要がある。
そのため、前記第1、第2の発明として溶接部を外方へ突設し、超電導コイルから出来るだけ離れた位置で溶接し、超電導コイルへの熱影響を低減している。
In the cooling container for accommodating the superconducting coil having an annular shape according to the present invention, each wall portion is welded and assembled in a state where the superconducting coil is disposed inside.
That is, first, an inner peripheral wall and an outer peripheral wall are welded to one wall portion of both side end walls to produce a container having one end opening, and after the superconducting coil is accommodated in this container, the other end of both side end walls is placed in the opening. The wall portion is covered and the wall portion is welded to the inner peripheral wall and the outer peripheral wall.
In addition, with the superconducting coil fitted on the inner peripheral wall of the container, the inner peripheral edges of both side end walls in the shape of a ring are welded to the end edges in the axial direction of the inner peripheral wall, and then the outer peripheral edges of the both end walls May be welded to the edge of the outer peripheral wall in the axial direction.
Thus, since the wall material of the cooling container is welded and assembled in a state in which the superconducting coil is accommodated, it is necessary to reduce the thermal influence on the superconducting coil as much as possible during welding.
Therefore, as the first and second inventions, the welded portion protrudes outward and is welded at a position as far as possible from the superconducting coil to reduce the thermal effect on the superconducting coil.

第1の発明では、両側端壁の内周縁と外周縁の両方に溶接部を突設することが好ましく、突設した溶接部に内周壁部と外周壁部の軸線方向の両端縁を溶接すると、該内周壁、外周壁及び両側端壁の内面に囲まれる収容空間に収容される超電導コイルから距離を離すことが簡単にできる。
前記第2の発明では、内周壁と外周壁の軸線方向の両側端縁の全周に外方へ突出した前記溶接部を突設することが好ましく、突設した溶接部に両側端壁の周縁を溶接すると、該内周壁、外周壁及び両側端壁の内面に囲まれる収容空間に収容される超電導コイルから距離を離すことが簡単にできる。
In the first invention, it is preferable to project the welded portions on both the inner and outer peripheral edges of the both end walls, and when the both end edges in the axial direction of the inner peripheral wall portion and the outer peripheral wall portion are welded to the projected welded portions. The distance from the superconducting coil accommodated in the accommodating space surrounded by the inner surfaces of the inner peripheral wall, outer peripheral wall and both end walls can be easily reduced.
In the second aspect of the invention, it is preferable to project the welded portion projecting outward on the entire circumference of both side end edges in the axial direction of the inner peripheral wall and the outer peripheral wall. , The distance from the superconducting coil accommodated in the accommodating space surrounded by the inner peripheral wall, the outer peripheral wall and the inner surfaces of the both end walls can be easily separated.

前記第1、第2の発明の冷却容器では、いずれも、冷却容器の隅部の溶接個所を外方へ位置させている。冷却容器の隅部は、内部に収容する超電導コイルの軸線方向の両側端と近接し、該超電導コイルの軸線方向の両端には超電導線の端末と溶接する端子が配置されるため、該端子の取付位置と近接する溶接部を外方に突出させることで、端子取付部への冷却容器の溶接組み立て時の熱影響を低減することができる。
よって、溶接の熱により超電導線が損傷したり、超電導コイルへの端子取り付けに用いた半田が溶けてしまって端子の位置ズレや脱落が生じるのを防止することができる。
また、前記溶接位置を超電導コイルから離すために冷却容器自体を大きくするのではなく、部分的に容器外方に突出する溶接部を設けているだけであるため、冷却容器が大型化するのを防止することができる。
In both the cooling containers of the first and second inventions, the welded portion at the corner of the cooling container is positioned outward. The corners of the cooling container are close to both axial ends of the superconducting coil accommodated therein, and terminals that are welded to the ends of the superconducting wires are disposed at both ends of the superconducting coil in the axial direction. By causing the welded portion adjacent to the mounting position to protrude outward, it is possible to reduce the thermal effect during the welding assembly of the cooling container to the terminal mounting portion.
Therefore, it is possible to prevent the superconducting wire from being damaged by the heat of welding, or the solder used for attaching the terminal to the superconducting coil from being melted and the terminal from being displaced or dropped.
In addition, the cooling container itself is not enlarged in order to separate the welding position from the superconducting coil, but only a welded part that protrudes outward from the container is provided, so that the size of the cooling container can be increased. Can be prevented.

第1、第2の発明の外方へ突出する溶接部は、冷却容器の外周壁、内周壁、両側端壁を形成するステンレス等の金属材をプレス加工で折り曲げて形成しても良い。
しかし、該折り曲げ加工する代わりに、溶接部を設ける壁材に環状溝を形成すると、環状溝の外周側壁を溶接部とすることができ、溶接部を容易に形成でき、加工性を高めることができる。かつ、冷却容器の強度を向上させることもできる。
即ち、第1の発明では、前記両側端壁の外面に内周縁および外周縁に沿った環状溝を凹設し、該環状溝の外周側壁を前記溶接部とすることが好ましい。
第2の発明では、前記外周壁および内周壁の外面に軸線方向の両側端縁に沿った環状溝を凹設し、該環状溝の外周側壁を溶接部としていることが好ましい。
The welded portion protruding outward in the first and second inventions may be formed by bending a metal material such as stainless steel forming the outer peripheral wall, inner peripheral wall, and both side end walls of the cooling vessel by press working.
However, if the annular groove is formed in the wall material provided with the welded portion instead of the bending process, the outer peripheral side wall of the annular groove can be used as the welded portion, the welded portion can be easily formed, and workability can be improved. it can. In addition, the strength of the cooling container can be improved.
That is, in the first invention, it is preferable that an annular groove along the inner peripheral edge and the outer peripheral edge is formed in the outer surface of the both side end walls, and the outer peripheral side wall of the annular groove is used as the welded portion.
In the second invention, it is preferable that an annular groove is formed in the outer surface of the outer peripheral wall and the inner peripheral wall along the both side edges in the axial direction, and the outer peripheral side wall of the annular groove is a welded portion.

本発明の冷却容器は、前記内周壁、外周壁および両側端壁からなる内槽と、前記内槽を真空断熱空間をあけて囲繞する外槽を備え、該外槽も内槽と同様に各壁部を溶接して組み立てており、
前記真空断熱空間に断熱フィルムを収容し、該断熱フィルムを部分的に前記内槽に設けた前記環状溝に埋め込んで断熱フィルムを位置決めしていることが好ましい。
The cooling container of the present invention includes an inner tank composed of the inner peripheral wall, the outer peripheral wall, and both end walls, and an outer tank that surrounds the inner tank with a vacuum heat insulating space, and the outer tank is similar to the inner tank. We assembled the wall by welding
It is preferable that a heat insulating film is accommodated in the vacuum heat insulating space, and the heat insulating film is partially embedded in the annular groove provided in the inner tank to position the heat insulating film.

冷却容器を前記二重槽とすることで、超電導コイルを収容して冷媒で冷却する内槽を断熱用空間を介して外槽で囲むために、冷媒温度の上昇を抑制でき、さらに、該真空断熱層に断熱フィルムを収容するとより冷却作用を高めることができる。
かつ、前記内槽には溶接部を設けるために形成した前記環状溝に断熱フィルムを部分的に埋め込むことにより、断熱フィルムの位置決め保持を簡単に行うことができる。その結果、外槽の各壁部を溶接により接続する際に、溶接する各壁部間に断熱フィルムを挟み込むのを防止することができ、溶接作業を容易にすることができる。
Since the cooling vessel is the double vessel, the rise of the refrigerant temperature can be suppressed because the inner vessel containing the superconducting coil and cooled by the refrigerant is surrounded by the outer vessel via the space for heat insulation. When the heat insulating film is accommodated in the heat insulating layer, the cooling effect can be further enhanced.
And the heat insulation film can be positioned and held easily by partially embedding the heat insulation film in the annular groove formed to provide the welded portion in the inner tank. As a result, when connecting each wall part of an outer tank by welding, it can prevent that a heat insulation film is inserted | pinched between each wall part to weld, and welding work can be made easy.

冷却容器内に収容する超電導コイルがパンケーキコイルを軸線方向に複数個数並設した積層型である場合、該積層型の超電導コイルの外形と相似形状を有する内面を備えた円環状筒型の冷却容器としている。
また、前記外周壁に冷媒流通用の配管と接続する配管接続口を設けていることが好ましい。
When the superconducting coil accommodated in the cooling container is a laminated type in which a plurality of pancake coils are arranged in the axial direction, cooling of the annular tube type having an inner surface having a shape similar to the outer shape of the laminated superconducting coil It is a container.
Further, it is preferable that a pipe connection port connected to a pipe for circulating refrigerant is provided on the outer peripheral wall.

本発明の冷却容器にパンケーキコイルからなる超電導コイルを収容して、モータの固定子とすると、冷却容器を円環形状の超電導コイルと相似した簡単は円環状筒型とできるため、モータの小型化を図れると共に、固定子となる超電導コイルの劣化等を防止できるため高精度のモータとすることができる。   When a superconducting coil made of a pancake coil is accommodated in the cooling container of the present invention and used as a stator of a motor, the cooling container can be a simple annular tube type similar to an annular superconducting coil. In addition, since the superconducting coil serving as a stator can be prevented from deteriorating, a highly accurate motor can be obtained.

前述したように、本発明の超電導コイルの冷却容器では、内外周壁と両側端壁との溶接部を外方に位置させているため、溶接位置を超電導コイルから離れた位置とすることができる。よって、溶接の熱により超電導線が損傷したり、超電導コイルへの端子取り付けに用いた半田が溶けてしまって端子の位置ズレや脱落が生じるのを防止することができる。   As described above, in the cooling container for a superconducting coil according to the present invention, the welded portion between the inner and outer peripheral walls and both end walls is located outward, so that the welding position can be set away from the superconducting coil. Therefore, it is possible to prevent the superconducting wire from being damaged by the heat of welding, or the solder used for attaching the terminal to the superconducting coil from being melted and the terminal from being displaced or dropped.

本発明の実施形態を図面を参照して説明する。
図1乃至図7に、本発明の第1実施形態を示す。
第1実施形態では、冷却容器22に収容した超電導コイル21をモータの固定子の界磁コイルとして用いた超電導モータ10に適用しており、該超電導モータは自動車の駆動モータ等として好適に用いられるものである。
Embodiments of the present invention will be described with reference to the drawings.
1 to 7 show a first embodiment of the present invention.
In the first embodiment, the superconducting coil 21 accommodated in the cooling container 22 is applied to the superconducting motor 10 using the field coil of the stator of the motor, and the superconducting motor is suitably used as a driving motor for an automobile. Is.

図5〜図7に超電導モータ10を示し、その界磁側固定子(以下、固定子と略称する)20の中空部に電機子側回転子(以下、回転子と略称する)40を回転自在に貫通している。
前記固定子20は冷却容器22に収容するダブルパンケーキコイルからなる超電導コイル21と、該超電導コイル21の軸線方向の両端側に第1ヨーク23と第2ヨーク24とを配置し、これら第1、第2ヨーク23、24の内周にクローポールと称される誘導子23c、24cを設けて、クローポール型のモータとしている。
本実施形態では、前記固定子20を軸線方向に2つ並設している。
A superconducting motor 10 is shown in FIGS. 5 to 7, and an armature side rotor (hereinafter abbreviated as a rotor) 40 is freely rotatable in a hollow portion of a field side stator (hereinafter abbreviated as a stator) 20. Has penetrated.
The stator 20 includes a superconducting coil 21 made of a double pancake coil housed in a cooling container 22, and a first yoke 23 and a second yoke 24 arranged on both ends in the axial direction of the superconducting coil 21. Inductors 23c and 24c called claw poles are provided on the inner circumferences of the second yokes 23 and 24 to form a claw pole type motor.
In the present embodiment, two stators 20 are arranged side by side in the axial direction.

前記固定子20の界磁コイルとする超電導コイル21は、帯状のビスマス系酸化物超電導線を円筒状に巻回したダブルパンケーキを円筒状の支持枠26に複数個軸線方向に並列して積層し、軸線方向に長い円環形状(即ち、円筒形状)としている。本実施形態では8個のダブルパンケーキコイルを軸線方向に並設し、隣接するダブルパンケーキの超電導線を順次接続した積層型のコイルとしている。前記連続させた超電導線の両側端末にはリード線と接続するための端子27(第一端子27A、第二端子27B)をそれぞれ半田Hを介して接続しており、これらの端子27は積層した超電導コイル21の軸線方向の両端に配置されている。   The superconducting coil 21 as the field coil of the stator 20 is formed by laminating a plurality of double pancakes obtained by winding a strip-shaped bismuth oxide superconducting wire in a cylindrical shape on a cylindrical support frame 26 in parallel in the axial direction. In addition, it has an annular shape (that is, a cylindrical shape) that is long in the axial direction. In the present embodiment, eight double pancake coils are arranged side by side in the axial direction, and adjacent double pancake superconducting wires are sequentially connected to form a laminated coil. Terminals 27 (first terminal 27A, second terminal 27B) for connecting to the lead wires are connected to both ends of the continuous superconducting wire via solder H, and these terminals 27 are laminated. The superconducting coil 21 is disposed at both ends in the axial direction.

前記超電導コイル21は冷却容器22に収容し、該冷却容器22に収容した超電導コイル21の軸線方向の両端側に配置する第1ヨーク23、第2ヨーク24は内周側に磁極を形成する誘導子23c、24cを一体的に突設しており、それぞれ直径方向に対向して一対突設している。これら誘導子23c、24cで囲まれる中空部に隙間をあけて前記回転子40を回転自在に貫通し、該回転子40の外周に周方向に90度間隔をあけてN極となる誘導子23cとS極となる誘導子24cとを交互に配置している。   The superconducting coil 21 is housed in a cooling container 22, and the first yoke 23 and the second yoke 24 disposed on both ends in the axial direction of the superconducting coil 21 housed in the cooling container 22 form a magnetic pole on the inner peripheral side. The children 23c and 24c are integrally protruded, and a pair of protrusions are provided so as to face each other in the diameter direction. An inductor 23c that passes through the rotor 40 rotatably with a gap in the hollow portion surrounded by the inductors 23c and 24c, and forms an N pole at an interval of 90 degrees in the circumferential direction on the outer periphery of the rotor 40. And inductors 24c serving as S poles are alternately arranged.

前記超電導コイル21を収容する冷却容器22は、図3に示すように、リング状としている。図1に示すように、冷却容器22は、界磁コイルとなる超電導コイル21と液体窒素からなる冷媒Rが収容される内槽28と、該内槽28が真空断熱層Sを介して収容される外槽29を備え、真空断熱層Sにはアルミニウムからなる多層断熱フィルムFを収容している。   The cooling container 22 that accommodates the superconducting coil 21 has a ring shape as shown in FIG. As shown in FIG. 1, the cooling vessel 22 includes a superconducting coil 21 serving as a field coil and an inner tank 28 in which a refrigerant R made of liquid nitrogen is accommodated, and the inner tank 28 is accommodated via a vacuum heat insulating layer S. The vacuum heat insulating layer S contains a multilayer heat insulating film F made of aluminum.

ステンレス製の前記内槽28は、図1及び図4に示すように、支持枠26に内嵌する円筒状の内周壁28aと、超電導コイル21の外周側に配置する円筒状の外周壁28bと、内周壁28aと外周壁28bの軸線方向両端縁を連結すると共に超電導コイル21の軸線方向の両側にそれぞれ配置する円環平板状の側端壁28cとからなる。該側端壁28cは、内周壁28aと外周壁28bよりも肉厚を大としている。   As shown in FIGS. 1 and 4, the inner tank 28 made of stainless steel includes a cylindrical inner peripheral wall 28 a fitted inside the support frame 26, and a cylindrical outer peripheral wall 28 b disposed on the outer peripheral side of the superconducting coil 21. In addition, both end edges in the axial direction of the inner peripheral wall 28a and the outer peripheral wall 28b are connected to each other, and the side end walls 28c are in the shape of an annular flat plate disposed on both sides in the axial direction of the superconducting coil 21, respectively. The side end wall 28c is thicker than the inner peripheral wall 28a and the outer peripheral wall 28b.

前記側端壁28cの内周縁と外周縁には軸線方向の外方に向けて突出する溶接部28dを全周に亙って設けている。
詳細には、側端壁28cの外面に、内周縁と外周縁から所要間隔をあけて周縁に沿わせた環状溝28eを凹設し、該環状溝28eを設けることにより周縁に形成された外周側壁を前記溶接部28dとしている。これら溶接部28dを内周壁28aと外周壁28bの軸線方向の端縁に溶接して接続している。
前記内槽28の組立方法および該内槽28への超電導コイル21の収容方法は、まず、図2(A)に示すように、一方の側端壁28cの溶接部28dを内周壁28aと外周壁28bの軸線方向の一端縁に溶接して、一方の側端壁28c、内周壁28aおよび外周壁28cを組み付けて軸線方向の他端側が開口した容器を作製する。
次いで、図2(B)に示すように、超電導コイル21に内嵌された支持枠26を内周壁28aに外嵌して、超電導コイル21を容器内に収容する。
最後に、図2(C)に示すように、前記容器の開口に他方の側端壁28cに被せて、該側端壁28cの溶接部28dを内周壁28aと外周壁28bの軸線方向の他端縁に溶接する。
A welded portion 28d protruding outward in the axial direction is provided over the entire circumference on the inner and outer peripheral edges of the side end wall 28c.
More specifically, an outer circumferential surface formed on the outer periphery of the side end wall 28c by recessing an annular groove 28e along the periphery with a predetermined interval from the inner periphery and the outer periphery, and providing the annular groove 28e. The side wall is the welded portion 28d. These welded portions 28d are welded and connected to the end edges in the axial direction of the inner peripheral wall 28a and the outer peripheral wall 28b.
As shown in FIG. 2 (A), the method for assembling the inner tub 28 and the method for accommodating the superconducting coil 21 in the inner tub 28 are as follows. A container having one end wall 28c, an inner peripheral wall 28a and an outer peripheral wall 28c assembled by welding to one edge of the wall 28b in the axial direction is opened.
Next, as shown in FIG. 2B, the support frame 26 fitted in the superconducting coil 21 is fitted on the inner peripheral wall 28a, and the superconducting coil 21 is accommodated in the container.
Finally, as shown in FIG. 2 (C), the opening of the container is placed on the other side end wall 28c, and the welded portion 28d of the side end wall 28c is placed in the axial direction between the inner peripheral wall 28a and the outer peripheral wall 28b. Weld to the edge.

また、図4に示すように、外周壁28bの上端位置に軸線方向の一端から他端にかけて延在するスリット28fを設け、該スリット28fの縁部に後述する配管60の内管61の下端縁に設けた基壁部28gを溶接により取り付けている。これにより、基壁部28gが外周壁28bの一部を構成すると共に外周壁28bの上端から内管61を上方に向けて突出させ、該内管61に超電導コイル21に接続した第一端子27A、第二端子27Bを挿通させている。   As shown in FIG. 4, a slit 28f extending from one end to the other end in the axial direction is provided at the upper end position of the outer peripheral wall 28b, and the lower end edge of the inner tube 61 of the pipe 60 described later is provided at the edge of the slit 28f. The base wall part 28g provided in the is attached by welding. As a result, the base wall portion 28g constitutes a part of the outer peripheral wall 28b, the inner tube 61 protrudes upward from the upper end of the outer peripheral wall 28b, and the first terminal 27A connected to the superconducting coil 21 on the inner tube 61. The second terminal 27B is inserted.

前記のように、前記超電導コイル21の内周に貫通する支持枠26を、内槽28の内周壁28aに外嵌すると共に、支持枠26の軸線方向両端を内槽28の対向する側端壁28cの内面に当接させて、超電導コイル21を冷却容器22内に位置決め保持している。   As described above, the support frame 26 penetrating the inner periphery of the superconducting coil 21 is fitted on the inner peripheral wall 28a of the inner tank 28, and both end portions in the axial direction of the support frame 26 are opposite side end walls of the inner tank 28. The superconducting coil 21 is positioned and held in the cooling container 22 in contact with the inner surface of 28c.

また、図1に示すように、内槽28と外槽29の間の真空断熱層Sに多層断熱フィルムFを収容し、該多層断熱フィルムFの端縁を内槽28の環状溝28eに埋め込んで、多層断熱フィルムFにより内槽28を覆った状態で、多層断熱フィルムFを位置決めしている。   Further, as shown in FIG. 1, the multilayer heat insulating film F is accommodated in the vacuum heat insulating layer S between the inner tank 28 and the outer tank 29, and the edge of the multilayer heat insulating film F is embedded in the annular groove 28 e of the inner tank 28. In the state where the inner tub 28 is covered with the multilayer heat insulating film F, the multilayer heat insulating film F is positioned.

一方、ステンレス製の外槽29は、内槽28の内周壁28aの内周側に隙間をあけて配置される円筒状の内周壁29aと、内槽28の外周壁28bの外周側に隙間をあけて配置される円筒状の外周壁29bと、内周壁29aと外周壁29bの軸線方向両端縁を連結すると共に内槽28の側端壁28cと隙間をあけてそれぞれ配置される円環平板状の側端壁29cからなる。該側端壁29cは、内周壁29aと外周壁29bよりも肉厚を大としている。
内槽28と同様、前記側端壁29cの内周縁と外周縁には軸線方向の外方に向けて突出する溶接部29dを全周に亙って設けている。
On the other hand, the outer tank 29 made of stainless steel has a gap between the cylindrical inner peripheral wall 29a disposed with a gap on the inner peripheral side of the inner peripheral wall 28a of the inner tank 28 and the outer peripheral side of the outer peripheral wall 28b of the inner tank 28. Cylindrical outer peripheral wall 29b arranged at an opening, and annular flat plate shapes that connect both end edges in the axial direction of inner peripheral wall 29a and outer peripheral wall 29b, and are arranged with a gap from side end wall 28c of inner tank 28, respectively. Side end wall 29c. The side end wall 29c is thicker than the inner peripheral wall 29a and the outer peripheral wall 29b.
Similar to the inner tank 28, welded portions 29 d that protrude outward in the axial direction are provided on the inner and outer peripheral edges of the side end wall 29 c over the entire circumference.

詳細には、側端壁29cの外面に内周縁と外周縁から所要間隔をあけて周縁に沿わせた環状溝29eを設けて、環状溝29eの外側壁を溶接部29dとしている。これら溶接部29dを内周壁29aと外周壁29bの軸線方向の端縁に溶接して接続している。
前記外槽29は、内槽28と同様の方法により組み立てている。即ち、一方の側端壁29cの溶接部29dを内周壁29aと外周壁29bの軸線方向の一端縁に溶接して、軸線方向の他端側が開口した容器を作製し、該容器に超電導コイル21を収容した内槽28を収容し、前記容器の開口に他方の側端壁29cを被せて、該側端壁29cの溶接部28dを内周壁29aと外周壁29bの軸線方向の他端縁に溶接している。
Specifically, an annular groove 29e is provided on the outer surface of the side end wall 29c along the periphery with a required distance from the inner periphery, and the outer wall of the annular groove 29e is a welded portion 29d. These welded portions 29d are welded and connected to the end edges in the axial direction of the inner peripheral wall 29a and the outer peripheral wall 29b.
The outer tub 29 is assembled by the same method as the inner tub 28. That is, a welded portion 29d of one side end wall 29c is welded to one end edge in the axial direction of the inner peripheral wall 29a and the outer peripheral wall 29b to produce a container having an open end on the other end side in the axial direction. The inner tub 28 containing the container is stored, the other side end wall 29c is covered with the opening of the container, and the welded portion 28d of the side end wall 29c is connected to the other end edge in the axial direction of the inner peripheral wall 29a and the outer peripheral wall 29b. Welding.

また、外周壁29bの上端位置に軸線方向の一端から他端にかけて延在するスリット29fを設け、該スリット29fの縁部に後述する配管60の外管62の下端縁に設けた基壁部29gを溶接により取り付けている。これにより、基壁部29gが外周壁29bの一部を構成すると共に外周壁29bの上端から外管62を上方に向けて突出させており、該外管62に内管61を隙間をあけて挿通させている。   Also, a slit 29f extending from one end to the other end in the axial direction is provided at the upper end position of the outer peripheral wall 29b, and a base wall portion 29g provided at the lower end edge of the outer tube 62 of the pipe 60 described later at the edge portion of the slit 29f. Are attached by welding. Accordingly, the base wall portion 29g constitutes a part of the outer peripheral wall 29b and the outer tube 62 protrudes upward from the upper end of the outer peripheral wall 29b, and the inner tube 61 is spaced from the outer tube 62 by a gap. It is inserted.

前記内槽28と外槽29の間には軸線方向の両側に繊維強化樹脂(FRP)からなる円環状の環状スペーサ31を配置している。該環状スペーサ31の軸線方向の外面31aを側端壁29cの内面に当接させる一方、軸線方向の内面に周方向に45度の間隔をあけてL字状の突起部31bを突設している。図1に示すように、軸線方向の一方側では突起部31bを内槽28の内周側の隅部に当接させ、他方側では突起部31bを環状溝28eに内嵌させて内槽28を外槽29内に位置決め保持している。   Between the inner tank 28 and the outer tank 29, annular annular spacers 31 made of fiber reinforced resin (FRP) are disposed on both sides in the axial direction. While the outer surface 31a in the axial direction of the annular spacer 31 is brought into contact with the inner surface of the side end wall 29c, an L-shaped projecting portion 31b is provided on the inner surface in the axial direction with an interval of 45 degrees in the circumferential direction. Yes. As shown in FIG. 1, the protrusion 31b is brought into contact with the inner peripheral corner of the inner tub 28 on one side in the axial direction, and the protrusion 31b is fitted in the annular groove 28e on the other side. Is positioned and held in the outer tub 29.

図5及び図6に示すように、冷却容器22に配管60を介して冷却容器22に供給する冷媒Rを貯留する冷媒タンク50を接続している。
冷媒タンク50は、冷媒が貯蔵される内槽51と、該内槽51が真空断熱層Sを介して収容される外槽52を備え、内槽51と外槽52は上端位置で溶接により連結し、内装51の上面開口には蓋53を被せて取り付けている。
As shown in FIGS. 5 and 6, a refrigerant tank 50 for storing the refrigerant R supplied to the cooling container 22 via a pipe 60 is connected to the cooling container 22.
The refrigerant tank 50 includes an inner tank 51 in which refrigerant is stored, and an outer tank 52 in which the inner tank 51 is accommodated via the vacuum heat insulating layer S. The inner tank 51 and the outer tank 52 are connected by welding at the upper end position. The upper surface opening of the interior 51 is attached with a lid 53.

前記配管60は冷却容器22の内槽28と冷媒タンク50の内槽51を連結する内管61と、冷却容器22の外槽29と冷媒タンク50の外槽52を連結すると共に内管61を真空断熱層を介して囲む外管62を備え、これら内管61と外管62に蛇腹形状部61a、62aを設けて弾性を付与している。
前記冷媒タンク50の真空断熱層Sおよび配管60の真空断熱層にもアルミニウムからなる多層断熱シート(図示せず)を収容している。
The piping 60 connects the inner tank 61 of the cooling container 22 and the inner tank 51 of the refrigerant tank 50, connects the outer tank 29 of the cooling container 22 and the outer tank 52 of the refrigerant tank 50, and connects the inner pipe 61. An outer tube 62 is provided that is surrounded by a vacuum heat insulating layer, and the inner tube 61 and the outer tube 62 are provided with bellows-shaped portions 61a and 62a to give elasticity.
A multilayer heat insulating sheet (not shown) made of aluminum is also accommodated in the vacuum heat insulating layer S of the refrigerant tank 50 and the vacuum heat insulating layer of the pipe 60.

前記配管60には、さらに強度保持用のタンク保持筒63を外嵌し、該タンク保持筒63の筒部63aの上端に設けたフランジ63bを冷媒タンク50の外槽52の底壁部にボルト締め固定すると共に、下端に設けたフランジ63cを界磁側固定子20に外嵌した外周ハウジング43の上面側にボルト締め固定している。該タンク保持筒63を介して冷媒タンク50をモータ本体の上方に位置決め保持している。   Further, a strength holding tank holding cylinder 63 is fitted on the pipe 60, and a flange 63 b provided at the upper end of the cylinder portion 63 a of the tank holding cylinder 63 is bolted to the bottom wall portion of the outer tank 52 of the refrigerant tank 50. At the same time, the flange 63c provided at the lower end is bolted and fixed to the upper surface side of the outer peripheral housing 43 fitted on the field side stator 20. The refrigerant tank 50 is positioned and held above the motor body via the tank holding cylinder 63.

また、超電導コイル21に超電導線の両端末に接続した第一、第二端子材27A、27Bを配管60内を挿通させて冷媒タンク50内に突出させ、冷媒タンク50の蓋53に設けた貫通穴(図示せず)を介して冷媒タンク50内に引き込んだリード線(図示せず)を端子材27に接続している。   In addition, the first and second terminal members 27A and 27B connected to the superconducting coil 21 at both ends of the superconducting wire are inserted into the pipe 60 and protruded into the refrigerant tank 50, and the through holes provided in the lid 53 of the refrigerant tank 50 are provided. A lead wire (not shown) drawn into the refrigerant tank 50 is connected to the terminal member 27 through a hole (not shown).

図3に示すように、冷却容器22に収容した超電導コイル21の軸線方向の両端側には、前記したように、第1、第2ヨーク23、24を配置し、その側端面部23a、24aの外周縁より突設した外周壁部23b、24bを突き合わせて、冷却容器22を囲んでいる。
該第1、第2ヨーク23、24の外周壁部23b、24bには、第2ヨーク24の誘導子24cと対向する上端位置に配管60を貫通させるための半円形状の切欠23d、24dを設けている。
また、第1ヨーク23の誘導子23cと対向する側方位置に連結固定用のボルト穴23e、24eを有する軸線方向の挿通溝23f、24fを凹設している。
第1ヨーク23と第2ヨーク24とは、冷却容器22を軸線方向の両側から挟み込んで外嵌した状態で互いの外周壁部23b、24bの先端面を付き合わせ、挿通溝23f、24fに締結片32を嵌め込んでボルト締めにより連結固定している。
なお、第1、第2ヨーク23、24は磁性を有するステンレスにより形成してもよい。
As shown in FIG. 3, as described above, the first and second yokes 23 and 24 are arranged on both end sides in the axial direction of the superconducting coil 21 accommodated in the cooling vessel 22, and the side end face portions 23a and 24a thereof are arranged. The outer peripheral wall portions 23b and 24b projecting from the outer peripheral edge of each other are abutted to surround the cooling container 22.
Semi-circular cutouts 23d and 24d for penetrating the pipe 60 to the upper end positions of the first and second yokes 23 and 24 facing the inductor 24c of the second yoke 24 are provided on the outer peripheral wall portions 23b and 24b. Provided.
Further, axial insertion grooves 23f and 24f having bolt holes 23e and 24e for connecting and fixing are provided in the side positions of the first yoke 23 facing the inductor 23c.
The first yoke 23 and the second yoke 24 are attached to the insertion grooves 23f and 24f with the front end surfaces of the outer peripheral wall portions 23b and 24b attached to each other with the cooling container 22 sandwiched from both sides in the axial direction. The piece 32 is fitted and fixed by bolting.
The first and second yokes 23 and 24 may be formed of magnetic stainless steel.

前記並設した固定子20A、20Bを外周ハウジング43で内嵌支持し、該外周ハウジング43の軸線方向の両端に両側支持材41を組みつけている。該両側支持材41は円筒状の周壁部41aと、該周壁部41aの軸線方向Xの外端面を閉鎖する円形状の側壁部41bからなる。両側の側壁部41bの中心に設けた貫通穴41cに軸受42を介して回転子40の軸線方向両側の軸部40aを回転自在に支持している。
また、回転子40の軸部40aに冷却ファンを構成する羽根部40bを突設し、該羽根部40bを超電導モータ10内に配置している。
前記回転子40には銅線からなる電機子コイル(図示せず)を設けると共に、支持材41にブラシ(図示せず)を固定し、回転子40の軸部に固定した整流子(図示せず)が接触して、回転子40の電機子コイルに電流が流れる構成としている。
The stators 20 </ b> A and 20 </ b> B arranged side by side are fitted and supported by the outer peripheral housing 43, and both side support members 41 are assembled to both ends of the outer peripheral housing 43 in the axial direction. The both-side support member 41 includes a cylindrical peripheral wall portion 41a and a circular side wall portion 41b that closes the outer end surface of the peripheral wall portion 41a in the axial direction X. The shaft portions 40a on both sides in the axial direction of the rotor 40 are rotatably supported via bearings 42 in through holes 41c provided at the centers of the side wall portions 41b on both sides.
Further, a blade portion 40 b constituting a cooling fan is projected from the shaft portion 40 a of the rotor 40, and the blade portion 40 b is disposed in the superconducting motor 10.
The rotor 40 is provided with an armature coil (not shown) made of copper wire, a brush (not shown) is fixed to the support member 41, and a commutator (not shown) is fixed to the shaft portion of the rotor 40. 2) in contact with each other, and a current flows through the armature coil of the rotor 40.

前記した構成からなる超電導モータ10においては、超電導コイル21からなる界磁コイルに直流電流を流すと、超電導コイル21の軸線方向一端に配置した第1ヨーク23がN極に磁化され、第1ヨーク23の誘導子23cによりN極の磁極が形成される。他端に配置した第2ヨーク24はS極に磁化され、第2ヨーク24の誘導子24cによりS極の磁極が形成される。これにより、N極の磁極とS極の磁極が周方向に交互に配置された界磁側のクローポール型の磁路が形成される。   In the superconducting motor 10 having the above-described configuration, when a direct current is passed through the field coil composed of the superconducting coil 21, the first yoke 23 arranged at one end in the axial direction of the superconducting coil 21 is magnetized to the N pole, N inductors 23c form N pole magnetic poles. The second yoke 24 disposed at the other end is magnetized to the south pole, and the south pole magnetic pole is formed by the inductor 24 c of the second yoke 24. As a result, a field-side claw pole type magnetic path in which N-pole magnetic poles and S-pole magnetic poles are alternately arranged in the circumferential direction is formed.

前記回転子40に直流電流を供給すると、N極である第1ヨーク23の誘導子23cと対向する電機子コイルにN極が形成されると共に、S極である第2ヨーク24の誘導子24cと対向する電機子コイルにS極が形成されることにより、回転子40に回転力が発生して、該電機子側回転子40が回転する。
回転子40が回転すると、軸部40aに設けた羽根部40bも回転し、超電導モータ10を駆動させることにより発生した熱を効率良く外部へ放熱することができる。
なお、本実施形態では、銅線(常電導線)で電機子コイルを形成しているが、電機子コイルも超電導線により形成してもよい。
When a direct current is supplied to the rotor 40, an N pole is formed in the armature coil facing the inductor 23c of the first yoke 23, which is the N pole, and an inductor 24c of the second yoke 24, which is the S pole. The S pole is formed in the armature coil opposed to the rotor arm 40, so that a rotational force is generated in the rotor 40 and the armature side rotor 40 rotates.
When the rotor 40 rotates, the blade portion 40b provided on the shaft portion 40a also rotates, and heat generated by driving the superconducting motor 10 can be efficiently radiated to the outside.
In this embodiment, the armature coil is formed of a copper wire (normal conducting wire), but the armature coil may be formed of a superconducting wire.

本発明の冷却容器22は、内槽28の側端壁28cに容器外方、即ち、容器の内部に配置される超電導コイル21と離反する方向に突出する溶接部28dを備え、該溶接部28dにおいて内周壁28a、外周壁28bと溶接して接続しているため、溶接位置を超電導コイル21から離れた位置とすることができる。よって、溶接の熱により超電導線が劣化したり、超電導コイル21への端子27の取り付けに用いた半田Hが溶融して端子27の位置ズレや脱落が生じるのを防止することができる。   The cooling vessel 22 of the present invention includes a welded portion 28d that protrudes in a direction away from the superconducting coil 21 disposed outside the vessel, that is, inside the vessel, on the side end wall 28c of the inner tank 28, and the welded portion 28d. In FIG. 3, since the inner peripheral wall 28a and the outer peripheral wall 28b are welded and connected, the welding position can be a position away from the superconducting coil 21. Therefore, it is possible to prevent the superconducting wire from being deteriorated due to the heat of welding, or the solder H used for attaching the terminal 27 to the superconducting coil 21 from melting and the terminal 27 from being displaced or dropped.

また、前記溶接位置を超電導コイル21から離すために部分的に容器外方に突出する溶接部28dを設けているため、冷却容器22の全体が大型化するのを防止できる。
さらに、内槽28と外槽29の間の真空断熱層Sに収容される多層断熱フィルムFを部分的に内槽28の側壁28cに設けた環状溝28eに埋め込むことにより位置決めすることができ、外槽29の各壁部を溶接により接続する際に、溶接する各壁部間に多層断熱フィルムFを挟み込むのを防止することができ、溶接作業を容易にすることができる。
なお、本実施形態では、側端壁28c、29cの内周縁と外周縁の両方に溶接部28d、29dを設けているが、端子27の半田付け部に近い方のいずれか一方にのみ溶接部を設け、端子27と離れた位置の外槽29には溶接部には外方へ突出した溶接部を設けなくてもよい。
In addition, since the welding portion 28d that partially protrudes outward from the superconducting coil 21 is provided in order to separate the welding position from the superconducting coil 21, it is possible to prevent the entire cooling container 22 from becoming large.
Furthermore, the multilayer heat insulating film F accommodated in the vacuum heat insulating layer S between the inner tub 28 and the outer tub 29 can be positioned by being partially embedded in the annular groove 28e provided in the side wall 28c of the inner tub 28, When connecting each wall part of the outer tank 29 by welding, it can prevent that the multilayer heat insulation film F is inserted | pinched between each wall part to weld, and welding work can be made easy.
In the present embodiment, the welded portions 28d and 29d are provided on both the inner and outer peripheral edges of the side end walls 28c and 29c, but the welded portion is provided only on one of the terminals 27 closer to the soldered portion. In the outer tub 29 located away from the terminal 27, the welded portion protruding outward may not be provided in the welded portion.

図8に本発明の第2実施形態を示す。
本実施形態では、冷却容器22の内槽28および外槽29に設ける溶接部28d、29dを内周壁28a、29aと外周壁28b、29bに設けている。
詳細には、内槽28の内周壁28aと外周壁28bの容器外面に、軸線方向の端縁から所要間隔をあけて該端縁に沿わせた環状溝28eを設け、該環状溝28eを設けることにより軸線方向の端縁に形成された径方向かつ容器外方に向けて突出する壁部を溶接部28dとしている。該溶接部28dを側端壁28cの内周縁と外周縁に溶接している。
同様に、外槽29の内周壁29aと外周壁29bの容器外面に、軸線方向の端縁から所要間隔をあけて該端縁に沿わせた環状溝29eを設け、該環状溝29eを設けることにより軸線方向の端縁に形成された径方向かつ容器外方に向けて突出する壁部を溶接部29dとしている。該溶接部29dを側端壁29cの内周縁と外周縁に溶接して接続している。
FIG. 8 shows a second embodiment of the present invention.
In the present embodiment, welded portions 28d and 29d provided in the inner tank 28 and the outer tank 29 of the cooling container 22 are provided in the inner peripheral walls 28a and 29a and the outer peripheral walls 28b and 29b.
More specifically, an annular groove 28e is provided on the outer peripheral surface of the inner peripheral wall 28a and the outer peripheral wall 28b of the inner tank 28 along the edge with a predetermined interval from the edge in the axial direction, and the annular groove 28e is provided. Thus, a wall portion that protrudes toward the outer side of the container in the radial direction formed at the end in the axial direction is a welded portion 28d. The welded portion 28d is welded to the inner peripheral edge and the outer peripheral edge of the side end wall 28c.
Similarly, an annular groove 29e is provided on the outer peripheral surface of the inner peripheral wall 29a and the outer peripheral wall 29b of the outer tub 29 along the edge at a predetermined interval from the edge in the axial direction, and the annular groove 29e is provided. Thus, the wall portion that protrudes toward the outside of the container in the radial direction formed at the end in the axial direction is used as a welded portion 29d. The welded portion 29d is welded and connected to the inner peripheral edge and the outer peripheral edge of the side end wall 29c.

前記構成によれば、第1実施形態と同様、溶接位置を超電導コイル21から離れた位置とすることができ、溶接の熱により超電導線が劣化したり、超電導コイル21への端子27の取り付けに用いた半田Hが溶融して端子27の位置ズレや脱落が生じるのを防止することができる。
なお、本実施形態では、内周壁28a、29aと外周壁28b、29bの両方に溶接部28d、29dを設けているが、端子27の半田付け部に近い方のいずれか一方にのみ溶接部を設ける構成としてもよい。また、外槽29には溶接部を設けなくてもよい。
他の構成及び作用効果は第1実施形態と同様のため、同一の符号を付して説明を省略する。
According to the said structure, a welding position can be made into the position away from the superconducting coil 21 like 1st Embodiment, a superconducting wire deteriorates with the heat of welding, or attachment of the terminal 27 to the superconducting coil 21 It is possible to prevent the used solder H from being melted and the terminal 27 from being displaced or dropped.
In this embodiment, the welded portions 28d and 29d are provided on both the inner peripheral walls 28a and 29a and the outer peripheral walls 28b and 29b, but the welded portions are provided only on one of the terminals 27 closer to the soldered portion. It is good also as a structure to provide. Further, the outer tub 29 may not be provided with a welded portion.
Since other configurations and operational effects are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.

前記実施の形態はすべての点で例示であって、これら実施形態に限定されず、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の範囲内でのすべての変更が含まれる。   The above-described embodiments are exemplifications in all points, and are not limited to these embodiments. The scope of the present invention is indicated by the scope of claims, and all modifications within the scope equivalent to the scope of claims are made. Is included.

本発明の冷却容器は、自動車等の駆動用モータや、その他発電機、変圧器、超電導電力貯蔵装置(SMES)等の超電導機器に用いる超電導コイルを冷却する容器として好適に用いられるものである。   The cooling container of the present invention is suitably used as a container for cooling a superconducting coil used in a motor for driving a motor vehicle, other superconducting equipment such as a generator, a transformer, and a superconducting power storage device (SMES).

本発明の第1実施形態の冷却容器の断面図である。It is sectional drawing of the cooling container of 1st Embodiment of this invention. (A)〜(C)は冷却容器の組立方法を示す図面である。(A)-(C) are drawings which show the assembly method of a cooling container. 前記冷却容器に超電導コイルを収容して、モータの界磁側固定子としている状態の斜視図である。It is a perspective view of the state which accommodated the superconducting coil in the said cooling vessel, and has made it the field side stator of a motor. 前記超電導コイルと冷却容器の分解斜視図である。It is a disassembled perspective view of the said superconducting coil and a cooling container. 前記モータの断面斜視図である。It is a cross-sectional perspective view of the motor. 超電導モータの断面図である。It is sectional drawing of a superconducting motor. 超電導コイルを備えた界磁側固定子の断面斜視図である。It is a section perspective view of a field side stator provided with a superconducting coil. 第2実施形態の冷却容器の断面図である。It is sectional drawing of the cooling container of 2nd Embodiment. 従来例を示す図面である。It is drawing which shows a prior art example.

符号の説明Explanation of symbols

10 超電導モータ
20 界磁側固定子
21 超電導コイル(界磁コイル)
22 冷却容器
28 内槽
28d 溶接部
28e 環状溝
29 外槽
29d 溶接部
29e 環状溝
40 電機子側回転子
50 冷媒タンク
60 配管
F 多層断熱フィルム
10 Superconducting motor 20 Field side stator 21 Superconducting coil (field coil)
22 Cooling container 28 Inner tank 28d Welding part 28e Annular groove 29 Outer tank 29d Welding part 29e Annular groove 40 Armature side rotor 50 Refrigerant tank 60 Pipe F Multi-layer insulation film

Claims (6)

超電導線が巻回されて形成された超電導コイルを収容し、導入した冷媒で前記超電導コイルを超電導温度に冷却する冷却容器であって、
前記超電導コイルの内周側に配置する円筒状の内周壁と、
前記超電導コイルの外周側に配置する円筒状の外周壁と、
前記内周壁と外周壁の軸線方向両端縁と連続して前記超電導コイルの軸線方向の両端面側に配置する円環状の両側端壁とを備え、
前記円環状の両側端壁の内周縁あるいは/および外周縁の全周に、前記軸線方向の外方に向けて突出する溶接部を設け、該溶接部と前記内周壁あるいは/および外周壁の軸線方向の端縁とを溶接していることを特徴とする超電導コイルの冷却容器。
A cooling container that accommodates a superconducting coil formed by winding a superconducting wire and cools the superconducting coil to a superconducting temperature with an introduced refrigerant,
A cylindrical inner peripheral wall disposed on the inner peripheral side of the superconducting coil;
A cylindrical outer peripheral wall disposed on the outer peripheral side of the superconducting coil;
An annular both side end wall disposed on both end surfaces in the axial direction of the superconducting coil continuously with the axial end ends of the inner peripheral wall and the outer peripheral wall;
A welded portion projecting outward in the axial direction is provided on the entire circumference of the inner peripheral edge and / or outer peripheral edge of the annular side walls, and the axis of the welded part and the inner peripheral wall and / or outer peripheral wall is provided. A superconducting coil cooling vessel characterized by welding end edges in a direction.
前記両側端壁の外面に内周縁および外周縁に沿った環状溝を凹設し、該環状溝の外周側壁を前記溶接部としている請求項1に記載の超電導コイルの冷却容器。   The cooling vessel for a superconducting coil according to claim 1, wherein an annular groove along the inner peripheral edge and the outer peripheral edge is formed in the outer surface of the both end walls, and the outer peripheral side wall of the annular groove is used as the welded portion. 超電導線が巻回されて形成された超電導コイルを収容し、導入した冷媒で前記超電導コイルを超電導温度に冷却する冷却容器であって、
前記超電導コイルの内周側に配置する円筒状の内周壁と、
前記超電導コイルの外周側に配置する円筒状の外周壁と、
前記内周壁と外周壁の軸線方向両端縁と連続して前記超電導コイルの軸線方向の両端面側に配置する円環状の両側端壁とを備え、
前記内周壁の軸線方向の両側端縁の全周に内径方向へ突出する溶接部を設け、あるいは/および前記外周壁の軸線方向の両側端縁の全周に外径方向へ突出する溶接部を設け、
前記溶接部と前記両側端壁の周縁とを溶接していることを特徴とする超電導コイルの冷却容器。
A cooling container that accommodates a superconducting coil formed by winding a superconducting wire and cools the superconducting coil to a superconducting temperature with an introduced refrigerant,
A cylindrical inner peripheral wall disposed on the inner peripheral side of the superconducting coil;
A cylindrical outer peripheral wall disposed on the outer peripheral side of the superconducting coil;
An annular both side end wall disposed on both end surfaces in the axial direction of the superconducting coil continuously with the axial end ends of the inner peripheral wall and the outer peripheral wall;
A weld that protrudes in the inner diameter direction is provided on the entire circumference of both end edges in the axial direction of the inner peripheral wall, and / or a weld portion that protrudes in the outer diameter direction on the entire circumference of both end edges in the axial direction of the outer peripheral wall. Provided,
A superconducting coil cooling vessel, wherein the welded portion and the peripheral edges of both side end walls are welded.
前記外周壁および内周壁の外面に軸線方向の両側端縁に沿った環状溝を凹設し、該環状溝の外周側壁を前記溶接部としている請求項3に記載の超電導コイルの冷却容器。   The cooling container for a superconducting coil according to claim 3, wherein annular grooves are formed in the outer surfaces of the outer peripheral wall and the inner peripheral wall along both side edges in the axial direction, and the outer peripheral side wall of the annular groove is used as the welded portion. 前記内周壁、外周壁および両側端壁からなる内槽と、前記内槽を真空断熱空間をあけて囲繞する外槽を備え、該外槽の各壁部を溶接して組み立てており、
前記真空断熱空間に断熱フィルムを収容し、該断熱フィルムを部分的に前記内槽に設けた前記環状溝に埋め込んで断熱フィルムを位置決めしている請求項2または請求項4に記載の超電導コイルの冷却容器。
The inner tub comprising the inner peripheral wall, the outer peripheral wall and both end walls, and an outer tub that surrounds the inner tub with a vacuum heat insulating space, and is assembled by welding each wall portion of the outer tub,
The superconducting coil according to claim 2 or 4, wherein a heat insulating film is accommodated in the vacuum heat insulating space, and the heat insulating film is partially embedded in the annular groove provided in the inner tank to position the heat insulating film. Cooling container.
前記内周壁、外周壁および両側端壁はステンレス等の金属材で形成し、
かつ、収容する超電導コイルはパンケーキコイルを軸線方向に複数個数並設した積層型とし、該積層型の超電導コイルの外形と相似形状を有する内面を備えた円環状筒型とし、
前記外周壁に冷媒流通用の配管と接続する配管接続口を設けている請求項1乃至請求項5のいずれか1項に記載の超電導コイルの冷却容器。
The inner peripheral wall, outer peripheral wall and both end walls are formed of a metal material such as stainless steel,
And the superconducting coil to be accommodated is a laminated type in which a plurality of pancake coils are arranged side by side in the axial direction, and an annular cylindrical shape having an inner surface having a shape similar to the outer shape of the laminated superconducting coil,
The cooling container for a superconducting coil according to any one of claims 1 to 5, wherein a pipe connection port connected to a pipe for refrigerant circulation is provided on the outer peripheral wall.
JP2008008273A 2008-01-17 2008-01-17 Cooling vessel of superconducting coil Pending JP2009170716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008273A JP2009170716A (en) 2008-01-17 2008-01-17 Cooling vessel of superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008273A JP2009170716A (en) 2008-01-17 2008-01-17 Cooling vessel of superconducting coil

Publications (1)

Publication Number Publication Date
JP2009170716A true JP2009170716A (en) 2009-07-30

Family

ID=40971560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008273A Pending JP2009170716A (en) 2008-01-17 2008-01-17 Cooling vessel of superconducting coil

Country Status (1)

Country Link
JP (1) JP2009170716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093974A (en) * 2011-10-26 2013-05-16 Aisin Seiki Co Ltd Superconducting rotary electric machine stator
KR101275010B1 (en) * 2012-03-07 2013-06-13 현대중공업 주식회사 Radiation shield device for fixed yoke
JP2014504349A (en) * 2010-11-30 2014-02-20 ジーイー エナジー パワー コンバージョン テクノロジー リミテッド Cryogenic element insulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122160A (en) * 1984-07-06 1986-01-30 住友電気工業株式会社 Cryostat
JPS63318398A (en) * 1987-06-18 1988-12-27 Kobe Steel Ltd Superlow temperature container
JPH1041126A (en) * 1996-07-18 1998-02-13 Sumitomo Heavy Ind Ltd Superconducting magnet device using refrigerator
JPH11186025A (en) * 1997-05-08 1999-07-09 Sumitomo Electric Ind Ltd Superconducting coil
WO2005008687A1 (en) * 2003-07-17 2005-01-27 Fuji Electric Systems Co., Ltd. Superconducting wire and superconducting coil employing it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122160A (en) * 1984-07-06 1986-01-30 住友電気工業株式会社 Cryostat
JPS63318398A (en) * 1987-06-18 1988-12-27 Kobe Steel Ltd Superlow temperature container
JPH1041126A (en) * 1996-07-18 1998-02-13 Sumitomo Heavy Ind Ltd Superconducting magnet device using refrigerator
JPH11186025A (en) * 1997-05-08 1999-07-09 Sumitomo Electric Ind Ltd Superconducting coil
WO2005008687A1 (en) * 2003-07-17 2005-01-27 Fuji Electric Systems Co., Ltd. Superconducting wire and superconducting coil employing it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504349A (en) * 2010-11-30 2014-02-20 ジーイー エナジー パワー コンバージョン テクノロジー リミテッド Cryogenic element insulator
JP2013093974A (en) * 2011-10-26 2013-05-16 Aisin Seiki Co Ltd Superconducting rotary electric machine stator
KR101275010B1 (en) * 2012-03-07 2013-06-13 현대중공업 주식회사 Radiation shield device for fixed yoke

Similar Documents

Publication Publication Date Title
WO2018179790A1 (en) Busbar unit and motor provided with same
JP4690032B2 (en) Axial gap type motor
JP5354888B2 (en) Brushless motor
JP2009213349A (en) Electric motor
JP2013066314A (en) Motor and manufacturing method of the same
WO2018180815A1 (en) Bus bar unit and motor comprising said bus bar unit
JP2006115681A (en) Electric motor
JP2006310550A (en) Rector using pot core and composite reactor
JP4701294B2 (en) Superconducting device
JP6102249B2 (en) Single phase induction motor
JP4983561B2 (en) Superconducting motor
JP2009170716A (en) Cooling vessel of superconducting coil
US10855122B2 (en) Stator for rotating electrical machine having components for reinforcing laminations
JP2007089345A (en) Cooling structure of superconducting motor
JP2009170724A (en) Cooling vessel of superconductive coil
JP2021052492A (en) Bus-bar unit and motor
WO2022196193A1 (en) Superconducting motor
JP2007060747A (en) Superconducting motor and vehicle equipped with that motor
JP6229331B2 (en) motor
JP2009170715A (en) Superconducting coil, and cooling device of superconducting coil
JP2009123970A (en) Support frame for superconductive coil, and superconductive coil unit
JP2012139099A (en) Superconducting motor
JP5443249B2 (en) Superconducting magnet device
JP5337179B2 (en) Superconducting device
JP2016092875A (en) Stator for rotary electric machine, and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703