JP2009161797A - Film deposition source and film deposition apparatus - Google Patents

Film deposition source and film deposition apparatus Download PDF

Info

Publication number
JP2009161797A
JP2009161797A JP2007340378A JP2007340378A JP2009161797A JP 2009161797 A JP2009161797 A JP 2009161797A JP 2007340378 A JP2007340378 A JP 2007340378A JP 2007340378 A JP2007340378 A JP 2007340378A JP 2009161797 A JP2009161797 A JP 2009161797A
Authority
JP
Japan
Prior art keywords
organic material
evaporation
connection pipe
chamber
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007340378A
Other languages
Japanese (ja)
Other versions
JP4996452B2 (en
Inventor
Toshio Negishi
敏夫 根岸
Tatsuhiko Koshida
達彦 越田
Hideyuki Hiraiwa
秀行 平岩
Hisamitsu Nakamura
寿充 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007340378A priority Critical patent/JP4996452B2/en
Publication of JP2009161797A publication Critical patent/JP2009161797A/en
Application granted granted Critical
Publication of JP4996452B2 publication Critical patent/JP4996452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of evaporating an organic material by each small amount without deteriorating the material. <P>SOLUTION: An ingress preventive member 76 is provided on a lower end of a feed shaft 71 inserted in a connection pipe 40, and the conductance of a lower end of the connection pipe 40 is reduced. A powder organic material 63 arranged inside a tank chamber 60 is moved inside an evaporation chamber 20a, and any ingress of the organic material vapor generated in the evaporation chamber 20a into the connection pipe 40 can be prevented when generating the organic material vapor inside the evaporation chamber 20a. Heated shield gas is introduced in the connection pipe 40, and jetted out into the evaporation chamber 20a. Since the organic material vapor is allowed to flow by the shield gas to further prevent ingress of the vapor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は有機薄膜を形成する技術に関し、特に、有機薄膜を形成するための有機材料蒸気を発生する成膜源と、その成膜源を有する成膜装置に関する。   The present invention relates to a technique for forming an organic thin film, and more particularly to a film forming source that generates an organic material vapor for forming an organic thin film, and a film forming apparatus having the film forming source.

有機EL素子は近年最も注目される表示素子の一つであり、高輝度で応答速度が速いという優れた特性を有している。
有機EL素子を用いたカラーの表示パネルは、ガラス基板上に赤、緑、青の三色の異なる色で発色する発光領域が配置されている。発光領域は、金属薄膜のアノード電極膜と、有機薄膜のホール注入層、ホール輸送層、発光層、電子輸送層と、金属薄膜の電子注入層及びカソード電極膜とがこの順序で積層されて構成されており、発光層中に添加されている発色剤によって、赤、緑、青、又は補助的な黄色に発色するようになっている。
The organic EL element is one of the display elements that have attracted the most attention in recent years, and has excellent characteristics such as high brightness and fast response speed.
In a color display panel using an organic EL element, a light emitting region that emits three different colors of red, green, and blue is arranged on a glass substrate. The light emitting region is composed of a metal thin film anode electrode film, an organic thin film hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a metal thin film electron injection layer and a cathode electrode film stacked in this order. The color former added in the light emitting layer is colored in red, green, blue, or auxiliary yellow.

このような有機薄膜を形成するためには、従来では、図4に示すように、多量の有機材料200が配置された蒸気発生源212を真空槽211の内部に配置しておき、蒸気発生源212を加熱して、蒸気発生源212に設けられた多数の小孔224から有機材料200の蒸気を放出させ、真空槽211の内部に搬入された成膜対象物205に次々薄膜を形成するようにしていた。   In order to form such an organic thin film, conventionally, as shown in FIG. 4, a steam generation source 212 in which a large amount of organic material 200 is disposed is disposed inside a vacuum chamber 211, and a steam generation source is formed. 212 is heated so that the vapor of the organic material 200 is released from a large number of small holes 224 provided in the vapor generation source 212, and a thin film is successively formed on the film formation target 205 carried into the vacuum chamber 211. I was doing.

このような蒸気発生源212では、有機材料200が長時間加熱されたままになるため、劣化や変質が起こり、成膜対象物205に形成される有機薄膜の品質を維持することができない。
なお、気体を用いる蒸気発生源には、例えば下記文献に記載されたようなものがある。
特表2001−523768号公報 特表2004−510058号公報
In such a vapor generation source 212, since the organic material 200 remains heated for a long time, deterioration and alteration occur, and the quality of the organic thin film formed on the film formation target 205 cannot be maintained.
Examples of the steam generation source using gas include those described in the following documents.
JP-T-2001-523768 Special Table 2004-510058 gazette

本発明の課題は、有機材料を変質させることなく、少量ずつ蒸発させられる技術を提供することにある。   An object of the present invention is to provide a technique that can be evaporated little by little without altering the organic material.

本発明は、上記課題を解決するため、粉体の有機材料が配置されるタンク室と、前記有機材料を蒸発させる蒸発室と前記タンク室と前記蒸発室とを接続し、前記タンク室内の前記有機材料が前記蒸発室の内部に移動する際に前記有機材料が通過する接続管と、前記接続管には、前記接続管の内部にシールドガスを導入するガス供給装置が接続され、前記接続管の前記シールドガスが導入される位置よりも前記蒸発室に近い位置には先窄まりの漏斗部が形成された成膜源である。
また、本発明は、前記タンク室内から前記接続管内に亘って挿入された供給軸と、前記供給軸の周囲に形成され、上端が前記タンク室内に位置し、下端が前記接続管内に位置する螺旋と前記供給軸の下端に設けられ、前記接続管の内部に位置する侵入防止部材とを有し、前記侵入防止部材の外周と前記接続管の下部内壁面との間で隙間が形成された成膜源である。
また、本発明は、前記侵入防止部材の下端は円錐状の尖鋭形状にされた成膜源である。
また、本発明は、前記接続管の下端は先窄まりに形成され、前記侵入防止部材の前記尖鋭形状の部分は前記先窄まりの部分に配置された成膜源である。
また、本発明は、前記螺旋は、該螺旋の上端から前記接続管内に位置する部分までの連続した部分を含む運搬部と、該螺旋の下端を含み、上部が前記運搬部に接続された落下部とを有し、前記落下部の前記溝の傾きは、前記運搬部の前記溝の傾きよりも大きくされ、前記運搬部の前記溝内から前記落下部の前記溝内に移動した前記有機材料は、前記落下部の前記溝を通過し、前記落下部の前記溝の下端から落下するように構成された成膜源である。
また、本発明は、前記接続管の壁面のうち、前記運搬部の周囲の部分よりも下方位置に、前記接続管の内部にシールドガスを導入するガス導入孔が設けられた成膜源である。
また、本発明は、前記接続管に導入される前記シールドガスを加熱するガス加熱装置を有する成膜源である。
また、本発明は、前記蒸発室の内部に配置され、水平方向に対して傾斜された蒸発面が上方に向けられた蒸発体と、前記蒸発体を前記有機材料の蒸発温度以上の温度に加熱する蒸発体加熱装置とを有し、前記有機材料は、前記蒸発面上に落下するように構成された成膜源である。
また、本発明は、前記蒸発面上には、突起が設けられた成膜源である。
また、本発明は、上記いずれかの成膜源と、前記蒸発室に接続され、前記蒸発室から供給された有機材料蒸気を真空雰囲気中に放出する放出装置とを有する成膜装置である。
In order to solve the above problems, the present invention connects a tank chamber in which an organic powder material is disposed, an evaporation chamber for evaporating the organic material, the tank chamber, and the evaporation chamber, A connecting pipe through which the organic material passes when the organic material moves into the evaporation chamber, and a gas supply device for introducing a shielding gas into the connecting pipe are connected to the connecting pipe, and the connecting pipe This is a film forming source in which a tapered funnel portion is formed at a position closer to the evaporation chamber than a position where the shielding gas is introduced.
The present invention also provides a supply shaft inserted from the tank chamber into the connection pipe, a spiral formed around the supply shaft, an upper end located in the tank chamber, and a lower end located in the connection tube. And an intrusion prevention member provided at the lower end of the supply shaft and located inside the connection pipe, and a gap is formed between the outer periphery of the intrusion prevention member and the lower inner wall surface of the connection pipe. It is a film source.
Moreover, this invention is a film-forming source in which the lower end of the said intrusion prevention member was made into the conical sharp shape.
According to the present invention, the lower end of the connection pipe is formed in a tapered shape, and the sharp portion of the intrusion prevention member is a film forming source disposed in the tapered portion.
According to the present invention, the spiral includes a transport part including a continuous part from an upper end of the spiral to a part located in the connection pipe, and a drop in which the upper part is connected to the transport part. And the inclination of the groove of the drop part is larger than the inclination of the groove of the transport part, and the organic material has moved from within the groove of the transport part into the groove of the drop part. Is a film forming source configured to pass through the groove of the dropping part and fall from the lower end of the groove of the dropping part.
Further, the present invention is a film forming source in which a gas introduction hole for introducing a shielding gas into the inside of the connection pipe is provided in a position below a wall portion of the connection pipe and a portion around the transport portion. .
Moreover, this invention is a film-forming source which has a gas heating apparatus which heats the said shielding gas introduced into the said connection pipe.
The present invention also provides an evaporator disposed inside the evaporation chamber and having an evaporation surface inclined with respect to the horizontal direction directed upward, and heating the evaporator to a temperature equal to or higher than the evaporation temperature of the organic material. And the organic material is a film forming source configured to fall on the evaporation surface.
Further, the present invention is a film forming source in which a protrusion is provided on the evaporation surface.
In addition, the present invention is a film forming apparatus including any one of the above film forming sources and a discharge device that is connected to the evaporation chamber and discharges the organic material vapor supplied from the evaporation chamber into a vacuum atmosphere.

本発明は上記のように構成されており、タンク室、接続管、蒸発室内を真空雰囲気にし、供給軸を中有心軸線を中心として回転させ、タンク室内の有機材料を螺旋の溝に沿って少量ずつ蒸発室内に移動させる。   The present invention is configured as described above, and the tank chamber, the connecting pipe, and the evaporation chamber are placed in a vacuum atmosphere, the supply shaft is rotated around the central axis, and a small amount of organic material in the tank chamber is formed along the spiral groove. Move to the evaporation chamber one by one.

侵入防止部材と接続管との間に形成される隙間の大きさは、接続管にシールドガスが導入される部分の供給軸と接続管の間の隙間よりも狭くなっており、蒸発室の内部で生成された有機材料蒸気が接続管の内部に侵入しないようになっている。   The size of the gap formed between the intrusion prevention member and the connecting pipe is narrower than the gap between the supply shaft and the connecting pipe at the portion where the shield gas is introduced into the connecting pipe, and the inside of the evaporation chamber The organic material vapor generated in step 3 does not enter the inside of the connecting pipe.

接続管内にシールドガスが導入されると、接続管の下端から蒸発室の内部にシールドガスが噴出され、シールドガスのガス流によって、蒸発室内で発生した有機材料蒸気は接続管の内部に侵入できない。従って、接続管の内部やタンク室の内部が低温でも、それらの表面に有機材料が析出しない。
蒸発室内で有機材料が析出しないように、蒸発室の内部表面は有機材料の蒸発温度よりも高い温度に昇温されている。
When the shield gas is introduced into the connection pipe, the shield gas is ejected from the lower end of the connection pipe into the evaporation chamber, and the organic material vapor generated in the evaporation chamber cannot enter the connection pipe due to the gas flow of the shield gas. . Therefore, even if the inside of the connecting pipe or the inside of the tank chamber is at a low temperature, no organic material is deposited on the surfaces thereof.
The inner surface of the evaporation chamber is heated to a temperature higher than the evaporation temperature of the organic material so that the organic material does not precipitate in the evaporation chamber.

蒸発室の内部には、水平方向から90°未満の角度で傾斜された蒸発面を有する蒸発体が配置されており、蒸発室内に移動した有機材料は蒸発面上に落下し、蒸発面上を滑り落ちる間に蒸発するようになっている。   An evaporation body having an evaporation surface inclined at an angle of less than 90 ° from the horizontal direction is disposed inside the evaporation chamber, and the organic material that has moved into the evaporation chamber falls on the evaporation surface and moves on the evaporation surface. It evaporates while sliding down.

蒸発室内で生成された有機材料蒸気が接続管やタンク室内に侵入しないので、接続管内で有機材料蒸気が析出したり、タンク室の内部の有機材料が固まることがなく、有機材料を少量ずつ確実に落下させることができる。   Since the organic material vapor generated in the evaporation chamber does not enter the connection pipe or tank chamber, the organic material vapor does not precipitate in the connection pipe or the organic material inside the tank chamber is solidified, so that the organic material can be surely obtained little by little. Can be dropped.

図1の符号10は本発明の成膜装置を示している。
この成膜装置10は真空槽11を有している。
真空槽11の内部には放出装置80と、成膜源12が配置されている。
成膜源12は、図2に示すように、蒸発装置20とタンク室60を有している。
蒸発装置20は蒸発槽21を有しており、タンク室60はタンク容器61を有している。
タンク容器61は蒸発槽21の上方に配置されており、タンク容器61と蒸発槽21の間には、接続管40が配置されている。
Reference numeral 10 in FIG. 1 indicates a film forming apparatus of the present invention.
The film forming apparatus 10 has a vacuum chamber 11.
Inside the vacuum chamber 11, a discharge device 80 and a film forming source 12 are arranged.
As shown in FIG. 2, the film forming source 12 includes an evaporation device 20 and a tank chamber 60.
The evaporation device 20 has an evaporation tank 21, and the tank chamber 60 has a tank container 61.
The tank container 61 is disposed above the evaporation tank 21, and the connection pipe 40 is disposed between the tank container 61 and the evaporation tank 21.

接続管40はパイプ部41と漏斗部45を有しており、漏斗部45はパイプ部の下端に配置されている。
漏斗部45は先窄まりの下端が下方に向けられ、上端が上方に向けられている。漏斗部45の上端がパイプ部41の下端に接続され、漏斗部45の下端には小孔42が形成されている。
蒸発槽21の天井には開孔22が形成され、漏斗部45の下端は開孔22に接続されている。後述するように、蒸発槽21の内部は蒸発室20aとガス加熱室20bに区分けされており、小孔42は蒸発室20aに位置している。
The connecting pipe 40 has a pipe part 41 and a funnel part 45, and the funnel part 45 is arranged at the lower end of the pipe part.
The funnel portion 45 has a tapered lower end directed downward and an upper end directed upward. The upper end of the funnel portion 45 is connected to the lower end of the pipe portion 41, and a small hole 42 is formed at the lower end of the funnel portion 45.
An opening 22 is formed in the ceiling of the evaporation tank 21, and the lower end of the funnel portion 45 is connected to the opening 22. As will be described later, the inside of the evaporation tank 21 is divided into an evaporation chamber 20a and a gas heating chamber 20b, and the small hole 42 is located in the evaporation chamber 20a.

タンク容器61の底面には導入孔62が形成されており、パイプ部41の上端は導入孔62に接続され、タンク容器61の内部とパイプ部41の内部は導入孔62によって連通されており、従って、タンク容器61の内部空間と蒸発槽21の内部空間は接続管40によって連通されている。   An introduction hole 62 is formed in the bottom surface of the tank container 61, the upper end of the pipe part 41 is connected to the introduction hole 62, and the inside of the tank container 61 and the inside of the pipe part 41 are communicated by the introduction hole 62, Therefore, the internal space of the tank container 61 and the internal space of the evaporation tank 21 are communicated by the connection pipe 40.

放出装置80は、中空の放出容器81を有している。放出容器81の底面には複数の放出孔85が形成されており、放出容器81の内部空間は放出孔85によって真空槽11の内部空間と連通されている。
放出容器81は、蒸気供給管17によって蒸発槽21に接続されており、放出容器81の内部空間と蒸発槽21の内部空間は上記供給管17によって連通されている。
The discharge device 80 has a hollow discharge container 81. A plurality of discharge holes 85 are formed on the bottom surface of the discharge container 81, and the internal space of the discharge container 81 communicates with the internal space of the vacuum chamber 11 through the discharge holes 85.
The discharge container 81 is connected to the evaporation tank 21 by a vapor supply pipe 17, and the internal space of the discharge container 81 and the internal space of the evaporation tank 21 are communicated by the supply pipe 17.

真空槽11には真空排気系19が接続されており、真空排気系19によって真空槽11の内部は真空排気されており、放出容器81の内部は放出孔85を介して真空排気されている。
蒸気供給管17には開閉バルブ(不図示)が設けられており、開閉バルブを開状態にして放出容器81と蒸発槽21とを連通させると、蒸発槽21と、接続管40と、タンク容器61の内部空間は、放出容器81を介して真空排気される。
タンク容器61の上部には蓋部64が配置され、タンク容器61は蓋部64によって蓋がされ、タンク容器61内に大気が侵入しないようにされている。
An evacuation system 19 is connected to the vacuum chamber 11, and the inside of the vacuum chamber 11 is evacuated by the evacuation system 19, and the inside of the discharge container 81 is evacuated through a discharge hole 85.
The steam supply pipe 17 is provided with an open / close valve (not shown). When the open / close valve is opened and the discharge container 81 and the evaporation tank 21 communicate with each other, the evaporation tank 21, the connection pipe 40, and the tank container are provided. The internal space 61 is evacuated through the discharge container 81.
A lid portion 64 is disposed on the upper portion of the tank container 61, and the tank container 61 is covered with the lid portion 64 so that the atmosphere does not enter the tank container 61.

蒸発槽21と接続管40とタンク容器61との間の接続も気密にされている。蒸発槽21と接続管40は真空槽11の内部に配置され、タンク室61の蓋部64が大気と接触されている。タンク室61と真空槽11の間も気密に接続されており、真空槽11が真空排気された状態では、蒸発槽21、接続管40、タンク容器61には大気は侵入せず、内部はそれぞれ真空雰囲気に置かれるように構成されている。   Connections between the evaporation tank 21, the connection pipe 40, and the tank container 61 are also airtight. The evaporation tank 21 and the connection pipe 40 are disposed inside the vacuum tank 11, and the lid portion 64 of the tank chamber 61 is in contact with the atmosphere. The tank chamber 61 and the vacuum chamber 11 are also airtightly connected. When the vacuum chamber 11 is evacuated, the atmosphere does not enter the evaporation tank 21, the connection pipe 40, and the tank container 61. It is configured to be placed in a vacuum atmosphere.

なお、真空排気系19を蒸発槽21やタンク容器61に接続し、それぞれ真空排気系19によって真空排気してもよいし、真空槽11に接続された真空排気系19とは別の真空排気系を蒸発槽21やタンク容器61に接続し、真空槽11とは別に真空排気してもよい。   Note that the evacuation system 19 may be connected to the evaporation tank 21 and the tank container 61 and may be evacuated by the evacuation system 19, respectively. May be connected to the evaporation tank 21 or the tank container 61 and evacuated separately from the vacuum tank 11.

パイプ部41は断面が円形でありその内部には供給軸71が挿通されている。供給軸71の上部はタンク容器61の内部に突き出されており、下端には侵入防止部材76が設けられている。
侵入防止部材76は上端が供給軸71の下端に固定されており、侵入防止部材76は中央が太く、それよりも上部と下部は中央よりも細くされている。中央よりも下方の部分は円錐形状に形成され、尖鋭の部分が下方を向けられている。
侵入防止部材76の下部は漏斗部45の内部に位置しており、下端は漏斗部45下端の小孔42と同じ高さに配置されている。
The pipe part 41 has a circular cross section, and a supply shaft 71 is inserted into the pipe part 41. The upper portion of the supply shaft 71 protrudes into the tank container 61, and an intrusion prevention member 76 is provided at the lower end.
The upper end of the intrusion prevention member 76 is fixed to the lower end of the supply shaft 71, the intrusion prevention member 76 is thick at the center, and the upper and lower portions are thinner than the center. A portion below the center is formed in a conical shape, and a sharp portion is directed downward.
The lower portion of the intrusion prevention member 76 is located inside the funnel portion 45, and the lower end is disposed at the same height as the small hole 42 at the lower end of the funnel portion 45.

供給軸71の側面には、突条と突条間の溝で構成された螺旋72が形成されている。
螺旋72の上端はタンク容器61の内部に位置し、下端は接続管40のパイプ部41の内部に位置している。
On the side surface of the supply shaft 71, a spiral 72 constituted by a protrusion and a groove between the protrusions is formed.
The upper end of the spiral 72 is located inside the tank container 61, and the lower end is located inside the pipe portion 41 of the connection pipe 40.

螺旋72の突条の外周はパイプ部41の内周面と接触するか、少なくとも用いる有機材料の平均粒径よりも大幅に近接するように形成されており、タンク容器61の内部に粉体(粒径0.5mm〜2.0mm)の有機材料を配置しても、有機材料は、螺旋72外周とパイプ部41の間から落下しないように構成されている。符号63は、タンク容器61の内部に配置された有機材料を示している。   The outer periphery of the ridge of the spiral 72 is formed so as to be in contact with the inner peripheral surface of the pipe portion 41 or at least much closer to the average particle diameter of the organic material to be used. Even if an organic material having a particle size of 0.5 mm to 2.0 mm is disposed, the organic material is configured not to fall from between the outer periphery of the spiral 72 and the pipe portion 41. Reference numeral 63 indicates an organic material disposed inside the tank container 61.

また、タンク容器61の底面は導入孔62に向けて傾斜が形成されており、タンク容器61内に配置された有機材料63は螺旋72の溝内に入り込むように構成されている。   The bottom surface of the tank container 61 is inclined toward the introduction hole 62, and the organic material 63 disposed in the tank container 61 is configured to enter the groove of the spiral 72.

螺旋72は、タンク室61の内部から接続管40の内部まで連続した運搬部72aと、運搬部72aの下方に位置し、運搬部72aと連続した落下部72bとで構成されている。
螺旋72の傾斜のうち、運搬部72aの傾斜は緩く形成されており、供給軸71が静止した状態では、タンク容器61内の有機材料63は運搬部72aの溝内を滑り落ちないようにされている。
The spiral 72 includes a transport part 72a that is continuous from the inside of the tank chamber 61 to the inside of the connection pipe 40, and a drop part 72b that is positioned below the transport part 72a and that is continuous with the transport part 72a.
Of the inclination of the spiral 72, the conveyance portion 72a is formed so that the organic material 63 in the tank container 61 does not slide down in the groove of the conveyance portion 72a when the supply shaft 71 is stationary. ing.

タンク容器61内は真空雰囲気に置かれており、タンク容器61内に収容された有機材料63は大気と接触せず、水分等による劣化が生じない。
供給軸71はモータ77が接続されており、モータ77により、供給軸71が中心軸線を中心に回転すると、タンク容器61内部の有機材料63は運搬部72aの溝内に入り込み、回転量に比例した移動量で下方に移動する。
The inside of the tank container 61 is placed in a vacuum atmosphere, and the organic material 63 accommodated in the tank container 61 does not come into contact with the atmosphere and does not deteriorate due to moisture or the like.
The supply shaft 71 is connected to a motor 77. When the supply shaft 71 is rotated about the central axis by the motor 77, the organic material 63 inside the tank container 61 enters the groove of the transport portion 72a and is proportional to the rotation amount. Move downward with the amount of movement.

従って、モータ77と、供給軸71と、螺旋72の運搬部72aと、運搬部72aの周囲の接続管40によって、タンク容器61内の有機材料63を、タンク室60の内部から移動させる材料移動装置が構成されている。   Therefore, the material movement which moves the organic material 63 in the tank container 61 from the inside of the tank chamber 60 by the motor 77, the supply shaft 71, the conveyance part 72a of the spiral 72, and the connection pipe 40 around the conveyance part 72a. The device is configured.

落下部72bの螺旋(螺旋の溝と突条)の傾斜は急であり、運搬部72a内を移動して落下部72b内に入った有機材料は供給軸71が静止していても落下部72bの溝内を、落下部72bの突条に沿って落下する。
落下部72bの溝は接続管40の内部で開放されており、落下部72b内を落下した有機材料は、溝の下端から接続管40の内部に落とされる。
The slope of the spiral of the drop part 72b (spiral groove and protrusion) is steep, and the organic material that has moved in the transport part 72a and entered the drop part 72b is dropped even if the supply shaft 71 is stationary. Falls along the protrusions of the drop portion 72b.
The groove of the drop part 72b is opened inside the connection pipe 40, and the organic material dropped in the drop part 72b is dropped into the connection pipe 40 from the lower end of the groove.

侵入防止部材76の上部は円錐台形状であり、面積の小さな方の底面が供給軸71と同じ大きさにされ、供給軸71の下端に接続されている。
従って、侵入防止部材76の上部には、中心軸線の外側に向けて下がった傾斜が設けられており、接続管40の内部に落とされた有機材料は、侵入防止部材76の斜面に当たり、斜面上を落下する。
The upper part of the intrusion prevention member 76 has a truncated cone shape, and the bottom surface having the smaller area is the same size as the supply shaft 71 and is connected to the lower end of the supply shaft 71.
Accordingly, the upper part of the intrusion prevention member 76 is provided with a slope that is lowered toward the outside of the central axis, and the organic material dropped into the connection pipe 40 hits the slope of the intrusion prevention member 76, To fall.

パイプ部41の太さは一定であり、漏斗部45は上部は広くパイプ部41と同じ大きさに形成されている。漏斗部45の下部は先窄まりに形成されており、下端には小孔42が形成されている。   The thickness of the pipe part 41 is constant, and the upper part of the funnel part 45 is wide and is formed in the same size as the pipe part 41. A lower portion of the funnel portion 45 is formed to be tapered, and a small hole 42 is formed at the lower end.

侵入防止部材76と漏斗部45の間には、リング状の隙間が形成されている。有機材料は、侵入防止部材76の途中で漏斗部45の斜面上に移動し、漏斗部45で集められ、隙間を通って落下する。   A ring-shaped gap is formed between the intrusion prevention member 76 and the funnel portion 45. The organic material moves on the slope of the funnel portion 45 in the middle of the intrusion prevention member 76, is collected by the funnel portion 45, and falls through the gap.

漏斗部45の下端は蒸発槽21の開孔22に挿入されており、隙間を通過した有機材料は、蒸発槽21の内部に落下する。小孔42の大きさは1mmφ程度であり、パイプ部41の大きさは6mmφ程度であり、小孔42はパイプ部41よりも小さい。   The lower end of the funnel portion 45 is inserted into the opening 22 of the evaporation tank 21, and the organic material that has passed through the gap falls into the evaporation tank 21. The size of the small hole 42 is about 1 mmφ, the size of the pipe portion 41 is about 6 mmφ, and the small hole 42 is smaller than the pipe portion 41.

蒸発槽21の内部には隔壁板39が配置されており、蒸発槽21の内部は蒸発室20aとガス加熱室20bに二分されている。
上述したように、蒸発室20aの天井には小孔42が形成されており、小孔42には漏斗部45の下端が接続され、漏斗部45の小孔42によって、蒸発室20aの内部と接続管40の内部が連通されている。
蒸発室20aの小孔42の下方位置には、蒸発体30が配置されている。
A partition plate 39 is disposed inside the evaporation tank 21, and the inside of the evaporation tank 21 is divided into an evaporation chamber 20a and a gas heating chamber 20b.
As described above, the small hole 42 is formed in the ceiling of the evaporation chamber 20 a, the lower end of the funnel portion 45 is connected to the small hole 42, and the inside of the evaporation chamber 20 a is connected by the small hole 42 of the funnel portion 45. The inside of the connecting pipe 40 is communicated.
An evaporation body 30 is disposed below the small hole 42 in the evaporation chamber 20a.

蒸発体30は、水平方向に対して角度θ(0<θ<90°)傾斜された蒸発面35を有している。蒸発面35は、漏斗部45の小孔42の下方に位置しており、小孔42から蒸発室20a内に落とされた有機材料は蒸発面35上に落下し、有機材料が蒸発面35の広い範囲に散布されるようになっている。   The evaporation body 30 has an evaporation surface 35 inclined at an angle θ (0 <θ <90 °) with respect to the horizontal direction. The evaporation surface 35 is located below the small hole 42 of the funnel portion 45, and the organic material dropped into the evaporation chamber 20 a from the small hole 42 falls on the evaporation surface 35, and the organic material is removed from the evaporation surface 35. It is spread over a wide area.

蒸発槽21の外周には、線状の蒸発体加熱装置32が密着して巻き回されている。蒸発体加熱装置32は抵抗発熱体であり、加熱電源34によって通電すると発熱し、蒸発槽21の天井、側面、底面が加熱される。蒸発槽21からの熱伝導と放射熱によって、蒸発体30が加熱される。蒸発体30の内部には中空部38が設けられ、熱容量が小さくされており、短時間で昇温する。   A linear evaporator heating device 32 is tightly wound around the outer periphery of the evaporation tank 21. The evaporator heating device 32 is a resistance heating element, which generates heat when energized by the heating power supply 34, and heats the ceiling, side, and bottom of the evaporation tank 21. The evaporation body 30 is heated by heat conduction and radiant heat from the evaporation tank 21. A hollow portion 38 is provided inside the evaporation body 30 to reduce the heat capacity, and the temperature is raised in a short time.

有機材料が蒸発面35上に落下する前に、予め、蒸発体30は、蒸発面35が有機材料の蒸発温度以上の温度に昇温されるように加熱されており、有機材料が蒸発面35上に落下すると蒸発面35からの熱伝導によって加熱され、蒸発面35上を滑落又は転落しながら蒸発温度以上に昇温し、蒸発面35の下端に達する前に蒸発して有機材料蒸気が放出される。   Before the organic material falls on the evaporation surface 35, the evaporator 30 is heated in advance so that the evaporation surface 35 is heated to a temperature equal to or higher than the evaporation temperature of the organic material. When it falls down, it is heated by heat conduction from the evaporation surface 35, rises above the evaporation temperature while sliding or falling on the evaporation surface 35, evaporates before reaching the lower end of the evaporation surface 35, and releases organic material vapor. Is done.

なお、蒸発体加熱装置32を発熱させると蒸発槽21からの熱伝導により、漏斗部45の下端は有機材料の蒸発温度に近い温度か、蒸発温度よりも高い温度に加熱されるが、有機材料の温度は低く、有機材料が漏斗部45の斜面と接触するのは短時間であり、有機材料は漏斗部45の斜面上では蒸発温度に達しないため、接続管40の内部で有機材料の蒸気が発生することはない。   When the evaporator heating device 32 generates heat, the lower end of the funnel portion 45 is heated to a temperature close to or higher than the evaporation temperature of the organic material due to heat conduction from the evaporation tank 21. Since the temperature of the organic material does not reach the evaporation temperature on the slope of the funnel portion 45, the organic material does not reach the evaporation temperature on the slope of the funnel portion 45 for a short time. Will not occur.

真空槽11の外部にはガス供給装置25が配置されており、ガス供給装置25は外部配管26によってガス加熱室20bに接続され、ガス供給装置25に蓄積されたシールドガス(ここではアルゴンガス)がガス加熱室20bに供給されるように構成されている。シールドガスは、アルゴンガスやキセノンガス等の希ガスが用いられる。   A gas supply device 25 is disposed outside the vacuum chamber 11. The gas supply device 25 is connected to the gas heating chamber 20 b by an external pipe 26, and a shield gas (here, argon gas) accumulated in the gas supply device 25. Is configured to be supplied to the gas heating chamber 20b. As the shielding gas, a rare gas such as argon gas or xenon gas is used.

ガス加熱室20bは、内部配管29によって、接続管40に接続されている。
ガス加熱室20bの内部には気体が通過可能な細孔を多数有するフィルタ装置28が配置されている。ガス供給装置25からガス加熱室20bにシールドガスを供給すると、ガス加熱室20b内に導入されたシールドガスはフィルタ装置28の細孔内を流れ、内部配管29を通過して接続管40の内部に導入される。
The gas heating chamber 20 b is connected to the connection pipe 40 by an internal pipe 29.
A filter device 28 having a large number of pores through which gas can pass is disposed inside the gas heating chamber 20b. When the shielding gas is supplied from the gas supply device 25 to the gas heating chamber 20b, the shielding gas introduced into the gas heating chamber 20b flows through the pores of the filter device 28, passes through the internal piping 29, and enters the interior of the connection tube 40. To be introduced.

蒸発体加熱装置32は蒸発室20aの周囲とガス加熱室20bの周囲に配置されており、蒸発体加熱装置32を発熱させると蒸発体30と共にフィルタ装置28も加熱され、昇温する。
従って、ガス加熱室20b内に導入されたシールドガスは、フィルタ装置28の細孔を通過する間に加熱され、昇温されたシールドガスが、接続管40の内部に導入される。
The evaporator heating device 32 is disposed around the evaporation chamber 20a and the gas heating chamber 20b. When the evaporator heating device 32 generates heat, the filter device 28 is also heated together with the evaporator 30 to raise the temperature.
Therefore, the shield gas introduced into the gas heating chamber 20 b is heated while passing through the pores of the filter device 28, and the shield gas whose temperature has been raised is introduced into the connection pipe 40.

接続管40の内部に導入されるシールドガスの温度は、有機材料が変質する温度以下であることが好ましい。具体的には、接続管40の内部に導入されるシールドガスの温度は200℃以下である。   The temperature of the shield gas introduced into the connection pipe 40 is preferably equal to or lower than the temperature at which the organic material is altered. Specifically, the temperature of the shield gas introduced into the connection pipe 40 is 200 ° C. or less.

符号47は、接続管40に形成されたガス導入孔を示しており、内部配管29は、このガス導入孔47に接続されている。
ガス導入孔47は、侵入防止部材76よりも上部に配置されている。落下部72bの下端は侵入防止部材よりも上方に位置しており、シールドガスは、侵入防止部材の下端付近に導入されるように構成されている。
Reference numeral 47 denotes a gas introduction hole formed in the connection pipe 40, and the internal pipe 29 is connected to the gas introduction hole 47.
The gas introduction hole 47 is disposed above the intrusion prevention member 76. The lower end of the drop part 72b is located above the intrusion preventing member, and the shield gas is configured to be introduced near the lower end of the intrusion preventing member.

接続管40内に導入されたシールドガスは、小孔42から蒸発室20aの内部に噴出される。
小孔42から加熱されたシールドガスが噴出されると、接続管40の内部から蒸発室20aの内部に向けて流れるシールドガス流が形成される。蒸発面35で発生した有機材料蒸気は、漏斗部45の小孔42方向に向かって上昇しても、このシールドガス流に押し戻され、小孔42を通過できない。
The shield gas introduced into the connection pipe 40 is ejected from the small hole 42 into the evaporation chamber 20a.
When the shield gas heated from the small hole 42 is ejected, a shield gas flow that flows from the inside of the connection pipe 40 toward the inside of the evaporation chamber 20a is formed. Even if the organic material vapor generated on the evaporation surface 35 rises toward the small hole 42 of the funnel portion 45, it is pushed back by this shield gas flow and cannot pass through the small hole 42.

また、侵入防止部材76と接続管40の間の隙間は狭く、気体の流れのコンダクタンスが小さくされている。
従って、予め小孔42から加熱されたシールドガスを噴出させた状態で、タンク室60内部の有機材料を、シールドガスと共に小孔42を通過させて蒸発室20aの内部に移動させて有機材料蒸気を発生させ、そして蒸発室20aの内部に有機材料蒸気が存する間はシールドガスを小孔42から噴出させておけば、有機材料蒸気が接続管40の内部に侵入することはない。
Moreover, the clearance gap between the intrusion prevention member 76 and the connection pipe 40 is narrow, and the conductance of the gas flow is made small.
Therefore, in a state where the shield gas heated in advance from the small hole 42 is jetted, the organic material inside the tank chamber 60 is moved together with the shield gas through the small hole 42 and moved into the evaporation chamber 20a, thereby vaporizing the organic material. If the shielding gas is ejected from the small hole 42 while the organic material vapor exists in the evaporation chamber 20a, the organic material vapor does not enter the connection pipe 40.

侵入防止部材76の下端は尖鋭に形成されており、有機材料が下端に接触しても、下端に析出物が成長することはない。
蒸発室20a内部の有機材料蒸気は、蒸気供給管17を通って放出装置80の放出容器81の内部に移動し、放出孔85から真空槽11の内部に放出される。
The lower end of the intrusion prevention member 76 is sharply formed, and even when the organic material comes into contact with the lower end, no precipitate grows on the lower end.
The organic material vapor inside the evaporation chamber 20 a moves through the vapor supply pipe 17 into the discharge container 81 of the discharge device 80, and is discharged from the discharge hole 85 into the vacuum chamber 11.

図1に示すように、ここでは放出容器81の真下位置には基板ホルダ15が配置されており、基板ホルダ15上には成膜対象物の基板18が水平に配置されている。放出孔85は鉛直下方に向けられており、放出孔85から有機材料蒸気が放出されると、基板18の表面に散布される。放出孔85を上方に向け、成膜対象物を放出容器81の上方に配置してもよい。また、放出容器81を縦型とし、放出孔85を横方向に向け、縦に保持された基板に成膜してもよい。   As shown in FIG. 1, here, a substrate holder 15 is disposed immediately below the discharge container 81, and a substrate 18 as a film formation target is horizontally disposed on the substrate holder 15. The discharge holes 85 are directed vertically downward. When the organic material vapor is discharged from the discharge holes 85, the discharge holes 85 are dispersed on the surface of the substrate 18. The film formation target may be disposed above the discharge container 81 with the discharge hole 85 facing upward. Alternatively, the discharge container 81 may be a vertical type, and the film may be formed on a substrate held vertically with the discharge holes 85 oriented in the horizontal direction.

放出された有機材料蒸気が基板18の表面に到達すると、基板18の表面に有機材料の薄膜が成長する。放出容器81は、複数の管が櫛状に配置されており、基板18の概ね全面に蒸気を放出できるように配置されている。   When the released organic material vapor reaches the surface of the substrate 18, a thin film of organic material grows on the surface of the substrate 18. In the discharge container 81, a plurality of tubes are arranged in a comb shape, and are arranged so that vapor can be discharged almost over the entire surface of the substrate 18.

真空槽11内の圧力は、基板18と放出容器81の間の距離が、平均自由工程以下になるように制御される。具体的には、真空槽11内の圧力は1×10-2〜1×10-6Paであることが好ましい。この範囲の圧力で成膜されると、基板18には一般的な真空蒸着により膜が成膜される。 The pressure in the vacuum chamber 11 is controlled so that the distance between the substrate 18 and the discharge container 81 is equal to or less than the mean free path. Specifically, the pressure in the vacuum chamber 11 is preferably 1 × 10 −2 to 1 × 10 −6 Pa. When the film is formed at a pressure in this range, the film is formed on the substrate 18 by general vacuum deposition.

放出容器81の周囲にはヒータ88が配置され、ヒータ88によって加熱されており、放出容器81の内部が有機材料蒸気で充満しても、内部表面に有機材料蒸気が析出しないようにされている。   A heater 88 is arranged around the discharge container 81 and is heated by the heater 88 so that even if the inside of the discharge container 81 is filled with the organic material vapor, the organic material vapor is not deposited on the inner surface. .

なお、蒸発槽21の天井の内側表面には開孔22、小孔42を塞がないように補助発熱体23が配置され、天井には補助発熱体23が露出されている。
補助発熱体23内部にはヒータ線24が配置されており、ヒータ線24は加熱電源34からの通電によって発熱し、補助発熱体23を、蒸発槽21の内部表面の底面や側面の温度よりも高温に昇温させている。
An auxiliary heating element 23 is arranged on the inner surface of the ceiling of the evaporation tank 21 so as not to block the opening 22 and the small hole 42, and the auxiliary heating element 23 is exposed on the ceiling.
A heater wire 24 is arranged inside the auxiliary heating element 23, and the heater wire 24 generates heat when energized by a heating power source 34, and the auxiliary heating element 23 is made to be lower than the temperature of the bottom surface and side surface of the inner surface of the evaporation tank 21. The temperature is raised to a high temperature.

蒸発面35で発生した有機材料蒸気は天井側に向けて飛行し、補助発熱体23に衝突し、補助発熱体23から熱を奪うが、その熱はヒータ線24から供給されるから、補助発熱体23が有機材料の蒸発温度よりも低温になることはない。
また、補助発熱体23は、蒸発体30に面して配置されているため、補助発熱体23の温度を制御することにより、輻射により蒸発体30の温度を制御することができる。
The organic material vapor generated on the evaporation surface 35 flies toward the ceiling, collides with the auxiliary heating element 23 and takes heat from the auxiliary heating element 23, but the heat is supplied from the heater wire 24. The body 23 never becomes lower than the evaporation temperature of the organic material.
Further, since the auxiliary heating element 23 is disposed facing the evaporator 30, the temperature of the evaporation element 30 can be controlled by radiation by controlling the temperature of the auxiliary heating element 23.

漏斗部45の下端はヒータ線24によって加熱されており、漏斗部45の下端も有機材料の蒸発温度以上の温度に加熱されている。侵入防止部材76は漏斗部45からの輻射により加熱され、侵入防止部材76の下端も有機材料の蒸発温度以上の温度に加熱されている。   The lower end of the funnel portion 45 is heated by the heater wire 24, and the lower end of the funnel portion 45 is also heated to a temperature equal to or higher than the evaporation temperature of the organic material. The intrusion prevention member 76 is heated by radiation from the funnel 45, and the lower end of the intrusion prevention member 76 is also heated to a temperature equal to or higher than the evaporation temperature of the organic material.

侵入防止部材76および落下部72bの軸は、運搬部72aにある有機材料に蒸発室21からの熱が伝わらないように、セラミック等の熱伝導度の低い材料で形成されることが好ましい。   The shafts of the intrusion prevention member 76 and the drop part 72b are preferably formed of a material having low thermal conductivity such as ceramic so that heat from the evaporation chamber 21 is not transmitted to the organic material in the transport part 72a.

パイプ部41のうち、供給軸71の周囲に位置する部分には冷却装置(ここでは水冷パイプ)56が設けられており、その部分が冷却装置56によって冷却されると、加熱されたシールドガスが、落下部72bの溝内に充満しても、運搬部72aの溝内に位置する有機材料が蒸発温度以上に昇温したり、劣化したりしないようにされている。また、有機材料が溶融する場合は螺旋72溝内の有機材料が溶融温度以上に昇温しないようにされている。具体的には、有機材料が変質しないように200℃以下にすることが好ましい。   A cooling device (in this case, a water cooling pipe) 56 is provided in a portion of the pipe portion 41 located around the supply shaft 71, and when that portion is cooled by the cooling device 56, the heated shield gas is Even if the groove of the drop part 72b is filled, the organic material located in the groove of the transport part 72a is prevented from being heated to the evaporating temperature or deteriorated. Further, when the organic material is melted, the organic material in the spiral 72 groove is prevented from being heated to a temperature higher than the melting temperature. Specifically, the temperature is preferably 200 ° C. or lower so that the organic material does not change in quality.

さらに、運搬部72aの下端は蒸発槽21より上部に配置されている。運搬部72aの下端と、蒸発槽21の間が離間しているので、蒸発槽21の温度が、運搬部72aの下端に伝わることを制御し、螺旋72の下端の温度が上昇することを防いでいる。これにより、運搬部72aの下端付近の有機材料の変質もしくは溶解を防ぐことができる。   Furthermore, the lower end of the transport part 72a is disposed above the evaporation tank 21. Since the lower end of the conveyance part 72a and the evaporation tank 21 are separated, the temperature of the evaporation tank 21 is controlled to be transmitted to the lower end of the conveyance part 72a, and the temperature at the lower end of the spiral 72 is prevented from rising. It is out. Thereby, the quality change or melt | dissolution of the organic material of the conveyance part 72a vicinity vicinity can be prevented.

なお、パイプ部41の外周のうち、落下部72bの周囲の部分には環状の金属ブロック54が装着されており、この部分では、冷却装置56は金属ブロック54に設けられている。   An annular metal block 54 is attached to the periphery of the drop portion 72 b in the outer periphery of the pipe portion 41, and the cooling device 56 is provided on the metal block 54 in this portion.

接続管40の金属ブロック54が装着された部分は金属ブロック54を介して冷却され、冷却装置56が直接も受けられた部分よりも温度が高くなるため、冷却装置56によって接続管40を冷却しても接続管40の下端の温度が蒸発温度よりも低くならないようにされている。   The portion of the connecting pipe 40 to which the metal block 54 is attached is cooled through the metal block 54, and the temperature becomes higher than that of the portion to which the cooling device 56 is directly received. Therefore, the connecting device 40 is cooled by the cooling device 56. Even so, the temperature at the lower end of the connection tube 40 is set not to be lower than the evaporation temperature.

金属ブロック54と蒸発槽21の間にはセラミック等の断熱材53が配置され、金属ブロック54は断熱材53によって蒸発槽21上に支持されており、蒸発槽21の熱は金属ブロック54には伝達されない。   A heat insulating material 53 such as ceramic is disposed between the metal block 54 and the evaporation tank 21. The metal block 54 is supported on the evaporation tank 21 by the heat insulating material 53, and the heat of the evaporation tank 21 is transferred to the metal block 54. Not transmitted.

なお、図3に示すように、蒸発面35には、突起36が多数設けられている。突起36は、蒸発面35の頂上側に鋭角の刃が設けられ、蒸発面35の下端側が広げられている。従って、蒸発面35上に散布された有機材料が蒸発面35上を落下して突起36に接触すると、突起36によって有機材料の流れは二分され、有機材料が蒸発面35上に広く散布される。
その結果、有機材料と蒸発面35との間の接触面積が拡大されるため、有機材料の昇温速度が大きくなり、有機材料は蒸発面35の下端に到着する前に蒸発する。
As shown in FIG. 3, a large number of protrusions 36 are provided on the evaporation surface 35. The protrusion 36 is provided with an acute angle blade on the top side of the evaporation surface 35 and the lower end side of the evaporation surface 35 is widened. Therefore, when the organic material sprayed on the evaporation surface 35 falls on the evaporation surface 35 and comes into contact with the protrusion 36, the flow of the organic material is divided by the protrusion 36, and the organic material is widely distributed on the evaporation surface 35. .
As a result, since the contact area between the organic material and the evaporation surface 35 is expanded, the temperature rising rate of the organic material is increased, and the organic material evaporates before reaching the lower end of the evaporation surface 35.

なお、上記実施例では、蒸発槽21を区分けしたガス加熱室20b内にフィルタ装置28を配置し、フィルタ装置28と蒸発体加熱装置32によってシールドガスを加熱するガス加熱装置を構成させたが、蒸発槽21の外部にフィルタ装置28を配置し、そのフィルタ装置とフィルタ装置を加熱する装置とでシールドガスを加熱するガス加熱装置を構成してもよい。   In the above-described embodiment, the filter device 28 is arranged in the gas heating chamber 20b that separates the evaporation tank 21, and the gas heating device that heats the shield gas by the filter device 28 and the evaporator heating device 32 is configured. You may comprise the gas heating apparatus which arrange | positions the filter apparatus 28 outside the evaporation tank 21, and heats shield gas with the apparatus which heats the filter apparatus and filter apparatus.

フィルタ装置28は、多孔質SiC、網状SiCの積層体や金属製網の積層体、その他、気体が透過可能で高温に昇温されても分解したり、気体を放出しない材料で構成することができる。   The filter device 28 may be composed of porous SiC, a reticulated SiC laminate, a metal mesh laminate, or other materials that are permeable to gas and do not decompose or release gas even when heated to a high temperature. it can.

また、細孔内をシールドガスが流れるのではなく、長距離に敷設した細管を加熱しながらシールドガスを流し、シールドガスを加熱するようにしてもよい。
シールドガスについては、有機材料が変質したり化学変化しないガスを用いることができる。希ガスを一般的に用いることができる。
Further, the shield gas may be heated by flowing the shield gas while heating the narrow tube laid for a long distance instead of flowing the shield gas through the pores.
As the shielding gas, a gas in which the organic material is not altered or chemically changed can be used. A rare gas can generally be used.

接続管40の内部に導入されるシールドガスの温度は、有機材料が変質する温度以下であることが好ましい。具体的には、接続管40の内部に導入されるシールドガスの温度は200℃以下である。   The temperature of the shield gas introduced into the connection pipe 40 is preferably equal to or lower than the temperature at which the organic material is altered. Specifically, the temperature of the shield gas introduced into the connection pipe 40 is 200 ° C. or less.

なお、上記実施例では抵抗発熱体によって蒸発体加熱装置32を構成させたが、蒸発体30やフィルタ装置28を電磁誘導によって誘導電流が流れる材料で構成し、蒸発槽21の外部に誘導加熱コイルを配置し、蒸発体30やフィルタ装置28が置かれた雰囲気に交番磁界を形成して誘導電流を流し、蒸発体30やフィルタ装置28を誘導加熱するようにしてもよい。   In the above embodiment, the evaporator heating device 32 is configured by the resistance heating element. However, the evaporator 30 and the filter device 28 are configured by a material through which an induction current flows by electromagnetic induction, and an induction heating coil is provided outside the evaporation tank 21. May be arranged, an alternating magnetic field is formed in the atmosphere in which the evaporator 30 and the filter device 28 are placed, an induced current is passed, and the evaporator 30 and the filter device 28 may be induction-heated.

また、上記実施例では、モータ77と、供給軸71と、螺旋72と、螺旋72の周囲のパイプ部41によって、タンク容器61の内部に配置された有機材料を、タンク室60の内部から移動させる材料移動装置を構成させたが、タンク室60内の有機材料を、接続管40を通過させて、蒸発室20a内に少量ずつ供給できる装置であればよく、加熱されたシールドガスは接続管40に導入されるようにすればよい。   In the above embodiment, the organic material disposed in the tank container 61 is moved from the inside of the tank chamber 60 by the motor 77, the supply shaft 71, the spiral 72, and the pipe portion 41 around the spiral 72. The material transfer device is configured to be any device as long as it can supply the organic material in the tank chamber 60 through the connection pipe 40 to the evaporation chamber 20a little by little. The heated shield gas is connected to the connection pipe. 40 may be introduced.

蒸発面35へ供給される有機材料の分量と、その有機材料によって成膜対象物18表面に形成される有機薄膜の膜厚の関係は予め求められている。有機材料の螺旋72からの単位時間当たりの落下量は、供給軸71の回転速度と比例しており、有機薄膜の膜厚と成膜時間が予め決められている場合、供給軸71の回転速度が求められる。
決められた成膜時間内では供給軸71を一定速度で回転させ、一定の成膜速度で有機薄膜を形成すると、有機薄膜の品質が安定する。
The relationship between the amount of the organic material supplied to the evaporation surface 35 and the film thickness of the organic thin film formed on the surface of the film formation target 18 by the organic material is obtained in advance. The amount of organic material dropped from the spiral 72 per unit time is proportional to the rotation speed of the supply shaft 71. When the film thickness and the film formation time of the organic thin film are determined in advance, the rotation speed of the supply shaft 71 is determined. Is required.
When the supply shaft 71 is rotated at a constant speed within a predetermined film formation time and the organic thin film is formed at a constant film formation speed, the quality of the organic thin film is stabilized.

本発明の成膜装置を説明するための図The figure for demonstrating the film-forming apparatus of this invention 本発明の成膜源を説明するための図The figure for demonstrating the film-forming source of this invention 蒸発面を説明するための図Illustration for explaining the evaporation surface 従来技術の成膜装置Conventional film deposition system

符号の説明Explanation of symbols

10……成膜装置
12……成膜源
20a……蒸発室
25……ガス供給装置
30……蒸発体
35……蒸発面
40……接続管
42……小孔
45……漏斗部
60……タンク室
63……有機材料
72……螺旋
72a……運搬部
72b……落下部
76……侵入防止部材
DESCRIPTION OF SYMBOLS 10 ... Film-forming apparatus 12 ... Film-forming source 20a ... Evaporation chamber 25 ... Gas supply apparatus 30 ... Evaporator 35 ... Evaporating surface 40 ... Connecting pipe 42 ... Small hole 45 ... Funnel part 60 ... ... tank chamber 63 ... organic material 72 ... spiral 72a ... transport part 72b ... drop part 76 ... intrusion prevention member

Claims (10)

粉体の有機材料が配置されるタンク室と、
前記有機材料を蒸発させる蒸発室と
前記タンク室と前記蒸発室とを接続し、前記タンク室内の前記有機材料が前記蒸発室の内部に移動する際に前記有機材料が通過する接続管と、
前記接続管には、前記接続管の内部にシールドガスを導入するガス供給装置が接続され、
前記接続管の前記シールドガスが導入される位置よりも前記蒸発室に近い位置には先窄まりの漏斗部が形成された成膜源。
A tank chamber in which powdered organic materials are placed;
An evaporation chamber for evaporating the organic material; the tank chamber and the evaporation chamber; and a connection pipe through which the organic material passes when the organic material in the tank chamber moves into the evaporation chamber;
A gas supply device for introducing a shielding gas into the connection pipe is connected to the connection pipe,
A film forming source in which a tapered funnel portion is formed at a position closer to the evaporation chamber than a position where the shield gas is introduced into the connection pipe.
前記タンク室内から前記接続管内に亘って挿入された供給軸と、
前記供給軸の周囲に形成され、上端が前記タンク室内に位置し、下端が前記接続管内に位置する螺旋と
前記供給軸の下端に設けられ、前記接続管の内部に位置する侵入防止部材とを有し、
前記侵入防止部材の外周と前記接続管の下部内壁面との間で隙間が形成された請求項1記載の成膜源。
A supply shaft inserted from the tank chamber into the connecting pipe;
A spiral formed around the supply shaft, having an upper end located in the tank chamber and a lower end located in the connection pipe, and an intrusion prevention member provided at the lower end of the supply shaft and located inside the connection pipe. Have
The film forming source according to claim 1, wherein a gap is formed between an outer periphery of the intrusion prevention member and a lower inner wall surface of the connection pipe.
前記侵入防止部材の下端は円錐状の尖鋭形状にされた請求項2記載の成膜源。   The film forming source according to claim 2, wherein a lower end of the intrusion prevention member is formed in a conical sharp shape. 前記接続管の下端は先窄まりに形成され、前記侵入防止部材の前記尖鋭形状の部分は前記先窄まりの部分に配置された請求項3記載の成膜源。   The film forming source according to claim 3, wherein a lower end of the connection pipe is formed in a tapered shape, and the sharp portion of the intrusion prevention member is disposed in the tapered portion. 前記螺旋は、該螺旋の上端から前記接続管内に位置する部分までの連続した部分を含む運搬部と、
該螺旋の下端を含み、上部が前記運搬部に接続された落下部とを有し、
前記落下部の前記溝の傾きは、前記運搬部の前記溝の傾きよりも大きくされ、
前記運搬部の前記溝内から前記落下部の前記溝内に移動した前記有機材料は、前記落下部の前記溝を通過し、前記落下部の前記溝の下端から落下するように構成された請求項1乃至請求項4のいずれか1項記載の成膜源。
The spiral includes a transport portion including a continuous portion from an upper end of the spiral to a portion located in the connection pipe;
Including a lower end of the spiral, the upper part having a drop part connected to the transport part,
The inclination of the groove of the drop part is larger than the inclination of the groove of the transport part,
The organic material that has moved from within the groove of the transporting part into the groove of the dropping part passes through the groove of the dropping part and falls from the lower end of the groove of the dropping part. The film forming source according to any one of claims 1 to 4.
前記接続管の壁面のうち、前記運搬部の周囲の部分よりも下方位置に、前記接続管の内部にシールドガスを導入するガス導入孔が設けられた請求項5記載の成膜源。   The film forming source according to claim 5, wherein a gas introduction hole for introducing a shielding gas into the inside of the connection pipe is provided in a lower position than a portion around the transporting portion in the wall surface of the connection pipe. 前記接続管に導入される前記シールドガスを加熱するガス加熱装置を有する請求項6記載の成膜源。   The film-forming source of Claim 6 which has a gas heating apparatus which heats the said shield gas introduced into the said connection pipe. 前記蒸発室の内部に配置され、水平方向に対して傾斜された蒸発面が上方に向けられた蒸発体と、
前記蒸発体を前記有機材料の蒸発温度以上の温度に加熱する蒸発体加熱装置とを有し、
前記有機材料は、前記蒸発面上に落下するように構成された請求項1乃至請求項7のいずれか1項記載の成膜源。
An evaporating body disposed inside the evaporating chamber and having an evaporating surface inclined in the horizontal direction directed upward;
An evaporator heating device for heating the evaporator to a temperature equal to or higher than the evaporation temperature of the organic material;
The film-forming source according to claim 1, wherein the organic material is configured to fall on the evaporation surface.
前記蒸発面上には、突起が設けられた請求項8記載の成膜源。   The film forming source according to claim 8, wherein a protrusion is provided on the evaporation surface. 請求項1乃至請求項9のいずれか1項記載の成膜源と、
前記蒸発室に接続され、前記蒸発室から供給された有機材料蒸気を真空雰囲気中に放出する放出装置とを有する成膜装置。
A film forming source according to any one of claims 1 to 9,
A film forming apparatus connected to the evaporation chamber and having a discharge device for discharging the organic material vapor supplied from the evaporation chamber into a vacuum atmosphere;
JP2007340378A 2007-12-28 2007-12-28 Deposition source, deposition system Active JP4996452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007340378A JP4996452B2 (en) 2007-12-28 2007-12-28 Deposition source, deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007340378A JP4996452B2 (en) 2007-12-28 2007-12-28 Deposition source, deposition system

Publications (2)

Publication Number Publication Date
JP2009161797A true JP2009161797A (en) 2009-07-23
JP4996452B2 JP4996452B2 (en) 2012-08-08

Family

ID=40964735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007340378A Active JP4996452B2 (en) 2007-12-28 2007-12-28 Deposition source, deposition system

Country Status (1)

Country Link
JP (1) JP4996452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134951B1 (en) 2009-09-28 2012-04-10 주식회사 선익시스템 Evaporation source of a deposition system and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249868A (en) * 2001-02-21 2002-09-06 Denso Corp Vapor deposition system
JP2004346371A (en) * 2003-05-22 2004-12-09 Matsushita Electric Ind Co Ltd Film deposition method and system
WO2006034019A2 (en) * 2004-09-21 2006-03-30 Eastman Kodak Company Delivering particulate material to a vaporization zone
WO2006083734A2 (en) * 2005-02-04 2006-08-10 Eastman Kodak Company Controllably feeding organic material in making oleds
WO2006119403A2 (en) * 2005-05-03 2006-11-09 Eastman Kodak Company Metering material to promote rapid vaporization
US20070098891A1 (en) * 2005-10-31 2007-05-03 Eastman Kodak Company Vapor deposition apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249868A (en) * 2001-02-21 2002-09-06 Denso Corp Vapor deposition system
JP2004346371A (en) * 2003-05-22 2004-12-09 Matsushita Electric Ind Co Ltd Film deposition method and system
WO2006034019A2 (en) * 2004-09-21 2006-03-30 Eastman Kodak Company Delivering particulate material to a vaporization zone
WO2006083734A2 (en) * 2005-02-04 2006-08-10 Eastman Kodak Company Controllably feeding organic material in making oleds
WO2006119403A2 (en) * 2005-05-03 2006-11-09 Eastman Kodak Company Metering material to promote rapid vaporization
US20070098891A1 (en) * 2005-10-31 2007-05-03 Eastman Kodak Company Vapor deposition apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134951B1 (en) 2009-09-28 2012-04-10 주식회사 선익시스템 Evaporation source of a deposition system and control method thereof

Also Published As

Publication number Publication date
JP4996452B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4974832B2 (en) Vapor deposition source, vapor deposition equipment
EP1130129B1 (en) Source for thermal physical vapor deposition of organic electroluminescent layers
JP5474089B2 (en) Organic thin film forming apparatus and organic material film forming method
JPWO2009034916A1 (en) Vapor release apparatus, organic thin film deposition apparatus, and organic thin film deposition method
JP5220091B2 (en) Deposition source, vapor deposition device, organic EL device manufacturing device
JP5374373B2 (en) Organic material vapor generating device, film forming source, organic EL film forming device
JP2004183100A (en) Vapor deposition apparatus
KR102137181B1 (en) Depositing arrangement, deposition apparatus and methods of operation thereof
JP4974877B2 (en) Deposition source, deposition system
JP4996452B2 (en) Deposition source, deposition system
KR101286803B1 (en) Organic compound steam generator and apparatus for producing organic thin film
US3244857A (en) Vapor deposition source
JP3839587B2 (en) Organic thin film material container, vapor deposition apparatus, organic thin film manufacturing method
JP2005082872A (en) Vapor deposition system and vapor deposition method
JP3817036B2 (en) Organic compound evaporation container, organic vapor deposition source, and vacuum vapor deposition apparatus
RU2815055C2 (en) Evaporation device for vacuum deposition system, method and device for material film deposition
KR102221609B1 (en) Depositon system
JP2019116646A (en) Apparatus for manufacturing organic thin film, and evaporation source
JP2022159857A (en) Gas flow vapor deposition apparatus
JP2004162108A (en) Molecular beam source cell for thin film deposition
KR20220124148A (en) Evaporation method, evaporation apparatus, and evaporation source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4996452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250