JP2009150665A - Single-molecule fluorescence/phosphorescence analysis method and device therefor - Google Patents

Single-molecule fluorescence/phosphorescence analysis method and device therefor Download PDF

Info

Publication number
JP2009150665A
JP2009150665A JP2007326500A JP2007326500A JP2009150665A JP 2009150665 A JP2009150665 A JP 2009150665A JP 2007326500 A JP2007326500 A JP 2007326500A JP 2007326500 A JP2007326500 A JP 2007326500A JP 2009150665 A JP2009150665 A JP 2009150665A
Authority
JP
Japan
Prior art keywords
sample
fluorescence
light
focal region
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007326500A
Other languages
Japanese (ja)
Inventor
Ayafumi Yamada
純史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007326500A priority Critical patent/JP2009150665A/en
Publication of JP2009150665A publication Critical patent/JP2009150665A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect light emission from a detection object substance, in the presence of a foreign substance of emitting self-fluorescence, in a technology for measuring and analyzing fluorescence or phosphorescence by using an optical system of a confocal optical microscope. <P>SOLUTION: This method is performed by arranging a flow passage for flowing a sample including a focal area of an objective lens and a means for irradiating to the sample with the exciting light on the upstream side of the focal area, and preparing the sample including a substance to be tested of adding a light emitting substance having the light emitting service life longer than the self-fluorescence. In measurement of the light emission, the sample is made to flow in the flow passage, and reaches the focal area of the objective lens after the self-fluorescence of the foreign substance disappears after a predetermined time passes after irradiating the exciting light, and the light emission from the substance to be tested is detected there. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、タンパク質、ペプチド、核酸、脂質、アミノ酸及びその他の生理活性物質又は生体分子(以下、「生体分子等」とする。)或いはその他の物質に標識された蛍光若しくはりん光を発する分子又は物質の発光強度を計測し、計測された光強度を解析して、生体分子等の特性、反応又は相互作用を検出する蛍光・りん光分析方法に係り、より詳細には、共焦点顕微鏡の光学系を採用し、蛍光又はりん光一分子(又は数分子)からの発光を計測して光強度を解析する蛍光・りん光分析方法に係る。   The present invention relates to proteins, peptides, nucleic acids, lipids, amino acids and other physiologically active substances or biomolecules (hereinafter referred to as “biomolecules”) or other molecules emitting fluorescence or phosphorescence labeled with other substances or The present invention relates to a fluorescence / phosphorescence analysis method for measuring the emission intensity of a substance and analyzing the measured light intensity to detect characteristics, reactions or interactions of biomolecules. The present invention relates to a fluorescence / phosphorescence analysis method that employs a system and analyzes light intensity by measuring light emission from one molecule (or several molecules) of fluorescence or phosphorescence.

近年の光計測技術の発展により、現在では、蛍光一分子からの蛍光を測定・解析する蛍光相関分光分析(Fluorescence Correlation Spectroscopy:FCS)、蛍光強度分布分析(Fluorescence-Intensity Distribution Analysis:FIDA)といった蛍光分析方法が利用できるようになっている。これらの蛍光一分子レベルの蛍光測定を行う蛍光分析法(一分子蛍光分析技術)に於いては、レーザー共焦点顕微鏡の光学系とフォトンカウンティング(1光子検出)も可能な超高感度の光検出装置とを用いて蛍光一分子レベルの蛍光強度が測定され、その強度の揺らぎを種々の方法により解析して、蛍光分子又は蛍光標識された分子の運動の速さ又は分子の大きさ(FCSの場合)、分子(又は粒子)の数密度又は一分子当たりの蛍光強度(FIDAの場合)といった情報を得ることができる。従って、これらの情報に基づいて、分子の構造又は大きさの変化や分子の結合・解離反応又は分散・凝集といった種々の現象を検出することができる。生物科学、医学又は薬学の分野では、かかる一分子蛍光分析技術を生体分子等の状態及び運動の検出・観測に応用し、種々の生体分子等の現象・反応、例えば、タンパク質と核酸の結合反応や抗原抗体反応を細胞レベル又は分子レベルで解明する試みがなされている(例えば、特許文献1−2、非特許文献1−2)。また、一分子蛍光分析技術は、従前の生化学的な方法に比して極めて微量な試料にて且短時間にて計測が可能であるので、医学・薬理学等の分野に於いて、種々の病気の臨床診断や生理活性物質のスクーリングに於ける応用も期待されている。   With the recent development of optical measurement technology, nowadays fluorescence such as Fluorescence Correlation Spectroscopy (FCS) and Fluorescence-Intensity Distribution Analysis (FIDA) which measure and analyze fluorescence from one fluorescent molecule. Analytical methods are available. In these fluorescence analysis methods (single molecule fluorescence analysis technology) that measure fluorescence at the single molecule level, the optical system of a laser confocal microscope and photon counting (one-photon detection) are possible. The fluorescence intensity at the fluorescence single molecule level is measured using an apparatus, and the fluctuation of the intensity is analyzed by various methods to determine the speed of movement of the fluorescent molecule or the fluorescently labeled molecule or the size of the molecule (FCS ), Number density of molecules (or particles) or fluorescence intensity per molecule (in the case of FIDA). Therefore, based on such information, various phenomena such as a change in the structure or size of the molecule, a binding / dissociation reaction or dispersion / aggregation of the molecule can be detected. In the field of biological science, medicine or pharmacy, this single-molecule fluorescence analysis technology is applied to the detection and observation of the state and movement of biomolecules, etc., and the phenomena and reactions of various biomolecules, such as the binding reaction between proteins and nucleic acids. In addition, attempts have been made to elucidate the antigen-antibody reaction at the cellular level or the molecular level (for example, Patent Document 1-2 and Non-Patent Document 1-2). In addition, single-molecule fluorescence analysis technology can measure in a very short amount of sample and in a short time compared to conventional biochemical methods, so in various fields such as medicine and pharmacology, It is also expected to be applied in clinical diagnosis of illness and schooling of bioactive substances.

上記の如き一分子蛍光分析技術に於いて、蛍光一分子レベルの微弱な蛍光(一分子又は数分子レベルの蛍光分子から放出される蛍光の強度のレベルの微弱光)の計測が可能となった理由の一つは、光の測定のために共焦点光学顕微鏡の光学系を採用したということである。蛍光測定のための光学系に於いて、当業者に於いて理解されている如く、光検出器の感度が十分高くても、種々の要因で生ずる盲蛍光や励起光の反射・散乱光が光検出器に入射すると、それらの光に蛍光一分子レベルの微弱光は埋もれてしまうため、通常の落射式の光学系では、蛍光一分子レベルの微弱光の計測は、極めて困難である(特許文献4)。しかしながら、共焦点顕微鏡の光学系によれば、光検出器で受光される光は、実質的に、対物レンズの焦点領域内からの光のみとすることができるので、原理的には、盲蛍光や励起光の反射・散乱光の影響を受けずに、精度よく対物レンズの焦点領域内の蛍光一分子レベルの微弱な蛍光を計測することが可能となっている。
特開2003−275000公報 特開2005−337805公報 特許第3517241号 特許第3676212号 カスク外3名、PNAS 96巻、24号、13756−13761頁 1999年11月23日 コバヤシ外3名、アナリティカル・バイオケミストリー、2004年 332巻 58−66頁 グーシュ外3名、アナリティカル・ケミストリー、2000年 72巻 3260−3265頁 ケーラー外3名、ジャーナル・オブ・セル・サイエンス 2000年 113巻、3921−3930頁
With the single-molecule fluorescence analysis technique as described above, it is possible to measure weak fluorescence at the fluorescent single molecule level (weak light at the fluorescence intensity level emitted from single or several fluorescent molecules). One of the reasons is that the optical system of the confocal optical microscope is adopted for measuring light. As is understood by those skilled in the art, in the optical system for fluorescence measurement, even if the sensitivity of the photodetector is sufficiently high, blind fluorescence and reflected / scattered light of excitation light generated by various factors are light. When the light enters the detector, the weak light at the fluorescence single molecule level is buried in the light, so it is extremely difficult to measure the weak light at the fluorescence single molecule level with a normal incident light optical system (Patent Literature). 4). However, according to the optical system of the confocal microscope, the light received by the photodetector can be substantially only the light from within the focal region of the objective lens. In addition, it is possible to accurately measure the weak fluorescence at the fluorescence single molecule level in the focal region of the objective lens without being affected by the reflected / scattered light of the excitation light.
JP 2003-275000 A JP 2005-337805 A Japanese Patent No. 3517241 Patent No. 3676212 3 outside casks, PNAS 96, 24, 13756-13761, November 23, 1999 Three people outside Kobayashi, Analytical Biochemistry, 2004, 332, 58-66 3 people outside Goush, Analytical Chemistry, 2000, 72, 3260-3265 3 people outside Kohler, Journal of Cell Science, 2000, 113, 3921-3930

上記の如く共焦点顕微鏡の光学系を用いることにより、確かに、装置の蛍光観測領域(対物レンズの焦点領域)以外からの光を、それらが光検出器に入射しないよう遮断することが可能となる。しかしながら、装置の蛍光観測領域の内部から検出しようする光以外の光が発せられる場合、即ち、測定対象を含む試料中に自家蛍光を生ずる夾雑物が存在し、従って、かかる夾雑物の自家蛍光が背景光となって装置の蛍光観測領域の内部から生ずる場合には、共焦点顕微鏡の光学系をもってしても、かかる背景光を除去することはできない。特に、生体分子等の相互作用の観測や病気の臨床診断等に使用されることとなる生体試料又は生体由来の試料(血清、血漿など)は、一般に、検出したい反応に関わりのない種々の構成物又は夾雑物が多く含まれており、その場合、試料中の観測対象の分子以外に多数の分子からの自家蛍光によって背景光が高くなり、このことにより、測定結果の精度又は信頼性が低下してしまうこととなる。   By using the optical system of the confocal microscope as described above, it is possible to block the light from other than the fluorescence observation region of the apparatus (the focal region of the objective lens) so that they do not enter the photodetector. Become. However, when light other than the light to be detected is emitted from the inside of the fluorescence observation region of the apparatus, that is, there is a contaminant that generates autofluorescence in the sample including the measurement target. When the background light is generated from the inside of the fluorescence observation region of the apparatus, the background light cannot be removed even with the optical system of the confocal microscope. In particular, biological samples or biological samples (serum, plasma, etc.) that are used for observation of interactions such as biomolecules or clinical diagnosis of diseases generally have various configurations that are not related to the reaction to be detected. In this case, the background light increases due to autofluorescence from a number of molecules other than the target molecule in the sample, which reduces the accuracy or reliability of the measurement results. Will end up.

上記の如き一分子蛍光分析技術の試料中の観測対象の分子以外の構成物又は夾雑物の影響は、試料からそれらの夾雑物を除去するか或いは観測対象の分子を精製することにより排除することができる。しかしながら、試料から特定の分子を抽出したり、或いは、特定の分子以外を除去することは、時間、労力及び多量の試料を必要とし、微量にて短時間に計測が可能であるという一分子蛍光分析技術の利点を損なうこととなる。また、生体試料の場合、物質の抽出・精製又は除去の処理操作中に目的の物質が変性してしまうこともあり、結局、目的の測定が実施できなくなってしまうことも有り得る。   The effects of other constituents or contaminants other than the molecule to be observed in the sample of the single-molecule fluorescence analysis technique as described above should be eliminated by removing those impurities from the sample or purifying the molecule to be observed. Can do. However, extracting a specific molecule from a sample or removing other than a specific molecule requires time, labor and a large amount of sample, and single molecule fluorescence that can be measured in a short amount of time. The advantage of analysis technology will be lost. In the case of a biological sample, the target substance may be denatured during the process of extracting / purifying or removing the substance, and eventually the target measurement may not be performed.

かくして、本発明の一つの主な課題は、一分子蛍光分析技術に於いて、検出・観測結果の精度及び信頼性を損なう原因となる試料中に含まれる検出対象の分子以外の夾雑物を除去することなく、それらの夾雑物の存在に起因する背景光を排除するか又は相対的に低減できるようにすることである。   Thus, one of the main problems of the present invention is to remove impurities other than the molecule to be detected contained in the sample that cause the accuracy and reliability of the detection / observation results to be impaired in the single molecule fluorescence analysis technique. Without eliminating the background light, it is possible to eliminate or relatively reduce the background light due to the presence of these contaminants.

また、本発明のもう一つの課題は、上記の如き一分子蛍光分析技術を用いた分子の特性、反応、相互作用等の検出及び観測に於いて、試料として、生体試料又は生体由来の試料(血清、血漿など)など、自家蛍光が比較的強い試料を用いる場合に、計測結果に於いて、かかる自家蛍光の影響を排除し、計測結果の精度、信頼性をより向上させることである。   Another object of the present invention is to use a biological sample or a sample derived from a living body as a sample in the detection and observation of molecular properties, reactions, interactions, etc. using the single-molecule fluorescence analysis technique as described above. When using a sample with relatively strong autofluorescence such as serum, plasma, etc., the effect of autofluorescence is eliminated in the measurement result, and the accuracy and reliability of the measurement result are further improved.

本発明によれば、自家蛍光を有する夾雑物を多く含む試料、特に生体試料溶液に於いて、観測対象となる物質に夾雑物の自家蛍光より発光寿命の長い蛍光又はりん光標識を付加しておき、光計測時には、試料に励起光の照射してから夾雑物の自家蛍光が消滅してから、試料の放射光を計測することにより、蛍光一分子レベルの蛍光又はりん光の強度を、精度良く又は信頼性高く検出することを可能にする蛍光又はりん光分光分析方法又はそのための装置が提供される。   According to the present invention, in a sample containing a large amount of contaminants having autofluorescence, particularly in a biological sample solution, a fluorescent or phosphorescent label having a longer emission lifetime than the autofluorescence of contaminants is added to a substance to be observed. At the time of optical measurement, after the sample is irradiated with excitation light, the autofluorescence of the contaminants disappears, and then the intensity of the fluorescence or phosphorescence at the fluorescence single molecule level is measured accurately by measuring the emitted light of the sample. Provided is a fluorescence or phosphorescence spectroscopic method or an apparatus therefor that allows good or reliable detection.

本発明の一つの態様によれば、共焦点光学顕微鏡の光学系を用いて、自家蛍光を有する夾雑物を含む試料から発せられる蛍光又はりん光を計測し分析する方法に於いて、まず、共焦点光学顕微鏡の対物レンズの焦点領域を試料が通過するよう構成された試料を流通させるための流路と、その流路に於いて、対物レンズの焦点領域よりも上流にて試料に励起光を照射するための励起光照射手段とが設けられる。しかる後、流路内に試料を流通する過程と、試料に焦点領域よりも上流にて励起光を照射し焦点領域内に到達した試料からの蛍光又はりん光の強度を測定する過程とが実行され、試料が励起光にて照射されてから所定の時間が経過した後該試料からの蛍光又はりん光が測定される。かかる本発明の方法に於いて、試料は、特に、その試料中の蛍光又はりん光を計測したい物質(以下、「被検物質」とする。)に、夾雑物の自家蛍光よりも長い発光寿命を有する発光物質が付加された状態となっているものが準備される。なお、被検物質が、本来的に夾雑物の自家蛍光よりも長い発光寿命を有する蛍光分子基又はりん光分子基を持つなど、蛍光物質又はりん光物質にて標識された状態となっている場合には、被検物質は、そのまま用いられてよい。しかしながら、被検物質が、任意の方法にて、そのような長い発光寿命を有する長蛍光寿命の蛍光物質又はりん光物質を付加するなどにより標識されてよい。長蛍光寿命の蛍光物質としては、希土類錯体であってよい。なお、計測された蛍光又はりん光の強度の解析は、共焦点顕微鏡の光学系を用いて実行される蛍光相関分光分析法(FCS)、蛍光偏光解消法(Fluorescence Depolarization Spectroscopy:FDS)、蛍光強度分布解析法(FIDA)又は蛍光相互相関分光法(Fluorescence cross-correlation Spectroscopy:FCCS)のいずれかに従った手法にて行われてよい。   According to one aspect of the present invention, in a method for measuring and analyzing fluorescence or phosphorescence emitted from a sample containing impurities having autofluorescence using an optical system of a confocal optical microscope, A flow path for circulating a sample configured to pass the sample through the focal region of the objective lens of the focus optical microscope, and excitation light to the sample upstream of the focal region of the objective lens in the flow channel Excitation light irradiation means for irradiating is provided. After that, the process of circulating the sample in the flow path and the process of measuring the intensity of fluorescence or phosphorescence from the sample that irradiates the sample with excitation light upstream from the focal region and reaches the focal region are executed. Then, after a predetermined time has elapsed since the sample was irradiated with excitation light, fluorescence or phosphorescence from the sample is measured. In such a method of the present invention, the sample has a longer emission lifetime than the autofluorescence of contaminants, particularly for a substance (hereinafter referred to as “test substance”) whose fluorescence or phosphorescence is to be measured in the sample. A luminescent material having a state in which a luminescent material is added is prepared. In addition, the test substance is in a state labeled with a fluorescent substance or a phosphorescent substance, such as having a fluorescent molecular group or a phosphorescent molecular group that has a longer emission lifetime than the autofluorescence of contaminants. In some cases, the test substance may be used as it is. However, the test substance may be labeled by an arbitrary method, for example, by adding a fluorescent substance or phosphorescent substance having a long fluorescence lifetime and having a long fluorescence lifetime. The fluorescent material having a long fluorescence lifetime may be a rare earth complex. The intensity of the measured fluorescence or phosphorescence is analyzed using fluorescence correlation spectroscopy (FCS), fluorescence depolarization spectroscopy (FDS), fluorescence intensity performed using an optical system of a confocal microscope. It may be performed by a technique according to either a distribution analysis method (FIDA) or a fluorescence cross-correlation spectroscopy (FCCS).

上記の本発明の一つの態様の構成によれば、被検物質を含む試料は、励起光にて照射された後、流路内にて下流の対物レンズの焦点領域まで流され、その段階で、即ち、試料の励起後所定の時間の経過後に、そのときに試料から放射される蛍光又はりん光が計測されることとなる。前記の如く、本発明の方法に於いて使用される試料は、被検物質の発光寿命が夾雑物の自家蛍光よりも長くなるよう準備されている。従って、上記の構成の如く、被検物質からの放射光の計測を励起光の照射から所定の時間遅らせることにより、被検物質からの放射光を計測する段階で、夾雑物の自家蛍光が相対的に低減又は消滅し、これにより、被検物質からの放射光が、従前よりも精度よく計測されることが期待される。なお、試料の励起後からその放射光を計測するまでの時間は、使用される試料の夾雑物の自家蛍光の寿命と被検物質の標識の発光寿命とにより適宜決定されてよく、かかる時間は、流路内に流通させられる試料の流速を調節することにより為されてよい。具体的には、試料の励起後からその放射光を計測するまでの時間(所定の時間)は、現在までに利用可能な発光物質(蛍光物質・りん光物質)を考えると、100μ秒以上であり、より好適には、1m秒以上であるが、被検物質の標識の発光寿命が長ければ長いほど、試料の励起後からその放射光を計測するまでの時間は、延長されてよいことは理解されるべきである。   According to the configuration of one aspect of the present invention described above, the sample containing the test substance is irradiated with the excitation light, and then flowed to the focal region of the downstream objective lens in the flow path. That is, after elapse of a predetermined time after the excitation of the sample, fluorescence or phosphorescence emitted from the sample at that time is measured. As described above, the sample used in the method of the present invention is prepared so that the emission lifetime of the test substance is longer than the autofluorescence of the contaminants. Therefore, as in the above configuration, the measurement of the emitted light from the test substance is delayed for a predetermined time from the irradiation of the excitation light. Therefore, it is expected that the emitted light from the test substance is measured with higher accuracy than before. Note that the time from the excitation of the sample to the measurement of the emitted light may be appropriately determined according to the lifetime of the autofluorescence of the contaminants in the sample used and the emission lifetime of the label of the test substance. This may be done by adjusting the flow rate of the sample passed through the flow path. Specifically, the time (predetermined time) from the excitation of the sample to the measurement of the radiated light is 100 μsec or more, considering the luminescent materials (fluorescent materials and phosphorescent materials) that can be used up to now. More preferably, it is 1 ms or longer, but the longer the emission lifetime of the label of the test substance, the longer the time from the excitation of the sample to the measurement of the emitted light may be extended. Should be understood.

なお、本発明の方法に於いて用いられる試料は、生物科学、医学又は薬学の分野の研究、病気の臨床診断又は生理活性物質のスクリーニング等に於いて使用される血清、血漿又はその他の生体から得られた溶液試料であってよい。   The sample used in the method of the present invention is serum, plasma or other living body used in research in the fields of biological science, medicine or pharmacy, clinical diagnosis of diseases or screening of physiologically active substances. It may be a solution sample obtained.

上記の本発明の方法は、共焦点顕微鏡の光学系を有する任意の光分析装置に、対物レンズの焦点領域を含む流路と、その流路に試料を流通させる手段と、流路に於いて焦点領域よりも上流にて試料に励起光を照射するための励起光照射手段とを設けてなる装置により達成される。従って、本発明のもう一つの態様として、本発明によれば、自家蛍光を有する夾雑物を含む試料にしてその試料中の被検物質に夾雑物の自家蛍光よりも長い発光寿命を有する蛍光又はりん光物質が付加されている試料からの蛍光又はりん光の強度を測定し解析するための光分析装置であって、共焦点光学顕微鏡の光学系を有しその対物レンズの焦点領域内の試料から発せられる蛍光又はりん光を検出する光検出手段と、対物レンズの焦点領域を含み試料を流通させるための流路を含む試料流通手段と、流路に於いて焦点領域よりも上流にて試料に励起光を照射する励起光照射手段と、流路内に流通される試料が励起光にて照射されてから焦点領域に到達したときに試料から放射され光検出手段により検出された蛍光又はりん光の強度を解析する手段とを含むことを特徴とする装置が提供される。かかる装置によれば、上記の本発明の方法に関連して説明されているように、夾雑物の自家蛍光よりも長い発光寿命をもつ発光物質により被検物質を含む試料は、励起光にて照射された後、流路内にて下流の対物レンズの焦点領域まで流され、この段階で、夾雑物の自家蛍光が相対的に低減した状態で試料から放射される蛍光又はりん光が計測される。   In the method of the present invention described above, in any optical analyzer having an optical system of a confocal microscope, a flow path including the focal region of the objective lens, means for circulating a sample in the flow path, and a flow path This is achieved by an apparatus provided with excitation light irradiation means for irradiating the sample with excitation light upstream from the focal region. Therefore, as another aspect of the present invention, according to the present invention, a sample containing a contaminant having autofluorescence and having a longer emission lifetime in the test substance in the sample than the autofluorescence of the contaminant or An optical analyzer for measuring and analyzing the intensity of fluorescence or phosphorescence from a sample to which a phosphorescent material has been added, having a confocal optical microscope optical system and a sample in the focal region of the objective lens A light detection means for detecting fluorescence or phosphorescence emitted from the sample, a sample distribution means including a flow path for flowing the sample including the focal area of the objective lens, and a sample upstream of the focal area in the flow path Excitation light irradiating means for irradiating excitation light to the light source, and fluorescence or phosphorus emitted from the sample and detected by the light detecting means when the sample flowing in the flow channel reaches the focal region after being irradiated with excitation light. Analyzing light intensity Apparatus is provided which comprises a means. According to such an apparatus, as described in relation to the above-described method of the present invention, a sample containing a test substance by a luminescent substance having a longer luminescence lifetime than the autofluorescence of the contaminants is obtained by exciting light. After irradiation, the light is flowed to the focal region of the downstream objective lens in the flow path. At this stage, fluorescence or phosphorescence emitted from the sample is measured in a state in which the autofluorescence of impurities is relatively reduced. The

従前の共焦点顕微鏡の光学系を用いた分光分析法は、確かに、蛍光一分子レベルの蛍光又はりん光の検出及び分析が可能であったが、通常、試料が比較的“きれいな”場合に於いてのみ精度の良い結果が得られ、血清、血漿等の生体から得られた溶液試料をそのまま検査試料とする場合には、あまり精度の良い結果が得られなかった。その理由の一つが、既に述べた如く、生体から得られた溶液試料には、多数の夾雑物が混在し、共焦点顕微鏡の光学系により、どんなに背景光の進入を防いでも、その対物レンズの焦点領域内の夾雑物からの発光までを遮断することはできないからであった。上記の本発明の方法及び装置は、観察試料として、被検物質に夾雑物の自家蛍光よりも長い発光寿命を有する発光物質を付与し、且つ、観測領域以外の盲蛍光や散乱光が光検出器に入射することを遮断する共焦点顕微鏡の光学系に於いて、更に、試料の励起と放射光の検出のタイミングをずらすことにより、目的の被検物質からの光の検出時に、観測領域内の夾雑物の自家蛍光を相対的に低減しておくという手法により、自家蛍光を発する夾雑物を含む試料でも、共焦点顕微鏡の光学系を用いた光分析法が適用できるようにするものであるということができる。   The spectroscopic method using the optical system of the conventional confocal microscope can surely detect and analyze fluorescence or phosphorescence at the fluorescence single molecule level, but usually, when the sample is relatively “clean”. Only when a solution sample obtained from a living body such as serum or plasma was used as it was as a test sample, a highly accurate result was not obtained. One reason for this is that, as already mentioned, a large number of contaminants are mixed in the solution sample obtained from the living body, and no matter how much background light is prevented by the optical system of the confocal microscope, This is because it is impossible to block light emission from impurities in the focal region. The above-described method and apparatus of the present invention provides a light-emitting substance having a longer emission lifetime than the autofluorescence of impurities as an observation sample, and detects blind fluorescence or scattered light outside the observation region. In the optical system of the confocal microscope that blocks light from entering the detector, the timing of excitation of the sample and detection of the emitted light are shifted to detect the light from the target analyte within the observation area. By using the technique of relatively reducing the autofluorescence of foreign substances, it is possible to apply the optical analysis method using the optical system of the confocal microscope even for samples containing foreign substances that emit autofluorescence. It can be said.

なお、従来に於いて、例えば、特許文献4に於いて、通常の落射式の蛍光分析装置に於いて、観測領域以外の盲蛍光や散乱光が光検出器に入射することを遮断する目的で試料の励起位置と放射光の検出位置を空間的にずらす例は存在するが、本発明の場合は、観測領域以外の盲蛍光や散乱光の遮断又は除去は、共焦点顕微鏡の光学系を採用することにより既に達成されている。本発明の特徴的な構成は、共焦点顕微鏡の光学系に於いて、焦点領域内からの不要な光を除去するべく、試料の励起と放射光の検出のタイミングをずらすためのもの(時間的なずれを与えるもの)であり、落射式の蛍光分析装置に於いて観測領域以外の盲蛍光や散乱光を除去するために試料の励起位置と放射光の検出位置を空間的にずらすこととは、構成だけでなく目的も異なっていることは理解されるべきである。   In the prior art, for example, in Patent Document 4, in a normal epi-illumination type fluorescence analyzer, for the purpose of blocking the incidence of blind fluorescence or scattered light outside the observation region to the photodetector. There are examples of spatially shifting the excitation position of the sample and the detection position of the emitted light, but in the case of the present invention, the optical system of the confocal microscope is used for blocking or removing blind fluorescence and scattered light outside the observation region. Has already been achieved. The characteristic configuration of the present invention is to shift the timing of excitation of the sample and detection of the emitted light in order to remove unnecessary light from the focal region in the optical system of the confocal microscope (temporal). In an epi-illumination fluorescence analyzer, spatially shifting the excitation position of the sample and the detection position of the emitted light to remove blind fluorescence and scattered light outside the observation area It should be understood that not only the structure but also the purpose is different.

本発明の光分析の手法により、既に述べた如く、血清、血漿又はその他の生体から得られた溶液試料であっても、良好な蛍光一分子レベルの蛍光・りん光の検出及び分析が可能となり、試料からの夾雑物の除去或いは観測対象である被検物質の精製などのための労力又は費用が軽減され、FCS、FIDA、FCCS等の一分子蛍光分析技術の生物科学、医学又は薬学の分野の研究、病気の臨床診断又は生理活性物質のスクリーニング等に於ける適用範囲が拡大することが期待される。   As described above, the optical analysis method of the present invention makes it possible to detect and analyze good fluorescence / phosphorescence at a single fluorescence level even in the case of solution samples obtained from serum, plasma or other living organisms. The labor or cost for removing contaminants from the sample or purifying the analyte to be observed is reduced, and the field of biological science, medicine or pharmacy for single-molecule fluorescence analysis technology such as FCS, FIDA, FCCS, etc. It is expected that the scope of application in research, clinical diagnosis of diseases, screening of bioactive substances, etc. will be expanded.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.

光検出の原理
「発明の開示」の欄に於いて述べた如く、或る試料中の発光標識が付加された或る特定の物質(被検物質)からの発光を計測しようとする場合、試料に励起光を照射することで、試料中の夾雑物が自家蛍光を発するために、被検物質からの発光を検出できない場合がある。特に、生体分子等の相互作用の観測や病気の臨床診断等に使用されることとなる血清、血漿といった生体由来の試料(など)は、タンパク質、糖質、脂質等の自家蛍光を発する物質を多く含んでいるため、そのような生体由来の試料を用いて光分析を実行する際には、夾雑物の自家蛍光のために、良好な計測が実行できない場合が多い。かかる状況は、光検出のために共焦点顕微鏡の光学系を採用しても同様である。
The principle of light detection As described in the “Disclosure of the Invention” section, when light emission from a specific substance (test substance) to which a luminescent label is added in a sample is to be measured, By irradiating the sample with excitation light, the contaminants in the sample emit autofluorescence, and thus there is a case where luminescence from the test substance cannot be detected. In particular, biological samples such as serum and plasma that will be used for observation of interactions such as biomolecules and clinical diagnosis of diseases are substances that emit autofluorescence such as proteins, carbohydrates, and lipids. Therefore, when optical analysis is performed using a sample derived from such a living body, good measurement cannot often be performed due to autofluorescence of impurities. This situation is the same even if a confocal microscope optical system is used for light detection.

そこで、本発明の光分析方法及び装置に於いては、発光標識として、長蛍光寿命の蛍光物質又はりん光物質などの通常の蛍光物質よりも発光寿命の長い物質を被検物質に付加しておき、試料の励起光照射から所定時間経過した後、夾雑物の自家蛍光が消滅してから、被検物質からの発光の検出が行われる。そのために、光分析装置に於いて、試料に励起光を照射する部位と、試料からの放射光を検出する部位を分離するとともに、励起光照射部位から放射光検出部位まで、試料を移動させる手段が設けられる。   Therefore, in the photoanalysis method and apparatus of the present invention, a substance having a longer emission lifetime than a normal fluorescent substance such as a fluorescent substance or a phosphorescent substance having a long fluorescent lifetime is added to the test substance as a luminescent label. In addition, after a predetermined time has elapsed from the irradiation of the sample with the excitation light, the autofluorescence of the contaminants disappears, and then light emission from the test substance is detected. For this purpose, in the optical analyzer, means for separating the part for irradiating the sample with excitation light and the part for detecting the radiated light from the sample and moving the sample from the excitation light irradiation part to the radiant light detection part Is provided.

図1は、上記の本発明の方法及び装置に於ける光分析の原理を模式的に表したものである。同図を参照して、本発明に於いては、図中、自家蛍光を発する夾雑物と発光標識が付加された被検物質とを含む試料が、次々に、左方(a)から右方(c)へ流動させられる。かかる状態で、まず、試料は、(a)に於いて、試料に励起光が照射され、被検物質とともに、夾雑物が自家蛍光を発する(この状態では、被検物質からの発光と夾雑物の自家蛍光との区別が付かない。)。その後、試料は、(b)、(c)の位置に移動される間、励起光が無くなるので、夾雑物の自家蛍光は消滅するが、被検物質の発光寿命は、相対的に夾雑物の自家蛍光よりも長いので、(c)の位置でも発光が存続することとなる。かくして、(c)の位置にて、放射光を検出する手段を配置することにより、被検物質からの放射光のみを検出することが可能となる。   FIG. 1 schematically shows the principle of optical analysis in the above-described method and apparatus of the present invention. Referring to the figure, in the present invention, in the figure, a sample containing contaminants that emit autofluorescence and a test substance to which a luminescent label is added is sequentially moved from the left (a) to the right. To (c). In this state, first, the sample is irradiated with excitation light in (a), and the contaminants emit autofluorescence together with the test substance (in this state, light emission and impurities from the test substance). Can not be distinguished from autofluorescence.) Thereafter, while the sample is moved to the positions (b) and (c), the excitation light disappears, so the autofluorescence of the contaminants disappears, but the emission lifetime of the test substance is relatively Since it is longer than the autofluorescence, the light emission continues even at the position (c). Thus, by arranging the means for detecting the emitted light at the position (c), it becomes possible to detect only the emitted light from the test substance.

被検物質に付加される発光標識は、典型的には、上記に触れたように、長蛍光寿命の蛍光物質又はりん光物質であってよい。例えば、長寿命蛍光色素としては、希土類、ユーロピウム、テルビウム、サマリウム、ジスプロシウムなどの錯体が用いられてよい。特に、蛍光寿命の長いユーロピウム錯体が好適に用いられる。また、りん光色素としては、有機EL素子に用いられるイリジウム化合物であるIr(ppy)3、またコロネン、ピレンなどの有機化合物などが用いられてよい。被検物質への発光標識の付加は、この分野に於いて通常実行されている任意の手法にて為されて良い。   Typically, the luminescent label added to the test substance may be a fluorescent substance or a phosphorescent substance having a long fluorescence lifetime as mentioned above. For example, a complex such as rare earth, europium, terbium, samarium, dysprosium may be used as the long-lived fluorescent dye. In particular, a europium complex having a long fluorescence lifetime is preferably used. As the phosphorescent dye, Ir (ppy) 3, which is an iridium compound used in an organic EL element, or an organic compound such as coronene or pyrene may be used. The addition of the luminescent label to the test substance may be performed by any technique that is usually performed in this field.

装置の構成と光検出・分析の方法
図2(A)は、本発明の光検出・分析方法の好ましい実施形態に於いて用いられる光分析装置10の構成を模式的に表したものである。同図を参照して、光分析装置10に於いては、共焦点光学顕微鏡の光学系を有する光検出手段と、共焦点光学顕微鏡の対物レンズ18の焦点領域Sを包含して試料溶液を流通させるため流路12を有する試料流通手段と、流路12に於いて、対物レンズ18の焦点領域Sよりも上流の領域に於いて励起光λexを照射するための励起光照射手段とが設けられる。
Apparatus Configuration and Photodetection / Analysis Method FIG. 2A schematically shows a configuration of an optical analysis apparatus 10 used in a preferred embodiment of the photodetection / analysis method of the present invention. Referring to the figure, in the optical analysis apparatus 10, the sample solution is circulated including the light detection means having the optical system of the confocal optical microscope and the focal region S of the objective lens 18 of the confocal optical microscope. Therefore, a sample distribution means having a flow path 12 and excitation light irradiation means for irradiating the excitation light λex in a region upstream of the focal region S of the objective lens 18 in the flow path 12 are provided. .

光検出手段の構成は、端的に述べれば、通常の共焦点光学顕微鏡の光学系に於いて試料を励起するための励起光照射手段が省略されたものであってよい(既存の通常の共焦点顕微鏡が用いられる場合には、その励起光照射のための光学系・光源は、使用されない。)。図示されているように、光検出手段に於いては、対物レンズ18の焦点領域S内にある試料からの放射光(蛍光・りん光)λemは、集光レンズ20によりピンホール22にて焦点を結ぶよう収斂された後、リレーレンズ24、ミラー26を経由して受光器APDに入射される。ここに於いて、対物レンズ18の焦点領域S以外から光は、ピンホール22により遮断されるので、受光器APDに到達できる光は、焦点領域S内にある試料からの放射光のみとなり(共焦点顕微鏡の原理)、かくして、焦点領域Sが本実施形態の光分析に於ける光の観測領域となる。なお、焦点領域Sの大きさは、対物レンズの開口数、ピンホール22の大きさ及び検出波長により画定される(通常、対物レンズの光軸方向に1〜2μm、光軸と垂直方向に直径1μm程度。)。また、検出光に於いて、励起光が装置の各部を照射することによる盲蛍光、散乱光、反射光等の光を除去する必要は原理的には必要なくなっているが、励起光の迷光等をより確実に遮断するために、バンドパスフィルター28が設けられ、検出されるべき波長のみが受光器APDに入射されるようになっていることが望ましい。受光器APDは、通常、共焦点光学顕微鏡による光検出に用いられている任意の受光素子又は光検出装置であってよく、例えば、アンバラシェ・フォトダイオードであってよい。受光器APDに於いては、通常の態様にて、受光した光の強度に対応した電気信号が生成され、信号解析装置50へ送信される。   In short, the configuration of the light detection means may be one in which the excitation light irradiation means for exciting the sample is omitted in the optical system of a normal confocal optical microscope (existing normal confocal light). When a microscope is used, the optical system and light source for the excitation light irradiation are not used.) As shown in the figure, in the light detection means, the radiated light (fluorescence / phosphorescence) λem from the sample in the focal region S of the objective lens 18 is focused on the pinhole 22 by the condenser lens 20. Then, the light is incident on the light receiver APD via the relay lens 24 and the mirror 26. Here, since light other than the focal region S of the objective lens 18 is blocked by the pinhole 22, the light that can reach the light receiver APD is only radiation light from the sample in the focal region S (both common). Principle of Focus Microscope) Thus, the focus area S becomes the light observation area in the optical analysis of this embodiment. The size of the focal region S is defined by the numerical aperture of the objective lens, the size of the pinhole 22 and the detection wavelength (usually 1 to 2 μm in the optical axis direction of the objective lens and the diameter in the direction perpendicular to the optical axis). About 1 μm). In addition, in the detection light, it is not necessary in principle to remove light such as blind fluorescence, scattered light, and reflected light by irradiating each part of the apparatus with excitation light, but stray light of excitation light, etc. In order to more reliably block the light, it is desirable that a band pass filter 28 is provided so that only the wavelength to be detected is incident on the light receiver APD. The light receiver APD may be any light receiving element or light detection device that is usually used for light detection by a confocal optical microscope, and may be, for example, an unbalanced photodiode. In the light receiver APD, an electric signal corresponding to the intensity of the received light is generated and transmitted to the signal analyzer 50 in a normal manner.

上記の光検出手段の対物レンズ18の焦点領域Sにて観測される試料は、本発明の光分析装置に於いては、試料流通手段により供給される。図2(A)に例示されている如く、試料流通手段は、焦点領域Sを包含するよう設置される流路12と、試料を焦点領域Sまで圧送するためのポンプPを有する。試料流通手段の作動に於いては、ポンプPは、溶液槽12bから溶液を吸入して流路12へ図中の矢印Fに沿った方向に送出する。ポンプPから焦点領域Sまでの流路12の任意の位置には、試料投入口12aが設けられ、そこから、試料が流路12内へ投入され、ポンプPからの溶液の流れに乗せて焦点領域Sまで送られる(焦点領域Sを通過した溶液及び試料は、その後、廃棄又は回収されてよい。)。流路12の材質は、典型的には、ガラス、特に合成石英などの無蛍光ガラスが用いられてよい。   The sample observed in the focal region S of the objective lens 18 of the light detection means is supplied by the sample distribution means in the optical analyzer of the present invention. As illustrated in FIG. 2A, the sample flow means has a flow path 12 installed so as to include the focal region S and a pump P for pumping the sample to the focal region S. In the operation of the sample circulation means, the pump P sucks the solution from the solution tank 12b and sends it out to the flow path 12 in the direction along the arrow F in the figure. A sample inlet 12a is provided at an arbitrary position of the flow path 12 from the pump P to the focal region S, from which the sample is introduced into the flow path 12 and is focused on the flow of the solution from the pump P. It is sent to the area S (the solution and the sample that have passed through the focal area S may then be discarded or collected). Typically, the material of the flow path 12 may be glass, particularly non-fluorescent glass such as synthetic quartz.

焦点領域Sに於ける試料からの放射光の検出に先立って行われる試料に対する励起光の照射を実行する手段は、流路12に於いて、焦点領域Sよりも試料の流れの上流に位置する部位を照射するよう構成される。典型的には、図に於いて模式的に示されているように、光源からの光が、架台16に担持された対物レンズ(又はコンデンサ)16aにより流路12の一部を照射するよう導かれる。図2(B)は、流路12に於ける焦点領域Sと励起光照射領域λexとの位置関係を対物レンズ18の光軸方向から見た模式図である。励起光の照射には、この分野に於いて通常実行されている落射照明(ケーラー照明等)を用い、視野絞りの位置、大きさ及び輪郭を調節することにより、領域λexが決定されてよい(矢印X1、X2の方向に位置が可変)。光源としては、典型的には、図示の如く、レーザーLが用いられ、そのレーザー光が光ファイバ14により対物レンズ16aへ入射するようになっていてよいが、水銀ランプ、ハロゲンランプ等の蛍光・りん光物質の励起光源として通常用いられるものが採用されてよい。   The means for performing the irradiation of the excitation light on the sample prior to the detection of the radiation light from the sample in the focal region S is located in the flow channel 12 upstream of the sample flow from the focal region S. Configured to irradiate the site. Typically, as schematically shown in the figure, the light from the light source is guided to irradiate a part of the flow path 12 by an objective lens (or condenser) 16a carried on the gantry 16. It is burned. FIG. 2B is a schematic view of the positional relationship between the focal region S and the excitation light irradiation region λex in the flow channel 12 as viewed from the optical axis direction of the objective lens 18. For the irradiation of the excitation light, the region λex may be determined by adjusting the position, size and contour of the field stop using epi-illumination (Kohler illumination or the like) normally performed in this field. The position is variable in the direction of arrows X1 and X2.) Typically, a laser L is used as the light source, and the laser light may be incident on the objective lens 16a through the optical fiber 14, as shown in the figure. What is normally used as an excitation light source of a phosphorescent substance may be adopted.

上記の如く、装置が構成された後、光の検出及び分析を実行する際には、まず、ポンプPによる流路12に溶液の流れに乗せて、試料が試料投入口12aより添加又は投入される。試料中の被検物質及び夾雑物は、励起光照射領域λexを通過する際に励起され、発光を開始する。しかる後、溶液の流れに乗って、焦点領域Sを通過する際には、夾雑物の自家蛍光は、消滅していることが期待され、かくして、被検物質からの放射光のみが、光検出手段の各部を通過し、受光器APDにて受光され、受光器は、受光強度に応じた電気信号を生成して、信号解析装置50へ送信する。信号解析装置50は、放射光強度の逐次的に又は時系列に記録し、記録された光強度に基づいて、FCS、FDS、FIDA又はFCCSといった種々の分光分析法に従って、光分析を実行する。   As described above, after the apparatus is configured, when light detection and analysis are performed, first, the sample is added or introduced from the sample inlet 12a by placing the solution on the flow path 12 by the pump P. The The test substance and impurities in the sample are excited when passing through the excitation light irradiation region λex and start to emit light. Then, when riding on the flow of the solution and passing through the focal region S, it is expected that the autofluorescence of the contaminants is extinguished. Thus, only the emitted light from the test substance is detected by light. The light passes through each part of the means and is received by the light receiver APD, and the light receiver generates an electrical signal corresponding to the received light intensity and transmits it to the signal analyzer 50. The signal analysis device 50 records the emitted light intensity sequentially or in time series, and performs optical analysis according to various spectroscopic analysis methods such as FCS, FDS, FIDA, or FCCS based on the recorded light intensity.

なお、上記の如き分光分析法に於いて、取得された蛍光強度の解析に於いては、被検物質が一方向に流れる試料中に於いて拡散しつつ焦点領域を通過することが考慮される。例えば、FCSを用いる場合の蛍光強度の解析に於いて、一方向の流れ中にて拡散する蛍光粒子の蛍光強度のゆらぎの自己相関関数は、理論的には、下記の式により与えられることが知られている(例えば、非特許文献4参照。)

Figure 2009150665
ここで、Nは、焦点領域中の平均蛍光粒子数、tdは、拡散のみにより粒子が領域を通過する場合(流れがない時)の粒子の領域内での平均滞在時間、tfは、拡散がないとした場合に流れにより粒子が領域を通過する場合の粒子の領域内での平均滞在時間、r/zは、焦点領域の縦横比(光軸に垂直方向の幅/光軸方向の幅)である。従って、蛍光強度データから算出される自己相関関数G(t)に上記の式をフィッテングし、tdが算出される。そして、tdから蛍光粒子の拡散定数、分子間相互作用の有無、結合解離状態等のFCSで測定可能な情報が得られることとなる。その他の分析方法についての被検物質が一方向に流れる試料中に於いて拡散しつつ焦点領域を通過することを考慮した解析処理は、当業者に於いて任意に構成されてよい。 In the spectroscopic analysis method as described above, in the analysis of the acquired fluorescence intensity, it is considered that the analyte passes through the focal region while diffusing in the sample flowing in one direction. . For example, in the analysis of the fluorescence intensity when using FCS, the autocorrelation function of the fluctuation of the fluorescence intensity of the fluorescent particles diffusing in a unidirectional flow can theoretically be given by the following equation. (For example, refer nonpatent literature 4.)
Figure 2009150665
Here, N is the average number of fluorescent particles in the focal region, td is the average residence time in the region of the particles when the particles pass through the region only by diffusion (no flow), and tf is the diffusion If not, the average residence time in the region of the particle when the particle passes through the region by flow, r / z is the aspect ratio of the focal region (width perpendicular to the optical axis / width in the optical axis direction) It is. Therefore, the above equation is fitted to the autocorrelation function G (t) calculated from the fluorescence intensity data, and td is calculated. Then, information that can be measured by FCS such as the diffusion constant of the fluorescent particles, the presence or absence of intermolecular interaction, and the bond dissociation state can be obtained from td. Analytical processing in consideration of passing through the focal region while diffusing in the sample flowing in one direction with respect to other analysis methods may be arbitrarily configured by those skilled in the art.

また、説明を明瞭にするため、図示していないが、実行する分析方法に従って、励起光の波長帯域の数、波長及び受光器の数、波長は、適宜設定されてよいことは理解されるべきである。FDS、FCCSなど、複数の光信号を用いて分析する方法が実行される際には、受光器が複数設けられ、それぞれの受光器に放射光を分割するための光学系が通常の態様にて設けられていてよい。また、同様に、FCCSに於いて、複数の励起光波長帯域にて、試料を励起する必要がある場合には、適宜複数の光源からの光を混合するための光学系が設けられてよい。   In addition, for clarity of explanation, although not shown, it should be understood that the number of wavelength bands of excitation light, the number of wavelengths, the number of light receivers, and the wavelength may be appropriately set according to the analysis method to be performed. It is. When an analysis method using a plurality of optical signals such as FDS and FCCS is executed, a plurality of light receivers are provided, and an optical system for dividing the radiation light into each light receiver is in a normal mode. It may be provided. Similarly, in the FCCS, when it is necessary to excite a sample in a plurality of excitation light wavelength bands, an optical system for appropriately mixing light from a plurality of light sources may be provided.

焦点領域Sと励起光照射領域λexの距離、試料の流速は、被検物質の発光標識の発光寿命により適宜設定されてよいことは、理解されるべきである。例えば、焦点領域Sと励起光照射領域λexの距離を1mmとし、流速は2m/sとした場合、励起光照射領域λexから焦点領域Sまでの所要時間は、500μ秒と設定される。例として、試料を血清とし、その中の或る特定のタンパク質を被検物質とする場合に、その被検物質をピレンにて標識すると、血清中の自家蛍光の蛍光寿命は数ナノ秒であるので、試料が焦点領域を通過する際には消光しているが、ピレンは発光寿命が930μ秒と長いため、焦点領域Sを通過する際に放射光が検出されることとなる。   It should be understood that the distance between the focal region S and the excitation light irradiation region λex and the flow rate of the sample may be appropriately set depending on the emission lifetime of the luminescent label of the test substance. For example, when the distance between the focal region S and the excitation light irradiation region λex is 1 mm and the flow velocity is 2 m / s, the required time from the excitation light irradiation region λex to the focal region S is set to 500 μsec. For example, when a sample is serum and a specific protein in the sample is a test substance, the fluorescence lifetime of autofluorescence in the serum is several nanoseconds when the test substance is labeled with pyrene. Therefore, although the sample is extinguished when passing through the focal region, pyrene has a long emission lifetime of 930 μsec, so that the emitted light is detected when it passes through the focal region S.

図1は、実施形態の光検出の原理を説明する試料中の分子の状態を模式的に表したものである。図中、破線にて示された夾雑物は、蛍光が消滅している状態を示している。FIG. 1 schematically shows the state of molecules in a sample for explaining the principle of light detection according to the embodiment. In the figure, the contaminants indicated by broken lines indicate a state in which the fluorescence is extinguished. 図2(A)は、本発明の好ましい実施形態に於ける光検出・分析装置の構成の模式図であり、図2(B)は、焦点領域(観測領域)と励起光照射領域との関係を対物レンズ18の光軸方向から示したものである。各構成要素の寸法は、構成を明瞭するべく、実際のものとは、大きく異なっている。FIG. 2A is a schematic diagram of the configuration of the light detection / analysis apparatus according to the preferred embodiment of the present invention, and FIG. 2B shows the relationship between the focal region (observation region) and the excitation light irradiation region. Is shown from the direction of the optical axis of the objective lens 18. The dimensions of each component are significantly different from the actual ones for clarity of configuration.

符号の説明Explanation of symbols

12…流路
12a…試料投入口
16…励起光用対物レンズ
18…光検出用対物レンズ
22…ピンホール
50…信号解析装置
L…レーザー
P…ポンプ
APD…受光器
S…焦点領域(観測領域)
λex…励起光照射領域
λem…放射光
DESCRIPTION OF SYMBOLS 12 ... Flow path 12a ... Sample inlet 16 ... Objective lens for excitation light 18 ... Objective lens for light detection 22 ... Pinhole 50 ... Signal analyzer L ... Laser P ... Pump APD ... Light receiver S ... Focus area (observation area)
λex: Excitation light irradiation region λem: Synchrotron radiation

Claims (7)

共焦点光学顕微鏡の光学系を用いて、自家蛍光を有する夾雑物を含む試料から発せられる蛍光又はりん光を計測し分析する方法であって、
前記共焦点光学顕微鏡の対物レンズの焦点領域を前記試料が通過するよう構成された前記試料を流通させるための流路を設ける過程と、
前記流路に於いて前記焦点領域よりも上流にて前記試料に励起光を照射するための励起光照射手段を設ける過程と、
前記試料であって該試料中の被検物質に前記自家蛍光よりも長い発光寿命を有する発光物質が付加されている試料を準備する過程と、
前記流路内に前記試料を流通する過程と、
前記試料に前記焦点領域よりも上流にて前記励起光を照射し前記焦点領域内に到達した前記試料からの蛍光又はりん光の強度を測定する過程と
を含み、前記試料が前記励起光にて照射されてから所定の時間が経過した後該試料からの蛍光又はりん光強度を測定し解析することを特徴とする方法。
A method of measuring and analyzing fluorescence or phosphorescence emitted from a sample containing impurities having autofluorescence using an optical system of a confocal optical microscope,
Providing a flow path for circulating the sample configured to pass the sample through a focal region of the objective lens of the confocal optical microscope;
Providing excitation light irradiation means for irradiating the sample with excitation light upstream of the focal region in the flow path;
A step of preparing a sample in which a luminescent substance having a luminescence lifetime longer than the autofluorescence is added to a test substance in the sample;
A process of circulating the sample in the flow path;
Irradiating the sample with the excitation light upstream from the focal region and measuring the intensity of fluorescence or phosphorescence from the sample that has reached the focal region, and the sample is irradiated with the excitation light. A method comprising measuring and analyzing fluorescence or phosphorescence intensity from a sample after a predetermined time has elapsed since irradiation.
請求項1の方法であって、前記所定の時間が100μ秒以上であることを特徴とする方法。   2. The method of claim 1, wherein the predetermined time is 100 [mu] s or longer. 請求項1又は2の方法であって、前記蛍光又はりん光の強度の解析が、蛍光相関分光分析法、蛍光偏光解消法、蛍光強度分布解析法又は蛍光相互相関分光法により行われることを特徴とする方法。   3. The method according to claim 1, wherein the analysis of the fluorescence or phosphorescence intensity is performed by fluorescence correlation spectroscopy, fluorescence depolarization, fluorescence intensity distribution analysis, or fluorescence cross correlation spectroscopy. And how to. 請求項1の方法であって、前記試料が血清、血漿又は生体から得られた溶液試料であることを特徴とする方法。   2. The method of claim 1, wherein the sample is serum, plasma or a solution sample obtained from a living body. 請求項1乃至3の方法であって、前記試料中の被検物質が長蛍光寿命を有する蛍光物質又はりん光物質にて標識されていることを特徴とする方法。   4. The method according to claim 1, wherein the test substance in the sample is labeled with a fluorescent substance or a phosphorescent substance having a long fluorescence lifetime. 請求項5の方法であって、前記長蛍光寿命を有する蛍光物質が希土類錯体であることを特徴とする方法。   6. The method according to claim 5, wherein the fluorescent material having a long fluorescence lifetime is a rare earth complex. 自家蛍光を有する夾雑物を含む試料にして該試料中の被検物質に前記自家蛍光よりも長い発光寿命を有する蛍光又はりん光物質が付加されている試料からの蛍光又はりん光の強度を測定し解析するための光分析装置であって、
共焦点光学顕微鏡の光学系を有し前記共焦点光学顕微鏡の対物レンズの焦点領域内の試料から発せられる蛍光又はりん光を検出する光検出手段と、
前記対物レンズの焦点領域を含み試料を流通させるための流路を含む試料流通手段と、
前記流路に於いて前記焦点領域よりも上流にて前記試料に励起光を照射する励起光照射手段と、
前記流路内に流通される前記試料が前記励起光にて照射されてから前記焦点領域に到達したときに前記試料から放射され前記光検出手段により検出された蛍光又はりん光の強度を解析する手段と
を含むことを特徴とする装置。
Measures the intensity of fluorescence or phosphorescence from a sample containing contaminants having autofluorescence, and a sample in which a fluorescent or phosphorescent substance having a longer emission lifetime than the autofluorescence is added to the test substance in the sample An optical analyzer for analyzing
A light detecting means having an optical system of a confocal optical microscope for detecting fluorescence or phosphorescence emitted from a sample in a focal region of the objective lens of the confocal optical microscope;
Sample distribution means including a flow path for distributing the sample including the focal region of the objective lens;
Excitation light irradiation means for irradiating the sample with excitation light upstream of the focal region in the flow path;
Analyzes the intensity of fluorescence or phosphorescence emitted from the sample and detected by the light detection means when the sample flowing through the channel reaches the focal region after being irradiated with the excitation light. Means.
JP2007326500A 2007-12-18 2007-12-18 Single-molecule fluorescence/phosphorescence analysis method and device therefor Withdrawn JP2009150665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326500A JP2009150665A (en) 2007-12-18 2007-12-18 Single-molecule fluorescence/phosphorescence analysis method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326500A JP2009150665A (en) 2007-12-18 2007-12-18 Single-molecule fluorescence/phosphorescence analysis method and device therefor

Publications (1)

Publication Number Publication Date
JP2009150665A true JP2009150665A (en) 2009-07-09

Family

ID=40919957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326500A Withdrawn JP2009150665A (en) 2007-12-18 2007-12-18 Single-molecule fluorescence/phosphorescence analysis method and device therefor

Country Status (1)

Country Link
JP (1) JP2009150665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525807A (en) * 2017-01-20 2017-03-22 武汉能斯特科技有限公司 Method and device for measuring fluid delayed luminescence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106525807A (en) * 2017-01-20 2017-03-22 武汉能斯特科技有限公司 Method and device for measuring fluid delayed luminescence

Similar Documents

Publication Publication Date Title
US20210072141A1 (en) Radiation Carrier and Use Thereof in an Optical Sensor
EP2543990B1 (en) Optical analysis device, optical analysis method, and computer program for optical analysis
CN103221806B (en) Use the optical analysis method of the measurement of the light of plural wavelength band
JP5877155B2 (en) Method for detecting dilute particles in solution using luminescent probe
US6140048A (en) System for distinguishing fluorescent molecule groups by time resolved fluorescence measurement
CN107709975B (en) Fluorescence detection method and system
JPH07286953A (en) Imaging flow sight meter
KR100940310B1 (en) Multi channel fluorescence detector
CN116438438A (en) Method and apparatus for flow-based single particle and/or single molecule analysis
WO2003038413A1 (en) Apparatus for analyzing florescent image of biochip
JP4474582B2 (en) Fluorescence detection method
US9103718B2 (en) Optical analysis device and optical analysis method using a wavelength characteristic of light of a single light-emitting particle
US10436707B2 (en) Detection of analytes using nanoparticles as light scattering enhancers
JP4887475B2 (en) System and method for using multiple detection channels to eliminate autofluorescence
EP3317649B1 (en) Quantification of topologically arranged luminescent dyes
JP2009150665A (en) Single-molecule fluorescence/phosphorescence analysis method and device therefor
EP2752653A1 (en) Method for detecting a target particle in biosample containing pancreatic juice
JP2004279143A (en) Analysis method and apparatus by time-resolved fluorescence depolarization method
EP3317643B1 (en) Modulation of luminescent dyes
JP2005321347A (en) Photodetector
EP4090951A1 (en) System and method for use in fret microscopy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301