JP2009145231A - Device and method for measuring three-dimensional shape - Google Patents

Device and method for measuring three-dimensional shape Download PDF

Info

Publication number
JP2009145231A
JP2009145231A JP2007323557A JP2007323557A JP2009145231A JP 2009145231 A JP2009145231 A JP 2009145231A JP 2007323557 A JP2007323557 A JP 2007323557A JP 2007323557 A JP2007323557 A JP 2007323557A JP 2009145231 A JP2009145231 A JP 2009145231A
Authority
JP
Japan
Prior art keywords
measurement
measurement point
arbitrary
point
blank area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007323557A
Other languages
Japanese (ja)
Inventor
Ai Fukuyo
愛 福與
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007323557A priority Critical patent/JP2009145231A/en
Publication of JP2009145231A publication Critical patent/JP2009145231A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for measuring a three-dimensional shape capable of accurately eliminating noise effect. <P>SOLUTION: The three-dimensional shape measuring method includes an integrating measurement point group computing step of calculating the integrating measurement point group P of a class of measurement points acquired before the measurement points b, c at the scanning sites B, C by a computing section 4; a blank area setting step of obtaining blank areas Sb, Sc with no measurement object 7 from the three-dimensional coordinate of measurement points b, c and tip positions 2b, 2c of an irradiation section 2 and the three-dimensional coordinate of tip positions 3b, 3c of a light receiving section 3 and setting the blank areas Sb, Sc to the measurement points b, c by the computing section 4; an integrating blank area computing step of computing the integrating blank area S of total blank areas to the measurement points acquired before the measurement points b, c (e.g. measurement point a) by the computing section 4; and a noise determination step of determining whether the measurement points b, c are a noise depending on whether of not the measurement points b, c are included in the integrating blank area S by the computing section 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、三次元形状計測装置および三次元形状計測方法の技術に関する。   The present invention relates to a technique of a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method.

従来、物品の三次元形状を非接触で計測する三次元形状計測装置および三次元形状計測方法の技術は公知となっている。三次元形状計測装置は、計測対象物たる物品に対して光源からスリット状のレーザー光を照射し、物品の表面で拡散反射するレーザー光をカメラ等で受光して、レーザー光の照射点の位置を把握することにより、物品表面の位置を光切断法および三角測量の原理によって求めるものである。   Conventionally, techniques of a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method for measuring a three-dimensional shape of an article in a non-contact manner are known. The three-dimensional shape measurement device irradiates the article that is the object to be measured with a slit-shaped laser beam from a light source, receives the laser beam diffusely reflected on the surface of the article with a camera, etc. By grasping the above, the position of the surface of the article is obtained by the light cutting method and the principle of triangulation.

しかし、物品表面の角度によっては、レーザー光が物品表面で多重反射をするために、物品表面ではない位置に偽照射点が出現してしまう場合があった。この多重反射の影響により出現する偽照射点は異常点でありノイズと呼んでいる。従来、ノイズをいかにして排除するかということが三次元形状計測の計測精度を向上させるために必要とされる重要な課題となっていた。   However, depending on the angle of the article surface, the laser beam may be subjected to multiple reflections on the article surface, so that a false irradiation point may appear at a position other than the article surface. The false irradiation point that appears due to the influence of this multiple reflection is an abnormal point and is called noise. Conventionally, how to eliminate noise has been an important issue required to improve the measurement accuracy of three-dimensional shape measurement.

そこで、三次元形状計測の分野においては、ノイズの影響を排除するための技術が種々開発されており、例えば、以下に示す特許文献1に、その技術が開示されている。
特許文献1に開示されている技術では、計測対象物の多重反射領域を所定の座標領域に位置決めし、計測対象物に向けてレーザー光を照射し、第一と第二の光位置検出素子による受光位置から、計測対象物の二つのレーザー光照射位置をそれぞれ演算し、該二つのレーザー光照射位置のうち原点に近いものを選択することにより、または、所定の座標領域外において、信号出力が大きい側のレーザー光照射位置を選択するようにしている。
Therefore, in the field of three-dimensional shape measurement, various techniques for eliminating the influence of noise have been developed. For example, the technique is disclosed in Patent Document 1 shown below.
In the technique disclosed in Patent Document 1, the multiple reflection area of the measurement object is positioned in a predetermined coordinate area, laser light is irradiated toward the measurement object, and the first and second optical position detection elements are used. By calculating the two laser light irradiation positions of the measurement object from the light receiving position and selecting one of the two laser light irradiation positions close to the origin, or outside the predetermined coordinate area, the signal output is The laser beam irradiation position on the larger side is selected.

しかしながら、係る従来技術は、計測対象物の形状が単純であり、多重反射を起こす領域が限定されている場合には有効であるが、計測対象物の表面に多数の凹凸があるような場合には、多重反射領域を所定の座標領域に位置決めすることは困難であり、そのような場合には適用することが困難であった。   However, the related art is effective when the shape of the measurement object is simple and the region where multiple reflection occurs is limited, but when the surface of the measurement object has a large number of irregularities. In this case, it is difficult to position the multiple reflection region in a predetermined coordinate region, and it is difficult to apply in such a case.

また、以下に示す特許文献2にも、ノイズの影響を排除するための技術が開示されている。
特許文献2に開示されている技術では、計測対象物の表面に複数に分割した空間コードを設定し、計測対象物ごとに空間コードの増減を予め抽出しておき、計測した空間コードの増減が、予め抽出しておいた増加または減少の傾向とは逆向きの変化である減少または増加の傾向となったときに、その空間コードを多重反射による空間コードであると判定し、多重反射と判定された空間コードを削除することによりノイズの影響を排除するようにしている。
Patent Document 2 shown below also discloses a technique for eliminating the influence of noise.
In the technique disclosed in Patent Document 2, a spatial code divided into a plurality of parts is set on the surface of the measurement object, and the increase / decrease of the space code is extracted in advance for each measurement object. When a tendency to decrease or increase, which is a change opposite to the tendency of increase or decrease previously extracted, the spatial code is determined to be a spatial code by multiple reflection, and is determined to be multiple reflection. The effect of noise is eliminated by deleting the generated spatial code.

しかしながら、係る従来技術のように、予め抽出した空間コードの増減に対する空間コードの増加および減少傾向による判断だけでは、予め抽出した空間コードの増減と同じ傾向で出現するノイズについては完全に排除することができなかった。
つまり、多重反射の影響によるノイズを精度良く排除する方法は、未だ改善の余地が残された状態にあり、容易に精度良く多重反射の影響によるノイズを排除する技術の開発が望まれていた。
特開2004−257803号公報 特開2000−193438号公報
However, as in the related art, noise that appears in the same tendency as the increase / decrease of the spatial code extracted in advance is completely eliminated only by the judgment based on the increase / decrease tendency of the spatial code with respect to the increase / decrease of the spatial code extracted in advance. I could not.
In other words, there is still room for improvement in the method for accurately eliminating noise due to the influence of multiple reflection, and it has been desired to develop a technique for easily eliminating noise due to the influence of multiple reflection with high accuracy.
JP 2004-257803 A JP 2000-193438 A

そこで本発明では、係る現状を鑑み、三次元形状の計測精度向上に寄与するために、ノイズの影響を精度良く排除することができる三次元形状計測装置および三次元形状計測方法を提供することを課題としている。   Therefore, in view of the present situation, the present invention provides a three-dimensional shape measurement apparatus and a three-dimensional shape measurement method capable of accurately eliminating the influence of noise in order to contribute to the improvement of measurement accuracy of a three-dimensional shape. It is an issue.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

即ち、請求項1においては、計測対象物に対してスリット状のレーザー光を照射する照射部と、前記計測対象物に照射された前記レーザー光の照射点から反射する拡散反射光を撮像する受光部と、該受光部により撮像された画像に基づいて前記照射点の三次元座標を演算して計測点を得る演算部と、前記計測対象物に対する前記レーザー光の走査位置を調整する走査部と、を備える三次元形状計測装置を用いて行われ、前記走査部によって、前記照射部の光軸を所定間隔で移動し、前記計測対象物に対する前記レーザー光の走査位置を所定間隔で変更する走査位置変更工程と、前記照射部によって、任意の走査位置において前記計測対象物に対して前記レーザー光を照射するレーザー光照射工程と、前記受光部によって、前記任意の走査位置において前記計測対象物に照射される前記レーザー光の照射点から反射する拡散反射光を撮像する拡散反射光撮像工程と、前記演算部によって、前記任意の走査位置において前記受光部により撮像された画像に基づいて前記照射点の三次元座標を演算して前記任意の走査位置における計測点を得る計測点演算工程と、を備える三次元形状計測方法であって、前記演算部によって、前記任意の走査位置における計測点よりも前に取得した計測点の集合たる計測点群を算出する積算計測点群演算工程と、前記演算部によって、前記計測点演算工程にて得られた前記任意の走査位置における計測点と、前記照射部の先端位置の三次元座標と、前記受光部の先端位置の三次元座標とから、前記計測対象物が存在しない空白領域を求め、前記任意の走査位置における計測点に対する空白領域を設定する空白領域設定工程と、前記演算部によって、前記任意の走査位置における計測点よりも前に取得した計測点に対して設定した空白領域の合計たる積算空白領域を算出する積算空白領域演算工程と、前記演算部によって、前記任意の計測点が、前記積算空白領域に含まれるか否かに応じて、前記任意の計測点がノイズであるか否かを判定するノイズ判定工程と、を備えるものである。   That is, in claim 1, an irradiation unit that irradiates a measurement target with a slit-shaped laser beam, and a light reception that images diffuse reflection light reflected from the irradiation point of the laser beam irradiated to the measurement target. A calculation unit that calculates a three-dimensional coordinate of the irradiation point based on an image captured by the light receiving unit, and obtains a measurement point; and a scanning unit that adjusts a scanning position of the laser light with respect to the measurement object The scanning unit moves the optical axis of the irradiation unit at a predetermined interval, and changes the scanning position of the laser beam with respect to the measurement object at a predetermined interval. A position changing step, a laser beam irradiation step of irradiating the measurement target with the laser beam at an arbitrary scanning position by the irradiation unit, and the arbitrary scanning position by the light receiving unit; The diffused reflected light imaging step of imaging the diffuse reflected light reflected from the irradiation point of the laser light applied to the measurement object, and the imaging unit picked up by the light receiving unit at the arbitrary scanning position A measurement point calculation step of calculating a three-dimensional coordinate of the irradiation point on the basis of an image to obtain a measurement point at the arbitrary scanning position, and a three-dimensional shape measurement method comprising: An integrated measurement point group calculation step for calculating a measurement point group that is a set of measurement points acquired before the measurement point at the scanning position, and the arbitrary scanning position obtained in the measurement point calculation step by the calculation unit A blank area in which the measurement object does not exist is obtained from the measurement point in FIG. 3, the three-dimensional coordinate of the tip position of the irradiation unit, and the three-dimensional coordinate of the tip position of the light receiving unit, and the arbitrary scanning A blank area setting step for setting a blank area for the measurement point in the position, and an integrated blank area that is the sum of the blank areas set for the measurement point acquired before the measurement point at the arbitrary scanning position by the calculation unit And determining whether or not the arbitrary measurement point is noise according to whether or not the arbitrary measurement point is included in the integrated blank region by the calculation blank area calculation step for calculating And a noise determination step.

請求項2においては、前記積算計測点群演算工程は、前記任意の計測点がノイズである場合には、前記積算計測点群に、前記任意の計測点を積算せず、かつ、前記任意の計測点がノイズでない場合には、前記積算計測点群に、前記任意の計測点を積算するものである。   In the present invention, in the integrated measurement point group calculation step, when the arbitrary measurement point is noise, the arbitrary measurement point is not integrated into the integrated measurement point group, and the arbitrary measurement point is calculated. When the measurement point is not noise, the arbitrary measurement point is integrated into the integrated measurement point group.

請求項3においては、前記積算空白領域演算工程は、前記任意の計測点がノイズである場合には、前記積算空白領域に、前記任意の計測点に対して設定した空白領域を積算せず、かつ、前記任意の計測点がノイズでない場合には、前記積算空白領域に、前記任意の計測点に対して設定した空白領域を積算するものである。   In claim 3, the integrated blank area calculation step does not integrate the blank area set for the arbitrary measurement point in the integrated blank area when the arbitrary measurement point is noise, And when the said arbitrary measurement point is not noise, the blank area | region set with respect to the said arbitrary measurement point is integrated | accumulated to the said integration blank area | region.

請求項4においては、計測対象物に対してスリット状のレーザー光を照射する照射部と、前記計測対象物に照射された前記レーザー光の照射点から反射する拡散反射光を撮像する受光部と、該受光部により撮像された前記照射点の画像に基づいて該照射点の三次元座標を演算して計測点を得る演算部と、前記計測対象物に対する前記レーザー光の走査位置を調整する走査部と、を備え、前記計測点の三次元座標に基づいて前記計測対象物の表面形状を計測する三次元形状計測装置であって、前記演算部は、前記任意の走査位置における計測点よりも前に取得した計測点の集合たる計測点群を算出し、かつ、前記任意の走査位置における計測点と、前記照射部の先端位置の三次元座標と、前記受光部の先端位置の三次元座標とから、前記計測対象物が存在しない空白領域を求め、前記任意の走査位置における計測点に対する空白領域を設定し、かつ、前記任意の走査位置における計測点よりも前に取得した計測点に対して設定した空白領域の合計たる積算空白領域を算出し、かつ、前記任意の計測点が、前記積算空白領域に含まれるか否かに応じて、前記任意の計測点がノイズであるか否かを判定するものである。   In Claim 4, The irradiation part which irradiates a slit-shaped laser beam with respect to a measurement object, The light-receiving part which images the diffuse reflected light reflected from the irradiation point of the said laser beam irradiated to the said measurement object, A calculation unit that calculates a three-dimensional coordinate of the irradiation point based on the image of the irradiation point imaged by the light receiving unit and obtains a measurement point; and a scan that adjusts the scanning position of the laser light with respect to the measurement object A three-dimensional shape measuring apparatus that measures the surface shape of the measurement object based on the three-dimensional coordinates of the measurement point, wherein the calculation unit is more than the measurement point at the arbitrary scanning position. A measurement point group that is a set of measurement points acquired previously is calculated, and the measurement point at the arbitrary scanning position, the three-dimensional coordinate of the tip position of the irradiation unit, and the three-dimensional coordinate of the tip position of the light receiving unit And the measurement pair A blank area in which no object is present is obtained, a blank area for the measurement point at the arbitrary scanning position is set, and a blank area set for the measurement point obtained before the measurement point at the arbitrary scanning position is set. A total integrated blank area is calculated, and it is determined whether or not the arbitrary measurement point is noise according to whether or not the arbitrary measurement point is included in the integrated blank area. .

請求項5においては、前記演算部は、前記任意の計測点がノイズである場合には、前記積算計測点群に、前記任意の計測点を積算せず、かつ、前記任意の計測点がノイズでない場合には、前記積算計測点群に、前記任意の計測点を積算するものである。   According to a fifth aspect of the present invention, when the arbitrary measurement point is noise, the calculation unit does not integrate the arbitrary measurement point into the integrated measurement point group, and the arbitrary measurement point is noise. Otherwise, the arbitrary measurement points are integrated into the integrated measurement point group.

請求項6においては、前記演算部は、前記任意の計測点がノイズである場合には、前記積算空白領域に、前記任意の計測点に対して設定した空白領域を積算せず、かつ、前記任意の計測点がノイズでない場合には、前記積算空白領域に、前記任意の計測点に対して設定した空白領域を積算するものである。   In Claim 6, when the arbitrary measurement point is noise, the calculation unit does not integrate the blank area set for the arbitrary measurement point in the accumulated blank area, and When an arbitrary measurement point is not noise, the blank area set for the arbitrary measurement point is added to the integrated blank area.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、容易に精度良く、多重反射の影響によるノイズを排除できる。   According to the first aspect of the present invention, noise due to the influence of multiple reflection can be easily eliminated with high accuracy.

請求項2においては、ノイズである計測点をその都度破棄しながら、正常な計測点のみを取得していくことにより、精度良く三次元形状の計測をすることができる。   According to the second aspect of the present invention, it is possible to measure a three-dimensional shape with high accuracy by acquiring only normal measurement points while discarding measurement points that are noise each time.

請求項3においては、正常な計測点に基づく空白領域のみを積算していくことにより、精度良くノイズの判定をすることができる。   According to the third aspect of the present invention, it is possible to accurately determine noise by accumulating only blank regions based on normal measurement points.

請求項4においては、容易に精度良く、多重反射の影響によるノイズを排除できる。   According to the fourth aspect of the present invention, noise due to the influence of multiple reflection can be easily eliminated with high accuracy.

請求項5においては、ノイズである計測点をその都度破棄しながら、正常な計測点のみを取得していくことにより、精度良く三次元形状の計測をすることができる。   According to the fifth aspect of the present invention, it is possible to accurately measure a three-dimensional shape by acquiring only normal measurement points while discarding measurement points that are noise each time.

請求項6においては、正常な計測点に基づく空白領域のみを積算していくことにより、精度良くノイズの判定をすることができる。   According to the sixth aspect of the present invention, it is possible to accurately determine noise by accumulating only blank areas based on normal measurement points.

次に、発明の実施の形態を説明する。
図1は本発明の一実施例に係る三次元形状計測装置の全体構成を示す模式図、図2(a)は多重反射が発生していない場合の計測状況を示す模式図、図2(b)は多重反射が発生している場合の計測状況を示す模式図、図3は本発明の一実施例に係る三次元形状計測方法の計測フロー図、図4は本発明の一実施例に係る三次元形状計測方法による基準計測点aにおける計測状況(レーザー光照射工程、拡散反射光撮像工程および計測点演算工程)を示す模式図、図5は本発明の一実施例に係る三次元形状計測方法による基準計測点aにおける計測状況(空白領域設定工程)を示す模式図、図6は本発明の一実施例に係る三次元形状計測方法による基準計測点aにおける計測状況(積算空白領域演算工程)を示す模式図、図7は本発明の一実施例に係る三次元形状計測方法による計測点bにおける計測状況(レーザー光照射工程、拡散反射光撮像工程および計測点演算工程)を示す模式図、図8は本発明の一実施例に係る三次元形状計測方法による計測点bにおける計測状況(ノイズ判定工程)を示す模式図、図9は本発明の一実施例に係る三次元形状計測方法による計測点bにおける計測状況(空白領域設定工程および積算空白領域演算工程)を示す模式図、図10は本発明の一実施例に係る三次元形状計測方法による計測点cにおける計測状況(レーザー光照射工程、拡散反射光撮像工程および計測点演算工程)を示す模式図、図11は本発明の一実施例に係る三次元形状計測方法による計測点cにおける計測状況(ノイズ判定工程)を示す模式図、図12は本発明の一実施例に係る三次元形状計測方法による計測点cにおける計測状況(空白領域設定工程)を示す模式図、図13は本発明の一実施例に係る三次元形状計測方法による計測点cにおける計測状況(積算空白領域演算工程)を示す模式図である。
Next, embodiments of the invention will be described.
FIG. 1 is a schematic diagram showing an overall configuration of a three-dimensional shape measuring apparatus according to an embodiment of the present invention, FIG. 2A is a schematic diagram showing a measurement situation when multiple reflection does not occur, and FIG. ) Is a schematic diagram showing a measurement situation when multiple reflection occurs, FIG. 3 is a measurement flow diagram of a three-dimensional shape measurement method according to an embodiment of the present invention, and FIG. 4 is according to an embodiment of the present invention. FIG. 5 is a schematic diagram showing a measurement state (laser light irradiation process, diffuse reflected light imaging process and measurement point calculation process) at a reference measurement point a by the three-dimensional shape measurement method, and FIG. 5 is a three-dimensional shape measurement according to an embodiment of the present invention. FIG. 6 is a schematic diagram showing a measurement situation (blank area setting step) at a reference measurement point a according to the method, and FIG. 6 is a measurement situation (integrated blank area calculation step) at the reference measurement point a by the three-dimensional shape measurement method according to one embodiment of the present invention. ), FIG. 7 is an embodiment of the present invention FIG. 8 is a schematic diagram illustrating a measurement state (laser light irradiation process, diffuse reflected light imaging process, and measurement point calculation process) at a measurement point b according to the three-dimensional shape measurement method according to FIG. 8, and FIG. FIG. 9 is a schematic diagram showing a measurement situation (noise determination process) at a measurement point b by the measurement method, and FIG. 9 is a measurement situation (blank area setting step and integrated blank) at the measurement point b by the three-dimensional shape measurement method according to one embodiment of the present invention. FIG. 10 is a schematic diagram showing a region calculation step), and FIG. 10 shows measurement states (laser light irradiation step, diffuse reflected light imaging step, and measurement point calculation step) at a measurement point c by the three-dimensional shape measurement method according to one embodiment of the present invention. FIG. 11 is a schematic diagram showing a measurement situation (noise determination step) at a measurement point c by a three-dimensional shape measurement method according to an embodiment of the present invention, and FIG. 12 is an embodiment of the present invention. FIG. 13 is a schematic diagram showing a measurement situation (blank area setting step) at a measurement point c by the three-dimensional shape measurement method. FIG. 13 is a measurement situation (integrated blank) at the measurement point c by the three-dimensional shape measurement method according to one embodiment of the present invention. It is a schematic diagram which shows an area | region calculating process.

まず始めに、本発明の一実施例に係る三次元形状計測装置1の全体構成について説明をする。
図1に示す如く、本発明の一実施例に係る三次元形状計測装置1は、照射部2、受光部3、演算部4および走査部5等により構成している。
照射部2は、レーザー光の光源たるレーザー発信器により構成しており、計測対象物6に向けてスリット状のレーザー光を照射するものである。例えば図1では、計測対象物6上の照射点Qにレーザー光が照射されている状態を示している。
First, the overall configuration of the three-dimensional shape measuring apparatus 1 according to an embodiment of the present invention will be described.
As shown in FIG. 1, a three-dimensional shape measuring apparatus 1 according to an embodiment of the present invention includes an irradiation unit 2, a light receiving unit 3, a calculation unit 4, a scanning unit 5, and the like.
The irradiation unit 2 is configured by a laser transmitter that is a light source of laser light, and irradiates the measurement target 6 with slit-shaped laser light. For example, FIG. 1 shows a state where the irradiation point Q on the measurement object 6 is irradiated with laser light.

受光部3は、画像を撮像する手段であるカメラにより構成しており、照射部2から計測対象物6に向けて照射され、照射点Qにおいて拡散反射するレーザー光(以下、拡散反射光と呼ぶ)を受光して、該拡散反射光の画像を撮像するものである。   The light receiving unit 3 is constituted by a camera that is a means for capturing an image, and is irradiated from the irradiation unit 2 toward the measurement object 6 and diffusely reflected at the irradiation point Q (hereinafter referred to as diffuse reflection light). ) Is received and an image of the diffusely reflected light is captured.

演算部4は、受光部3で撮像した拡散反射光の画像データに基づいて、照射部2の位置と拡散反射光の入射角度から照射点Qの三次元座標を三角測量の原理により演算して、計測対象物6の表面位置の三次元座標(即ち、計測値)を求めるものである。   The calculation unit 4 calculates the three-dimensional coordinates of the irradiation point Q based on the principle of triangulation from the position of the irradiation unit 2 and the incident angle of the diffuse reflection light based on the image data of the diffuse reflection light captured by the light receiving unit 3. The three-dimensional coordinates (that is, the measured value) of the surface position of the measurement object 6 are obtained.

走査部5は、照射部2および受光部3を計測対象物6に対して相対移動させて照射部2により照射するレーザー光の走査位置を調整するものであり、走査部5によって走査位置を所定間隔ごとに更新することによって、各走査位置における計測対象物6の表面位置の計測値を連続的に求めることが可能となる。   The scanning unit 5 moves the irradiating unit 2 and the light receiving unit 3 relative to the measurement object 6 to adjust the scanning position of the laser light irradiated by the irradiating unit 2. By updating at every interval, it is possible to continuously obtain the measurement value of the surface position of the measurement object 6 at each scanning position.

ここで、多重反射の影響によるノイズについて説明をする。
図2(a)・(b)に示す如く、三次元形状計測装置1を用いて、表面に凹凸を有する計測対象物7に対して、照射部2からレーザー光を照射する場合を例に挙げて説明をする。
例えば、図2(a)に示す如く、三次元形状計測装置1が走査位置Aにある状態では、計測対象物7の表面上の照射点gにレーザー光が照射されると、照射点gにおける拡散反射光を受光部3で撮像し、さらに演算部4によって、この画像データに基づいて照射点gの三次元座標を求めることにより、照射点gに等しい三次元座標が、走査位置Aにおける計測点aとして取得される。この計測点aは、多重反射の影響を受けていないものである。
Here, noise due to the influence of multiple reflection will be described.
As shown in FIGS. 2A and 2B, the case where a laser beam is irradiated from the irradiation unit 2 to the measurement object 7 having an uneven surface by using the three-dimensional shape measurement apparatus 1 is taken as an example. I will explain.
For example, as shown in FIG. 2A, in the state where the three-dimensional shape measuring apparatus 1 is at the scanning position A, when the irradiation point g on the surface of the measurement object 7 is irradiated with laser light, the irradiation point g The diffused reflected light is imaged by the light receiving unit 3, and the calculation unit 4 obtains the three-dimensional coordinates of the irradiation point g based on the image data, whereby the three-dimensional coordinates equal to the irradiation point g are measured at the scanning position A. Acquired as point a. This measurement point a is not affected by multiple reflection.

一方、図2(b)に示す如く、三次元形状計測装置1が走査位置Bにある状態では、計測対象物7の表面上に位置する照射点hにレーザー光が照射されると、該照射点hで起こる拡散反射が多重反射を起こし、照射部2の光軸zと拡散反射光との交点上にノイズたる偽照射点kが出現する。   On the other hand, as shown in FIG. 2B, in the state where the three-dimensional shape measuring apparatus 1 is at the scanning position B, when the irradiation point h located on the surface of the measurement object 7 is irradiated with laser light, the irradiation is performed. The diffuse reflection that occurs at the point h causes multiple reflection, and a false irradiation point k that is noise appears on the intersection of the optical axis z of the irradiation unit 2 and the diffuse reflection light.

受光部3では偽照射点kを撮像し、さらに演算部4によって、この画像データに基づいて偽照射点kの三次元座標を求めることとなり、計測対象物7の表面上に位置する本来の照射点hの三次元座標ではなく、この偽照射点kの三次元座標を走査位置Bにおける計測点bとして誤って取得してしまうことになる。   The light receiving unit 3 captures the false irradiation point k, and the calculation unit 4 obtains the three-dimensional coordinates of the false irradiation point k based on the image data, and the original irradiation located on the surface of the measurement object 7. Instead of the three-dimensional coordinate of the point h, the three-dimensional coordinate of the false irradiation point k is erroneously acquired as the measurement point b at the scanning position B.

ノイズたる偽照射点k(即ち、計測点b)は、計測対象物7の表面上に位置していない場合がほとんどであるため、係る計測点bが計測結果に混入することにより、三次元形状の計測精度が低下してしまう。即ち、多重反射に起因するノイズによって、正確に三次元形状を計測することができなくなってしまうのである。   Since the pseudo irradiation point k (that is, the measurement point b), which is noise, is almost not located on the surface of the measurement object 7, the measurement point b is mixed in the measurement result, so that the three-dimensional shape is obtained. The measurement accuracy will be reduced. In other words, the three-dimensional shape cannot be measured accurately due to noise caused by multiple reflection.

次に、本発明の一実施例に係る三次元形状計測装置1による三次元形状計測方法について、工程ごとに順を追って説明をする。尚、各計測工程は、図3に示す本発明に係る三次元形状計測方法の計測フロー図に沿って進行する。   Next, a three-dimensional shape measurement method by the three-dimensional shape measurement apparatus 1 according to an embodiment of the present invention will be described step by step in order. Each measurement process proceeds along the measurement flowchart of the three-dimensional shape measurement method according to the present invention shown in FIG.

(レーザー光照射工程(その1))
図3および図4に示す如く、計測が開始されると、まず基準となる計測点を取得する。
基準となる計測点を得るためには、多重反射が発生しない三次元形状計測装置1の走査位置を選択する必要があり、本実施例では多重反射が発生しない走査位置として、走査位置Aを選択するようにしている。そして、照射部2から計測対象物7に向けてレーザー光を照射する。この走査位置Aにおける計測対象物7上のレーザー光が照射される点を照射点gとしている。
(Laser light irradiation process (1))
As shown in FIG. 3 and FIG. 4, when measurement is started, a reference measurement point is first acquired.
In order to obtain a reference measurement point, it is necessary to select the scanning position of the three-dimensional shape measuring apparatus 1 where multiple reflection does not occur. In this embodiment, the scanning position A is selected as the scanning position where multiple reflection does not occur. Like to do. Then, laser light is irradiated from the irradiation unit 2 toward the measurement object 7. A point irradiated with the laser beam on the measurement object 7 at the scanning position A is set as an irradiation point g.

(拡散反射光撮像工程(その1))
次に、照射点gで反射する拡散反射光を受光部3で撮像し、照射点gで反射する拡散反射光の画像データを取得する。
(Diffusion reflected light imaging process (1))
Next, the diffuse reflection light reflected at the irradiation point g is imaged by the light receiving unit 3, and image data of the diffuse reflection light reflected at the irradiation point g is acquired.

(計測点演算工程(その1))
次に、演算部4で、取得した照射点gの画像データに基づいて、三角測量の原理によって、照射点gの三次元座標を演算し、走査位置Aにおける照射点gの三次元座標の演算値から基準と成る計測点aを取得する(Step−1)。
(Measurement point calculation process (1))
Next, the calculation unit 4 calculates the three-dimensional coordinates of the irradiation point g based on the triangulation principle based on the acquired image data of the irradiation point g, and calculates the three-dimensional coordinates of the irradiation point g at the scanning position A. A measurement point a serving as a reference is acquired from the value (Step-1).

(積算計測点群演算工程(その1))
図3および図4に示す如く、次に本発明に係る三次元形状計測方法では、演算部4によって、取得する計測点の集合である積算計測点群Pを求めるようにしている。そして積算計測点群Pの初期値として、基準と成る計測点aのみを採用し、演算部4に初期値(即ち、P={a})を設定する(Step−2)。
(Integrated measurement point group calculation process (1))
As shown in FIGS. 3 and 4, in the three-dimensional shape measurement method according to the present invention, the calculation unit 4 obtains an integrated measurement point group P that is a set of measurement points to be acquired. Then, only the reference measurement point a is adopted as the initial value of the integrated measurement point group P, and an initial value (that is, P = {a}) is set in the calculation unit 4 (Step-2).

(空白領域設定工程(その1))
図3および図5に示す如く、次に演算部4によって、取得した基準となる計測点a(即ち、照射点g)、照射部2の走査位置Aにおける先端位置の点2a、受光部3の走査位置Aにおける先端位置の点3aの3点から、計測点aに対する空白領域Saを定義する(Step−3)。
(Blank area setting process (part 1))
As shown in FIGS. 3 and 5, the measurement unit a (that is, the irradiation point g) that is acquired as a reference, the point 2 a at the tip position at the scanning position A of the irradiation unit 2, and the light receiving unit 3 A blank area Sa corresponding to the measurement point a is defined from the three points 3a at the tip position at the scanning position A (Step-3).

空白領域Saでは、計測対象物7の表面から遊離した位置に物体が存在しない限り、計測点が取得されることはない。本発明に係る三次元形状計測方法では、この原理を利用しており、空白領域に計測点が出現した場合に、その計測点をノイズであると判定するようにしている。   In the blank area Sa, measurement points are not acquired unless an object exists at a position separated from the surface of the measurement object 7. The three-dimensional shape measurement method according to the present invention uses this principle, and when a measurement point appears in a blank area, it is determined that the measurement point is noise.

(積算空白領域演算工程(その1))
図3および図6に示す如く、本発明に係る三次元形状計測方法では、演算部4によって、計測点演算工程にて取得した計測点に対する空白領域の積算値として積算空白領域Sを求めるようにしている。そして、積算空白領域Sの初期値として、基準となる計測点aに対する空白領域Saを採用し、演算部4に初期値(即ち、S=Sa)を設定する(Step−4)。
(Integrated blank area calculation process (1))
As shown in FIGS. 3 and 6, in the three-dimensional shape measurement method according to the present invention, the calculation unit 4 obtains the integrated blank area S as the integrated value of the blank areas for the measurement points acquired in the measurement point calculation process. ing. Then, the blank area Sa for the reference measurement point a is adopted as the initial value of the accumulated blank area S, and an initial value (that is, S = Sa) is set in the calculation unit 4 (Step-4).

積算空白領域Sを求めることにより、空白領域(即ち、計測点が出現するはずのない領域)のデータを計測が進行するに従って拡大していくことができ、これにより、計測が進行するに従って計測値がノイズであるか否かを判定する判定精度を高めていくことができるのである。   By obtaining the integrated blank area S, the data of the blank area (that is, the area where the measurement point should not appear) can be expanded as the measurement progresses. Therefore, it is possible to improve the determination accuracy for determining whether or not the noise is noise.

(走査位置変更工程(その1))
図3に示す如く、積算計測点群Pと積算空白領域Sの初期値設定が完了すると、次に走査部5によって三次元形状計測装置1を走査し、任意の走査位置Nに調整する(Step−5)。
尚、本実施例では、任意の走査位置Nの例として、三次元形状計測装置1の走査位置を走査位置Bとした場合について説明をする。
(Scanning position changing step (1))
As shown in FIG. 3, when the initial value setting of the integrated measurement point group P and the integrated blank area S is completed, the scanning unit 5 scans the three-dimensional shape measuring apparatus 1 and adjusts it to an arbitrary scanning position N (Step). -5).
In the present embodiment, as an example of an arbitrary scanning position N, a case where the scanning position of the three-dimensional shape measuring apparatus 1 is the scanning position B will be described.

(レーザー光照射工程(その2))
図7に示す如く、走査位置Bへの調整が完了すると、また照射部2から計測対象物7に向けてレーザー光が照射される。ここでは、三次元形状計測装置1の走査位置が位置Bであるときの計測対象物7上のレーザー光が照射される点を照射点hとする。
(Laser light irradiation process (2))
As shown in FIG. 7, when the adjustment to the scanning position B is completed, laser light is irradiated from the irradiation unit 2 toward the measurement object 7. Here, an irradiation point h is a point where the laser beam on the measurement object 7 when the scanning position of the three-dimensional shape measuring apparatus 1 is the position B is irradiated.

(拡散反射光撮像工程(その2))
次に、照射点hで反射する拡散反射光を受光部3で撮像しようとするが、図7に示す走査位置Bでは、照射点hにおいては多重反射が起きているため、照射部2の光軸zと多重反射光の交点に偽照射点kが出現してしまう。
(Diffusion reflected light imaging process (2))
Next, the diffuse reflection light reflected at the irradiation point h is to be imaged by the light receiving unit 3. However, since the multiple reflection occurs at the irradiation point h at the scanning position B shown in FIG. The false irradiation point k appears at the intersection of the axis z and the multiple reflected light.

このため、受光部3では、偽照射点kから受ける光を撮像してしまい、実際の照射点hとは異なる偽照射点kの画像データを取得してしまう。   For this reason, the light receiving unit 3 captures light received from the false irradiation point k, and acquires image data of the false irradiation point k different from the actual irradiation point h.

(計測点演算工程(その2))
次に、演算部4で、取得した偽照射点kの画像データに基づいて、三角測量の原理によって、偽照射点kの三次元座標を演算し、偽照射点kの三次元座標の演算値を、走査位置Bにおける計測点b(即ち、図3中に示す計測値nの例)として取得する(Step−6)。
(Measurement point calculation process (2))
Next, the calculation unit 4 calculates the three-dimensional coordinates of the false irradiation point k based on the triangulation principle based on the acquired image data of the false irradiation point k, and calculates the three-dimensional coordinates of the false irradiation point k. Is obtained as a measurement point b at the scanning position B (that is, an example of the measurement value n shown in FIG. 3) (Step-6).

(ノイズ判定工程(その1))
図3および図8に示す如く、次に、計測点aに対する次の計測点である計測点bに応じた判定を行うようにしている(Step−7)。
図8に示す如く、計測点b(即ち、偽照射点k)が積算空白領域S(即ち、S=Sa)に含まれている場合には、計測点bがノイズであると判定する。
(Noise judgment process (1))
Next, as shown in FIG. 3 and FIG. 8, determination is made according to the measurement point b which is the next measurement point with respect to the measurement point a (Step-7).
As shown in FIG. 8, when the measurement point b (ie, the false irradiation point k) is included in the integrated blank area S (ie, S = Sa), it is determined that the measurement point b is noise.

(積算計測点群演算工程(その2))
そしてこの場合、計測値bを破棄するようにしている(Step−8)。つまり、ノイズであると判定された計測点は積算計測点群Pには追加しないようにしている。
(Integrated measurement point group calculation process (part 2))
In this case, the measurement value b is discarded (Step-8). That is, the measurement points determined to be noise are not added to the integrated measurement point group P.

(空白領域設定工程(その2))
図9に示す如く、また計測点bがノイズであると判定した場合であっても、取得した計測点b(即ち、偽照射点k)、照射部2の走査位置Bにおける先端位置の点2b、受光部3の走査位置Bにおける先端位置の点3bの3点から、計測点bに対する空白領域Sbを定義することができる。
(Blank area setting process (part 2))
As shown in FIG. 9, even when it is determined that the measurement point b is noise, the acquired measurement point b (that is, the false irradiation point k), the point 2 b of the tip position at the scanning position B of the irradiation unit 2. The blank area Sb for the measurement point b can be defined from the three points 3b at the tip position at the scanning position B of the light receiving unit 3.

(積算空白領域演算工程(その2))
しかし、この場合には、空白領域Sbを積算空白領域Sには積算しないようにしている。
(Integrated blank area calculation process (part 2))
However, in this case, the blank area Sb is not accumulated in the accumulated blank area S.

図3に示す如く、計測点bに対するノイズの判定が終わると、走査位置の目標を、今の走査位置Nから次に走査位置N+1に変更する(Step−9)。   As shown in FIG. 3, when the noise determination for the measurement point b is completed, the target of the scanning position is changed from the current scanning position N to the next scanning position N + 1 (Step-9).

(走査位置変更工程(その2))
図3に示す如く、ここで、(Step−5)に戻って、走査部5によって三次元形状計測装置1を走査し、次の走査位置N+1に調整する(Step−5)。
尚、本実施例では、走査位置B(即ち、走査位置Nの例)の次の目標走査位置を走査位置C(即ち、走査位置N+1の例)としている。
(Scanning position changing step (2))
As shown in FIG. 3, here, returning to (Step-5), the scanning unit 5 scans the three-dimensional shape measuring apparatus 1 and adjusts it to the next scanning position N + 1 (Step-5).
In this embodiment, the next target scanning position after the scanning position B (that is, the example of the scanning position N) is set as the scanning position C (that is, the example of the scanning position N + 1).

(レーザー光照射工程(その3))
図10に示す如く、次の走査位置Cへの調整が完了すると、再び照射部2から計測対象物7に向けてレーザー光が照射される。ここでは、三次元形状計測装置1の走査位置が位置Cであるときの計測対象物7上のレーザー光が照射される点を照射点mとする。
(Laser light irradiation process (3))
As shown in FIG. 10, when the adjustment to the next scanning position C is completed, the laser beam is irradiated again from the irradiation unit 2 toward the measurement object 7. Here, the point irradiated with the laser beam on the measurement object 7 when the scanning position of the three-dimensional shape measuring apparatus 1 is the position C is defined as an irradiation point m.

(拡散反射光撮像工程(その3))
次に、照射点mで反射する拡散反射光を受光部3で撮像し、照射点mで反射する拡散反射光の画像データを取得する。
(Diffuse reflected light imaging process (3))
Next, the diffuse reflection light reflected at the irradiation point m is imaged by the light receiving unit 3, and image data of the diffuse reflection light reflected at the irradiation point m is acquired.

(計測点演算工程(その3))
次に、演算部4で、取得した照射点mの画像データに基づいて、三角測量の原理によって、照射点mの三次元座標を演算し、走査位置Cにおける照射点mの三次元座標の演算値から計測点c(即ち、図3中に示す計測値nの次に取得する計測値n+1の例)を取得する(Step−6)。
(Measurement point calculation process (part 3))
Next, the calculation unit 4 calculates the three-dimensional coordinates of the irradiation point m based on the triangulation principle based on the acquired image data of the irradiation point m, and calculates the three-dimensional coordinates of the irradiation point m at the scanning position C. A measurement point c (that is, an example of a measurement value n + 1 acquired after the measurement value n shown in FIG. 3) is acquired from the value (Step-6).

(ノイズ判定工程(その2))
図3および図11に示す如く、次に、計測点cに応じた判定を行うようにしている(Step−7)。
図11に示す如く、計測点c(即ち、照射点m)が積算空白領域S(即ち、S=Sa)に含まれていない場合には、計測点cをノイズではないと判定し、計測点cを採用する。
(Noise judgment process (part 2))
Next, as shown in FIG. 3 and FIG. 11, determination according to the measurement point c is performed (Step-7).
As shown in FIG. 11, when the measurement point c (that is, the irradiation point m) is not included in the integrated blank area S (that is, S = Sa), it is determined that the measurement point c is not noise, and the measurement point is measured. c is adopted.

(積算計測点群演算工程(その3))
そして、積算計測点群Pに計測点cを追加する(Step−10)。つまり、ノイズではないと判定された計測点のみを積算計測点群Pに追加していくようにしている。
(Integrated measurement point group calculation process (part 3))
Then, the measurement point c is added to the integrated measurement point group P (Step-10). That is, only the measurement points determined not to be noise are added to the integrated measurement point group P.

このように、積算計測点群演算工程は、計測点bがノイズである場合には、積算計測点群Pに、計測点bを積算せず、かつ、計測点cがノイズでない場合には、積算計測点群Pに、計測点cを積算するようにしている。
これにより、ノイズである計測点(例えば、計測点b)をその都度破棄しながら、正常な計測点(例えば、計測点c)のみを取得していくことにより、精度良く三次元形状の計測をすることができるのである。
As described above, in the integrated measurement point group calculation step, when the measurement point b is noise, when the measurement point b is not integrated into the integrated measurement point group P and the measurement point c is not noise, The measurement point c is integrated into the integrated measurement point group P.
As a result, the measurement point (for example, measurement point b) that is noise is discarded each time, and only the normal measurement point (for example, measurement point c) is acquired, thereby accurately measuring the three-dimensional shape. It can be done.

(空白領域設定工程(その3))
図12に示す如く、次に、取得した計測点c(即ち、照射点m)、照射部2の走査位置Cにおける先端位置の点2c、受光部3の走査位置Cにおける先端位置の点3cの3点から、計測点cに対する空白領域Scを定義する(Step−11)。
(Blank area setting process (part 3))
Next, as shown in FIG. 12, the acquired measurement point c (that is, the irradiation point m), the tip position point 2 c at the scanning position C of the irradiation unit 2, and the tip position point 3 c at the scanning position C of the light receiving unit 3. A blank area Sc for the measurement point c is defined from the three points (Step-11).

(積算空白領域演算工程(その3))
そして、図13に示す如く、計測点cに対する空白領域Scを積算空白領域Sに積算する(Step−12)。
(Integrated blank area calculation process (part 3))
And as shown in FIG. 13, the blank area | region Sc with respect to the measurement point c is integrated | accumulated to the integration blank area | region S (Step-12).

このように、積算空白領域演算工程は、計測点bがノイズである場合には、積算空白領域Sに、計測点bに対して設定した空白領域Sbを積算せず、かつ、計測点cがノイズでない場合には、積算空白領域Sに、計測点cに対して設定した空白領域Scを積算するようにしている。
これにより、正常な計測点(例えば、計測点c)に基づく空白領域(例えば、空白領域Sc)のみを積算していくことにより、精度良くノイズの判定をすることができるのである。
As described above, in the integrated blank area calculation step, when the measurement point b is noise, the integration blank area S is not integrated with the blank area Sb set for the measurement point b, and the measurement point c is If it is not noise, the blank area Sc set for the measurement point c is accumulated in the accumulated blank area S.
Thereby, it is possible to accurately determine noise by accumulating only blank regions (for example, blank region Sc) based on normal measurement points (for example, measurement point c).

図3に示す如く、計測点cに対するノイズの判定が終わると、走査位置の目標を、今の走査位置N+1から次に走査位置N+2に変更する(Step−13)。   As shown in FIG. 3, when the noise determination for the measurement point c is completed, the target of the scanning position is changed from the current scanning position N + 1 to the next scanning position N + 2 (Step-13).

図3に示す如く、ここで再び、(Step−5)に戻って、走査部5によって三次元形状計測装置1を走査し、次の走査位置N+2に調整する(Step−5)。
この手順を、予定していた全ての走査範囲に対して三次元形状計測装置1を走査し終えるまで(Step−5)〜(Step−13)を繰り返して実行し、予定していた全ての走査範囲を走査し終えた時点で三次元形状計測を終了するようにしている(Step−14)。
As shown in FIG. 3, the process returns to (Step-5) again, and the scanning unit 5 scans the three-dimensional shape measuring apparatus 1 to adjust to the next scanning position N + 2 (Step-5).
This procedure is repeatedly executed (Step-5) to (Step-13) until the scanning of the three-dimensional shape measuring apparatus 1 is completed with respect to all scheduled scanning ranges, and all scheduled scanning is performed. The three-dimensional shape measurement is finished when the range is scanned (Step-14).

即ち、本発明に係る三次元形状計測方法は、計測対象物7に対してスリット状のレーザー光を照射する照射部2と、計測対象物7に照射された前記レーザー光の照射点g・m(あるいは偽照射点k)から反射する拡散反射光を撮像する受光部3と、該受光部3により撮像された画像に基づいて照射点g・m(あるいは偽照射点k)の三次元座標を演算して計測点a・b・cを得る演算部4と、計測対象物7に対する前記レーザー光の走査位置(例えば、走査位置A・B・C等)を調整する走査部5と、を備える三次元形状計測装置1を用いて行われ、走査部5によって、照射部2の光軸zを所定間隔で移動し、計測対象物7に対する前記レーザー光の走査位置を所定間隔で、例えば、走査位置A・B・C等に変更する走査位置変更工程と、照射部2によって、任意の走査位置B・Cにおいて計測対象物7に対して前記レーザー光を照射するレーザー光照射工程と、受光部3によって、走査位置B・Cにおいて計測対象物7に照射される前記レーザー光の偽照射点kおよび照射点mから反射する拡散反射光を撮像する拡散反射光撮像工程と、演算部4によって、走査位置B・Cにおいて受光部3により撮像された画像に基づいて偽照射点kおよび照射点mの三次元座標を演算して走査位置B・Cにおける計測点b・cを得る計測点演算工程と、を備えるものであって、演算部4によって、走査位置B・Cにおける計測点b・cよりも前に取得した計測点(例えば、計測点a)の集合たる積算計測点群Pを算出する積算計測点群演算工程と、演算部4によって、計測点演算工程にて得られた走査位置B・Cにおける計測点b・cと、照射部2の先端位置2b・2cの三次元座標と、受光部3の先端位置3b・3cの三次元座標とから、計測対象物7が存在しない空白領域Sb・Scを求め、走査位置B・Cにおける計測点b・cに対する空白領域Sb・Scを設定する空白領域設定工程と、演算部4によって、走査位置B・Cにおける計測点b・cよりも前に取得した計測点(例えば、計測点a)に対して設定した空白領域と、を積算した積算空白領域Sを算出する積算空白領域演算工程と、演算部4によって、計測点b・cが、積算空白領域Sに含まれるか否かに応じて、計測点b・cがノイズであるか否かを判定するノイズ判定工程と、を備えるものとしている。   That is, the three-dimensional shape measurement method according to the present invention includes an irradiation unit 2 that irradiates a measurement target 7 with a slit-shaped laser beam, and an irradiation point g · m of the laser beam irradiated on the measurement target 7. The light receiving unit 3 that captures the diffuse reflected light reflected from (or the false irradiation point k), and the three-dimensional coordinates of the irradiation point g · m (or the false irradiation point k) based on the image captured by the light receiving unit 3 A calculation unit 4 that calculates and obtains measurement points a, b, and c, and a scanning unit 5 that adjusts the scanning position (for example, scanning positions A, B, and C) of the laser beam with respect to the measurement object 7. The scanning unit 5 moves the optical axis z of the irradiation unit 2 at a predetermined interval, and scans the scanning position of the laser beam with respect to the measurement object 7 at a predetermined interval, for example, scanning. A scanning position changing process for changing to positions A, B, C, etc. The laser beam irradiation step of irradiating the measurement target 7 with the laser beam at an arbitrary scanning position B / C by the unit 2 and the measurement target 7 at the scanning position B / C are irradiated by the light receiving unit 3 Based on the diffuse reflected light imaging process for imaging the diffuse reflected light reflected from the false irradiation point k and the irradiation point m of the laser light, and the image captured by the light receiving unit 3 at the scanning positions B and C by the calculation unit 4 A measurement point calculation step of calculating the three-dimensional coordinates of the pseudo irradiation point k and the irradiation point m to obtain the measurement points b and c at the scanning positions B and C. An integrated measurement point group calculation step for calculating an integrated measurement point group P that is a set of measurement points (for example, measurement point a) acquired before measurement points b and c in C, and a calculation point calculation by the calculation unit 4 Obtained in the process From the measurement points b and c at the scanning positions B and C, the three-dimensional coordinates of the tip positions 2b and 2c of the irradiation unit 2, and the three-dimensional coordinates of the tip positions 3b and 3c of the light receiving unit 3, the measurement object 7 is A non-existent blank area Sb / Sc is obtained, a blank area setting step for setting the blank area Sb / Sc for the measurement points b / c at the scanning positions B / C, and a measurement point b at the scanning positions B / C by the calculation unit 4. An integrated blank area calculation step for calculating an integrated blank area S obtained by integrating a blank area set for a measurement point (for example, measurement point a) acquired before c, and a measurement point by the calculation unit 4 a noise determination step of determining whether or not the measurement points b and c are noise depending on whether or not b and c are included in the integrated blank area S.

また、本発明に係る三次元形状計測装置1は、計測対象物7に対してスリット状のレーザー光を照射する照射部2と、計測対象物7に照射された前記レーザー光の照射点g・m(あるいは偽照射点k)から反射する拡散反射光を撮像する受光部3と、該受光部3により撮像された画像に基づいて照射点g・m(あるいは偽照射点k)の三次元座標を演算して計測点a・b・cを得る演算部4と、計測対象物7に対する前記レーザー光の走査位置A・B・Cを調整する走査部5と、を備えるものであって、演算部4は、計測点b・cよりも前に取得した計測点(例えば、計測点a)の集合たる積算計測点群Pを算出し、かつ、走査位置B・Cにおける計測点b・cと、照射部2の先端位置2b・2cの三次元座標と、受光部3の先端位置3b・3cの三次元座標とから、計測対象物7が存在しない空白領域Sb・Scを求め、計測点b・cに対する空白領域Sb・Scを設定し、かつ、計測点b・cに対する空白領域Sb・Scと、計測点b・cよりも前に取得した計測点(例えば、計測点a)に対して設定した空白領域の合計たる積算空白領域Sを算出し、かつ、計測点b・cが、積算空白領域Sに含まれるか否かに応じて、計測点b・cがノイズであるか否かを判定するものとしている。   Further, the three-dimensional shape measuring apparatus 1 according to the present invention includes an irradiation unit 2 that irradiates the measurement target 7 with slit-shaped laser light, and an irradiation point g · of the laser light irradiated to the measurement target 7. The light receiving unit 3 that captures the diffusely reflected light reflected from m (or the false irradiation point k), and the three-dimensional coordinates of the irradiation point g · m (or the false irradiation point k) based on the image captured by the light receiving unit 3 And a scanning unit 5 that adjusts the scanning positions A, B, and C of the laser light with respect to the measurement object 7, and obtains measurement points a, b, and c. The unit 4 calculates an integrated measurement point group P, which is a set of measurement points (for example, measurement point a) acquired before the measurement points b and c, and the measurement points b and c at the scanning positions B and C. , The three-dimensional coordinates of the tip positions 2b and 2c of the irradiation unit 2, and the tip positions 3b and 2c of the light receiving unit 3 From the three-dimensional coordinates of c, the blank areas Sb and Sc where the measurement object 7 does not exist are obtained, the blank areas Sb and Sc for the measurement points b and c are set, and the blank areas Sb and Sc for the measurement points b and c are set. The integrated blank area S that is the sum of the blank areas set for Sc and the measurement points (for example, measurement point a) acquired before the measurement points b and c is calculated, and the measurement points b and c are Whether or not the measurement points b and c are noise is determined according to whether or not they are included in the integrated blank area S.

つまり、本発明に係る三次元形状計測装置1をこのような構成とし、本発明に係る三次元形状計測方法を採用することにより、容易に精度良く、多重反射の影響によるノイズを排除でき、三次元形状計測の計測精度向上に寄与することができるのである。   That is, by adopting such a configuration of the three-dimensional shape measuring apparatus 1 according to the present invention and adopting the three-dimensional shape measuring method according to the present invention, noise due to the influence of multiple reflection can be easily and accurately eliminated. This can contribute to improvement of measurement accuracy of original shape measurement.

尚、計測対象物7に照射されたスリット状のレーザー光は、本実施例による説明の如く、二次元のモデルによる説明では計測対象物7上の点に照射される照射点として表現しているが、三次元のモデルでは、計測対象物7に照射されたスリット状のレーザー光は線状に照射されて実際には照射線となっている。   Note that the slit-shaped laser light irradiated to the measurement object 7 is expressed as an irradiation point irradiated to a point on the measurement object 7 in the description of the two-dimensional model as described in the present embodiment. However, in the three-dimensional model, the slit-shaped laser light irradiated to the measurement object 7 is irradiated linearly and actually becomes an irradiation line.

照射線は照射点の集合であるため、本発明に係る三次元形状計測方法を、三次元のモデルに拡張して適用することが容易に可能である。
即ち、本実施例では、模式的に二次元のモデルによって、本発明に係る三次元形状計測方法について説明を行ったが、これに限定するものではなく、本発明に係る三次元形状計測方法を三次元計測に適用することが可能である。
Since the irradiation line is a set of irradiation points, the three-dimensional shape measurement method according to the present invention can be easily applied to a three-dimensional model.
That is, in the present embodiment, the three-dimensional shape measurement method according to the present invention has been schematically described using a two-dimensional model. However, the present invention is not limited to this, and the three-dimensional shape measurement method according to the present invention is not limited thereto. It can be applied to three-dimensional measurement.

本発明の一実施例に係る三次元形状計測装置の全体構成を示す模式図。The schematic diagram which shows the whole structure of the three-dimensional shape measuring apparatus which concerns on one Example of this invention. (a)多重反射が発生していない場合の計測状況を示す模式図、(b)多重反射が発生している場合の計測状況を示す模式図。(A) The schematic diagram which shows the measurement condition when multiple reflection has not generate | occur | produced, (b) The schematic diagram which shows the measurement condition when multiple reflection has generate | occur | produced. 本発明の一実施例に係る三次元形状計測方法の計測フロー図。The measurement flow figure of the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による基準計測点aにおける計測状況(レーザー光照射工程、拡散反射光撮像工程および計測点演算工程)を示す模式図。The schematic diagram which shows the measurement condition (a laser beam irradiation process, a diffuse reflected light imaging process, and a measurement point calculation process) in the reference | standard measurement point a by the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による基準計測点aにおける計測状況(空白領域設定工程)を示す模式図。The schematic diagram which shows the measurement condition (blank area | region setting process) in the reference | standard measurement point a by the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による基準計測点aにおける計測状況(積算空白領域演算工程)を示す模式図。The schematic diagram which shows the measurement condition (integrated blank area | region calculation process) in the reference | standard measurement point a by the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による計測点bにおける計測状況(レーザー光照射工程、拡散反射光撮像工程および計測点演算工程)を示す模式図。The schematic diagram which shows the measurement condition (a laser beam irradiation process, a diffuse reflected light imaging process, and a measurement point calculation process) in the measurement point b by the three-dimensional shape measurement method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による計測点bにおける計測状況(ノイズ判定工程)を示す模式図。The schematic diagram which shows the measurement condition (noise determination process) in the measurement point b by the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による計測点bにおける計測状況(空白領域設定工程および積算空白領域演算工程)を示す模式図。The schematic diagram which shows the measurement condition (blank area | region setting process and integrated blank area | region calculation process) in the measurement point b by the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による計測点cにおける計測状況(レーザー光照射工程、拡散反射光撮像工程および計測点演算工程)を示す模式図。The schematic diagram which shows the measurement condition (a laser beam irradiation process, a diffuse reflected light imaging process, and a measurement point calculation process) in the measurement point c by the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による計測点cにおける計測状況(ノイズ判定工程)を示す模式図。The schematic diagram which shows the measurement condition (noise determination process) in the measurement point c by the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による計測点cにおける計測状況(空白領域設定工程)を示す模式図。The schematic diagram which shows the measurement condition (blank area | region setting process) in the measurement point c by the three-dimensional shape measuring method which concerns on one Example of this invention. 本発明の一実施例に係る三次元形状計測方法による計測点cにおける計測状況(積算空白領域演算工程)を示す模式図。The schematic diagram which shows the measurement condition (integrated blank area | region calculation process) in the measurement point c by the three-dimensional shape measuring method which concerns on one Example of this invention.

符号の説明Explanation of symbols

1 三次元形状計測装置
2 照射部
2a 先端位置
3 受光部
3a 先端位置
4 演算部
5 走査部
7 計測対象物
DESCRIPTION OF SYMBOLS 1 Three-dimensional shape measuring apparatus 2 Irradiation part 2a Tip position 3 Light-receiving part 3a Tip position 4 Calculation part 5 Scanning part 7 Measurement object

Claims (6)

計測対象物に対してスリット状のレーザー光を照射する照射部と、
前記計測対象物に照射された前記レーザー光の照射点から反射する拡散反射光を撮像する受光部と、
該受光部により撮像された画像に基づいて前記照射点の三次元座標を演算して計測点を得る演算部と、
前記計測対象物に対する前記レーザー光の走査位置を調整する走査部と、
を備える三次元形状計測装置を用いて行われ、
前記走査部によって、前記照射部の光軸を所定間隔で変更し、前記計測対象物に対する前記レーザー光の走査位置を所定間隔で変更する走査位置変更工程と、
前記照射部によって、任意の走査位置において前記計測対象物に対して前記レーザー光を照射するレーザー光照射工程と、
前記受光部によって、前記任意の走査位置において前記計測対象物に照射される前記レーザー光の照射点から反射する拡散反射光を撮像する拡散反射光撮像工程と、
前記演算部によって、前記任意の走査位置において前記受光部により撮像された画像に基づいて前記照射点の三次元座標を演算して前記任意の走査位置における計測点を得る計測点演算工程と、
を備える三次元形状計測方法であって、
前記演算部によって、
前記任意の走査位置における計測点よりも前に取得した計測点の集合たる計測点群を算出する積算計測点群演算工程と、
前記演算部によって、
前記計測点演算工程にて得られた前記任意の走査位置における計測点と、
前記照射部の先端位置の三次元座標と、
前記受光部の先端位置の三次元座標とから、
前記計測対象物が存在しない空白領域を求め、
前記任意の走査位置における計測点に対する空白領域を設定する空白領域設定工程と、
前記演算部によって、
前記任意の走査位置における計測点よりも前に取得した計測点に対して設定した空白領域の合計たる積算空白領域を算出する積算空白領域演算工程と、
前記演算部によって、
前記任意の計測点が、
前記積算空白領域に含まれるか否かに応じて、
前記任意の計測点がノイズであるか否かを判定するノイズ判定工程と、
を備える、
ことを特徴とする三次元形状計測方法。
An irradiation unit that irradiates the measurement target with a slit-shaped laser beam;
A light receiving unit that images diffuse reflected light reflected from an irradiation point of the laser light applied to the measurement object;
A calculation unit for calculating a three-dimensional coordinate of the irradiation point based on an image captured by the light receiving unit to obtain a measurement point;
A scanning unit for adjusting a scanning position of the laser beam with respect to the measurement object;
Is performed using a three-dimensional shape measuring apparatus comprising
A scanning position changing step of changing the optical axis of the irradiation unit at a predetermined interval by the scanning unit, and changing the scanning position of the laser beam with respect to the measurement object at a predetermined interval;
A laser light irradiation step of irradiating the measurement target with the laser light at an arbitrary scanning position by the irradiation unit;
A diffuse reflected light imaging step of imaging diffuse reflected light reflected from an irradiation point of the laser light applied to the measurement object at the arbitrary scanning position by the light receiving unit;
A measurement point calculation step of calculating a three-dimensional coordinate of the irradiation point based on an image captured by the light receiving unit at the arbitrary scanning position to obtain a measurement point at the arbitrary scanning position by the calculation unit;
A three-dimensional shape measuring method comprising:
By the arithmetic unit,
An integrated measurement point group calculation step for calculating a measurement point group that is a set of measurement points acquired before the measurement points at the arbitrary scanning position;
By the arithmetic unit,
Measurement points at the arbitrary scanning position obtained in the measurement point calculation step,
Three-dimensional coordinates of the tip position of the irradiation unit;
From the three-dimensional coordinates of the tip position of the light receiving unit,
Find a blank area where the measurement object does not exist,
A blank area setting step for setting a blank area for the measurement point at the arbitrary scanning position;
By the arithmetic unit,
An integrated blank area calculation step for calculating an integrated blank area that is the sum of the blank areas set for the measurement points acquired before the measurement points at the arbitrary scanning position;
By the arithmetic unit,
The arbitrary measurement point is
Depending on whether it is included in the accumulated blank area,
A noise determination step of determining whether or not the arbitrary measurement point is noise;
Comprising
A three-dimensional shape measuring method characterized by that.
前記積算計測点群演算工程は、
前記任意の計測点がノイズである場合には、
前記積算計測点群に、
前記任意の計測点を積算せず、かつ、
前記任意の計測点がノイズでない場合には、
前記積算計測点群に、
前記任意の計測点を積算する、
ことを特徴とする請求項1記載の三次元形状計測方法。
The integrated measurement point group calculation step includes:
When the arbitrary measurement point is noise,
In the integrated measurement point group,
Do not accumulate any measurement points, and
If the arbitrary measurement point is not noise,
In the integrated measurement point group,
Integrating the arbitrary measurement points,
The three-dimensional shape measuring method according to claim 1.
前記積算空白領域演算工程は、
前記任意の計測点がノイズである場合には、
前記積算空白領域に、
前記任意の計測点に対して設定した空白領域を積算せず、かつ、
前記任意の計測点がノイズでない場合には、
前記積算空白領域に、
前記任意の計測点に対して設定した空白領域を積算する、
ことを特徴とする請求項1記載の三次元形状計測方法。
The integrated blank area calculation step includes:
When the arbitrary measurement point is noise,
In the accumulated blank area,
Do not integrate the blank area set for the arbitrary measurement point, and
If the arbitrary measurement point is not noise,
In the accumulated blank area,
Integrating the blank areas set for the arbitrary measurement points;
The three-dimensional shape measuring method according to claim 1.
計測対象物に対してスリット状のレーザー光を照射する照射部と、
前記計測対象物に照射された前記レーザー光の照射点から反射する拡散反射光を撮像する受光部と、
該受光部により撮像された前記照射点の画像に基づいて該照射点の三次元座標を演算して計測点を得る演算部と、
前記計測対象物に対する前記レーザー光の走査位置を調整する走査部と、
を備え、
前記計測点の三次元座標に基づいて前記計測対象物の表面形状を計測する三次元形状計測装置であって、
前記演算部は、
前記任意の走査位置における計測点よりも前に取得した計測点の集合たる計測点群を算出し、かつ、
前記任意の走査位置における計測点と、
前記照射部の先端位置の三次元座標と、
前記受光部の先端位置の三次元座標とから、
前記計測対象物が存在しない空白領域を求め、
前記任意の走査位置における計測点に対する空白領域を設定し、かつ、
前記任意の走査位置における計測点よりも前に取得した計測点に対して設定した空白領域の合計たる積算空白領域を算出し、かつ、
前記任意の計測点が、
前記積算空白領域に含まれるか否かに応じて、
前記任意の計測点がノイズであるか否かを判定する、
ことを特徴とする三次元形状計測装置。
An irradiation unit that irradiates the measurement target with a slit-shaped laser beam;
A light receiving unit that images diffuse reflected light reflected from an irradiation point of the laser light applied to the measurement object;
A calculation unit that calculates a three-dimensional coordinate of the irradiation point based on an image of the irradiation point imaged by the light receiving unit to obtain a measurement point;
A scanning unit for adjusting a scanning position of the laser beam with respect to the measurement object;
With
A three-dimensional shape measuring apparatus that measures the surface shape of the measurement object based on the three-dimensional coordinates of the measurement point,
The computing unit is
Calculating a measurement point group that is a set of measurement points acquired before the measurement point at the arbitrary scanning position; and
A measurement point at the arbitrary scanning position;
Three-dimensional coordinates of the tip position of the irradiation unit;
From the three-dimensional coordinates of the tip position of the light receiving unit,
Find a blank area where the measurement object does not exist,
Setting a blank area for the measurement point at the arbitrary scanning position; and
Calculating an integrated blank area that is the sum of the blank areas set for the measurement points acquired before the measurement points at the arbitrary scanning position; and
The arbitrary measurement point is
Depending on whether it is included in the accumulated blank area,
Determining whether the arbitrary measurement point is noise;
A three-dimensional shape measuring apparatus characterized by that.
前記演算部は、
前記任意の計測点がノイズである場合には、
前記積算計測点群に、
前記任意の計測点を積算せず、かつ、
前記任意の計測点がノイズでない場合には、
前記積算計測点群に、
前記任意の計測点を積算する、
ことを特徴とする請求項4記載の三次元形状計測方法。
The computing unit is
When the arbitrary measurement point is noise,
In the integrated measurement point group,
Do not accumulate any measurement points, and
If the arbitrary measurement point is not noise,
In the integrated measurement point group,
Integrating the arbitrary measurement points,
The three-dimensional shape measuring method according to claim 4.
前記演算部は、
前記任意の計測点がノイズである場合には、
前記積算空白領域に、
前記任意の計測点に対して設定した空白領域を積算せず、かつ、
前記任意の計測点がノイズでない場合には、
前記積算空白領域に、
前記任意の計測点に対して設定した空白領域を積算する、
ことを特徴とする請求項4記載の三次元形状計測装置。
The computing unit is
When the arbitrary measurement point is noise,
In the accumulated blank area,
Do not integrate the blank area set for the arbitrary measurement point, and
If the arbitrary measurement point is not noise,
In the accumulated blank area,
Integrating the blank areas set for the arbitrary measurement points;
The three-dimensional shape measuring apparatus according to claim 4.
JP2007323557A 2007-12-14 2007-12-14 Device and method for measuring three-dimensional shape Pending JP2009145231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007323557A JP2009145231A (en) 2007-12-14 2007-12-14 Device and method for measuring three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323557A JP2009145231A (en) 2007-12-14 2007-12-14 Device and method for measuring three-dimensional shape

Publications (1)

Publication Number Publication Date
JP2009145231A true JP2009145231A (en) 2009-07-02

Family

ID=40915980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323557A Pending JP2009145231A (en) 2007-12-14 2007-12-14 Device and method for measuring three-dimensional shape

Country Status (1)

Country Link
JP (1) JP2009145231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276249A (en) * 2008-05-15 2009-11-26 Toyota Motor Corp Stator coil form inspection method and form inspection device
JP2011069699A (en) * 2009-09-25 2011-04-07 Railway Technical Res Inst Rail detection method and rail displacement measurement apparatus in rail displacement measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276249A (en) * 2008-05-15 2009-11-26 Toyota Motor Corp Stator coil form inspection method and form inspection device
JP2011069699A (en) * 2009-09-25 2011-04-07 Railway Technical Res Inst Rail detection method and rail displacement measurement apparatus in rail displacement measurement

Similar Documents

Publication Publication Date Title
JP4238891B2 (en) 3D shape measurement system, 3D shape measurement method
US9488469B1 (en) System and method for high-accuracy measurement of object surface displacement using a laser displacement sensor
TWI420081B (en) Distance measuring system and distance measuring method
EP1202075A2 (en) Distance measuring apparatus and distance measuring method
JP2002139304A (en) Distance measuring device and distance measuring method
JP2007170851A (en) Method and system for measuring road surface shape
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
JP7093915B2 (en) Surface shape measurement method
JP2004317495A (en) Method and instrument for measuring noncontactly three-dimensional shape
JP2021193400A (en) Method for measuring artefact
US11415408B2 (en) System and method for 3D profile determination using model-based peak selection
JP2007093412A (en) Three-dimensional shape measuring device
TW591689B (en) Semiconductor device identification apparatus
US20200025559A1 (en) Apparatus and method for capturing an object surface by electromagnetic radiation
JP2009145231A (en) Device and method for measuring three-dimensional shape
JP6820516B2 (en) Surface shape measurement method
JP2014238299A (en) Measurement device, calculation device, and measurement method for inspected object, and method for manufacturing articles
JP5136108B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP7001947B2 (en) Surface shape measurement method
JP2016024067A (en) Measurement method and measurement device
JP2009145175A (en) Device and method for measuring three-dimensional shape
CN112710662A (en) Generation method and device, generation system and storage medium
JP2016095243A (en) Measuring device, measuring method, and article manufacturing method
JP2002131017A (en) Apparatus and method of distance measurement
KR101833055B1 (en) 3-dimensional measuring system