JP2009167499A - Ni-BASE HEAT RESISTANT ALLOY FOR HOT WORK DIE, HAVING EXCELLENT MACHINABILITY - Google Patents

Ni-BASE HEAT RESISTANT ALLOY FOR HOT WORK DIE, HAVING EXCELLENT MACHINABILITY Download PDF

Info

Publication number
JP2009167499A
JP2009167499A JP2008009871A JP2008009871A JP2009167499A JP 2009167499 A JP2009167499 A JP 2009167499A JP 2008009871 A JP2008009871 A JP 2008009871A JP 2008009871 A JP2008009871 A JP 2008009871A JP 2009167499 A JP2009167499 A JP 2009167499A
Authority
JP
Japan
Prior art keywords
base heat
alloy
resistant alloy
amount
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008009871A
Other languages
Japanese (ja)
Inventor
Koichi Uno
孝一 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2008009871A priority Critical patent/JP2009167499A/en
Publication of JP2009167499A publication Critical patent/JP2009167499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ni-base heat resistant alloy which has improved machinability while securing excellent high temperature strength and is applicable e.g. as a material for hot work die. <P>SOLUTION: The Ni-base heat resistant alloy has a composition consisting of, by mass, 14 to 25% Cr, 0.1 to 20% Fe, 0.5 to 6% Nb, 0.2 to 4% Ti, 0.2 to 2% Al, ≤0.03% C and the balance Ni with inevitable impurities and satisfying Ti+Nb=2.5 to 8% or further containing, by mass, either or both of 0.1 to 15% Mo and 0.1 to 15% Co. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は被削性に優れた熱間金型用のNi基耐熱合金に関する。   The present invention relates to a Ni-base heat-resistant alloy for hot dies having excellent machinability.

従来、自動車のエンジンバルブその他の高温強度の要求される部品用の材料としてTiやAl,Nb等の合金成分を含有した析出強化型のNi基耐熱合金が使用されている。   Conventionally, precipitation-strengthened Ni-based heat-resistant alloys containing alloy components such as Ti, Al, and Nb have been used as materials for automotive engine valves and other components that require high-temperature strength.

このNi基耐熱合金は、母相であるγ相に加えてγ′相(ガンマプライム相)と称される金属間化合物が析出し、その金属間化合物の相が析出強化相となって材料の高温強度を高めるものであるが、従来、このNi基耐熱合金にあっては、結晶の粒界に沿って析出する炭化物の相もまた高温強度を高める上で寄与するものと考えられており、そのため従来にあっては炭化物の析出相を生ぜしめるために合金にCを添加することが行われていた。   In this Ni-base heat-resistant alloy, an intermetallic compound called a γ 'phase (gamma prime phase) is precipitated in addition to the γ phase which is the parent phase, and the phase of the intermetallic compound becomes a precipitation strengthening phase. Conventionally, in this Ni-based heat-resistant alloy, the carbide phase that precipitates along the crystal grain boundaries is also considered to contribute to increasing the high-temperature strength. Therefore, conventionally, C has been added to the alloy in order to produce a carbide precipitation phase.

このNi基耐熱合金は、優れた高温強度を有する一方で被削性が悪く、所望形状に削り難いことに起因してその用途が自ずと限定されていた。
例えばこのNi基耐熱合金を熱間金型に適用できれば、従来のJIS SKD61等から成る熱間金型に比べて使用寿命を著しく延ばすことができるが、従来のNi基耐熱合金の場合、これを所望形状に切削加工することが極めて困難であり、そうした用途には適用されていないのが実情である。
The Ni-base heat-resistant alloy has excellent high-temperature strength, but has poor machinability and is difficult to cut into a desired shape, so its use is naturally limited.
For example, if this Ni-base heat-resistant alloy can be applied to a hot die, the service life can be significantly extended compared to a conventional hot die made of JIS SKD61 or the like. It is extremely difficult to cut into a desired shape, and the situation is not applied to such applications.

尚、本発明に対する先行技術として下記特許文献1に開示されたものがある。
このものは、Ni基耐熱合金の被削性を高めることを目的としたものであるが、その解決手段は本発明とは異なっており、合金の成分としてS,Se等を必須とするもので本発明とは異なっている。
In addition, there exists what was disclosed by the following patent document 1 as a prior art with respect to this invention.
This is intended to improve the machinability of the Ni-base heat-resistant alloy, but its solution is different from the present invention, and requires S, Se, etc. as an alloy component. This is different from the present invention.

特開2002−363674号公報JP 2002-363694 A

本発明は以上のような事情を背景とし、優れた高温強度を確保しつつ被削性が改善され、熱間金型用の材料として適用可能なNi基耐熱合金を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a Ni-base heat-resistant alloy that can be applied as a material for hot dies, with improved machinability while ensuring excellent high-temperature strength, against the background as described above. It is a thing.

而して請求項1の熱間金型用Ni基耐熱合金は、質量%でCr:14〜25%,Fe:0.1〜20%,Nb:0.5〜6%,Ti:0.2〜4%,Ti+Nb:2.5〜8%,Al:0.2〜2%,C :0.03%以下残部Ni及び不可避的不純物の組成を有することを特徴とする。   Thus, the Ni-base heat-resistant alloy for hot molds according to claim 1 is Cr: 14-25%, Fe: 0.1-20%, Nb: 0.5-6%, Ti: 0.2-4%, Ti + Nb in mass%. : 2.5 to 8%, Al: 0.2 to 2%, C: 0.03% or less The remaining Ni and inevitable impurities are included.

請求項2の熱間金型用Ni基耐熱合金は、請求項1において、質量%でMo:0.1〜15%,Co:0.1〜15%の何れか1種又は2種を更に含有することを特徴とする。   The Ni-base heat-resistant alloy for hot dies according to claim 2 further contains one or two of Mo: 0.1 to 15% and Co: 0.1 to 15% by mass% in claim 1. Features.

発明の作用・効果Effects and effects of the invention

本発明の熱間金型用Ni基耐熱合金は、合金成分としてCr,Alの他にTi+Nbを2.5〜8%含有するNi基耐熱合金において、Cの含有量を0.03%以下(望ましくは0.02%以下、より望ましくは0.01%以下)の低いレベルに規制した点を特徴とするものである。   The Ni-base heat-resistant alloy for hot molds of the present invention is a Ni-base heat-resistant alloy containing 2.5 to 8% of Ti + Nb in addition to Cr and Al as alloy components, and the C content is 0.03% or less (preferably 0.02% Hereinafter, it is characterized in that it is restricted to a low level of 0.01% or less.

本発明者は当初、この種Ni基耐熱合金の被削性が悪いのは強化相である金属間化合物の析出相が硬いことによるものと考えていた。
ところが研究を進める中で、Ni基耐熱合金の被削性を悪化させている原因が、合金の鋳造時の凝固過程で析出する1次炭化物であることを突き止めた。
The present inventor initially thought that the machinability of this kind of Ni-base heat-resistant alloy was due to the fact that the precipitation phase of the intermetallic compound as the strengthening phase was hard.
However, as the research progressed, it was found that the cause of the deterioration of the machinability of the Ni-base heat-resistant alloy was the primary carbide that precipitates during the solidification process during casting of the alloy.

この凝固過程で生じる1次炭化物は合金の結晶粒内に満遍なく微細に分散状態で析出し、またこの炭化物は3μm程度の極めて微細なものであるが、切削時にこの微細な炭化物、とりわけ極めて高硬度のTiの炭化物が工具の刃先を損傷し、そのことが被削性を悪化する原因であることが判明した。   The primary carbides generated in this solidification process are evenly and finely dispersed in the crystal grains of the alloy, and the carbides are very fine of about 3 μm. It turned out that the Ti carbide of this caused damage to the cutting edge of the tool, which deteriorated the machinability.

因みに図1(イ)は、Ni:43%,Ti:1%,Nb;3%(何れも質量%),残部Feを主成分としたNi基合金において、本発明者が合金へのCの添加量を変化させることによって調べた、合金中の1次炭化物の量と工具寿命との関係を示している。
但し図1(イ)では横軸に合金の清浄度を表す後述のミシュランポイントを、また縦軸に工具寿命の指数(具体的には同一の部品を加工したときの加工可能な個数)をとって表している。
Incidentally, Fig. 1 (a) shows that Ni: 43%, Ti: 1%, Nb: 3% (both mass%), and the Ni-based alloy whose main component is the balance Fe. It shows the relationship between the amount of primary carbide in the alloy and the tool life, investigated by changing the addition amount.
However, in Fig. 1 (b), the horizontal axis indicates the Michelin point, which will be described later, indicating the cleanliness of the alloy, and the vertical axis indicates the tool life index (specifically, the number of parts that can be processed when the same part is processed). It expresses.

ここで横軸のミシュランポイントは、合金中の介在物量をその大きさに応じて重み付けして表したもので、その値が大きいほど介在物量が多く(清浄度が悪く)、また値が小さいほど介在物量が少ない(清浄度が高い)ことを表している。
図1(イ)では、ミシュランポイントが100を超えたあたりで工具寿命が急激に低下している。
Here, the Michelin point on the horizontal axis is a weighted representation of the amount of inclusions in the alloy, and the larger the value, the greater the amount of inclusions (poor cleanliness) and the smaller the value. This means that the amount of inclusions is small (high cleanliness).
In FIG. 1 (a), the tool life is drastically reduced when the Michelin point exceeds 100.

図1(ロ)は、(イ)の特性曲線AにおけるA-1(ミシュランポイントが430)のサンプルのミクロ写真(倍率100)を、また図1(ハ)はA-2(ミシュランポイントが10)のサンプルのミクロ写真をそれぞれ示したものである。
また図1(ニ)は、エネルギー分散型X線分光法(EDX)により、図1(ロ)に表われている介在物の成分測定を行った結果を示している。
図1(ニ)に示しているようにこの介在物は主としてTiの炭化物(厳密には炭窒化物)であった。
図1(ニ)に示されるように、この介在物はTiとCとNが主に含まれているため、Tiの炭化物或いは炭窒化物であることが分る。
FIG. 1 (b) is a microphotograph (magnification 100) of the sample of A-1 (Michelin point is 430) in the characteristic curve A of (a), and FIG. 1 (c) is A-2 (Michelin point is 10). ) Shows a microphotograph of each sample.
FIG. 1 (d) shows the result of measuring the components of the inclusions shown in FIG. 1 (b) by energy dispersive X-ray spectroscopy (EDX).
As shown in FIG. 1 (d), this inclusion was mainly Ti carbide (strictly carbonitride).
As shown in FIG. 1 (d), this inclusion mainly contains Ti, C, and N, so it can be seen that it is a Ti carbide or carbonitride.

以上の結果からすれば、合金中のC量を低量とすれば1次炭化物の量も少なくなり、その結果工具寿命がこれに応じて向上すると考えられる。   Based on the above results, it is considered that if the amount of C in the alloy is low, the amount of primary carbide is also reduced, and as a result, the tool life is improved accordingly.

しかしながらNi基耐熱合金にあっては、上記のように合金成分として積極的に添加したCが、金属間化合物の析出のための時効熱処理によって粒界に沿って炭化物として析出し、その炭化物の析出相が結晶粒界を強化してNi基耐熱合金の高温強度(600℃以上の高温強度)を高める働きをするものと考えられており、従って単純にC量を低減するとNi基耐熱合金の高温(熱間)強度特性が損なわれてしまうことが危惧される。   However, in Ni-base heat-resistant alloys, C positively added as an alloy component as described above precipitates as carbides along grain boundaries by aging heat treatment for precipitation of intermetallic compounds, and precipitation of the carbides It is thought that the phase strengthens the grain boundaries and increases the high-temperature strength of Ni-base heat-resistant alloys (high-temperature strength of 600 ° C. or higher). It is feared that the (hot) strength properties will be impaired.

しかしながら本発明者らの研究の結果、Ti+Nbを2.5〜8%含有した上記組成のNi基耐熱合金にあっては、Cを積極的に添加した場合とC無添加の場合とで合金の高温強度特性にほとんど影響の無いことが判明した。即ちCを無添加としても高温強度特性をC添加したのと同程度に維持し得ることが判明した。
本発明はこうした知見に基いてなされたものである。
However, as a result of the study by the present inventors, in the Ni-base heat-resistant alloy containing 2.5% to 8% of Ti + Nb and having the above composition, the high temperature strength of the alloy in the case where C is positively added and in the case where C is not added. It was found that there was almost no effect on the characteristics. In other words, it was found that even when C was not added, the high-temperature strength characteristics could be maintained at the same level as when C was added.
The present invention has been made based on these findings.

かかる本発明のNi基耐熱合金にあっては、高温強度特性を従来と同様に確保しつつ被削性を著しく高めることが可能となり、従って本発明のNi基耐熱合金は、従来では適用できなかった熱間金型用材料としての適用が可能となるといった意義ある効果を奏するものである。   In the Ni-base heat-resistant alloy of the present invention, it becomes possible to remarkably improve the machinability while ensuring the high-temperature strength characteristics as in the conventional case, and therefore the Ni-base heat-resistant alloy of the present invention cannot be applied conventionally. In addition, there is a significant effect that it can be applied as a material for hot molds.

本発明ではまた、Ni基耐熱合金の組成を、請求項2に従ってMo:0.1〜15%,Co:0.1〜15%の何れか1種又は2種を含有した組成となしておくことができる。   In the present invention, the composition of the Ni-base heat-resistant alloy can be made into a composition containing any one or two of Mo: 0.1 to 15% and Co: 0.1 to 15% according to claim 2.

次に本発明における各化学成分の限定理由を以下に詳述する。
Cr:14〜25%
Crは耐酸化性,耐食性,高温強度を高める上で必要な成分で、その含有量が14%未満であると、十分な効果を得ることができない。
逆に25%を超えて過剰に含有させると合金中のNiの比率が下がってしまい、却って熱間強度が低下してしまう。従って本発明ではCrを上記の範囲内で含有させる。
Next, the reasons for limiting each chemical component in the present invention will be described in detail below.
Cr: 14-25%
Cr is a component necessary for enhancing oxidation resistance, corrosion resistance, and high-temperature strength. If the content is less than 14%, sufficient effects cannot be obtained.
On the other hand, if the content exceeds 25%, the ratio of Ni in the alloy decreases, and the hot strength decreases. Therefore, in the present invention, Cr is contained within the above range.

Fe:0.1〜20%
FeはNiに置換する形でγ′相を形成する元素で、Feを一定量含有させることでNi量を減らすことができ、合金のコストを低廉化することができる。その効果を得るためには最低でも0.1%以上含有させる必要がある。
一方で20%を超えて含有させるとNi量が少なくなって、所要の高温強度が得られなくなってしまう。
Fe: 0.1-20%
Fe is an element that forms a γ 'phase by replacing it with Ni. By containing a certain amount of Fe, the amount of Ni can be reduced, and the cost of the alloy can be reduced. In order to obtain the effect, it is necessary to contain at least 0.1%.
On the other hand, if the content exceeds 20%, the amount of Ni decreases and the required high-temperature strength cannot be obtained.

Nb:0.5〜6%,Ti:0.2〜4%,Ti+Nb:2.5〜8%
Ti,Nbは高温域でNiとの金属間化合物(γ′相)を析出し、高温域での変形を抑制して高温強度を高める元素で、本発明はこれらを合計量で2.5〜8%含有したものを対象とするものである。即ち本発明はTi+Nbを2.5〜8%で含有したNi基耐熱合金において、C量を0.03%以下とした場合においても、高温強度を維持しつつ被削性を高めることができる効果を奏する。
Nb: 0.5-6%, Ti: 0.2-4%, Ti + Nb: 2.5-8%
Ti and Nb are elements that precipitate an intermetallic compound (γ 'phase) with Ni in the high temperature range and suppress deformation in the high temperature range to increase the high temperature strength. The present invention adds these in a total amount of 2.5 to 8%. It is intended for inclusion. That is, the present invention has an effect of improving machinability while maintaining high-temperature strength even when the C content is 0.03% or less in a Ni-base heat-resistant alloy containing Ti + Nb at 2.5 to 8%.

Al:0.2〜2%
Alもまた高温域でNiとの金属間化合物を析出し、高温域で変形を抑制して高温強度を高める働きをなす元素で、その目的のために0.2〜2%の範囲で含有させる。
Al: 0.2-2%
Al is also an element that precipitates an intermetallic compound with Ni in the high temperature range and suppresses deformation in the high temperature range to increase the high temperature strength, and is contained in the range of 0.2 to 2% for that purpose.

C:0.03%以下
CはTi,Nb、とりわけTiと1次炭化物を析出させて被削性を悪化させる原因となる元素である。従って本発明ではCはできるだけ少量であることが望ましいが、その含有量を著しく低含有量とすると原料を厳選しなければならず、合金コストが高くなってしまうため、本発明では0.03%まで許容できるものとする。望ましくはCの含有量は0.02%以下であり、より望ましくは0.01%以下である。
C: 0.03% or less
C is an element that causes Ti and Nb, particularly Ti and primary carbides, to precipitate and deteriorates the machinability. Accordingly, in the present invention, it is desirable that C is as small as possible. However, if the content is extremely low, raw materials must be carefully selected, and the alloy cost increases. Therefore, in the present invention, up to 0.03% is allowed. It shall be possible. Desirably, the C content is 0.02% or less, and more desirably 0.01% or less.

Mo:0.1〜15%
Moはマトリックスに固溶して合金を強化する働きを有する元素で、必要に応じて0.1〜15%の範囲内で含有させておくことができる。
Mo: 0.1-15%
Mo is an element having a function of strengthening the alloy by solid solution in the matrix, and can be contained in the range of 0.1 to 15% as necessary.

Co:0.1〜15%
CoもまたMoと同様にマトリックスに固溶して合金を強化する働きをなす元素である。またCoは併せてNiとAl,Ti,Nbとの金属間化合物の析出量を高め、その結果として合金の高温強度を高める働きをなす。その目的のため本発明ではCoを添加する場合には0.1〜15%の範囲内で添加する。
Co: 0.1-15%
Co, like Mo, is an element that functions as a solid solution in the matrix and strengthens the alloy. Co also increases the precipitation amount of intermetallic compounds of Ni and Al, Ti, and Nb, and as a result, increases the high temperature strength of the alloy. For this purpose, in the present invention, when Co is added, it is added in the range of 0.1 to 15%.

次に本発明の実施形態を以下に詳述する。
表1に示す化学組成(表中残部はNiで各数値は質量%)の合金50kgを真空誘導溶解し、そしてφ40mmの丸棒に1100℃で熱間鍛造し、その後1050℃,30分の条件で固溶化熱処理を行った。
続いて表面を切除加工してφ30mmの丸棒となし、以下に示す条件で旋削試験を行って被削性評価(工具磨耗量測定)を行った。
Next, embodiments of the present invention will be described in detail below.
50 kg of an alloy having the chemical composition shown in Table 1 (the balance is Ni and the respective numerical values are% by mass) is vacuum-induced melted, and hot forged at 1100 ° C. into a round bar of φ40 mm, and then at 1050 ° C. for 30 minutes. The solution heat treatment was performed.
Subsequently, the surface was cut to form a round bar of φ30 mm, and a lathe test was performed under the following conditions to evaluate machinability (measurement of tool wear).

<旋削試験条件>
図2(イ)に示しているように被削材10を回転させながら工具12を図中左方向に送って旋削試験を行い、工具12のコーナー磨耗量を測定した。
同図(ロ)において12-1は主切刃を、12-2は前切刃を、また12-3はコーナー部を表している。この旋削試験ではコーナー部での磨耗量が最も著しかったので、ここではコーナー部12-3の磨耗量によって被削性評価を行った。
尚旋削試験の条件は以下とした。
切削速度:50m/min
送り速度:0.2mm/rev
切り込み:0.5mm
切削時間:10min
潤滑:湿式
工具のチップ材種:三菱マテリアル社製のVP15TF−FJ(商品名),PVDコーティングされたチップを使用した。
結果が合金の清浄度を表すミシュランポイントとともに表1に併せて示してある。
<Turning test conditions>
As shown in FIG. 2 (a), while turning the work material 10, the tool 12 was sent leftward in the figure to perform a turning test, and the amount of corner wear of the tool 12 was measured.
In FIG. 6B, 12-1 represents a main cutting edge, 12-2 represents a front cutting edge, and 12-3 represents a corner portion. In this turning test, the amount of wear at the corner portion was the most significant, and therefore machinability was evaluated based on the amount of wear at the corner portion 12-3.
The conditions for the turning test were as follows.
Cutting speed: 50 m / min
Feeding speed: 0.2mm / rev
Cutting depth: 0.5mm
Cutting time: 10 min
Lubrication: Wet
Tool tip type: VP15TF-FJ (trade name) manufactured by Mitsubishi Materials Corporation, PVD-coated tip was used.
The results are shown in Table 1 together with Michelin points representing the cleanliness of the alloy.

ここでミシュランポイントはASTM−E45に準拠したもので、被検面積を60.5mmとし、400倍の倍率で非金属の介在物の大きさを測定した。このとき非金属介在物の縦横比(アスペクト比)が2以下で、幅が5μm以上の介在物のみを測定対象とし、そして測定視野が重ならないように全被検面を測定した。
そして表2に示すようにして介在物の大きさ(長さ)ごとに係数を定め、そして観察された介在物の個数に係数を乗算して、それぞれの値の総和を求め、これをミシュランポイントとした。
Here Michelin points in compliance to ASTM-E45, the test area and 60.5 mm 2, to measure the size of the inclusions of non-metallic at 400 × magnification. At this time, only the inclusions whose non-metallic inclusions had an aspect ratio (aspect ratio) of 2 or less and a width of 5 μm or more were measured, and the entire test surface was measured so that the measurement fields of view did not overlap.
Then, as shown in Table 2, a coefficient is determined for each size (length) of inclusions, and the observed number of inclusions is multiplied by the coefficient to obtain the sum of the respective values. It was.

表1に示しているようにC量が0.05%の比較例のものではミシュランポイントが300と大きいのに対して、C量が0.03%以下の各実施例のものは何れもミシュランポイントが100以下と小さく、即ち合金の凝固時に生ずる1次炭化物の量が少なく、その結果として各実施例のものは、比較例のものに比べて工具磨耗量が少なく、被削性が大きく改善されている。   As shown in Table 1, in the comparative example with C amount of 0.05%, the Michelin point is as large as 300, whereas in each of the examples with C amount of 0.03% or less, the Michelin point is 100 or less. In other words, the amount of primary carbide generated during solidification of the alloy is small, and as a result, the amount of tool wear in each example is smaller than that in the comparative example, and the machinability is greatly improved.

因みに、図3に比較例3,実施例5及び実施例6についての鋳造後のミクロ写真を示している(倍率は40倍)。
同図に示しているようにC量を通常レベルで含有した比較例3では、多数の1次炭化物が析出分散している。これに対してC量を0.02%とした実施例6のものでは1次炭化物の析出分散量が少なく、またC量を0.005%と極低量とした実施例5では1次炭化物の析出がほとんど認められない。
Incidentally, the microphotograph after the casting about Comparative Example 3, Example 5 and Example 6 is shown in FIG. 3 (magnification is 40 times).
As shown in the figure, in Comparative Example 3 containing the C amount at a normal level, a large number of primary carbides are precipitated and dispersed. On the other hand, in Example 6 where the C content was 0.02%, the precipitation dispersion amount of primary carbide was small, and in Example 5 where the C content was extremely low as 0.005%, precipitation of primary carbide was almost not. unacceptable.

この実施形態では、工具磨耗量150μm以下を目標とした。
その理由は、工具磨耗量が150μm以下であれば熱間金型用材料として使用可能であることによる。
In this embodiment, the target is a tool wear amount of 150 μm or less.
The reason is that if the tool wear amount is 150 μm or less, it can be used as a material for a hot mold.

次にC量を0.03%以下とすることによって高温強度特性に悪影響が生じていないかを確認するため、金属間化合物を析出させるための時効熱処理を行った上で、高温度での引張試験を行った。
尚金属間化合物を析出させるための時効熱処理は、720℃で8時間保持した後冷却して620℃にし、620℃で8時間保持、その後空冷の条件で行った。
Next, in order to confirm whether the high temperature strength characteristics are adversely affected by setting the C content to 0.03% or less, after performing an aging heat treatment for precipitating intermetallic compounds, a tensile test at a high temperature is performed. went.
The aging heat treatment for precipitating the intermetallic compound was performed under the conditions of holding at 720 ° C. for 8 hours, cooling to 620 ° C., holding at 620 ° C. for 8 hours, and then air cooling.

ここで高温引張試験は、C量のそれぞれ異なった実施例5,実施例6及び比較例3について行った。また引張試験はJIS G 0567に準拠して行った。
結果が図4に示してある。
Here, the high-temperature tensile test was performed for Example 5, Example 6, and Comparative Example 3 with different amounts of C. The tensile test was performed in accordance with JIS G 0567.
The results are shown in FIG.

図4に示しているようにC量を0.05%としたもの、0.02%としたもの、また0.005%としたものの何れもほぼ同一の高温強度を示していることが分る。
即ち本発明のNi基耐熱合金種においては、C量を変化させても高温強度に特段の影響が生じないことがこの図4から見て取れる。
As shown in FIG. 4, it can be seen that the C content of 0.05%, 0.02%, and 0.005% show almost the same high-temperature strength.
That is, it can be seen from FIG. 4 that in the Ni-base heat-resistant alloy type of the present invention, there is no particular effect on the high temperature strength even if the C content is changed.

図5は、実施例5の合金の高温引張強度を、従来熱間工具鋼として使用されているJIS SKD61と比較して表したもので、図に示しているように本発明のNi基耐熱合金は、従来の熱間工具鋼に比べて高温強度が優れていることが分る。   FIG. 5 shows the high-temperature tensile strength of the alloy of Example 5 in comparison with JIS SKD61, which is conventionally used as a hot work tool steel. As shown in the figure, the Ni-base heat-resistant alloy of the present invention is shown. It can be seen that the high temperature strength is superior to that of conventional hot work tool steel.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた形態で構成可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be configured in various forms without departing from the spirit of the present invention.

(イ)Ni基合金におけるミシュランポイントと工具寿命との関係を表す図である。(ロ)図(イ)のA-1のサンプルのミクロ写真である。(ハ)A-2のサンプルのミクロ写真である。(ニ)(ロ)における介在物の成分測定結果の図である。(A) It is a figure showing the relationship between the Michelin point and tool life in Ni base alloy. (B) A microphotograph of the sample A-1 in FIG. (C) A microphotograph of the sample A-2. (D) It is a figure of the component measurement result of the inclusion in (b). 実施形態における被削性試験の方法の説明図である。It is explanatory drawing of the method of the machinability test in embodiment. 表1中の比較例3,実施例5,実施例6の鋳造後のミクロ写真である。5 is a microphotograph after casting of Comparative Example 3, Example 5, and Example 6 in Table 1. FIG. 表1中の比較例3,実施例5,実施例6におけるC量と高温特性との関係を示す図である。It is a figure which shows the relationship between the amount of C in the comparative example 3, Example 5, and Example 6 in Table 1, and a high temperature characteristic. 実施例5における各試験温度での引張強度を比較例と対比して示した図である。It is the figure which showed the tensile strength in each test temperature in Example 5 in contrast with the comparative example.

Claims (2)

質量%で
Cr:14〜25%
Fe:0.1〜20%
Nb:0.5〜6%
Ti:0.2〜4%
Ti+Nb:2.5〜8%
Al:0.2〜2%
C :0.03%以下
残部Ni及び不可避的不純物の組成を有する被削性に優れた熱間金型用Ni基耐熱合金。
In mass%
Cr: 14-25%
Fe: 0.1-20%
Nb: 0.5-6%
Ti: 0.2-4%
Ti + Nb: 2.5-8%
Al: 0.2-2%
C: 0.03% or less Ni-base heat-resistant alloy for hot molds having a composition of balance Ni and inevitable impurities and excellent machinability.
請求項1において、質量%で
Mo:0.1〜15%
Co:0.1〜15%
の何れか1種又は2種を更に含有する被削性に優れた熱間金型用Ni基耐熱合金。
In Claim 1, in mass%
Mo: 0.1-15%
Co: 0.1-15%
A Ni-base heat-resistant alloy for hot dies excellent in machinability, further containing any one or two of the above.
JP2008009871A 2008-01-18 2008-01-18 Ni-BASE HEAT RESISTANT ALLOY FOR HOT WORK DIE, HAVING EXCELLENT MACHINABILITY Pending JP2009167499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009871A JP2009167499A (en) 2008-01-18 2008-01-18 Ni-BASE HEAT RESISTANT ALLOY FOR HOT WORK DIE, HAVING EXCELLENT MACHINABILITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009871A JP2009167499A (en) 2008-01-18 2008-01-18 Ni-BASE HEAT RESISTANT ALLOY FOR HOT WORK DIE, HAVING EXCELLENT MACHINABILITY

Publications (1)

Publication Number Publication Date
JP2009167499A true JP2009167499A (en) 2009-07-30

Family

ID=40969015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009871A Pending JP2009167499A (en) 2008-01-18 2008-01-18 Ni-BASE HEAT RESISTANT ALLOY FOR HOT WORK DIE, HAVING EXCELLENT MACHINABILITY

Country Status (1)

Country Link
JP (1) JP2009167499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312297A1 (en) 2016-10-24 2018-04-25 Daido Steel Co.,Ltd. Precipitation hardened high ni heat-resistant alloy
JP2018095952A (en) * 2016-10-24 2018-06-21 大同特殊鋼株式会社 Precipitation hardening type high nickel refractory alloy
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312297A1 (en) 2016-10-24 2018-04-25 Daido Steel Co.,Ltd. Precipitation hardened high ni heat-resistant alloy
KR20180044826A (en) 2016-10-24 2018-05-03 다이도 토쿠슈코 카부시키가이샤 PRECIPITATION HARDENED HIGH Ni HEAT-RESISTANT ALLOY
JP2018095952A (en) * 2016-10-24 2018-06-21 大同特殊鋼株式会社 Precipitation hardening type high nickel refractory alloy
US10724129B2 (en) 2016-10-24 2020-07-28 Daido Steel Co., Ltd. Precipitation hardened high Ni heat-resistant alloy
JP7081096B2 (en) 2016-10-24 2022-06-07 大同特殊鋼株式会社 Precipitation hardening Ni alloy
JP2022119890A (en) * 2016-10-24 2022-08-17 大同特殊鋼株式会社 PRECIPITATION HARDENING TYPE Ni ALLOY AND METHOD FOR PRODUCING THE SAME
JP7310978B2 (en) 2016-10-24 2023-07-19 大同特殊鋼株式会社 Manufacturing method of precipitation hardening Ni alloy
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy

Similar Documents

Publication Publication Date Title
JP5582532B2 (en) Co-based alloy
WO2009151031A1 (en) α-β TYPE TITANIUM ALLOY
EP3100818B1 (en) Welding material for ni-based heat-resistant alloy, and welded metal and welded joint each using same
KR20160138277A (en) Austenitic stainless steel and method for producing same
CN108884529B (en) Cr-based two-phase alloy and product thereof
JP6925781B2 (en) Hot tool steel with excellent high temperature strength and toughness
JP7310978B2 (en) Manufacturing method of precipitation hardening Ni alloy
JP6733210B2 (en) Ni-based superalloy for hot forging
JP2019052349A (en) Nickel-based alloy
JP4895434B2 (en) Free-cutting Ni-base heat-resistant alloy
JP2007063589A (en) Steel bar or wire rod
JP6425275B2 (en) Ni-based heat-resistant alloy
EP2749663B1 (en) Heat-resisting steel for exhaust valves
WO2019070001A1 (en) Austenitic stainless steel welding metal and welded structure
JP2009167499A (en) Ni-BASE HEAT RESISTANT ALLOY FOR HOT WORK DIE, HAVING EXCELLENT MACHINABILITY
JP6690359B2 (en) Austenitic heat-resistant alloy member and method for manufacturing the same
JP2007254804A (en) Ni-BASED ALLOY
JP2007113057A (en) Heat-resistant alloy having superior strength properties at high temperature for exhaust valve
JP2009167500A (en) METHOD FOR PRODUCING Ni BASED HEAT RESISTANT ALLOY
JP6521419B2 (en) Ni-based alloy, fuel injection component using the same, method of producing Ni-based alloy
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP2006009143A (en) Heat resistant alloy for use as material of engine valve
JP7081096B2 (en) Precipitation hardening Ni alloy
JP5392443B1 (en) Friction welding steel and its manufacturing method