JP2009152440A - Temperature regulator for heating element - Google Patents

Temperature regulator for heating element Download PDF

Info

Publication number
JP2009152440A
JP2009152440A JP2007329904A JP2007329904A JP2009152440A JP 2009152440 A JP2009152440 A JP 2009152440A JP 2007329904 A JP2007329904 A JP 2007329904A JP 2007329904 A JP2007329904 A JP 2007329904A JP 2009152440 A JP2009152440 A JP 2009152440A
Authority
JP
Japan
Prior art keywords
heat
heating element
adjusting device
heat receiving
temperature adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007329904A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsumoto
和彦 松本
Masa Sawaguchi
雅 沢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2007329904A priority Critical patent/JP2009152440A/en
Publication of JP2009152440A publication Critical patent/JP2009152440A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature regulator for a heating element, which can perform uniform temperature regulation of the heating element and improve water-proof/dust-proof performance and can be made compact, lightweight, etc. <P>SOLUTION: The temperature regulator includes a heat sink 12 disposed in a cooling medium passage 9, a heat receiving plate 10 provided in contact with a battery module 1, and a thermoelectric element member 20 thermally coupling the heat receiving plate 10 and heat sink 12 through heat transmission by a semiconductor 20c. The battery module 1 is provided in contact with the heat receiving plate 10, so the water-proof/dust-proof performance can be improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発熱体の温度調整装置に関する。   The present invention relates to a temperature adjusting device for a heating element.

従来、発熱体としての複数のバッテリモジュールの間に冷却風を通過させて各バッテリモジュールを冷却するようにした技術が公知になっている(特許文献1参照)。
特開2007−172982号公報
Conventionally, a technique in which cooling air is passed between a plurality of battery modules as heating elements to cool each battery module is known (see Patent Document 1).
JP 2007-172982 A

しかしながら、従来の発明にあっては、複数のバッテリモジュール間に冷却風を通過させて各バッテリモジュールを直接冷却していたため、バッテリモジュール間に流入する冷却風の流量も異なる上、バッテリモジュール間を流れる冷却風の温度はその上流側と下流側で異なるため、バッテリモジュールの部位によって温度差が生じ、バッテリ残量を有効に活用できず、寿命の悪化にも繋がるという問題点があった。
また、バッテリモジュール間の防水・防塵性能能が低いという問題点があった。
さらに、バッテリモジュール間に冷却風を流すための空間が必要になり、バッテリの大型化や接続配線の延長による抵抗の増大を招くという問題点があった。
However, in the conventional invention, since the cooling air is directly passed between the plurality of battery modules to directly cool the battery modules, the flow rate of the cooling air flowing between the battery modules is different, and the battery modules Since the temperature of the flowing cooling air is different between the upstream side and the downstream side, there is a problem that a temperature difference occurs depending on the part of the battery module, the remaining battery capacity cannot be effectively used, and the life is also deteriorated.
In addition, there is a problem that the waterproof / dustproof performance between the battery modules is low.
Furthermore, a space for flowing cooling air between the battery modules is required, and there is a problem in that the battery is increased in size and the resistance is increased due to the extension of the connection wiring.

本発明は上記課題を解決するためになされたものであって、その目的とするところは、発熱体の均一な温度調整、防水・防塵性能の向上、及び小型・軽量化等を同時に実現できる発熱体の温度調整装置を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to generate heat that can simultaneously achieve uniform temperature adjustment of the heating element, improvement of waterproof and dustproof performance, and reduction in size and weight. It is to provide a body temperature regulating device.

請求項1記載の発明では、放熱空間に配置される放熱部と、発熱体と密着した状態で設けられる受熱部と、上記受熱部と放熱部を冷媒による熱移動で熱的に連結する連結部を備えることを特徴とする。   In the first aspect of the present invention, the heat radiating portion disposed in the heat radiating space, the heat receiving portion provided in close contact with the heat generating body, and the connecting portion that thermally connects the heat receiving portion and the heat radiating portion by heat transfer by the refrigerant. It is characterized by providing.

請求項1の発明では、第1連結部を介して発熱体と放熱部との間で熱を移動でき、発熱体を均一に温度調整できる。
また、受熱部は発熱体に密着した状態で設けられるため、防水・防塵性能能を向上できる。
さらに、発熱体を電気的に接続した複数のモジュールとした場合に各モジュール間に冷却媒体を流通させるための空間を形成する必要がなく、小型・軽量化等や配線抵抗の低減を実現できる。
In invention of Claim 1, heat can be moved between a heat generating body and a thermal radiation part via a 1st connection part, and a heat generating body can be temperature-controlled uniformly.
In addition, since the heat receiving portion is provided in close contact with the heating element, the waterproof / dustproof performance can be improved.
Further, when a plurality of modules in which the heating elements are electrically connected are formed, it is not necessary to form a space for circulating the cooling medium between the modules, and it is possible to realize a reduction in size and weight and a reduction in wiring resistance.

以下、この発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、実施例1を説明する。
図1は実施例1のバッテリパックの平面図、図2は実施例1のバッテリパックの内部を説明する断面図、図3は実施例1のバッテリモジュール、受熱板、ヒートパイプ、ヒートシンクを組み付けた斜視図、図4は実施例1の受熱板とヒートパイプの固定を説明する分解図である。
図5は図1のS5−S5線における断面図、図6は実施例1の受熱板とヒートパイプの固定を説明する図である。
Example 1 will be described below.
1 is a plan view of the battery pack of the first embodiment, FIG. 2 is a cross-sectional view for explaining the inside of the battery pack of the first embodiment, and FIG. 3 is assembled with the battery module, heat receiving plate, heat pipe, and heat sink of the first embodiment. FIG. 4 is an exploded view illustrating fixing of the heat receiving plate and the heat pipe according to the first embodiment.
FIG. 5 is a cross-sectional view taken along line S5-S5 in FIG. 1, and FIG. 6 is a view for explaining fixing of the heat receiving plate and the heat pipe according to the first embodiment.

先ず、全体構成を説明する。
図1、2に示すように、実施例1の発明では、後述するバッテリモジュール1(請求項の発熱体に相当)等を収容した箱状の筐体2を有するバッテリパック3が備えられ、例えばハイブリッド自動車の電動機(主に走行用モータ)に電気を供給するためのバッテリとして車両に搭載されるものである。
First, the overall configuration will be described.
As shown in FIGS. 1 and 2, the invention of Embodiment 1 includes a battery pack 3 having a box-shaped housing 2 that houses a battery module 1 (corresponding to a heating element in claims) and the like to be described later. It is mounted on a vehicle as a battery for supplying electricity to an electric motor (mainly a driving motor) of a hybrid vehicle.

筐体2の四隅の一角に相当する部位には、筐体2に開口された導入口4から冷却風(請求項の冷却媒体に相当)を筐体2内に導入するための入口パイプ5が連通接続される他、この入口パイプ5の途中には冷却風を筐体2内へ送出するためのファン6が設けられている。
また、筐体2の四隅の入口パイプ5と対向する位置には、筐体2に開口された排出口7から後述するバッテリモジュール1を冷却後の冷却風を筐体2外へ排出するための出口パイプ8が連通接続されている。
これにより、筐体2内には、図2中一点鎖線矢印で示す冷却風が導入口4から排出口7へ向かう冷却媒体通路9(請求項の放熱空間に相当)が形成されている。
An inlet pipe 5 for introducing cooling air (corresponding to a cooling medium in claims) into the housing 2 from an inlet 4 opened in the housing 2 is provided at a portion corresponding to one corner of the housing 2. Besides being connected in communication, a fan 6 for sending cooling air into the housing 2 is provided in the middle of the inlet pipe 5.
In addition, at positions facing the inlet pipes 5 at the four corners of the housing 2, cooling air after cooling the battery module 1 described later is discharged from the housing 2 through an outlet 7 opened in the housing 2. An outlet pipe 8 is connected in communication.
As a result, a cooling medium passage 9 (corresponding to a heat radiation space in the claims) in which the cooling air indicated by a one-dot chain line arrow in FIG. 2 moves from the inlet 4 to the outlet 7 is formed in the housing 2.

図3、4に示すように、筐体2内には、バッテリモジュール1と、受熱板10(請求項の受熱部に相当)と、ヒートパイプ11(請求項の第2連結部に相当)と、熱電素子部材20(請求項の第1連結部に相当)と、ヒートシンク12(請求項の放熱部に相当)とが組み付けられた状態で収容される他、ヒートシンク12は前述した冷却媒体通路9に配置されている。   As shown in FIGS. 3 and 4, a battery module 1, a heat receiving plate 10 (corresponding to a heat receiving part in claims), and a heat pipe 11 (corresponding to a second connecting part in claims) are included in the housing 2. The thermoelectric element member 20 (corresponding to the first connecting part in the claims) and the heat sink 12 (corresponding to the heat dissipating part in the claims) are housed in an assembled state, and the heat sink 12 is connected to the cooling medium passage 9 described above. Is arranged.

バッテリモジュール1は、図示を省略する車両の電動機(主に走行用モータ)に電気を供給するためのものであって、公知のように、繰り返し充放電が可能なニッケルカドミウム電池、ニッケル水素電池、またはリチウムイオン電池等の二次電池が採用されている。
また、バッテリモジュール1は、冷却媒体通路9の長手方向と直交する方向へ長い長尺の板状に形成される他、図5に示すように、後述する受熱板10によって縦3個×横2個に並べられた状態で組み付けられたバッテリモジュール1a〜1fで構成されている。
また、図2に示すように、各バッテリモジュール1a〜1f同士は、筐体2との隙間H1に配設された図示を省略する接続配線により、互いに電気的に直列または並列に接続されている。
The battery module 1 is for supplying electricity to a vehicle electric motor (mainly a traveling motor) (not shown). As is well known, a nickel cadmium battery, a nickel hydrogen battery, Alternatively, a secondary battery such as a lithium ion battery is employed.
Further, the battery module 1 is formed in a long plate shape that is long in a direction orthogonal to the longitudinal direction of the cooling medium passage 9, and as shown in FIG. The battery modules 1a to 1f are assembled in a state of being arranged in pieces.
Further, as shown in FIG. 2, the battery modules 1 a to 1 f are electrically connected in series or in parallel to each other by connection wiring (not shown) disposed in the gap H <b> 1 with the housing 2. .

図5に示すように、受熱板10は、互いに接合され、且つ、バッテリモジュール1a〜1fの内側にそれぞれ密着した状態で組み付けられた2枚の板状の内側受熱板13,14(請求項の分割部に相当)と、バッテリモジュール1a〜1fの外側に組み付けられた外側受熱板15,16で構成されている。
また、受熱板11〜14には、その厚み方向に凹設された溝17が各受熱板11〜14の長手方向の全長に亘って形成されると共に、各溝17にそれぞれ対応するバッテリモジュール1a〜1fの各部が嵌合した状態で組み付けられている。
従って、各バッテリモジュール1a〜1f同士間とそれらの外周部は受熱板10によって略覆われた状態となっている。
なお、実施例1では、バッテリモジュール1a〜1fと外側受熱板15,16の溝17との間には矩形状の隙間H2が貫通形成されているが、この限りではない。
As shown in FIG. 5, the heat receiving plate 10 is joined to each other, and two plate-like inner heat receiving plates 13 and 14 assembled in close contact with the inside of each of the battery modules 1a to 1f. And the outer heat receiving plates 15 and 16 assembled outside the battery modules 1a to 1f.
Further, the heat receiving plates 11 to 14 are provided with grooves 17 recessed in the thickness direction over the entire length in the longitudinal direction of the heat receiving plates 11 to 14, and the battery modules 1 a respectively corresponding to the grooves 17. It is assembled in a state in which each part of ˜1f is fitted.
Therefore, between each battery module 1a-1f and those outer peripheral parts are the states substantially covered with the heat receiving plate 10. FIG.
In the first embodiment, a rectangular gap H2 is formed between the battery modules 1a to 1f and the grooves 17 of the outer heat receiving plates 15 and 16, but this is not restrictive.

ヒートパイプ11は、内側受熱板13,14の内部、詳細には各バッテリモジュール1a〜1fの幅方向中央位置にそれぞれ収容されたヒートパイプ11a〜11cで構成されている。
具体的には、図4に示すように、内側受熱板13,14同士の接合面には、各ヒートパイプ11a〜11cを収容するための半円形断面の溝18a,18bが内側受熱板13,14の長手方向の全長に亘ってそれぞれ形成されており、各ヒートパイプ11a〜11cを収容する際には、先ず、図6(a)に示すように、内側受熱板13,14の間に、予め製造すべき外径よりも僅かに大きな外径を有するヒートパイプ11の母材Wをそれぞれ配置する。
次に、図6(b)に示すように、図外のプレス用成形装置で内側受熱板13,14を当接させて、円形状に重なった溝18で母材Wをプレス成形して所望の外形に変形させることにより、ヒートパイプ11と溝17を密着させることができるようになっている。
なお、その後、少なくとも内側受熱板13,14同士は図外の溶接または固定部材等により接合される。
The heat pipe 11 is configured by heat pipes 11a to 11c housed inside the inner heat receiving plates 13 and 14, specifically, at the center positions in the width direction of the battery modules 1a to 1f, respectively.
Specifically, as shown in FIG. 4, semi-circular grooves 18 a and 18 b for accommodating the heat pipes 11 a to 11 c are formed on the inner heat receiving plates 13 and 14 on the joint surfaces of the inner heat receiving plates 13 and 14. 14 is formed over the entire length in the longitudinal direction, and when the heat pipes 11a to 11c are accommodated, first, as shown in FIG. 6 (a), between the inner heat receiving plates 13 and 14, A base material W of the heat pipe 11 having an outer diameter slightly larger than the outer diameter to be manufactured in advance is arranged.
Next, as shown in FIG. 6B, the inner heat receiving plates 13 and 14 are brought into contact with each other by a pressing molding apparatus not shown in the figure, and the base material W is press-molded with the circular grooves 18 to be desired. The heat pipe 11 and the groove 17 can be brought into close contact with each other.
After that, at least the inner heat receiving plates 13 and 14 are joined together by welding or a fixing member not shown.

ヒートパイプ11は、冷媒が封入された円形断面の管状部材で構成されており、その一端部は、内側受熱板13,14の端面と当接した平板状の受熱板21に図外の溶接で固定されている。
ヒートパイプ11は、公知のようにサイホンと同様の動作原理で作動する。
実施例1では、内側受熱板13,14と密着した加熱部で冷媒の蒸発が生じ、冷媒の蒸気がヒートシンク12側の冷却部に移動して凝縮し、ここで、蒸発潜熱の受け渡しが行われる。
その後、凝縮した冷媒はヒートパイプ11内に設けられた図示を省略するウィックの毛細管作用で加熱部へ再び戻ることにより、加熱部から冷却部への熱の移動が行われるようになっている。
The heat pipe 11 is composed of a tubular member having a circular cross section in which a refrigerant is sealed, and one end of the heat pipe 11 is welded to a flat heat receiving plate 21 in contact with the end surfaces of the inner heat receiving plates 13 and 14 by welding not shown. It is fixed.
As is well known, the heat pipe 11 operates on the same operating principle as a siphon.
In the first embodiment, the refrigerant evaporates in the heating unit that is in close contact with the inner heat receiving plates 13 and 14, and the vapor of the refrigerant moves to the cooling unit on the heat sink 12 side and condenses, where the latent heat of evaporation is transferred. .
Thereafter, the condensed refrigerant is returned to the heating unit by the capillary action of a wick (not shown) provided in the heat pipe 11 so that heat is transferred from the heating unit to the cooling unit.

さらに、受熱板21は、各ヒートパイプ11の接続位置に対応して設けられた3つの熱電素子部材20を介してヒートシンク12に連結されている。
熱電素子部材20は、熱電素子(所謂ペルチェ素子)等が収容された箱状の容器で構成されており、その一方側側面は受熱板21に密着した状態で図外の溶接または固定部材等で固定される一方、他方側側面はヒートシンクの基部12aに密着した状態で図外の溶接または固定部材等で固定されている。
Further, the heat receiving plate 21 is connected to the heat sink 12 via three thermoelectric element members 20 provided corresponding to the connection positions of the heat pipes 11.
The thermoelectric element member 20 is constituted by a box-shaped container in which a thermoelectric element (so-called Peltier element) or the like is accommodated, and one side surface thereof is in close contact with the heat receiving plate 21 by welding or a fixing member not shown. On the other hand, the other side surface is fixed by welding or a fixing member or the like not shown in the state in close contact with the base 12a of the heat sink.

熱電素子部材20は、公知のようにペルチェ作用と同様の動作原理で作動する。
実施例1では、図2の拡大図に示すように、内面が対向している2つの基板20a,20bに電極を介して接合されたp型及びn型の半導体20c(請求項の熱電素子に相当)がπの字形に交互に連結され、この半導体20cに図中矢印で示す所定方向へ直流電流を流すことにより、受熱板21側からヒートシンク12側へ熱を移動させて、受熱板21と当接した一方側側面で吸熱(冷却)させ、ヒートシンク12の基部12aが当接した他方側側面側で発熱(放熱)させることができるようになっている。
As is known, the thermoelectric element member 20 operates on the same operating principle as the Peltier action.
In the first embodiment, as shown in the enlarged view of FIG. 2, p-type and n-type semiconductors 20c joined to two substrates 20a and 20b whose inner surfaces face each other via electrodes ( Equivalent) are alternately connected in the shape of π, and by flowing a direct current through the semiconductor 20c in a predetermined direction indicated by an arrow in the figure, heat is transferred from the heat receiving plate 21 side to the heat sink 12 side, and the heat receiving plate 21 and Heat can be absorbed (cooled) on the one side surface that is in contact, and heat can be generated (heat radiation) on the other side surface on which the base 12a of the heat sink 12 is in contact.

ヒートシンク12は、冷却媒体通路9を流れる冷却風の流れに沿って所定間隔で配置された複数(実施例1では5枚)の薄板状のフィン19で構成される他、その基端側が前述した板状の基部12aに立設した状態で設けられている。   The heat sink 12 is composed of a plurality (five in the first embodiment) of thin plate-like fins 19 arranged at predetermined intervals along the flow of the cooling air flowing through the cooling medium passage 9, and the base end side thereof is described above. It is provided in a state of standing on the plate-like base portion 12a.

その他、実施例1では、少なくとも受熱板10、ヒートパイプ11、ヒートシンク12、及び熱電素子部材20の各部はアルミや銅等の熱伝導性が高い素材を用いて形成されている。
また、ヒートパイプ11は省略することもできる。
In addition, in Example 1, at least each part of the heat receiving plate 10, the heat pipe 11, the heat sink 12, and the thermoelectric element member 20 is formed using a material having high thermal conductivity such as aluminum or copper.
Further, the heat pipe 11 can be omitted.

次に、作用を説明する。   Next, the operation will be described.

[バッテリモジュールの冷却について]
このように構成されたバッテリパック3では、冷却風を図外の供給元から入口パイプ5を介してファン6で導入口4から筐体2内に導入した後、冷却媒体通路9を通過させた後、排出口7から出口パイプ8を介して筐体2外の図外の排出先へ排出する。
[Battery module cooling]
In the battery pack 3 configured as described above, the cooling air is introduced from the inlet 4 into the housing 2 by the fan 6 via the inlet pipe 5 from the supply source (not shown), and then passed through the cooling medium passage 9. After that, it is discharged from the discharge port 7 through the outlet pipe 8 to a discharge destination outside the housing 2 outside the figure.

なお、冷却風の供給元は、例えば、車室内空調用のエアコンの風(または車室内空気)が用いられ、バッテリモジュール1の温度に応じて冷却風の温度とファン6による導入量を調整できるようにする。なお、バッテリモジュール1の温度はその発熱量により算出できる。
一方、冷却風の排出先は、例えば、車外(または車室内、トランクルーム等とする。
The supply source of the cooling air is, for example, the air conditioning air conditioning for the vehicle interior air conditioning (or vehicle interior air), and the temperature of the cooling air and the amount of introduction by the fan 6 can be adjusted according to the temperature of the battery module 1. Like that. The temperature of the battery module 1 can be calculated from the amount of heat generated.
On the other hand, the discharge destination of the cooling air is, for example, outside the vehicle (or in the passenger compartment or trunk room).

そして、熱電素子部材20に通電して、各バッテリモジュール1が発熱して発生した熱を、受熱板10で受熱させた後、ヒートパイプ11及び熱電素子部材20を介してヒートシンク12に移動させると共に、フィン19で冷却風と熱交換させて放熱させることにより、バッテリモジュール1を冷却できる。
この際、前述したように、各バッテリモジュール1、受熱板10、ヒートパイプ11、熱電素子部材20(受熱板21共)、ヒートシンク11の基部12aは互いに密着した状態で組み付けられているため、バッテリモジュール1の熱をヒートパイプ11及び受熱板21を介して熱電素子部材20に効率良く伝達でき、バッテリモジュール1を効率良く冷却できる。
また、ヒートシンク12のフィン19を冷却風の流れ方向に沿って配置しているため、冷却風を冷却媒体通路9にスムーズに流して放熱効果を促進できる。
Then, after the thermoelectric element member 20 is energized and the heat generated by each battery module 1 is generated by the heat receiving plate 10, it is moved to the heat sink 12 via the heat pipe 11 and the thermoelectric element member 20. The battery module 1 can be cooled by causing the fins 19 to exchange heat with the cooling air to dissipate heat.
At this time, as described above, each battery module 1, the heat receiving plate 10, the heat pipe 11, the thermoelectric element member 20 (both of the heat receiving plate 21), and the base 12a of the heat sink 11 are assembled in close contact with each other. The heat of the module 1 can be efficiently transmitted to the thermoelectric element member 20 via the heat pipe 11 and the heat receiving plate 21, and the battery module 1 can be efficiently cooled.
Further, since the fins 19 of the heat sink 12 are arranged along the flow direction of the cooling air, the cooling air can flow smoothly through the cooling medium passage 9 to promote the heat dissipation effect.

従って、冷却風を各バッテリモジュール1a〜1f間に通過させて冷却する場合に比べて、冷却風の上下流の温度差や不均一な流通によってバッテリモジュール1の部位によって温度差が生じる虞がなく、バッテリモジュール1を均一に冷却でき、バッテリモジュール1の残量を有効に活用できると同時に長寿命化を実現できる。   Therefore, compared with the case where the cooling air is cooled by passing between the battery modules 1a to 1f, there is no possibility that a temperature difference is caused depending on the part of the battery module 1 due to the temperature difference between the upstream and downstream of the cooling air or uneven distribution. The battery module 1 can be uniformly cooled, the remaining amount of the battery module 1 can be effectively utilized, and at the same time, the life can be extended.

[防水性・防塵性能について]
また、実施例1では、前述したように、各バッテリモジュール1a〜1f間に冷却風が通過しない上、各バッテリモジュール1a〜1fは受熱板10で略覆われた状態で組み付けられるため、防水性・防塵性能に優れる。
加えて、ファン6のモータは通常、各バッテリモジュール1a〜1f間の摩耗粉の詰まりを防止するために、摩耗粉の発生が少ないブラシレスモータを採用することが多いが、実施例1では、ブラシ付きモータを採用することも可能となる。
[Waterproof and dustproof performance]
Further, in the first embodiment, as described above, since the cooling air does not pass between the battery modules 1a to 1f and the battery modules 1a to 1f are assembled in a state of being substantially covered with the heat receiving plate 10, the waterproof performance is ensured.・ Excellent dustproof performance.
In addition, the motor of the fan 6 usually employs a brushless motor that generates less wear powder in order to prevent clogging of wear powder between the battery modules 1a to 1f. It is also possible to employ a motor with an attachment.

[受熱板の治具化とバッテリモジュールの小型・軽量化について]
また、実施例1では、前述したように、各バッテリモジュール1(ヒートパイプ11共)を組み付けるための治具として受熱板10を兼用できる。
また、各バッテリモジュール1は互いに電気的に接続する配線を短くして抵抗を少なくしたいという要求があるため、複数のバッテリモジュール1を共用の受熱板10で近接した状態で正確・容易に位置決め・組み付けできると同時に、小型・軽量化を実現できる。
また、受熱板10を各バッテリモジュール1で共用させることになり、受熱板10を介して全てのヒートパイプ11に熱を伝達でき、好適となる。
さらに、実施例1では入口パイプ5及び出口パイプ8を筐体2の一方側に配置しているため、筐体2の両側に分けて配置した場合に比べて、バッテリパック3を小型化できる。
[Changing the heat receiving plate to a jig and reducing the size and weight of the battery module]
In the first embodiment, as described above, the heat receiving plate 10 can also be used as a jig for assembling the battery modules 1 (both of the heat pipes 11).
In addition, each battery module 1 is required to shorten the wiring electrically connected to each other to reduce resistance, so that the plurality of battery modules 1 can be positioned accurately and easily in a state of being close to each other by the common heat receiving plate 10. It can be assembled and at the same time can be made smaller and lighter.
Further, the heat receiving plate 10 is shared by the battery modules 1, and heat can be transmitted to all the heat pipes 11 through the heat receiving plate 10, which is preferable.
Furthermore, since the inlet pipe 5 and the outlet pipe 8 are disposed on one side of the housing 2 in the first embodiment, the battery pack 3 can be reduced in size compared to the case where the inlet pipe 5 and the outlet pipe 8 are disposed separately on both sides of the housing 2.

次に、効果を説明する。
以上、説明したように、実施例1では、冷却媒体通路9に配置されるヒートシンク12と、バッテリモジュール1と密着した状態で設けられる受熱板10と、受熱板10とヒートシンク12を半導体20cによる熱移動で熱的に連結する熱電素子部材20を備えるため、バッテリモジュール1の均一な冷却、防水・防塵性能の向上、及び小型・軽量化等を同時に実現できる。
Next, the effect will be described.
As described above, in the first embodiment, the heat sink 12 disposed in the cooling medium passage 9, the heat receiving plate 10 provided in close contact with the battery module 1, the heat receiving plate 10 and the heat sink 12 are heated by the semiconductor 20c. Since the thermoelectric element member 20 that is thermally connected by movement is provided, uniform cooling of the battery module 1, improvement in waterproof / dustproof performance, and reduction in size and weight can be realized at the same time.

以下、実施例2を説明する。
実施例2において、上記実施例1と同様の構成部材については同じ符号を付してその説明は省略し、相違点のみ詳述する。
Example 2 will be described below.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, the description thereof will be omitted, and only the differences will be described in detail.

バッテリモジュール1の低温時には、内部抵抗が高くなって放電出力が低下してしまうため、バッテリの作動初期には速やかに常温になるように加熱することが望ましい。
そこで、実施例2では、バッテリモジュール1の低温時には、半導体20cの直流電流を実施例1の所定の方向とは反対方向に流して、ヒートシンク12側から受熱板21側へ熱を移動させて、受熱板21に当接した一方側側面で発熱(放熱)させ、ヒートシンク12の基部12aに当接した他方側側面側で吸熱(冷却)させることにより、バッテリモジュール1を暖めることができる。
なお、この際、冷却媒体通路9には車室内空調用エアコンの温風を流すようにしても良い。
When the battery module 1 is at a low temperature, the internal resistance increases and the discharge output decreases. Therefore, it is desirable to quickly heat the battery module 1 to normal temperature at the initial stage of operation of the battery.
Therefore, in the second embodiment, when the battery module 1 is at a low temperature, a direct current of the semiconductor 20c is caused to flow in a direction opposite to the predetermined direction of the first embodiment, and heat is transferred from the heat sink 12 side to the heat receiving plate 21 side. The battery module 1 can be warmed by generating heat (dissipating heat) on one side surface in contact with the heat receiving plate 21 and absorbing heat (cooling) on the other side surface in contact with the base 12 a of the heat sink 12.
At this time, the warm air of the air conditioner for vehicle interior air conditioning may flow through the cooling medium passage 9.

従って、バッテリモジュール1の低温時に、バッテリモジュール1を加熱でき、放電出力が低下してしまうのを防止できる。   Therefore, when the battery module 1 is at a low temperature, the battery module 1 can be heated and the discharge output can be prevented from decreasing.

以上、実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
例えば、実施例1では、発熱体をバッテリモジュール1に適用した例を説明したが、走行用モータのインバータ回路等に適用しても良い。
また、ヒートパイプは、吸熱と放熱ができるように、内部で冷媒が循環すればよく、ウィックの毛細管作用を用いず内部で循環させる他の構造のものであっても良い。
同様に、熱電素子部材は、吸熱と放熱が異なる面でできればよく、ペルチェ以外のものであっても良い。
Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and design changes and the like within the scope not departing from the gist of the present invention are included in the present invention.
For example, in Example 1, although the example which applied the heat generating body to the battery module 1 was demonstrated, you may apply to the inverter circuit etc. of a motor for driving | running | working.
Further, the heat pipe only needs to circulate the refrigerant inside so as to be able to absorb and dissipate heat, and may have another structure that circulates inside without using the wick capillary action.
Similarly, the thermoelectric element member only needs to have different heat absorption and heat dissipation, and may be other than Peltier.

また、実施例1で説明した各構成部材の詳細な部位の形状、形成数、配置、固定方法、素材等は適宜設定できる。
例えば、図7に示すように、偏平断面状のヒートパイプ30を採用しても良い。
また、図8に示すように、ヒートシンク12の形状、例えばフィン19の向きや枚数を変えたものを採用しても良い。
さらに、図9に示すように、筐体2内の両側に冷却媒体通路9を形成して、ここにヒートパイプ11の他端部に連結された熱電素子部材20(受熱板21共)及びヒートシンク12を設けても良く、この場合、さらにバッテリモジュール1を効率的に温度調整できる。
Moreover, the shape of the detailed site | part of each structural member demonstrated in Example 1, the number of formation, arrangement | positioning, the fixing method, a raw material, etc. can be set suitably.
For example, as shown in FIG. 7, a heat pipe 30 having a flat cross section may be employed.
Moreover, as shown in FIG. 8, you may employ | adopt what changed the shape of the heat sink 12, for example, the direction of the fin 19, and the number of sheets.
Further, as shown in FIG. 9, a cooling medium passage 9 is formed on both sides in the housing 2, and a thermoelectric element member 20 (both of the heat receiving plate 21) and a heat sink connected to the other end of the heat pipe 11 here. 12 may be provided. In this case, the temperature of the battery module 1 can be adjusted more efficiently.

実施例1のバッテリパックの平面図である。3 is a plan view of the battery pack according to Embodiment 1. FIG. 実施例1のバッテリパックの内部を説明する断面図である。FIG. 3 is a cross-sectional view illustrating the inside of the battery pack according to the first embodiment. 実施例1のバッテリモジュール、受熱板、ヒートパイプ、ヒートシンクを組み付けた斜視図である。It is the perspective view which assembled | attached the battery module of Example 1, a heat receiving board, the heat pipe, and the heat sink. 実施例1の受熱板とヒートパイプの固定を説明する分解図である。It is an exploded view explaining fixation of the heat receiving plate of Example 1 and a heat pipe. 図1のS5−S5線における断面図である。It is sectional drawing in the S5-S5 line | wire of FIG. 実施例1の受熱板とヒートパイプの固定を説明する図である。It is a figure explaining fixation of the heat receiving plate and heat pipe of Example 1. FIG. その他の実施例のヒートパイプの断面形状を説明する図である。It is a figure explaining the cross-sectional shape of the heat pipe of another Example. その他の実施例のヒートシンクを説明する図である。It is a figure explaining the heat sink of other Examples. その他の実施例のバッテリパックの内部を説明する断面図である。It is sectional drawing explaining the inside of the battery pack of another Example.

符号の説明Explanation of symbols

H1、H2 隙間
W 母材
1、1a、1b、1c、1d、1e、1f バッテリモジュール
2 筐体
3 バッテリパック
4 導入口
5 入口パイプ
6 ファン
7 排出口
8 出口パイプ
9 冷却媒体通路
10 受熱板
11、11a、11b、11c ヒートパイプ
12 ヒートシンク
13、14 内側受熱板
15、16 外側受熱板
17、18、18a、18b 溝
19 フィン
20 熱電素子部材
20a 金属板
20b、20c 半導体
21 受熱板
30 ヒートパイプ
H1, H2 Gap W Base material 1, 1a, 1b, 1c, 1d, 1e, 1f Battery module 2 Housing 3 Battery pack 4 Inlet 5 Inlet pipe 6 Fan 7 Outlet 8 Outlet pipe 9 Cooling medium passage 10 Heat receiving plate 11 11a, 11b, 11c Heat pipe 12 Heat sink 13, 14 Inner heat receiving plate 15, 16 Outer heat receiving plate 17, 18, 18a, 18b Groove 19 Fin 20 Thermoelectric element member 20a Metal plate 20b, 20c Semiconductor 21 Heat receiving plate 30 Heat pipe

Claims (11)

放熱空間に配置される放熱部と、
発熱体と密着した状態で設けられる受熱部と、
前記受熱部と放熱部を熱電素子による熱移動で熱的に連結する第1連結部を備えることを特徴とする発熱体の温度調整装置。
A heat dissipating part disposed in the heat dissipating space;
A heat receiving portion provided in close contact with the heating element;
A temperature adjusting device for a heating element, comprising: a first connecting portion that thermally connects the heat receiving portion and the heat radiating portion by heat transfer by a thermoelectric element.
請求項1記載の発熱体の温度調整装置において、
前記第1連結部は、内面が対向している2つの基板の間に配設された熱電素子に所定方向へ電流を流すことにより、受熱部側で吸熱し、放熱部側で放熱することを特徴とする発熱体の温度調整装置。
The temperature adjusting device for a heating element according to claim 1,
The first connecting portion absorbs heat on the heat receiving portion side and dissipates heat on the heat radiating portion side by passing a current in a predetermined direction through a thermoelectric element disposed between the two substrates facing the inner surface. A heating device temperature control device.
請求項1または2記載の発熱体の温度調整装置において、
前記受熱部と第1連結部を冷媒による熱移動で熱的に連結する第2連結部を備えることを特徴とする発熱体の温度調整装置。
In the heating element temperature adjusting device according to claim 1 or 2,
A temperature adjusting device for a heating element, comprising: a second connecting portion that thermally connects the heat receiving portion and the first connecting portion by heat transfer by a refrigerant.
請求項3記載の発熱体の温度調整装置において、
前記第2連結部を管状部材の中に冷媒を封入したヒートパイプとしたことを特徴とする発熱体の温度調整装置。
In the heating element temperature regulating device according to claim 3,
The heating element temperature adjusting device, wherein the second connecting portion is a heat pipe in which a refrigerant is sealed in a tubular member.
請求項4記載の発熱体の温度調整装置において、
前記ヒートパイプを偏平断面状に形成したことを特徴とする発熱体の冷却装置。
The heating element temperature adjusting device according to claim 4,
A heat generator cooling device, wherein the heat pipe is formed in a flat cross-sectional shape.
請求項4または5記載の発熱体の温度調整装置において、
前記ヒートパイプを受熱部の内部に設けたことを特徴とする発熱体の温度調整装置。
In the temperature adjustment apparatus of the heat generating body of Claim 4 or 5,
A heating element temperature adjusting device, wherein the heat pipe is provided inside a heat receiving portion.
請求項6記載の発熱体の温度調整装置において、
前記受熱部を、それぞれ重ね合わせた際に製造すべきヒートパイプの外形と合致する溝を有する複数の分割部で構成し、
前記製造すべきヒートパイプよりも大きな外形を有するヒートパイプの母材を前記複数の分割部の溝内でプレス成形して、前記溝とヒートパイプとを密着させたことを特徴とする発熱体の温度調整装置。
The temperature adjusting device for a heating element according to claim 6,
The heat receiving part is composed of a plurality of divided parts having grooves that match the outer shape of the heat pipe to be manufactured when superposed,
A heat pipe having a larger outer shape than the heat pipe to be manufactured is press-molded in the grooves of the plurality of divided portions, and the heat generating body is characterized in that the grooves and the heat pipe are brought into close contact with each other. Temperature control device.
請求項1〜7のうちのいずれかに記載の発熱体の温度調整装置において、
前記発熱体を電気的に接続された複数のモジュールで構成し、
前記受熱部は複数のモジュールを一体的に組み付ける治具を兼ねることを特徴とする発熱体の温度調整装置。
In the temperature adjustment apparatus of the heat generating body in any one of Claims 1-7,
The heating element is composed of a plurality of electrically connected modules,
The heat receiving unit also serves as a jig for integrally assembling a plurality of modules.
請求項1〜8のうちのいずれかに記載の発熱体の温度調整装置において、
前記発熱体を冷却媒体の導入口と排出口を有する筐体内に収容し、
前記筐体内に、該筐体と発熱体との間で導入口から排出口へ向かう冷却媒体通路を形成し、
前記冷却媒体通路に放熱部を配置したことを特徴とする発熱体の温度調整装置。
In the temperature adjustment apparatus of the heat generating body in any one of Claims 1-8,
The heating element is accommodated in a housing having an inlet and an outlet for a cooling medium,
In the casing, a cooling medium passage from the inlet to the outlet is formed between the casing and the heating element,
A heat generator temperature adjusting device, wherein a heat radiating portion is disposed in the cooling medium passage.
請求項1〜9のうちのいずれかに記載の発熱体の温度調整装置において、
前記放熱部を複数のフィンを有するヒートシンクとしたことを特徴とする発熱体の温度調整装置。
In the temperature adjustment apparatus of the heat generating body in any one of Claims 1-9,
The heat-dissipating part is a heat sink having a plurality of fins.
請求項2〜10のうちのいずれかに記載の発熱体の温度調整装置において、
前記第1連結部は、熱電素子に前記所定方向とは反対方向へ電流を流すことにより、受熱部側で放熱し、放熱部側で吸熱することを特徴とする発熱体の温度調整装置。
In the temperature adjustment apparatus of the heat generating body in any one of Claims 2-10,
The temperature adjusting device for a heating element, wherein the first connecting portion dissipates heat on the heat receiving portion side and absorbs heat on the heat radiating portion side by passing a current through the thermoelectric element in a direction opposite to the predetermined direction.
JP2007329904A 2007-12-21 2007-12-21 Temperature regulator for heating element Pending JP2009152440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329904A JP2009152440A (en) 2007-12-21 2007-12-21 Temperature regulator for heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329904A JP2009152440A (en) 2007-12-21 2007-12-21 Temperature regulator for heating element

Publications (1)

Publication Number Publication Date
JP2009152440A true JP2009152440A (en) 2009-07-09

Family

ID=40921229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329904A Pending JP2009152440A (en) 2007-12-21 2007-12-21 Temperature regulator for heating element

Country Status (1)

Country Link
JP (1) JP2009152440A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057558B1 (en) 2010-01-27 2011-08-17 에스비리모티브 주식회사 Battery pack
JP2011222972A (en) * 2010-03-24 2011-11-04 Mitsubishi Engineering Plastics Corp Heat dissipating member and heat dissipating structure of exothermic body
KR101130043B1 (en) * 2009-07-27 2012-03-28 주식회사 엘지화학 Battery Module of Improved Cooling Efficiency
WO2012117681A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Battery module and method for manufacturing battery module
JP2012226955A (en) * 2011-04-19 2012-11-15 Dendo Sharyo Gijutsu Kaihatsu Kk Battery unit
JP2013038001A (en) * 2011-08-10 2013-02-21 Toyota Industries Corp Battery module
JP2013073722A (en) * 2011-09-27 2013-04-22 Furukawa Electric Co Ltd:The Battery temperature adjusting unit and battery temperature adjusting apparatus
JP2013178977A (en) * 2012-02-29 2013-09-09 Prostaff:Kk Battery unit with temperature adjustment function by peltier element
WO2014002806A1 (en) * 2012-06-27 2014-01-03 京セラ株式会社 Battery temperature control device and battery device
WO2015041149A1 (en) * 2013-09-20 2015-03-26 株式会社 東芝 Cell heat dissipation system, and cell heat dissipation unit
EP2567424B1 (en) 2010-05-07 2015-08-19 Siemens Aktiengesellschaft Electrical energy store with cooling device
EP2930782A1 (en) * 2014-04-09 2015-10-14 Samsung SDI Co., Ltd. Cooling element and battery system
JP2016186900A (en) * 2015-03-27 2016-10-27 株式会社フジクラ Lithium ion secondary battery device
CN106785197A (en) * 2016-12-12 2017-05-31 芜湖市吉安汽车电子销售有限公司 New-energy automobile assembled battery bag heat management system
WO2018083431A1 (en) * 2016-11-07 2018-05-11 Compagnie Generale Des Etablissements Michelin Unitary module for a battery pack, and battery pack
WO2020177338A1 (en) * 2019-03-01 2020-09-10 华南理工大学 Heat management device for electric vehicle power battery suitable for use in extremely cold regions
US20210399363A1 (en) * 2020-06-17 2021-12-23 Samsung Sdi Co., Ltd. Battery module and vehicle including the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130043B1 (en) * 2009-07-27 2012-03-28 주식회사 엘지화학 Battery Module of Improved Cooling Efficiency
US8703320B2 (en) 2010-01-27 2014-04-22 Samsung Sdi Co., Ltd. Battery pack having thermoelectric device
KR101057558B1 (en) 2010-01-27 2011-08-17 에스비리모티브 주식회사 Battery pack
JP2011222972A (en) * 2010-03-24 2011-11-04 Mitsubishi Engineering Plastics Corp Heat dissipating member and heat dissipating structure of exothermic body
EP2567424B1 (en) 2010-05-07 2015-08-19 Siemens Aktiengesellschaft Electrical energy store with cooling device
WO2012117681A1 (en) * 2011-02-28 2012-09-07 三洋電機株式会社 Battery module and method for manufacturing battery module
US10186738B2 (en) 2011-02-28 2019-01-22 Sanyo Electric Co., Ltd. Cell module and manufacturing method for cell module
US9431686B2 (en) 2011-02-28 2016-08-30 Sanyo Electric Co., Ltd. Cell module and manufacturing method for cell module
JP5852092B2 (en) * 2011-02-28 2016-02-03 三洋電機株式会社 Battery module and battery module manufacturing method
JP2012226955A (en) * 2011-04-19 2012-11-15 Dendo Sharyo Gijutsu Kaihatsu Kk Battery unit
JP2013038001A (en) * 2011-08-10 2013-02-21 Toyota Industries Corp Battery module
JP2013073722A (en) * 2011-09-27 2013-04-22 Furukawa Electric Co Ltd:The Battery temperature adjusting unit and battery temperature adjusting apparatus
JP2013178977A (en) * 2012-02-29 2013-09-09 Prostaff:Kk Battery unit with temperature adjustment function by peltier element
WO2014002806A1 (en) * 2012-06-27 2014-01-03 京セラ株式会社 Battery temperature control device and battery device
JP5800992B2 (en) * 2012-06-27 2015-10-28 京セラ株式会社 Battery temperature control device and battery device
WO2015041149A1 (en) * 2013-09-20 2015-03-26 株式会社 東芝 Cell heat dissipation system, and cell heat dissipation unit
US10224585B2 (en) 2013-09-20 2019-03-05 Kabushiki Kaisha Toshiba Battery heat radiation system, battery heat radiation unit
JPWO2015041149A1 (en) * 2013-09-20 2017-03-02 株式会社東芝 Battery heat dissipation system, battery heat dissipation unit
EP2930782A1 (en) * 2014-04-09 2015-10-14 Samsung SDI Co., Ltd. Cooling element and battery system
US9620831B2 (en) 2014-04-09 2017-04-11 Samsung Sdi Co., Ltd. Cooling element and battery system
JP2016186900A (en) * 2015-03-27 2016-10-27 株式会社フジクラ Lithium ion secondary battery device
WO2018083431A1 (en) * 2016-11-07 2018-05-11 Compagnie Generale Des Etablissements Michelin Unitary module for a battery pack, and battery pack
FR3058576A1 (en) * 2016-11-07 2018-05-11 Compagnie Generale Des Etablissements Michelin UNIT MODULE FOR BATTERY PACK, AND BATTERY PACK
CN106785197A (en) * 2016-12-12 2017-05-31 芜湖市吉安汽车电子销售有限公司 New-energy automobile assembled battery bag heat management system
WO2020177338A1 (en) * 2019-03-01 2020-09-10 华南理工大学 Heat management device for electric vehicle power battery suitable for use in extremely cold regions
US20210399363A1 (en) * 2020-06-17 2021-12-23 Samsung Sdi Co., Ltd. Battery module and vehicle including the same
US11715851B2 (en) * 2020-06-17 2023-08-01 Samsung Sdi Co., Ltd. Battery module and vehicle including the same

Similar Documents

Publication Publication Date Title
JP2009152440A (en) Temperature regulator for heating element
JP2009147187A (en) Cooling device of heating element
JP6049752B2 (en) Newly structured bus bar
JP5024600B2 (en) Heating element cooling structure and driving device having the structure
JP5757502B2 (en) Battery temperature control unit and battery temperature control device
CN108886189B (en) Battery pack temperature control and power supply system
EP1538731A1 (en) Drive device
JP2005349955A (en) Cooling structure for power storage mechanism
US10128549B2 (en) Electrical energy store
WO2009090773A1 (en) Temperature control mechanism
JP3159901U (en) Battery heat dissipation module for car
JP2009252646A (en) Cooling device of heat generator
JP2005285456A (en) Power supply apparatus
JP2012041033A (en) Heating part cooling structure for hybrid electric automobile
KR20200134492A (en) Heat exchanger with thermoelectric module and system for managing heat for battery including the same
JP2012196985A (en) Heater for heat medium and air conditioner for vehicle with the same
KR20110073101A (en) Thermoelectric generator for vehicles and cooling module having it
JP2012017031A (en) Heat medium-heating device and air conditioner for vehicle using the same
KR20120100776A (en) Vehicle air conditioner
JP5712750B2 (en) Power converter
JP2013149524A (en) Battery temperature control apparatus
JP5906921B2 (en) Battery module and vehicle
WO2020170428A1 (en) Cooling device and power conversion device
JPH07106640A (en) Thermoelectric cooling unit
JP2008106958A (en) Heat exchanger