JP2009162734A - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP2009162734A
JP2009162734A JP2008003318A JP2008003318A JP2009162734A JP 2009162734 A JP2009162734 A JP 2009162734A JP 2008003318 A JP2008003318 A JP 2008003318A JP 2008003318 A JP2008003318 A JP 2008003318A JP 2009162734 A JP2009162734 A JP 2009162734A
Authority
JP
Japan
Prior art keywords
reagent
automatic analyzer
container
analysis
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008003318A
Other languages
Japanese (ja)
Other versions
JP4966875B2 (en
Inventor
Kumiko Hattori
久美子 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008003318A priority Critical patent/JP4966875B2/en
Publication of JP2009162734A publication Critical patent/JP2009162734A/en
Application granted granted Critical
Publication of JP4966875B2 publication Critical patent/JP4966875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic analyzer having a function of defoaming bubbles generated on a liquid surface, and minimally suppressing the influence on an analysis agent. <P>SOLUTION: By control of a control part, a dispensing probe 116 sucks the vapor of a volatile material 130 in the first reagent container 130, discharges the sucked vapor to an upper part of an analysis agent in the second reagent container 140, detects a liquid surface of an analysis agent 141, sucks the analysis agent 141, and discharges the sucked analysis agent in a reaction vessel 150. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動分析装置に関し、特に、液体の表面に生じた泡を消泡し、かつ、分析試薬への影響を最小限に抑える機能を有する自動分析装置に関する。   The present invention relates to an automatic analyzer, and more particularly to an automatic analyzer having a function of eliminating bubbles generated on the surface of a liquid and minimizing the influence on an analysis reagent.

血液や尿などの生体由来試料や、土壌や河川などの環境中に含まれる物質を測定する場合に、磁性粒子などの表面に試薬を固定し、試料中の測定対象のみを効率的に捕捉し、高感度分析を行うことが多い。例えば、血液を試料として血液中の抗原または抗体を測定する免疫分析では、抗原抗体反応を行う抗体あるいは抗原を磁性粒子に予め固定しておく。試料と磁性粒子を反応させ、試料内の測定対象である抗原または抗体を捕捉した後、磁性粒子を洗浄することにより試料中の余剰物質を洗い流す。この磁性粒子に色素あるいは標識酵素などを反応させることにより、捕捉された測定対象の有無や存在量を測定するものである。   When measuring biological samples such as blood and urine, and substances contained in the environment such as soil and rivers, a reagent is fixed on the surface of magnetic particles, etc., and only the measurement target in the sample is captured efficiently. Often, high sensitivity analysis is performed. For example, in an immunoassay in which an antigen or antibody in blood is measured using blood as a sample, an antibody or antigen that undergoes an antigen-antibody reaction is immobilized in advance on magnetic particles. After reacting the sample with the magnetic particles and capturing the antigen or antibody to be measured in the sample, the magnetic particles are washed to wash away surplus substances in the sample. By reacting the magnetic particles with a dye or a labeling enzyme, the presence / absence and abundance of the captured measurement target are measured.

このような磁性粒子を用いた測定を行う自動分析装置は、血液や尿などの生体サンプルをサンプルが収容された容器から反応容器へ分注し、更に試薬が収容された試薬容器から、生体サンプルが分注された反応容器へ試薬を分注し、サンプルと試薬の混合液の色の変化を光度計等の測定手段によって測定するものである。   An automatic analyzer that performs measurement using such magnetic particles dispenses a biological sample such as blood or urine from a container containing the sample into a reaction container, and further from the reagent container containing the reagent, the biological sample The reagent is dispensed into a reaction container into which the liquid is dispensed, and the change in the color of the mixed solution of the sample and the reagent is measured by a measuring means such as a photometer.

サンプル,試薬共に分注動作の際には分注対象の液体内へ分注プローブの先端を浸漬させるが、その浸漬深さが大きいほどプローブ外壁への液体付着量が増し、異なるサンプル,試薬間でのコンタミネーションが大きくなる。そこで、分注プローブの浸漬深さを極力低減する為に、容器内の液体の液面を検出しプローブの先端が液面より僅かに下に達した位置でプローブの下降動作を停止させ、次いでプローブ内へ所定量の液体を吸引するように動作制御する手法が一般的に行われている。この場合、液面を正確に検知する技術が重要となる。液面を検知する技術としては、分注プローブと液体の間の静電容量変化を測定する方法,分注プローブ内の圧力変化を測定する方法等さまざまな方法が提案されている。   During the dispensing operation for both sample and reagent, the tip of the dispensing probe is immersed in the liquid to be dispensed. The greater the immersion depth, the greater the amount of liquid attached to the outer wall of the probe, and between different samples and reagents. Contamination at will increase. Therefore, in order to reduce the immersion depth of the dispensing probe as much as possible, the liquid level of the liquid in the container is detected, and the descending operation of the probe is stopped at the position where the tip of the probe reaches slightly below the liquid level. Generally, a method for controlling the operation so as to suck a predetermined amount of liquid into the probe is used. In this case, a technique for accurately detecting the liquid level is important. As a technique for detecting the liquid level, various methods such as a method of measuring a capacitance change between the dispensing probe and the liquid and a method of measuring a pressure change in the dispensing probe have been proposed.

サンプル,試薬を分注する際には回りの空気を巻き込んで液面に泡が生じる場合がある。その場合、静電容量測定方式(分注プローブと液体が接触すると静電容量が大きく変化することを利用)では泡の表面に分注プローブが接触した時点で、その点を液面と誤認識し、所定量の試薬,サンプルが分注できない可能性があった。   When dispensing samples and reagents, the surrounding air may be involved and bubbles may form on the liquid surface. In that case, in the capacitance measurement method (using the fact that the capacitance changes greatly when the dispensing probe and the liquid come into contact), when the dispensing probe comes into contact with the surface of the bubble, that point is mistakenly recognized as the liquid level. However, there is a possibility that a predetermined amount of reagent or sample cannot be dispensed.

特に磁性粒子は自重により沈降するため、自動分析装置に攪拌機能を備え付け、分注前に攪拌して磁性粒子が均等に分散し、分注できるような仕組みが必要となる。また、磁性粒子が試薬容器中あるいは反応容器中で速やかに沈降してしまい、分散もしくは反応の阻害となることを防ぐために、あるいは磁性粒子に固定した抗原あるいは抗体のような分子を保護するため、磁性粒子の含まれる試薬には界面活性剤や蛋白などを添加することも多い。このため、磁性粒子試薬などは特に液面に泡が発生しやすくなっている。   In particular, since the magnetic particles settle due to their own weight, a mechanism is required to equip the automatic analyzer with a stirring function and to stir before dispensing to disperse the magnetic particles evenly. In addition, in order to prevent magnetic particles from quickly precipitating in the reagent container or in the reaction container, and to disperse or inhibit the reaction, or to protect molecules such as antigens or antibodies immobilized on the magnetic particles, In many cases, a surfactant or protein is added to a reagent containing magnetic particles. For this reason, bubbles are easily generated particularly on the liquid surface of the magnetic particle reagent and the like.

このため、試薬容器に入っている試薬の液面に泡が生じても、液面を検出できる手段を備えた自動分析装置が提案されてきた(下記特許文献参照)。特許文献1には、泡発生前および泡発生の初期段階での分注動作後の液面高さの推移を記憶しておき、該液面高さの推移を外挿して、泡が発生した場合でも、現在の液面を推定する機能を備えることを特徴とする自動分析装置が開示されている。
特開2004−170279号公報 特開2007−46998号公報
For this reason, there has been proposed an automatic analyzer equipped with means capable of detecting the liquid level even when bubbles are generated on the liquid level of the reagent contained in the reagent container (see the following patent document). Patent Document 1 memorizes the transition of the liquid surface height before the foam generation and after the dispensing operation at the initial stage of the foam generation, extrapolates the transition of the liquid surface height, and bubbles are generated. Even in such a case, an automatic analyzer having a function of estimating the current liquid level is disclosed.
JP 2004-170279 A JP 2007-46998 A

上記特許文献1記載の技術により、液面検知センサは液面上方に存在する泡を液面と誤検知するため、分注ノズルが正しい位置まで降下せず、正しく分注できなくなるようなエラーを低減することは可能になるが、泡を消す発明のものではない。   Due to the technology described in Patent Document 1, the liquid level detection sensor erroneously detects bubbles existing above the liquid level as the liquid level, so that the dispensing nozzle does not descend to the correct position and an error that prevents correct dispensing cannot be achieved. Although it can be reduced, it is not the invention of eliminating the bubbles.

また、液体の表面に生じた泡を消すための、シリコーン系やポリエーテル系などの消泡剤が、発売されている。しかし、これら消泡剤の添加は、場合によっては分析用試薬の劣化を促進したり、分析結果に悪影響を与えたりする場合があるので、好ましくない。   In addition, antifoaming agents such as silicones and polyethers are put on the market to eliminate bubbles generated on the surface of the liquid. However, the addition of these antifoaming agents is not preferable because in some cases, deterioration of the analytical reagent may be promoted or the analysis result may be adversely affected.

上記課題に鑑みて、本発明は、液体の表面に生じた泡を消泡し、かつ、分析試薬への影響を最小限に抑える機能を有する自動分析装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an automatic analyzer having a function of eliminating bubbles generated on the surface of a liquid and minimizing the influence on an analysis reagent.

上記目的を達成するため、本発明の自動分析装置は、制御部と、揮発性物質を収容する第1の試薬容器と、分析用試薬を収容する第2の試薬容器と、反応容器と、前記各容器間を移動可能で試薬や蒸気の吸引及び吐出が可能で液面検出機能を備え前記制御部により制御可能な分注プローブとを備えた自動分析装置において、前記分注プローブは、前記制御部の制御により、前記第1の試薬容器において揮発性物質の蒸気を吸引し、前記第2試薬容器において分析用試薬上部に吸引した蒸気を吐出し、分析用試薬の液面検知を行い、分析用試薬を吸引し、前記反応容器において吸引した分析用試薬を吐出することを特徴とする。   In order to achieve the above object, an automatic analyzer according to the present invention includes a control unit, a first reagent container containing a volatile substance, a second reagent container containing an analysis reagent, a reaction container, In an automatic analyzer including a dispensing probe that can move between containers, can suck and discharge reagents and vapors, has a liquid level detection function, and can be controlled by the control unit, the dispensing probe controls the control By controlling the part, the vapor of the volatile substance is sucked in the first reagent container, the vapor sucked on the upper part of the analysis reagent is discharged in the second reagent container, the liquid level of the analysis reagent is detected, and the analysis is performed. The reagent for aspiration is aspirated and the analysis reagent aspirated in the reaction container is discharged.

さらに本発明の自動分析装置は、前記揮発性物質が低級アルコールであることを特徴とする。さらに本発明の自動分析装置は、揮発性物質がケトンの中で分子量が小さいことにより揮発性のある物質である特徴とする。さらに本発明の自動分析装置は、前記第1の試薬容器が、前記第2の試薬容器が複数設置できる試薬保冷部に、分析用試薬と共に設置され、温度コントロールされていることを特徴とする。さらに本発明の自動分析装置は、前記分注用プローブのホームポジションは、前記第2の試薬容器上であることを特徴とする。   Furthermore, the automatic analyzer of the present invention is characterized in that the volatile substance is a lower alcohol. Furthermore, the automatic analyzer according to the present invention is characterized in that the volatile substance is a substance that is volatile due to its low molecular weight in the ketone. Furthermore, the automatic analyzer according to the present invention is characterized in that the first reagent container is installed together with the analysis reagent in a reagent cold storage section in which a plurality of the second reagent containers can be installed, and the temperature is controlled. Furthermore, the automatic analyzer of the present invention is characterized in that a home position of the dispensing probe is on the second reagent container.

本発明によれば、自動分析装置において、液体の表面に生じた泡を消泡し、かつ、分析試薬への影響を最小限に抑えることができる。   According to the present invention, in the automatic analyzer, bubbles generated on the surface of the liquid can be eliminated and the influence on the analysis reagent can be minimized.

本発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described.

以下は、本発明の揮発性物質の蒸気を泡に吹き付け、液面上方を消泡する装置および装置プロトコルを使用した実施例である。   The following is an example using an apparatus and apparatus protocol for blowing the vapor of the volatile substance of the present invention onto bubbles and defoaming the upper surface of the liquid.

図1は本発明の自動分析装置一実施形態の概略を示す平面図である。なお、本発明の自動分析装置は、制御機能(制御部)を有しており、これにより、以下に示すピペッタ116等の動作は自動で行えるものである。   FIG. 1 is a plan view schematically showing an embodiment of an automatic analyzer according to the present invention. Note that the automatic analyzer of the present invention has a control function (control unit), so that the operations of the pipetter 116 and the like described below can be performed automatically.

ピペッタ116は液面検知機能が付加された分注プローブであり、分注プローブと液体との間の静電容量を検出し、液面に分注プローブが接触したときの静電容量の変化を利用して液面を検知することが可能となっている。試薬容器を複数設置できる試薬ディスク114は試薬保冷部にあり低温に保冷されており、測定用試薬や揮発性物質が設置されている。揮発性物質として、ここでは99.5%エタノールを用いたが、エタノール以外のメタノールやプロパノールなどの低級アルコールでもよい。また、アセトンや酢酸エチルエステル等のケトンの中で分子量が小さいことにより揮発性のある低分子ケトンでも代用可能である。   The pipetter 116 is a dispensing probe to which a liquid level detection function is added, detects the capacitance between the dispensing probe and the liquid, and changes the capacitance when the dispensing probe comes into contact with the liquid level. It is possible to detect the liquid level by using it. A reagent disk 114 on which a plurality of reagent containers can be installed is in a reagent cooling unit and is kept cold at a low temperature, and a measuring reagent and a volatile substance are installed therein. Here, 99.5% ethanol was used as the volatile substance, but lower alcohols such as methanol and propanol other than ethanol may be used. In addition, low molecular weight ketones that are volatile due to their low molecular weight among ketones such as acetone and ethyl acetate can be substituted.

ビーズ攪拌119は、試薬ディスク114上の磁性粒子試薬を分注前に攪拌し、磁性粒子を分散させるための機構である。この磁性粒子試薬は、沈殿し易い組成の試薬であり、且つ界面活性剤や蛋白を含有し泡立ち易い試薬となっている。この試薬を用い分析を行う場合は安定した分析結果を得るために、装置分析動作中に周期的に試薬を攪拌し試薬容器内の試薬濃度を均一化する必要が生じる。つまり結果として攪拌動作後に試薬容器内の液面検知を行い吸引するが、試薬液面上に攪拌に伴う泡が発生し、攪拌後は試薬液面上に泡の層が発生してしまう可能性があった。   The bead agitation 119 is a mechanism for agitating the magnetic particle reagent on the reagent disk 114 before dispensing to disperse the magnetic particles. This magnetic particle reagent is a reagent having a composition that easily precipitates, and is a reagent that contains a surfactant and a protein and easily foams. When performing analysis using this reagent, in order to obtain a stable analysis result, it is necessary to periodically stir the reagent during the apparatus analysis operation to make the reagent concentration uniform in the reagent container. In other words, as a result, the liquid level in the reagent container is detected and sucked after the stirring operation, but bubbles accompanying stirring are generated on the reagent liquid surface, and a bubble layer may be generated on the reagent liquid surface after stirring. was there.

経過テスト数の増加に伴い試薬液面上に攪拌動作による泡が生成され、最終的には数cm程度の泡の層を形成することになる。しかしながら液面検知時の試薬液体内へ分注プローブの先端の浸漬深さはコンタミネーションを極力防ぐ為に液面より僅かに下、具体的には2〜4mm程度試薬に浸漬した位置でプローブの下降動作を停止させ、次いでプローブ116内へ所定量の液体を吸引するように制御している。   Along with the increase in the number of progress tests, bubbles are generated on the reagent liquid surface by the stirring operation, and finally a bubble layer of about several centimeters is formed. However, the immersion depth of the tip of the dispensing probe into the reagent liquid at the time of detecting the liquid level is slightly below the liquid level in order to prevent contamination as much as possible, specifically at a position immersed in the reagent by about 2 to 4 mm. The descending operation is stopped, and then a predetermined amount of liquid is sucked into the probe 116.

この為、“理想的な試薬液面高さ”、つまり真の液面高さと“泡発生時の試薬液面高さ”に数mm以上、具体的には約5mm以上の相違が試薬液面上の泡により存在した場合は、前述液面検知動作での試薬での浸漬深さでは真の液面まで到達せず、真の液面から液体の試薬を吸引せず、真の液面の上に生成された泡の試薬を分注し、最終的に分析結果異常となる危険性を有していた。   For this reason, the difference between the "ideal reagent liquid surface height", that is, the true liquid surface height and the "reagent liquid surface height when bubbles are generated" is a few millimeters or more, specifically about 5 mm or more. In the case of the presence of bubbles above, the immersion depth with the reagent in the liquid level detection operation does not reach the true liquid level, the liquid reagent is not sucked from the true liquid level, The foam reagent generated above was dispensed, and there was a risk that the analysis results would eventually become abnormal.

このような試薬容器内に発生した気泡の悪影響を回避するために、消泡操作を分注前に行う。図2は、本発明の自動分析装置の消泡の一実施形態であるプロトコルを示す図である。図3は、本発明の自動分析装置の消泡の一実施形態を示す説明図である。エタノール131を有するエタノール容器130は、試薬ディスク114やピペッタ116のホームポジション下(117)にあってもよい。磁性粒子試薬141を有する磁性粒子試薬容器140は、試薬ディスク114に存在する。   In order to avoid such an adverse effect of bubbles generated in the reagent container, the defoaming operation is performed before dispensing. FIG. 2 is a diagram showing a protocol which is an embodiment of defoaming of the automatic analyzer of the present invention. FIG. 3 is an explanatory view showing an embodiment of defoaming of the automatic analyzer of the present invention. The ethanol container 130 having the ethanol 131 may be under the home position (117) of the reagent disk 114 or the pipetter 116. A magnetic particle reagent container 140 having a magnetic particle reagent 141 is present on the reagent disk 114.

まず装置の蓋開閉機構118により磁性粒子試薬容器140およびエタノール容器130の蓋を開ける(S101)。ビーズ攪拌119により磁性粒子試薬141を攪拌する(S102)が、試薬組成によってはこの時に泡が発生することがある。   First, the lids of the magnetic particle reagent container 140 and the ethanol container 130 are opened by the lid opening / closing mechanism 118 of the apparatus (S101). The magnetic particle reagent 141 is stirred by the bead stirring 119 (S102). Depending on the reagent composition, bubbles may be generated at this time.

ピペッタ116はエタノール容器130に移動し(S103)、エタノール131の液面Aを検知して(S104)、規定値分(d1cm)上昇する。上昇した位置Bでシリンジ112動作によりエタノール蒸気の吸引を行い(S105)、そのまま磁性粒子試薬容器140の磁性粒子試薬141上にピペッタ116を移動させる(S106)。   The pipetter 116 moves to the ethanol container 130 (S103), detects the liquid level A of the ethanol 131 (S104), and rises by a specified value (d1 cm). Ethanol vapor is sucked by the operation of the syringe 112 at the raised position B (S105), and the pipetter 116 is moved onto the magnetic particle reagent 141 in the magnetic particle reagent container 140 as it is (S106).

磁性粒子試薬141上では規定のエタノール蒸気吐出位置E(d2)において吐出操作を行い、攪拌により発生した泡を消泡する。エタノール蒸気吐出位置E(d2)は、泡から離れた位置であればよく、図3のように、容器入口近傍から吐出してもよい。消泡後にピペッタを下降させ、液面検知(S108)後、規定量(d3cm)下降した位置で磁性粒子試薬の吸引を行う(S109)。   On the magnetic particle reagent 141, a discharge operation is performed at a specified ethanol vapor discharge position E (d2) to eliminate bubbles generated by stirring. The ethanol vapor discharge position E (d2) may be a position away from the bubbles and may be discharged from the vicinity of the container inlet as shown in FIG. After defoaming, the pipetter is lowered, and after detecting the liquid level (S108), the magnetic particle reagent is aspirated at a position where the specified amount (d3 cm) is lowered (S109).

この後、ピペッタ116は、反応容器150へ移動(S110)し磁性粒子試薬を反応容器150に吐出し(S111)、ホームポジション117へ移動し(S112)ノズルを洗浄して(S113)一連の操作を終了させる。   Thereafter, the pipetter 116 moves to the reaction container 150 (S110), discharges the magnetic particle reagent to the reaction container 150 (S111), moves to the home position 117 (S112), and cleans the nozzle (S113). End.

図4は、本発明の自動分析装置で行う測定例を示すプロトコルを示す図である。この装置を用いて、図4に示す測定プロトコルに従い、HBs−Ag(B型肝炎表面抗原)の免疫測定を行った。検体としてヒト血清を用い、担体にはマウス由来の抗HBsモノクローナル抗体を結合させた磁性粒子(100μg/mL)を用いた。磁性粒子試薬には0.1%BSAを含んでいる。サンプルディスク113上の検体50μLを反応容器フィーダー120よりフィードされたホームポジション117上の反応容器150にピペッタ116を用いて分注する。   FIG. 4 is a diagram showing a protocol showing a measurement example performed by the automatic analyzer of the present invention. Using this apparatus, immunoassay of HBs-Ag (hepatitis B surface antigen) was performed according to the measurement protocol shown in FIG. Human serum was used as a specimen, and magnetic particles (100 μg / mL) to which a mouse-derived anti-HBs monoclonal antibody was bound were used as a carrier. The magnetic particle reagent contains 0.1% BSA. Using the pipetter 116, 50 μL of the specimen on the sample disk 113 is dispensed into the reaction container 150 on the home position 117 fed from the reaction container feeder 120.

ここに磁性粒子試薬200μLを加えるが、磁性粒子試薬は試薬ディスク114上に設置されており、分注前にはビーズ攪拌119により攪拌される。試薬ディスク114にはエタノールも設置されており、ピペッタ116は磁性粒子試薬分注前に、エタノール蒸気を吸引し、磁性粒子試薬の上方にこの蒸気を吹き付けてから磁性粒子試薬を吸引し、反応試薬に分注する(S201)。2液が分注された反応容器150は、グリッパ108によりインキュベータ109上に移され、37℃にて10分間インキュベーション(S202)した後、洗浄ユニット104により第1B/F分離(S203)を行った。   200 μL of the magnetic particle reagent is added here, and the magnetic particle reagent is placed on the reagent disk 114 and is stirred by the bead stirring 119 before dispensing. Ethanol is also installed in the reagent disk 114, and the pipetter 116 sucks ethanol vapor before dispensing the magnetic particle reagent, blows the vapor above the magnetic particle reagent, and then sucks the magnetic particle reagent, and the reaction reagent (S201). The reaction vessel 150 into which the two liquids were dispensed was transferred onto the incubator 109 by the gripper 108, incubated at 37 ° C. for 10 minutes (S202), and then subjected to the first B / F separation (S203) by the washing unit 104. .

第一B/F分離(S203)後、試薬ディスク114に設置された酵素標識抗体350μLを反応容器150に添加する(S204)。この酵素標識抗体にはアルカリホスファターゼ(ALP)により標識されたマウス由来の抗HBsモノクローナル抗体0.8μg/mLが含まれている。反応容器内で担体とよく混合し、37℃にて10分間インキュベーションした(S205)後、第2B/F分離(S206)を行った。   After the first B / F separation (S203), 350 μL of enzyme-labeled antibody placed on the reagent disk 114 is added to the reaction vessel 150 (S204). This enzyme-labeled antibody contains 0.8 μg / mL of anti-HBs monoclonal antibody derived from mouse labeled with alkaline phosphatase (ALP). After mixing well with the carrier in the reaction vessel and incubating at 37 ° C. for 10 minutes (S205), the second B / F separation (S206) was performed.

最後に、基質115に設置されたAMPPD (3−(2’−spiroadamantane)−4−methoxy−4−(3”−phosphoryloxy)phenyl−1,2−dioxetane disodium salt / 3−(2’−スピロアダマンタン)−4−メトキシ−4−(3”−ホスホリルオキシ)フェニル−1,2−ジオキセタン・2ナトリウム塩)0.2mg/mLを含む基質液200μLを反応容器に加え(S207)、37℃にて5分間インキュベーションし、検出器105内で波長477nmにて発光量を測定した(S208)。この時の発光量はアルカリホスファターゼにより分解されたAMPPD量に依存するため、発光量を血清中のHBs−Ag量に換算することが可能である。   Finally, AMPPD (3- (2′-spiradamantane) -4-methyl-4- (3 ″ -phosphoryoxy) phenyl-1,2-dioxetane disodium salt / 3- (2′-spiroadamantane) placed on the substrate 115 ) -4-Methoxy-4- (3 ″ -phosphoryloxy) phenyl-1,2-dioxetane disodium salt) 200 μL of a substrate solution containing 0.2 mg / mL was added to the reaction vessel (S207) at 37 ° C. After incubation for 5 minutes, the amount of luminescence was measured in the detector 105 at a wavelength of 477 nm (S208). Since the amount of luminescence at this time depends on the amount of AMPPD decomposed by alkaline phosphatase, the amount of luminescence can be converted into the amount of HBs-Ag in serum.

なお、エタノール容器および周辺温度を規定するとエタノールの安定した蒸気量が得られる。特許文献2の「化学分析装置及びそれに使用する試薬装置」に開示されているように、試薬容器の内径と高さの比を調節することにより、エタノールの蒸気量を調整することができる。また同じく特許文献2にあるように、試薬容器の開口端を試薬容器の内部断面より小さくする等、容器の形状を変更することも効果的である。ただし、エタノール蒸気による消泡はごく少量の蒸気でも効果があるため、蒸気量の規定を厳密に行う必要はない。   In addition, when the ethanol container and the ambient temperature are defined, a stable vapor amount of ethanol can be obtained. As disclosed in “Chemical analysis apparatus and reagent apparatus used therefor” in Patent Document 2, the amount of ethanol vapor can be adjusted by adjusting the ratio between the inner diameter and the height of the reagent container. Similarly, as disclosed in Patent Document 2, it is also effective to change the shape of the container, such as making the opening end of the reagent container smaller than the internal cross section of the reagent container. However, since defoaming with ethanol vapor is effective even with a very small amount of vapor, it is not necessary to strictly define the vapor amount.

以上説明したように本発明によれば、試薬容器内の試薬液面上に泡、或いは泡の層が存在した場合、真の液面ではなく泡の層を検知してしまい、プローブの先端が液面に到達せずに分注してしまい、つまり液体の試薬ではなく泡の試薬を分注し、最終的に分析結果異常となる危険性を有していたが、本発明を実施することにより、前述試薬上の泡の層を消泡し、確実に試薬液面に到達し、期待量を定量吸引することができ、確実な吸引動作を行うことができ安定した分析結果を得ることができる。   As described above, according to the present invention, when a bubble or a bubble layer is present on the reagent liquid level in the reagent container, the bubble layer is detected instead of the true liquid level, and the tip of the probe is Dispensing without reaching the liquid surface, that is, dispensing a bubble reagent instead of a liquid reagent, and finally there was a risk of an abnormal analysis result. The foam layer on the reagent is defoamed, the reagent liquid level is reliably reached, the expected amount can be aspirated quantitatively, a reliable aspiration operation can be performed, and a stable analysis result can be obtained. it can.

本発明の自動分析装置の一実施形態の概略を示す平面図である。It is a top view which shows the outline of one Embodiment of the automatic analyzer of this invention. 本発明の自動分析装置の消泡の一実施形態であるプロトコルを示す図である。It is a figure which shows the protocol which is one Embodiment of the defoaming of the automatic analyzer of this invention. 本発明の自動分析装置の消泡の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the defoaming of the automatic analyzer of this invention. 本発明の自動分析装置で行う測定例を示すプロトコルを示す図である。It is a figure which shows the protocol which shows the example of a measurement performed with the automatic analyzer of this invention.

符号の説明Explanation of symbols

104 洗浄ユニット(2箇所)
105 検出器
108 グリッパー
109 インキュベータ
112 シリンジ(装置下部)
113 サンプルディスク
114 試薬ディスク
115 基質
116 ピペッタ(分注プローブ)(2箇所)
117 ピペッタチップ(ホームポジション)
118 ふた開閉機構
119 ビーズ攪拌
130 エタノール容器
131 エタノール
140 磁性粒子試薬容器
141 磁性粒子試薬
150 反応容器
A エタノール液面
B エタノール蒸気吸引位置
C 磁性粒子試薬吸引位置
D 磁性粒子試薬液面
E エタノール蒸気吐出位置
104 Cleaning units (2 locations)
105 Detector 108 Gripper 109 Incubator 112 Syringe (lower part of device)
113 Sample disc 114 Reagent disc 115 Substrate 116 Pipetter (dispensing probe) (2 locations)
117 Pipettor tip (Home position)
118 Lid opening / closing mechanism 119 Bead stirring 130 Ethanol container 131 Ethanol 140 Magnetic particle reagent container 141 Magnetic particle reagent 150 Reaction container A Ethanol liquid level B Ethanol vapor suction position C Magnetic particle reagent suction position D Magnetic particle reagent liquid level E Ethanol vapor discharge position

Claims (5)

制御部と、揮発性物質を収容する第1の試薬容器と、分析用試薬を収容する第2の試薬容器と、反応容器と、前記各容器間を移動可能で試薬や蒸気の吸引及び吐出が可能で液面検出機能を備え前記制御部により制御可能な分注プローブとを備えた自動分析装置において、
前記分注プローブは、前記制御部の制御により、前記第1の試薬容器において揮発性物質の蒸気を吸引し、前記第2試薬容器において分析用試薬上部に吸引した蒸気を吐出し、分析用試薬の液面検知を行い、分析用試薬を吸引し、前記反応容器において吸引した分析用試薬を吐出することを特徴とする自動分析装置。
A controller, a first reagent container that contains a volatile substance, a second reagent container that contains a reagent for analysis, a reaction container, and a reagent and vapor that can be moved and moved between the containers. In an automatic analyzer equipped with a dispensing probe capable of being controlled by the control unit with a liquid level detection function,
The dispensing probe sucks the vapor of the volatile substance in the first reagent container and discharges the vapor sucked on the upper part of the analysis reagent in the second reagent container under the control of the control unit. The liquid analyzer is detected, the analytical reagent is sucked, and the analytical reagent sucked in the reaction container is discharged.
請求項1に記載の自動分析装置おいて、
前記揮発性物質が低級アルコールであることを特徴とする自動分析装置。
In the automatic analyzer according to claim 1,
An automatic analyzer characterized in that the volatile substance is a lower alcohol.
請求項1に記載の自動分析装置おいて、
揮発性物質がケトンの中で分子量が小さいことにより揮発性のある物質であることを特徴とする自動分析装置。
In the automatic analyzer according to claim 1,
An automatic analyzer characterized in that a volatile substance is a substance that is volatile due to its low molecular weight among ketones.
請求項1から請求項3のいずれか一項に記載の自動分析装置において、
前記第1の試薬容器が、前記第2の試薬容器が複数設置できる試薬保冷部に、分析用試薬と共に設置され、温度コントロールされていることを特徴とする自動分析装置。
In the automatic analyzer according to any one of claims 1 to 3,
An automatic analyzer characterized in that the first reagent container is installed with a reagent for analysis in a reagent cold storage unit in which a plurality of the second reagent containers can be installed, and the temperature is controlled.
請求項1から請求項3のいずれか一項に記載の自動分析装置において、
前記分注用プローブのホームポジションは、前記第2の試薬容器上であることを特徴とする自動分析装置。
In the automatic analyzer according to any one of claims 1 to 3,
The automatic analyzer according to claim 1, wherein a home position of the dispensing probe is on the second reagent container.
JP2008003318A 2008-01-10 2008-01-10 Automatic analyzer Active JP4966875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003318A JP4966875B2 (en) 2008-01-10 2008-01-10 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003318A JP4966875B2 (en) 2008-01-10 2008-01-10 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2009162734A true JP2009162734A (en) 2009-07-23
JP4966875B2 JP4966875B2 (en) 2012-07-04

Family

ID=40965504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008003318A Active JP4966875B2 (en) 2008-01-10 2008-01-10 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP4966875B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259523A (en) * 1985-05-13 1986-11-17 Sony Corp Developing method and developing device used therefor
JPH05164663A (en) * 1991-12-12 1993-06-29 Ebara Infilco Co Ltd Method and device for measuring concentration of constituent within liquid
JPH0894628A (en) * 1994-09-28 1996-04-12 Lion Corp Vessel preprocessing device for analysis
JP2004170279A (en) * 2002-11-21 2004-06-17 Hitachi High-Technologies Corp Automatic analyzer
WO2006080579A1 (en) * 2005-01-31 2006-08-03 Fujifilm Corporation Method for preparing sample solution and sample solution preparing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259523A (en) * 1985-05-13 1986-11-17 Sony Corp Developing method and developing device used therefor
JPH05164663A (en) * 1991-12-12 1993-06-29 Ebara Infilco Co Ltd Method and device for measuring concentration of constituent within liquid
JPH0894628A (en) * 1994-09-28 1996-04-12 Lion Corp Vessel preprocessing device for analysis
JP2004170279A (en) * 2002-11-21 2004-06-17 Hitachi High-Technologies Corp Automatic analyzer
WO2006080579A1 (en) * 2005-01-31 2006-08-03 Fujifilm Corporation Method for preparing sample solution and sample solution preparing apparatus

Also Published As

Publication number Publication date
JP4966875B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP6013303B2 (en) Pipetting device and pipetting method of test liquid
JP6742463B2 (en) How to recommend automatic analyzers and need for maintenance
JP4938082B2 (en) Cleaning device, suction nozzle clogging detection method, and automatic analyzer
JP5178830B2 (en) Automatic analyzer
JP4938083B2 (en) Cleaning device, cleaning nozzle clogging detection method, and automatic analyzer
US11754580B2 (en) Sample measurement method and sample measurement device
US10527638B2 (en) Automated analyzer and nozzle-cleaning method
JP2005091302A (en) Dispensing method for chemical analyzing apparatus, and dilution vessel used therefor
WO2017145672A1 (en) Automated analysis device and cleaning method
JP2010210596A (en) Autoanalyzer and probe cleaning method
JP2016217921A (en) Automatic analyzer
JP5583337B2 (en) Automatic analyzer and its dispensing method
JP2010249661A (en) Analyzer
JP2014070915A (en) Liquid sucking method, and solid phase washing method using the same
JP2015215274A (en) Automatic analysis device and analysis method
JP4422658B2 (en) Liquid dispensing device
JP2002311034A (en) Device and method for immunoassay
JP4966875B2 (en) Automatic analyzer
US20190018029A1 (en) Automated Analysis Device and Automated Analysis Method
JP6539367B2 (en) Reaction vessel of automatic analyzer
US20200300879A1 (en) Specimen measurement device, specimen measurement method, and nozzle
JP5046804B2 (en) Automatic analyzer
JP2009222533A (en) Automatic analyzer
JP7171641B2 (en) Reagent container rack and sample analyzer
WO2010150502A1 (en) Automatic analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Ref document number: 4966875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350