JP2009145035A - Instantaneous heating type floor heating device - Google Patents

Instantaneous heating type floor heating device Download PDF

Info

Publication number
JP2009145035A
JP2009145035A JP2008183271A JP2008183271A JP2009145035A JP 2009145035 A JP2009145035 A JP 2009145035A JP 2008183271 A JP2008183271 A JP 2008183271A JP 2008183271 A JP2008183271 A JP 2008183271A JP 2009145035 A JP2009145035 A JP 2009145035A
Authority
JP
Japan
Prior art keywords
heat
floor
heating
room
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008183271A
Other languages
Japanese (ja)
Inventor
Naoki Fujiwara
直樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008183271A priority Critical patent/JP2009145035A/en
Publication of JP2009145035A publication Critical patent/JP2009145035A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize user convenience and to reduce energy consumption by shortening the time until the temperature of a floor material becomes appropriate and the temperature of a room becomes comfortable in a floor heating device. <P>SOLUTION: In the floor heating device, the floor material is instantaneously heated by using a Peltier element in an exothermic body heating the exothermic to the temperature higher than in the conventional floor heating device, and before an overheated condition, the exothermic body is cooled by the Peltier element to prevent an overheated condition, and the room is heated by transporting waste heat generated accompanying the cooling into the room. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、建物の居室の暖房の用に供される床暖房装置において、床下において発生する放熱ロス及び換気による熱損失を有効利用するとともに、当該居室内及び当該居室の床の加熱時間の短縮を実現する床暖房装置に関するものである。   The present invention effectively uses a heat loss generated under the floor and a heat loss due to ventilation in a floor heating apparatus provided for heating a room in a building, and shortens the heating time of the room and the floor of the room. The present invention relates to a floor heating device that realizes the above.

床暖房装置は、室内の暖房において、頭寒足熱という、体感上、理想的な室内環境を創出でき、埃を舞い上げることもなく、室内の結露も発生させにくいもので、多くの住宅、その他の施設の暖房装置として、実用に供されている。特に、パネル式及び根太間設置型床暖房は、従来工法の床構造にそのまま敷設できる容易性のため、多くの実用に供されているが、床暖房装置及び床材自体を発熱させて発生する赤外線の輻射熱を用いる特性上、床下など、床暖房を使用する居室外への輻射熱伝導による熱損失が問題であった。   The floor heating system can create an ideal indoor environment from the viewpoint of head cold foot heat in indoor heating, does not raise dust, and does not easily generate dew in the room. Many houses and other facilities As a heating device, it is used practically. In particular, the panel type and joist floor type floor heating is used for many practical applications because it can be installed as it is on the floor structure of the conventional construction method, but it is generated by heating the floor heating device and the floor material itself. Due to the characteristics of using infrared radiant heat, heat loss due to radiant heat conduction outside the room using floor heating such as under the floor has been a problem.

また、床暖房装置は、一般的に熱伝導率が低い床材を加熱して室内を暖房する特性上、起動してから快適温度に達するまでに所定の時間を要するため、使用者の利便性を損なうと同時に、当該所定の時間を考慮して、プログラム運転などにより使用者の在室時より事前に床暖房装置を起動させておくなど、起動時間が長くなり、その分の無駄なエネルギー消費も問題であった。 In addition, the floor heating device generally heats the floor with low thermal conductivity to heat the room, so that it takes a certain time from starting to reach a comfortable temperature. At the same time, taking into account the predetermined time, the startup time will be longer, such as starting the floor heating device in advance of the user's occupancy by program operation etc. Was also a problem.

床暖房の熱損失を軽減するものとして、上面への伝熱効率が高い形状にすることにより、従来のものよりも低い温水温度にて放熱を行う温水式床暖房装置(例えば非特許文献1参照)があるが、この場合、温水温度が低い分、数値上の輻射熱量は確保できても、体感上の温度が低く感じられ、使用者が設定温度を高くする傾向にあり、結果として省エネには繋がらなかった。また、この装置は、加熱性能を発揮するためには床材の選択に制限があり、使用者の多用な要望に応え得るものではなかった。さらに、床下への放熱ロスも、ある程度発生するものである上、従来のものよりイニシャルコストが高いという問題があった。   As a means for reducing the heat loss of floor heating, a hot water floor heating device that radiates heat at a lower hot water temperature than the conventional one by making the shape with high heat transfer efficiency to the upper surface (see, for example, Non-Patent Document 1) However, in this case, although the hot water temperature is low, the numerical radiant heat can be secured, but the temperature on the sensation is felt low, and the user tends to increase the set temperature. I was not connected. In addition, this apparatus has a limitation in the selection of flooring material in order to exhibit the heating performance, and cannot respond to the many demands of users. Furthermore, there is a problem that heat loss to the underfloor occurs to some extent, and the initial cost is higher than the conventional one.

床下に温風を通過させ床面を暖める方式(例えば特許文献1参照)は、床下全体を温風により暖め、床材を暖めることにより、床材から輻射熱を発生させるものであり、温水式、電熱式に比べ、イニシャルコストの問題、床材の制限は発生しないものであるが、壁面床下部から室外及び屋外への熱透過及び空気の漏洩による熱損失が発生し、放熱ロスの問題を完全に解決するものではなかった。   The method of passing warm air under the floor and warming the floor surface (see, for example, Patent Document 1) is to generate radiant heat from the floor material by warming the entire under floor with warm air and warming the floor material. Compared to the electric heating type, there is no problem of initial cost and flooring restrictions, but heat loss occurs due to heat transmission and air leakage from the bottom of the wall floor to the outdoors and outdoors, completely eliminating the problem of heat dissipation loss. It was not something to solve.

床暖房下面に真空断熱層を設ける方式(例えば特許文献2)では、真空断熱層により、床下への熱伝導に対しては、優れた断熱効果を有するが、床暖房による加熱は、床材を構成する分子内の電子の運動エネルギーが赤外線波長の電磁波に変換されたものの輻射によるものが主であり、且つ赤外線輻射は、真空中を透過するものであるため、輻射熱に対する断熱効果は低かった。従って、床暖房の床下への放熱ロスを完全に解決するものではなかった。また、真空断熱層は高価なものであり、イニシャルコストの増大も問題であった。   In the method of providing a vacuum heat insulating layer on the bottom surface of the floor heating (for example, Patent Document 2), the vacuum heat insulating layer has an excellent heat insulating effect for heat conduction to the bottom of the floor. The kinetic energy of electrons in the molecules constituting the structure is mainly converted to radiation of electromagnetic waves having infrared wavelengths, and infrared radiation is transmitted through the vacuum, so that the heat insulation effect against radiant heat is low. Therefore, the heat dissipation loss under the floor heating is not completely solved. Further, the vacuum heat insulating layer is expensive, and an increase in initial cost is also a problem.

床暖房下面に気密性を有する断熱層を設ける方式(例えば特許文献3)では、気密性により、床下への対流伝熱の防止には、効果があるが、輻射、熱伝導に対する断熱効果は、従来技術と大差はなく、床下への放熱ロスを完全に解決するものではなかった。 In the method of providing a heat insulating layer having airtightness on the lower surface of the floor heating (for example, Patent Document 3), due to the airtightness, there is an effect in preventing convective heat transfer to the underfloor, but the heat insulating effect on radiation and heat conduction is There was no big difference with the prior art, and it did not completely solve the heat loss under the floor.

以上、段落0005−0007に記載の従来技術では、床下への熱損失には一定の効果があるが、起動してから快適温度に達するまでに時間を要する問題は解決されていなかった。当該問題を回避するため、面状発熱体と床の貫通孔により、温風を室内に吹出す床暖房装置(例えば特許文献4参照)があった。しかし、当該技術の面状発熱体は、加熱時間が短縮されるが、頭寒足熱の温度分布、及び埃を舞い上げないという床暖房装置の長所が損なわれる問題があった。さらに、本方式は、原則的に電気エネルギーのみで加熱する方式であり、エネルギー効率が悪いという問題があった。 As described above, in the prior art described in paragraphs 0005 to 0007, there is a certain effect on the heat loss to the floor, but the problem of taking time to reach the comfortable temperature after starting has not been solved. In order to avoid the problem, there has been a floor heating device (see, for example, Patent Document 4) in which warm air is blown into a room by a planar heating element and a through-hole in the floor. However, although the heating time is shortened in the sheet heating element according to the technology, there are problems in that the temperature distribution of the cold head heat and the advantage of the floor heating device that does not soar dust are impaired. Furthermore, this system is a system that heats only with electric energy in principle, and has a problem of poor energy efficiency.

一方、室内換気による暖房負荷の増大も問題であった。床暖房使用室において室内換気を行うことにより、外気を室内に取入れることになり、外気負荷が増大し、床暖房装置の使用エネルギーの増大を発生させていた。さらに、この取入外気は、コールドドラフトの原因となり、床暖房使用者は、その不快感を除去するため、暖房の設定温度を上げる傾向があり、それに伴うエネルギー消費も問題であった。建築基準法で、常時換気の設置が義務付けられているため、この問題は、あらゆる建物の居室で発生するものであった。 On the other hand, an increase in heating load due to room ventilation has also been a problem. By performing indoor ventilation in the floor heating use room, outside air is taken into the room, the outside air load increases, and the use energy of the floor heating device increases. Furthermore, this intake outside air causes a cold draft, and floor heating users tend to raise the set temperature of heating in order to remove the discomfort, and the energy consumption associated therewith is also a problem. Because the Building Standards Law requires that ventilation be provided at all times, this problem has occurred in every room in every building.

室内換気による暖房負荷増大への対策として、熱交換型換気扇(例えば特許文献5参照)があるが、その熱交換効率は、60−75%程度であり、外気負荷を完全に除去できるものではなかった。さらに床暖房は、赤外線輻射にて人体を直接暖める方式であり、他の暖房方式よりも室内温度が低くなるため、取入外気と室内からの排気との間で熱交換を行う同換気扇では、床暖房使用室においては給排気間の温度差が他の暖房方式使用室の場合よりも小さくなり、高い熱交換効率を実現できるものではなかった。
特開平7−229629号公報 特開2007−56614号公報 特開平6−281172号公報 特開2007−139325号公報 特開2006−220330号公報 ノーリツ温水暖房システムガス総合版2004、2005第8頁
There is a heat exchange type exhaust fan (see, for example, Patent Document 5) as a countermeasure to the heating load increase due to room ventilation, but the heat exchange efficiency is about 60-75%, and the outside air load cannot be completely removed. It was. Furthermore, floor heating is a method that directly warms the human body with infrared radiation, and the indoor temperature is lower than other heating methods, so in the same exhaust fan that exchanges heat between the intake outside air and the exhaust from the room, In the floor heating room, the temperature difference between the supply and exhaust becomes smaller than in other heating system rooms, and high heat exchange efficiency cannot be realized.
JP 7-229629 A JP 2007-56614 A JP-A-6-281172 JP 2007-139325 A JP 2006-220330 A Noritz Hot Water Heating System Gas General Edition 2004, 2005, page 8

床暖房装置は、上記のとおり、使用者の快適性を実現する暖房方式であるが、従来技術では、床下への一定量の熱損失によるエネルギーロス、床面の加熱に一定の時間を要することによる使用者の利便性の喪失、さらに加熱に要する時間を考慮して事前に起動させることに起因する長時間起動によるエネルギーロスなどの諸問題を発生させていた。   As mentioned above, the floor heating system is a heating system that realizes user comfort. However, in the prior art, energy loss due to a certain amount of heat loss under the floor and heating of the floor surface requires a certain amount of time. This causes various problems such as loss of user convenience due to power loss and energy loss due to long-time startup caused by starting in advance in consideration of the time required for heating.

上記、床下への熱損失は、床暖房装置の発熱体と床下との温度差による熱伝導という自然法則によるものであり、これを発生させないことは非常に困難である。従来技術では、当該床下への熱損失を軽減させんと試みていたが、本発明では、当該床下へ伝導する熱を有効利用することを考える。つまり、本発明は、当該床下へ伝導する熱を有効利用することにより、床下への熱損失が発生しないと想定した場合と、実質的に同様のエネルギー収支とすることを課題のひとつとするものである。 The above-mentioned heat loss under the floor is due to the natural law of heat conduction due to the temperature difference between the heating element of the floor heating device and the underfloor, and it is very difficult not to generate this. In the prior art, an attempt was made to reduce heat loss to the floor, but in the present invention, it is considered to effectively use heat conducted to the floor. In other words, one of the problems of the present invention is to make the energy balance substantially the same as when assuming that no heat loss occurs under the floor by effectively using the heat conducted under the floor. It is.

また、上記、床面の加熱に要する時間による使用者の利便性の喪失等の諸問題に関しては、床面の加熱に要する時間を短縮することにより、解決できるものである。床暖房装置において加熱時間を短縮することは、床暖房装置の発熱体の温度を高くすることにより、発熱体と床面との温度差が大きくなり、そのため発熱体から床面への放熱量が大きくなることで可能となる。しかし、発熱体の温度が高いまま床面を加熱し続けると床面の温度が過熱状態となり、使用者が当該床面に居続けることで、当該使用者と床面とが接する部分の閉塞温度が高くなり、当該使用者が低温火傷を被る危険性がある。 Further, the above-described problems such as loss of user convenience due to the time required for heating the floor surface can be solved by reducing the time required for heating the floor surface. Shortening the heating time in the floor heating device increases the temperature difference between the heating element and the floor surface by increasing the temperature of the heating element of the floor heating device. It becomes possible by growing. However, if the floor surface is continuously heated while the temperature of the heating element is high, the floor surface temperature becomes overheated, and the user stays on the floor surface, so that the blockage temperature of the portion where the user and the floor surface are in contact with each other. There is a risk that the user will suffer low-temperature burns.

当該低温火傷の危険性を回避した上で、床面の加熱に要する時間を短縮するためには、起動直後は発熱体の温度を高温に保ち、床面が所定の温度に達すると、発熱体の温度を速やかに、低温火傷が発生し得ない温度まで下げる必要がある。本考案は、当該発熱体の温度を高温から低温へ自在に制御し得る加熱手段を提供することで、当該低温火傷の危険性を回避しつつ、床面の加熱に要する時間を短縮することも課題のひとつとするものである。 In order to reduce the time required for heating the floor surface while avoiding the danger of low-temperature burns, the heating element is kept at a high temperature immediately after startup, and when the floor surface reaches a predetermined temperature, the heating element Therefore, it is necessary to quickly reduce the temperature to a temperature at which low-temperature burns cannot occur. The present invention provides a heating means that can freely control the temperature of the heating element from a high temperature to a low temperature, thereby reducing the time required for heating the floor surface while avoiding the danger of the low temperature burn. This is one of the issues.

さらに、従来技術では、床暖房装置使用室における室内換気による暖房負荷増大のため、エネルギー消費の増大を発生させていた。段落0010に記載のとおり、熱交換型換気扇では、室内換気による暖房負荷の増大を完全に防げない上、当該熱交換型換気扇を別途設置する必要があり、イニシャルコストの増大が発生する。 Furthermore, in the prior art, an increase in energy consumption has been generated due to an increase in heating load due to room ventilation in the floor heating device using room. As described in paragraph 0010, in the heat exchange type ventilation fan, it is not possible to completely prevent an increase in heating load due to room ventilation, and it is necessary to separately install the heat exchange type ventilation fan, resulting in an increase in initial cost.

この対策として、熱交換型換気扇のように、室内換気の排気と給気で熱交換を行うのではなく、当該室内換気の排気の有する熱を床暖房装置の加熱に完全に有効利用すれば、実質的に、換気による暖房負荷がないと想定した場合と同様のエネルギー収支となる。本発明は、室内換気の排気の熱を、床暖房装置の加熱に有効利用できる発熱体を提供することも課題のひとつとするものである。 As a countermeasure, instead of performing heat exchange with the exhaust and supply air of the indoor ventilation like a heat exchange type exhaust fan, if the heat of the exhaust of the indoor ventilation is completely effectively used for heating the floor heating device, The energy balance is substantially the same as when assuming no heating load due to ventilation. Another object of the present invention is to provide a heating element that can effectively use the heat of exhaust air from room ventilation for heating of a floor heating device.

以上、本発明は、床暖房装置の床下へ伝導する熱を有効利用し、使用者に低温火傷の危険性を発生させずに加熱時間を短縮させ、室内換気による暖房負荷の増大を実質的に発生させないという課題を、単一の装置にて解決せんとするものである。 As described above, the present invention effectively uses the heat conducted to the floor of the floor heating device, shortens the heating time without causing the danger of low-temperature burn to the user, and substantially increases the heating load due to room ventilation. The problem of not being generated is to be solved with a single device.

床暖房装置の建物の室内への設置には、建物の床を構成する構造体に直接、若しくは床を構成する構造体の上面にフリーアクセスフロア、根太などにより床下地が組まれ、その床下地の上面若しくは根太間に床暖房装置の発熱体が設置される乾式工法、建築体の床を構成する構造体上部に発熱体を敷設し、且つコンクリートを打設し、発熱体がコンクリート内部に位置する湿式工法などが用いられる。何れの工法でも、当該発熱体の上面に床材が当該発熱体上部に固着された床構造が用いられる。   When installing the floor heating system inside a building, the floor foundation is built directly on the structure that constitutes the floor of the building, or on the upper surface of the structure that constitutes the floor, with a free access floor, joists, etc. A heating method in which the heating element of the floor heating device is installed between the upper surface or joist of the floor, the heating element is laid on the top of the structure constituting the floor of the building, and the concrete is placed, and the heating element is located inside the concrete A wet method is used. In any method, a floor structure in which a floor material is fixed to the upper surface of the heating element is used.

請求項1の記述は、前段落記載の床構造に設置可能であるとともに、当該床材を瞬時に加熱して、当該室内を瞬時に暖房可能な床暖房装置に関するものである。本発明装置では、当該発熱体は、建物の室内の床材を加熱加納であるとともに、冷却手段を兼備しており、当該床材の直下に水平方向に配設されている。さらに、当該床材に当該発熱体の熱を床材に放熱させるための放熱手段も具備している。 The description of claim 1 relates to a floor heating apparatus that can be installed on the floor structure described in the preceding paragraph and that can heat the floor material instantaneously to heat the room instantaneously. In the device according to the present invention, the heating element heats the floor material in the room of the building and also has a cooling means, and is disposed in the horizontal direction directly below the floor material. Furthermore, the floor material is provided with a heat radiating means for radiating the heat of the heating element to the floor material.

また、本発明装置は、当該発熱体を加熱又は冷却する熱量を制御する所定の制御手段、及び、冷却時の排熱を当該室内に輸送する所定の熱輸送手段、及び、当該熱輸送手段と当該発熱体との間の熱交換を行う熱交換手段を当該床材の下方に具備している。ある物体を冷却するには、熱力学第一法則より、必ず何らかの熱が伴うものであるため、前記冷却時の排熱は必ず発生するものである。 The apparatus of the present invention includes a predetermined control means for controlling the amount of heat for heating or cooling the heating element, a predetermined heat transport means for transporting exhaust heat during cooling into the room, and the heat transport means. A heat exchanging means for exchanging heat with the heating element is provided below the flooring. Cooling a certain object always involves some heat according to the first law of thermodynamics, and therefore, exhaust heat at the time of cooling always occurs.

ここで、床暖房装置が起動していない状態での床材及び床下の温度は、室内と熱平衡の状態になっていると想定されるため、非暖房時の室内温度と同一と考えられる。床暖房装置が起動していない状態の床面を適正温度に加熱するためには、当該発熱体からの所定の熱量の放熱が必要になる。当該床暖房装置が起動して、当該床面を適正温度に加熱するための必要熱量と、当該発熱体からの加熱熱量との関係は、次式で表される。 Here, the floor material and the temperature under the floor in a state where the floor heating device is not activated are assumed to be in a state of thermal equilibrium with the room, and thus are considered to be the same as the room temperature during non-heating. In order to heat the floor surface in a state where the floor heating device is not activated to an appropriate temperature, it is necessary to dissipate a predetermined amount of heat from the heating element. The relationship between the amount of heat required for starting the floor heating device and heating the floor surface to an appropriate temperature and the amount of heating heat from the heating element is expressed by the following equation.

Figure 2009145035
Figure 2009145035

数1で、tは当該床暖房装置が起動してから床面が適正温度になるまでの時間を表す。Aは床暖房装置が敷設された床面の面積、K1は発熱体から床面への熱通過率、Thは当該発熱体の発熱温度、Tiは任意のi時点における当該床材の温度、hは床面から室内空気への熱伝達率、Trは非暖房時の室内温度で、熱平衡の状態である床下の温度と同一である。K2は床面から床下への熱通過率、Lは当該床材の厚さ、即ち、当該床材の鉛直方向への長さを表す。また、Cpは当該床材の定圧比熱、Pは当該床材の密度、Tmは当該床面の暖房時の適正温度を表す。 In Equation 1, t represents the time from when the floor heating apparatus is activated until the floor surface reaches an appropriate temperature. A is the area of the floor surface on which the floor heating device is laid, K1 is the heat transfer rate from the heating element to the floor surface, Th is the heating temperature of the heating element, Ti is the temperature of the flooring at any point in time i, h Is the heat transfer coefficient from the floor surface to the room air, and Tr is the room temperature during non-heating, which is the same as the temperature under the floor in a thermal equilibrium state. K2 represents the heat transmission rate from the floor surface to the floor, and L represents the thickness of the floor material, that is, the length of the floor material in the vertical direction. Cp is the constant pressure specific heat of the flooring, P is the density of the flooring, and Tm is the appropriate temperature during heating of the floor.

数1で、左辺第1項は発熱体とi時点における当該床材との温度差に当該発熱体から床面への熱通過率と床暖房装置が敷設された床面の面積とを乗じ、t時間で積分することで、当該発熱体から当該床材への総放熱量を表す。同左辺第2項はi時点における当該床材と非暖房時の室内との温度差に床面から室内空気への熱伝達率と床暖房装置が敷設された床面の面積を乗じ、t時間で積分することで、当該床材から室内への総放熱量を表す。同左辺第3項は、当該床材と室内と熱平衡の状態である床下との温度差に、床面から床下への熱通過率と床暖房装置が敷設された床面の面積とを乗じ、t時間で積分することで、床下への熱損失の総熱量を表す。 In Equation 1, the first term on the left side is obtained by multiplying the temperature difference between the heating element and the floor material at time i by the heat passage rate from the heating element to the floor and the area of the floor on which the floor heating device is laid. By integrating over the time t, the total heat radiation from the heating element to the flooring is represented. The second term on the left side is calculated by multiplying the temperature difference between the floor material at the time point i and the room during non-heating by the heat transfer rate from the floor surface to the room air and the area of the floor surface where the floor heating device is laid, and t time Is integrated to express the total heat radiation from the floor to the room. The third term on the left-hand side is obtained by multiplying the temperature difference between the flooring and the floor under thermal equilibrium with the floor by the heat transfer rate from the floor to the floor and the area of the floor where the floor heating device is laid. By integrating over t time, the total heat quantity of heat loss under the floor is expressed.

右辺は、床面の暖房時の適正温度と非暖房時の床面との温度差に、当該床材の定圧比熱と密度を乗じ、床暖房装置敷設面積と当該床材の厚さとの積、即ち床暖房敷設部位の床材の体積をも乗ずることで、当該床材を当該適正温度に加熱するために必要な熱量を表す。 The right-hand side is the product of the floor heating device laying area and the thickness of the flooring, by multiplying the temperature difference between the appropriate temperature during heating of the floor and the floor during non-heating by the constant-pressure specific heat and density of the flooring. That is, the amount of heat necessary to heat the flooring to the appropriate temperature is represented by multiplying the volume of the flooring at the floor heating installation site.

発熱体が床材を加熱する場合、当該床材との温度勾配により、当該床材から室内及び床下への放熱が発生する。従って、数1の左辺で表される発熱体からの総放熱量の内、当該室内及び床下への放熱量を除いた熱量にて、当該床材が加熱されることになる。この数1左辺で表される熱量が当該床材を当該適正温度に加熱するために必要な熱量と等しければ、当該床材を適正温度に加熱することができる。 When the heating element heats the flooring, heat is generated from the flooring to the room and the floor due to a temperature gradient with the flooring. Therefore, the floor material is heated with the heat amount excluding the heat radiation amount to the room and under the floor among the total heat radiation amount from the heating element represented by the left side of Equation 1. If the amount of heat represented by the left side of Equation 1 is equal to the amount of heat necessary to heat the flooring to the appropriate temperature, the flooring can be heated to the appropriate temperature.

数1の左辺が示すとおり、当該発熱体の温度が高くなると、Thの値が大きくなり、当該発熱体からの総放熱量が大きくなる。ここで、仮に、Thの値が大きくなることによる放熱量の増大の相当分、加熱時間tの値を小さくすると、左辺第1項の値は当然変化しない。左辺第2項及び第3項に関しても、tが小さくなってもThの値が大きくなった分、Tiの値の増大速度が大きくなるため、当該左辺第2項及び第3項の値は変化しない。従って、数1より、発熱体の温度Thを大きくすることで、加熱時間tを短縮しても床材を適正温度に加熱することができる。 As the left side of Equation 1 indicates, when the temperature of the heating element increases, the value of Th increases, and the total heat radiation from the heating element increases. Here, if the value of the heating time t is reduced by an amount corresponding to the increase in the heat radiation amount due to the increase of the value of Th, the value of the first term on the left side does not naturally change. As for the second term and the third term on the left side, the increase in the value of Ti increases as the value of Th increases even if t decreases, so the values of the second and third terms on the left side change. do not do. Therefore, by increasing the temperature Th of the heating element from Equation 1, the flooring can be heated to an appropriate temperature even if the heating time t is shortened.

当該床材は適正温度に加熱されてからも当該床材から室内及び床下への放熱が発生するため、当該発熱体からの発熱が必要になる。このときの発熱体の発熱量は、既に当該床材が適正温度に加熱されているため、数1に当てはめると左辺は0となる。このとき、Thの値が、t時間内と同一であると、余剰となった熱が当該床材をさらに加熱してしまい、当該床材が過熱状態になってしまう。 Even after the flooring is heated to an appropriate temperature, heat is generated from the flooring to the room and under the floor, so heat generation from the heating element is required. At this time, since the floor material has already been heated to an appropriate temperature, the heat generation amount of the heating element at this time becomes 0 on the left side when applied to Equation 1. At this time, if the value of Th is the same as that in the time t, the excess heat further heats the flooring, and the flooring becomes overheated.

室内では、通常、使用者が床面に接して居留していて、使用者と床面との接触部は閉塞状態となり、室内空気への放熱が発生しないため、その閉塞温度はさらに高くなり、使用者が低温火傷を被る危険性がある。従って、発熱体からの床材への放熱量が、当該床材から室内への放熱量と床下への熱損失の相当熱量との和と等しくなるよう、発熱体の温度Thを所定の温度まで下げる必要がある。 Indoors, the user is usually staying in contact with the floor, the contact area between the user and the floor is blocked, and heat is not released to the room air, so the blocking temperature is further increased, There is a risk of user suffering from low temperature burns. Therefore, the temperature Th of the heating element is reduced to a predetermined temperature so that the amount of heat released from the heating element to the flooring is equal to the sum of the amount of heat dissipation from the flooring to the room and the heat loss equivalent to the heat loss under the floor. Need to lower.

このとき必要となるのが所定の冷却手段である。実際のサイクルとして、先ず、所定の制御手段の制御により、発熱体が所定の温度よりも高い温度に発熱し、当該発熱体が所定の放熱手段を介して床材を加熱する。当該床材が適正温度まで加熱されると、当該制御手段の制御により、当該冷却手段が、当該発熱体及び当該放熱手段を当該所定の温度まで冷却する。段落0020に記載のとおり、冷却するときに、少なくとも当該冷却の相当熱量の排熱が発生する。この排熱が、例えば放熱フィンなどの熱交換手段を介して熱輸送手段に伝熱される。 What is needed at this time is a predetermined cooling means. As an actual cycle, first, the heating element generates heat higher than a predetermined temperature under the control of a predetermined control means, and the heating element heats the flooring via the predetermined heat dissipation means. When the flooring is heated to an appropriate temperature, the cooling unit cools the heating element and the heat dissipation unit to the predetermined temperature under the control of the control unit. As described in paragraph 0020, at the time of cooling, at least an amount of exhaust heat corresponding to the cooling is generated. This exhaust heat is transferred to the heat transporting means through a heat exchanging means such as a radiation fin.

当該熱輸送手段は、取得した当該排熱を室内に輸送して、当該室内が暖房される。このときの輸送熱量は、前記所定の温度よりも高いt時間内の発熱体の温度と前記冷却された所定の温度との差に、放熱手段を含む発熱体の体積及び定圧比熱及び密度を乗じ、当該発熱体の体積で積分した値となる。また、同時に、床暖房装置本来の機能である床面から室内への伝熱が発生し、このときの室内の取得熱量は次式で表される。 The heat transporting means transports the acquired exhaust heat into the room to heat the room. The amount of heat transported at this time is obtained by multiplying the difference between the temperature of the heating element within the time t higher than the predetermined temperature and the cooled predetermined temperature by the volume of the heating element including the heat radiating means and the constant pressure specific heat and density. , And the value integrated by the volume of the heating element. At the same time, heat transfer from the floor surface to the room, which is the original function of the floor heating device, occurs. The amount of heat acquired in the room at this time is expressed by the following equation.

Figure 2009145035
Figure 2009145035

数2で、熱輸送手段が室内に熱を輸送する間の当該室内の総取得熱量を表す。Vは放熱手段を含む発熱体の体積、Cpnは当該放熱手段を含む発熱体内の任意のn点における当該放熱手段を含む発熱体の定圧比熱、P2は当該発熱体の平均密度、Tiは任意のi時点における当該発熱体の温度、Toは前記所定の温度、t2は当該熱輸送手段が室内に熱を輸送する時間、即ち所定の温度より高い温度に発熱した発熱体が所定の温度まで冷却されるのに要する時間を表す。Aは床暖房装置が敷設された床面の面積、hは床面から室内空気への熱伝達率、Tmは当該床面の暖房時の適正温度、Trは非暖房時の室内温度、K2は床面から床下への熱通過率、Tr2はt2時間内における床下の温度、Eは床面の輻射熱に対する放射率、Sはステファン・ボルツマン定数を表す。 Equation 2 represents the total amount of heat acquired in the room while the heat transport means transports heat into the room. V is the volume of the heat generating element including the heat dissipating means, Cpn is the constant pressure specific heat of the heat generating element including the heat dissipating means at any n point in the heat generating body including the heat dissipating means, P2 is the average density of the heat generating element, and Ti is any The temperature of the heating element at time i, To is the predetermined temperature, t2 is the time during which the heat transport means transports heat into the room, that is, the heating element that has generated heat to a temperature higher than the predetermined temperature is cooled to the predetermined temperature. This represents the time required to complete. A is an area of the floor surface on which the floor heating device is laid, h is a heat transfer coefficient from the floor surface to room air, Tm is an appropriate temperature during heating of the floor surface, Tr is an indoor temperature during non-heating, and K2 is The heat transfer rate from the floor to the floor, Tr2 is the temperature under the floor within t2, the E is the emissivity for the radiant heat of the floor, and S is the Stefan-Boltzmann constant.

数2の右辺第1項は、段落0031に記載のとおり、熱輸送手段による輸送熱量を表す。同右辺第2項は、適正温度に加熱された床面と室内との温度差に、床面から室内空気への熱伝達率と床暖房装置が敷設された床面の面積を乗じ、t2時間で積分することで、t2時間内に室内が床面から自然対流熱伝達により取得する総熱量を表す。同右辺第3項は、適正温度に加熱された床面と床下との温度差に、床面から床下への熱通過率と床暖房装置が敷設された床面の面積を乗じ、t2時間で積分することで、t2時間内に床面から床下に伝熱する総損失熱量を表す。 The first term on the right side of Equation 2 represents the amount of heat transported by the heat transport means as described in paragraph 0031. The second term on the right side is obtained by multiplying the temperature difference between the floor surface heated to an appropriate temperature and the room by the heat transfer rate from the floor surface to the room air and the area of the floor surface on which the floor heating device is laid, t2 hours Is integrated to represent the total amount of heat that the room acquires from the floor surface by natural convection heat transfer within t2. The third term on the right-hand side is calculated by multiplying the temperature difference between the floor heated to the appropriate temperature and the floor below by the heat transfer rate from the floor to the floor and the area of the floor where the floor heating device is laid. By integrating, the total loss heat amount transferred from the floor surface to the bottom floor within t2 time is represented.

また、同右辺第4項中で、適正温度に加熱された床面の絶対温度の4乗と室内の絶対温度の4乗との差に床面の輻射熱に対する放射率とステファン・ボルツマン定数を乗じることで、ステファン・ボルツマンの法則による床面からの単位面積あたりの輻射熱量を表し、当該輻射エネルギーに床暖房装置が敷設された床面の面積を乗じ、t2時間で積分することで、同右辺第4項は、t2時間内に床面から室内に放射される総輻射熱量を表す。 In addition, in the fourth term on the right side, the difference between the fourth power of the absolute temperature of the floor surface heated to the appropriate temperature and the fourth power of the absolute temperature of the room is multiplied by the emissivity with respect to the radiant heat of the floor surface and the Stefan-Boltzmann constant. Represents the amount of radiant heat per unit area from the floor according to Stefan-Boltzmann's law, and multiplies the radiant energy by the area of the floor where the floor heating device is laid, and integrates it at t2 time, The fourth term represents the total amount of radiant heat radiated from the floor to the room within t2.

また、非暖房の状態の室内が快適温度に暖房されるとき、当該室内の空気を加熱すればするほど当該室内を構成する壁体から外方への放熱が発生する。従って、当該室内を快適温度に暖房するために必要な熱量は、次式で表される。 In addition, when a non-heated room is heated to a comfortable temperature, the more the air in the room is heated, the more heat is radiated outward from the wall constituting the room. Therefore, the amount of heat required to heat the room to a comfortable temperature is expressed by the following equation.

Figure 2009145035
Figure 2009145035

数3で、Q2は室内を快適温度に暖房するために必要な総熱量を表す。Aは床暖房装置が敷設された床面の面積、L2は室内の天井高さで、AとL2を乗じることで、当該室内の室容積を表す。Cp3は空気の定圧比熱、P3は空気の密度、Twは室内の快適温度、Trは非暖房時の室内温度、t2は、数2の符号と同一で、当該熱輸送手段が室内に熱を輸送する時間、Ajはn個の面から成る室内の壁体の第j面の壁体の面積、Kjは同第j面の壁体の熱通過率、Tiiは任意のii時点における室内温度、Tcは室外温度、Wkは照明器具、人体など、m箇所から成る室内発熱要素のうちの、第k箇所の当該発熱要素からの発熱量を表す。 In Equation 3, Q2 represents the total amount of heat required to heat the room to a comfortable temperature. A is the area of the floor surface on which the floor heating device is laid, L2 is the ceiling height of the room, and A and L2 are multiplied to represent the room volume in the room. Cp3 is the constant-pressure specific heat of air, P3 is the density of air, Tw is the indoor comfortable temperature, Tr is the indoor temperature during non-heating, t2 is the same as the sign of Equation 2, and the heat transport means transports the heat indoors Time, Aj is the area of the wall of the jth surface of the indoor wall consisting of n surfaces, Kj is the heat transfer rate of the wall of the jth surface, Tii is the room temperature at any ii time point, Tc Is the outdoor temperature, and Wk is the amount of heat generated from the heat generating element at the k-th place among m heat generating elements such as lighting fixtures and human bodies.

数3の右辺第1項は、室内の快適温度と非暖房時の室内温度との差に、室容積と空気の定圧比熱、空気の密度を乗じることで、室内空気を快適温度に暖房するために必要な総熱量を表す。しかし、室内を暖房する場合、室内温度は徐々に上昇し、上昇するにつれて、室内外に温度勾配が発生し、室内から室外への伝熱が発生する。そのため、室内を快適温度に暖房するために、当該伝熱の相当熱量分がさらに必要になる。右辺第2項では、n面の壁体から成る室内において、そのうちの第j面の壁体の任意のii時点における室内温度と室外温度との差に、室内外の間の壁体の熱通過率を乗じ、当該壁体の面積で積分した値のn面分の総量が、当該室内から室外への通過熱量を表し、当該通過熱量をt2時間で積分することで、t2時間内に室内から室外に通過した総熱量を表す。 The first term on the right side of Equation 3 is for heating the room air to a comfortable temperature by multiplying the difference between the room comfortable temperature and the room temperature during non-heating by the room volume, the constant pressure specific heat of the air, and the air density. Represents the total amount of heat required for. However, when the room is heated, the room temperature gradually rises, and as it rises, a temperature gradient is generated outside the room, and heat is transferred from the room to the outside. Therefore, in order to heat the room to a comfortable temperature, an amount equivalent to the heat transfer is further required. In the second term on the right-hand side, in a room composed of n-plane walls, the difference between the room temperature and the outdoor temperature at any point in time ii of the j-th wall is the passage of heat between the walls inside and outside the room. The total amount for the n-plane of the value integrated by the area of the wall body multiplied by the rate represents the amount of heat passing from the room to the outside, and by integrating the amount of heat passing through the time t2, Represents the total amount of heat that has passed outside.

また、室内には、照明、人体などの発熱要素があり、これらの総発熱量は、室内を快適温度に暖房するために必要な総熱量から除くことができる。同右辺第3項は、m箇所から成る室内の発熱要素の総和をt2時間で積分することで、t2時間内における当該発熱要素からの総発熱量を表す。 In addition, there are heating elements such as lighting and a human body in the room, and the total heat generation amount can be excluded from the total heat amount required for heating the room to a comfortable temperature. The third term on the right-hand side represents the total amount of heat generated from the heat generating elements within the time t2 by integrating the sum of the heat generating elements in the room consisting of m locations over the time t2.

ここで、数2及び数3を用いて本発明装置が室内を暖房する過程を説明する。数2の右辺第1項は、発熱体の冷却に伴う排熱を熱輸送手段が室内に輸送する総熱量で、本発明装置固有の室内取得熱の要素である。同右辺第2−4項は、床面からの対流熱伝達及び輻射伝熱取得から床下への熱損失を除いたもので、従来技術の床暖房装置と同様の室内取得熱の要素である。床暖房装置は本来、床面からの伝熱により室内を暖房するものであるから、同右辺第2−4項にて表される、床面からの対流熱伝達及び輻射伝熱取得から床下への熱損失を除いた値は、少なくとも室内の暖房負荷、即ち、数3の右辺第2項と同第3項との差、以上である必要がある。本発明装置も、従来技術と同様に、床面からの対流熱伝達及び輻射伝熱取得から床下への熱損失を除いた値が少なくとも室内の暖房負荷以上となるよう平常運転時の発熱体の加熱能力を設定する。 Here, the process in which the device of the present invention heats the room will be described using Equations 2 and 3. The first term on the right side of Equation 2 is the total amount of heat that the heat transport means transports to the room the exhaust heat that accompanies the cooling of the heating element, and is an element of indoor acquired heat that is unique to the device of the present invention. The 2-4 term on the right side is the element of the indoor acquired heat similar to the floor heating device of the prior art, excluding the heat loss from the floor to the convective heat transfer and radiant heat transfer acquisition from the floor surface. Since the floor heating device originally heats the room by heat transfer from the floor surface, the convection heat transfer from the floor surface and the acquisition of radiant heat transfer, which are represented by the item 2-4 on the right side, are taken down to the floor. The value excluding the heat loss must be at least the heating load of the room, that is, the difference between the second term and the third term on the right side of Equation 3, or more. As in the prior art, the apparatus of the present invention also has a heating element during normal operation so that the value excluding the heat loss from the floor to the convective heat transfer and radiant heat transfer from the floor surface is at least equal to the indoor heating load. Set the heating capacity.

熱輸送手段として、流体から成る熱媒体などを用いたとすれば、発熱体の冷却に伴う排熱を、速やかに室内に輸送することができる。この熱輸送手段による僅かな輸送時間内に室内を快適温度まで完全に暖房するためには、少なくともQ=Q2でなければならない。また、床下への熱損失を除く、適正温度における床面からの取得熱量が、室内の暖房負荷以上になるよう設定されているため、当該取得熱量と室内の暖房負荷との差が、余剰熱量として室内の空気を加熱する。以上の関係は、次式で表される。 If a heat medium made of fluid or the like is used as the heat transporting means, the exhaust heat accompanying the cooling of the heating element can be quickly transported indoors. In order to completely heat the room to a comfortable temperature within a short transport time by this heat transport means, at least Q = Q2. In addition, since the amount of heat acquired from the floor surface at an appropriate temperature, excluding heat loss under the floor, is set to be equal to or greater than the indoor heating load, the difference between the acquired heat amount and the indoor heating load is the excess heat amount. As the indoor air is heated. The above relationship is expressed by the following equation.

Figure 2009145035
Figure 2009145035

数4で、左辺及び右辺第1項はそれぞれ数3右辺第1項及び数2右辺第1項と同一であるため、説明を省略する。右辺第2項は、段落0042に記載の余剰熱量であり、(数2右辺第2項)-(同右辺第3項)+(同右辺第3項)-{(数3右辺第2項)-(同右辺第3項)}により求められる値を表す。床面が適正温度に加熱された状態において、室内から、床下を含む室外への通過熱量、及び床面から室内への放熱量は、ほぼ一定であるため、数4の右辺第2項は定数と看做して問題ない。従って、右辺第1項の値の増減により、当該熱輸送手段による室内暖房能力が変化する。 In Formula 4, the first term on the left side and the right side is the same as the first term on the right side of Formula 3 and the first term on the right side of Formula 2, and the description thereof will be omitted. The second term on the right side is the surplus heat amount described in paragraph 0042, and is (the second term on the right side of Equation 2)-(the third term on the right side) + (the third term on the right side)-{(the second term on the right side of Equation 3). -(The third term on the right side)} represents the value obtained. In the state where the floor surface is heated to an appropriate temperature, the amount of heat passing from the room to the outside including the floor and the amount of heat released from the floor surface to the room are substantially constant. And no problem. Therefore, the indoor heating capability by the heat transporting means changes as the value of the first term on the right side increases or decreases.

右辺第3項の要素のうち、Vは、発熱体の体積であり、床面積と床構造による制限があり、大きく変化させることができない。よって、ほぼ一定として扱われるべきものである。体積が一定であると、CpnにP2を乗じた値である定積比熱が大きく、温度が高いほど大きな熱量を有することになる。しかし、定積比熱が大きい物体をある加熱するには、より大きな熱量が必要になる。 Of the elements in the third term on the right side, V is the volume of the heating element and is limited by the floor area and the floor structure and cannot be changed greatly. Therefore, it should be treated as almost constant. When the volume is constant, the constant volume specific heat, which is a value obtained by multiplying Cpn by P2, is large, and the higher the temperature, the larger the amount of heat. However, in order to heat an object having a large specific volume specific heat, a larger amount of heat is required.

従って、放熱手段を含む発熱体に定積比熱の大きな素材を選定し、さらに当該素材を速やかに、前記所定の温度よりも高い温度に加熱し得る熱量を放熱可能な発熱手段及び放熱手段を当該発熱体に用いることが必要になる。同時に、所定の温度までの冷却に伴う排熱を速やかに輸送可能な熱輸送手段、及び、当該熱輸送手段に当該排熱を速やかに伝熱可能な熱交換手段が必要になる。以上の条件を満たすことにより、本発明装置にて床面を過熱状態に陥ることなく瞬時に加熱するとともに、室内も瞬時に暖房することが可能となる。 Therefore, a material having a large specific volume specific heat is selected for the heating element including the heat radiating means, and the heat generating means and the heat radiating means capable of quickly radiating the amount of heat that can heat the material to a temperature higher than the predetermined temperature. It is necessary to use it as a heating element. At the same time, heat transporting means capable of quickly transporting exhaust heat accompanying cooling to a predetermined temperature, and heat exchanging means capable of promptly transferring the exhaust heat to the heat transporting means are required. By satisfying the above conditions, the floor surface can be instantaneously heated by the apparatus of the present invention without falling into an overheated state, and the room can be instantaneously heated.

請求項2の記述は、前段落記載の条件を満たす発熱体に関するものである。本発明装置における発熱体は、放熱手段と熱交換手段とで、少なくともひとつのペルチェ素子を挟持する構造から成るものである。この構造から成る発熱体が、放熱手段が上方に、熱交換手段が下方になるように、床材の直下に水平方向に配設されるものである。 The description of claim 2 relates to a heating element that satisfies the conditions described in the preceding paragraph. The heating element in the device of the present invention has a structure in which at least one Peltier element is sandwiched between the heat dissipating means and the heat exchanging means. The heating element having this structure is arranged in the horizontal direction directly below the flooring so that the heat dissipating means is upward and the heat exchanging means is downward.

また、当該ペルチェ素子による加熱又は冷却熱量を制御する制御手段として、送電方向及び電流量を制御可能な直流電源を備え、当該直流電源と当該ペルチェ素子は、所定の送電線にて接続されている。ペルチェ素子は、p型半導体とn型半導体とのπ型接続の集合体から成る熱電素子であって、通電することにより低温側から高温側に熱輸送する素子である。発熱体加熱時の低温熱源は、熱交換手段を介して接する当該熱交換手段の周囲の熱である。 Further, as a control means for controlling the amount of heat or cooling by the Peltier element, a DC power source capable of controlling the power transmission direction and the current amount is provided, and the DC power source and the Peltier element are connected by a predetermined power transmission line. . The Peltier element is a thermoelectric element composed of an assembly of π-type connection of a p-type semiconductor and an n-type semiconductor, and is an element that transports heat from a low temperature side to a high temperature side when energized. The low temperature heat source at the time of heating the heating element is the heat around the heat exchanging means in contact with the heat exchanging means.

当該熱交換手段は床材の下方に配設されているため、当該熱交換手段の周囲の熱には、数2右辺第3項に表される床下への熱損失も含まれる。当該制御手段が所定の送電方向及び電流量に制御して当該ペルチェ素子に送電することにより、当該ペルチェ素子が当該熱交換手段の周囲の熱を当該放熱手段に輸送することにより、当該床下への熱損失も床材の加熱に有効利用できる。 Since the heat exchanging means is disposed below the flooring, the heat around the heat exchanging means includes heat loss to the underfloor represented by the third term on the right side of Formula 2. When the control means controls the power transmission direction and the amount of current to transmit power to the Peltier element, the Peltier element transports the heat around the heat exchange means to the heat dissipation means, thereby Heat loss can also be effectively used for heating flooring.

このとき輸送される熱がペルチェ効果によるペルチェ熱である。同時に、当該ペルチェ素子には電気的な内部抵抗が存在するため、通電によりジュール熱が発生する。当該ペルチェ熱と当該ジュール熱とで、当該放熱手段を介して当該床材が加熱されることになり、当該ペルチェ熱と当該ジュール熱が本発明装置の加熱能力となる。このときの発熱量及び消費電力は、次式で表される。 The heat transported at this time is Peltier heat due to the Peltier effect. At the same time, since the Peltier element has an electrical internal resistance, Joule heat is generated by energization. The floor material is heated by the Peltier heat and the Joule heat through the heat radiating means, and the Peltier heat and the Joule heat become the heating capability of the device of the present invention. The calorific value and power consumption at this time are expressed by the following equations.

Figure 2009145035
Figure 2009145035

Figure 2009145035
Figure 2009145035

数5で、Q3は、p型半導体とn型半導体とのπ型接合部一箇所あたりのペルチェ素子高温側からの放熱量を表す。Spは当該ペルチェ素子を構成するp型半導体のゼーベック係数、Snは当該ペルチェ素子を構成するn型半導体のゼーベック係数、Tc2は当該ペルチェ素子の低温側の温度、Iは当該ペルチェ素子に通電される電流値、Rは当該ペルチェ素子の電気的内部抵抗、K3当該ペルチェ素子の熱伝導率、はTh2は当該ペルチェ素子の高温側温度を表す。 In Equation 5, Q3 represents the amount of heat released from the high temperature side of the Peltier element per π-type junction between the p-type semiconductor and the n-type semiconductor. Sp is the Seebeck coefficient of the p-type semiconductor constituting the Peltier element, Sn is the Seebeck coefficient of the n-type semiconductor constituting the Peltier element, Tc2 is the temperature on the low temperature side of the Peltier element, and I is energized to the Peltier element The current value, R is the electrical internal resistance of the Peltier element, K3 is the thermal conductivity of the Peltier element, and Th2 is the high temperature side temperature of the Peltier element.

数5において、右辺第1項は、当該ペルチェ素子が通電により低温側から高温側に輸送するペルチェ熱を表す。同右辺第2項は、当該通電時に当該ペルチェ素子の内部抵抗によるジュール熱を表す。当該ジュール熱は当該ペルチェ素子の低温側と高温側に均等に発生するため、消費電力に1/2を乗じた値が高温側に発生することになる。同右辺第3項は、当該ペルチェ素子の高温側と低温側との温度差により発生する熱伝導による熱量を表す。ペルチェ熱に当該高温側におけるジュール熱を加え、熱伝導を除いた値が当該高温側からの放熱量Q3となり、Q3のp型半導体とn型半導体とのπ型接合部の個数分の総和が本発明装置の総発熱量となる。 In Equation 5, the first term on the right side represents Peltier heat that the Peltier element transports from the low temperature side to the high temperature side by energization. The second term on the right side represents Joule heat due to the internal resistance of the Peltier element during the energization. Since the Joule heat is evenly generated on the low temperature side and the high temperature side of the Peltier element, a value obtained by multiplying the power consumption by 1/2 is generated on the high temperature side. The third term on the right side represents the amount of heat due to heat conduction generated by the temperature difference between the high temperature side and the low temperature side of the Peltier element. The value obtained by adding Joule heat on the high temperature side to Peltier heat and excluding heat conduction is the amount of heat radiation Q3 from the high temperature side, and the sum of the number of π-type junctions between the p-type semiconductor and the n-type semiconductor of Q3 is This is the total calorific value of the device of the present invention.

また、数6で、WPは、当該ペルチェ素子のp型半導体とn型半導体とのπ型接合部一箇所あたりの消費電力を表す。その他の符号は数5と同一である。 In Equation 6, WP represents power consumption per one π-type junction between the p-type semiconductor and the n-type semiconductor of the Peltier element. Other symbols are the same as those in Equation 5.

数6において、右辺第1項は、オームの法則による当該ペルチェ素子の消費電力を表す。また、ペルチェ素子は熱電素子であり、ペルチェ効果により当該ペルチェ素子の高温側と低音側とで温度差が生じると、ゼーベック効果により通電方向とは逆の起電力が発生し、当該逆起電力の相当電力がさらに消費される。同右辺第2項は、当該逆起電力の相当電力を表す。同右辺第1項に、同第2項を加えた値が当該ペルチェ素子の消費電力WPとなり、WPのp型半導体とn型半導体とのπ型接合部の個数分の総和が本発明装置の総消費電力となる。 In Equation 6, the first term on the right side represents the power consumption of the Peltier element according to Ohm's law. In addition, the Peltier element is a thermoelectric element, and when a temperature difference occurs between the high temperature side and the low frequency side of the Peltier element due to the Peltier effect, an electromotive force opposite to the energization direction is generated due to the Seebeck effect, and the counter electromotive force A considerable amount of power is consumed. The second term on the right side represents the equivalent power of the counter electromotive force. The value obtained by adding the second term to the first term on the right side is the power consumption WP of the Peltier element, and the sum of the number of π-type junctions between the p-type semiconductor and the n-type semiconductor of WP is the device of the present invention. Total power consumption.

ペルチェ素子の発熱量は、数5より、低温側の温度が高いほど大きくなる。また、数6より、低温側の温度が高いほど消費電力は小さくなる。前記制御手段が所定の方向に所定の電流を送電することにより、熱交換手段の周囲の熱が前記ペルチェ効果により放熱手段に輸送されて床材が加熱される訳であるが、同時に、数3右辺第2項で表される床下への熱損失が発生して床下もある程度暖房されてしまう。その結果、当該熱交換手段の周囲も暖房され、当該熱交換手段の周囲は過冷却されることなく、当該ペルチェ素子の発熱量は確保されるとともに、消費電力も抑えられる。 From Equation 5, the amount of heat generated by the Peltier element increases as the temperature on the low temperature side increases. From Equation 6, the higher the temperature on the low temperature side, the smaller the power consumption. When the control means transmits a predetermined current in a predetermined direction, the heat around the heat exchange means is transported to the heat dissipation means by the Peltier effect and the flooring is heated. Heat loss to the underfloor represented by the second term on the right side occurs and the underfloor is heated to some extent. As a result, the surroundings of the heat exchanging means are also heated, the surroundings of the heat exchanging means are not supercooled, the amount of heat generated by the Peltier element is ensured, and the power consumption is also suppressed.

実際には、暖房されるとはいえ、床下へ伝熱した損失熱は、熱交換手段を介して即座にペルチェ素子に吸収されるため、従来技術に比べて床下の温度は低くなり、当該熱交換手段のさらに下方の部位との温度差が小さくなり、又は当該さらに下方の部位よりも温度が低くなる。その結果、当該さらに下方の部位への伝熱量が小さくなり、又は、当該さらに下方の部位から伝熱してくることになり、床下からさらに下方への熱損失を抑えることが可能となる。 In fact, although it is heated, the heat lost to the floor is immediately absorbed by the Peltier element via the heat exchange means, so the temperature under the floor is lower than that of the prior art, and the heat The temperature difference from the further lower part of the exchange means becomes smaller, or the temperature becomes lower than the further lower part. As a result, the amount of heat transfer to the further lower part is reduced, or heat is transferred from the further lower part, and it is possible to suppress the heat loss further downward from the floor.

また、ペルチェ素子は通電すると、電子が熱を輸送するものであるため、その熱輸送速度は光速に等しい。ペルチェ素子の耐熱温度は現行のもので150℃から800℃程度であり、その輸送熱量は数5右辺第1項のとおり、電流値に比例する。従って、所定の方向に、所定の電流値にて送電することにより、当該ペルチェ素子の高温側を瞬時に高温に発熱させることが可能である。 In addition, when the Peltier element is energized, the electrons transport heat, so the heat transport speed is equal to the speed of light. The heat-resistant temperature of the Peltier element is about 150 ° C. to 800 ° C. at present, and the amount of heat transported is proportional to the current value as shown in the first term on the right side of Formula 5. Therefore, by transmitting power in a predetermined direction at a predetermined current value, the high temperature side of the Peltier element can be instantaneously heated to a high temperature.

前段落に記載のとおりに、制御手段により所定の方向に、所定の電流値にてペルチェ素子に送電すると、放熱手段を介して床材が短時間にて加熱されて適正温度に達する。このとき、当該床材が過熱状態に陥らぬよう、放熱手段を含む発熱体を冷却する必要がある。 As described in the previous paragraph, when power is transmitted to the Peltier element at a predetermined current value in a predetermined direction by the control means, the flooring is heated in a short time via the heat dissipation means and reaches an appropriate temperature. At this time, it is necessary to cool the heating element including the heat radiating means so that the floor material does not fall into an overheated state.

ペルチェ素子は、送電方向により熱輸送方向が決まるため、送電方向が逆転すると加熱冷却面も逆転する。即ち、制御手段が送電方向を前記所定の方向から逆転させて送電することにより、当該ペルチェ素子が放熱手段の熱を排熱として熱交換手段に輸送して、さらに当該排熱が熱輸送手段に伝熱され、放熱手段が冷却されることになる。当該ペルチェ素子が送電方向により、発熱体の冷却手段として機能し、床材の過熱を防ぐことになる。同時に、当該排熱は熱輸送手段により室内に輸送されて、当該室内は暖房される。 In the Peltier element, the heat transport direction is determined by the power transmission direction, so that the heating / cooling surface is reversed when the power transmission direction is reversed. That is, when the control means reverses the power transmission direction from the predetermined direction and transmits power, the Peltier element transports the heat of the heat dissipation means to the heat exchange means as waste heat, and the waste heat further passes to the heat transport means. Heat is transferred and the heat radiating means is cooled. The Peltier element functions as a cooling means for the heating element depending on the direction of power transmission, and prevents overheating of the flooring. At the same time, the exhaust heat is transported indoors by heat transport means, and the room is heated.

請求項3の記述は、熱輸送手段に関するものである。本発明では、室内換気による暖房負荷の増大を防ぐことも課題としているため、室内換気と熱輸送及び当該室内換気の熱利用を実現し得る手段として、送風方向を制御可能な所定の送風手段を備えた気密性を有する中空体を当該熱輸送手段として用いている。 The description of claim 3 relates to heat transport means. In the present invention, since it is also an object to prevent an increase in heating load due to room ventilation, as a means that can realize indoor ventilation, heat transport, and heat utilization of the room ventilation, a predetermined blowing means that can control the blowing direction is provided. An airtight hollow body provided is used as the heat transporting means.

当該中空体は、発熱体の直下に水平方向に配設されるとともに、一端が本発明装置を使用する室内と、他端が屋外と連通するものである。この連通により、屋外から当該中空体を経て、室内に通ずる通気経路が形成される。当該通気経路間に、送風方向を制御可能な所定の送風手段が配設されて、屋外から当該中空体を経て室内に、又は室内から当該中空体を経て屋外に送風可能な構造になっており、当該送風により、室内換気も同時に行えるようになっている。 The hollow body is disposed in the horizontal direction directly below the heating element, and one end communicates with the room in which the apparatus of the present invention is used, and the other end communicates with the outdoors. By this communication, a ventilation path is formed from outside through the hollow body to the room. A predetermined blowing means capable of controlling the blowing direction is disposed between the ventilation paths, and has a structure capable of blowing air from the outside through the hollow body into the room or from the room through the hollow body to the outdoors. The ventilation allows indoor ventilation to be performed at the same time.

また、当該中空体は、熱交換手段と接していて、発熱体の冷却に伴う排熱を、当該熱交換手段を介して当該中空体内部の空気が取得し、又は、発熱体が低温熱源を必要とする場合においては、当該中空体内部の空気の熱を、該熱交換手段を介して該発熱体が取得可能な構造になっている。 The hollow body is in contact with the heat exchanging means, and the heat inside the hollow body is acquired through the heat exchanging means for exhaust heat accompanying cooling of the heating element, or the heating element is used as a low-temperature heat source. When necessary, the heat generating body can obtain heat of the air inside the hollow body through the heat exchanging means.

上記の構造により、当該発熱体の冷却に連動して、送風方向を屋外から当該中空体を経て室内への方向に制御されて送風手段が送風することにより、屋外から取り入れられた外気が当該中空体内部において熱交換手段から、前記冷却に伴う排熱を取得して当該排熱を室内に輸送することが可能となる。当該排熱を取得した外気により室内が暖房されるとともに、室内が換気される。 With the above structure, in conjunction with the cooling of the heating element, the air blowing direction is controlled from the outdoor direction to the indoor direction through the hollow body, and the blowing means blows air, so that the outside air taken in from the outside is hollow. It is possible to acquire exhaust heat accompanying the cooling from the heat exchange means inside the body and transport the exhaust heat indoors. The room is heated by the outside air that has acquired the exhaust heat, and the room is ventilated.

また、当該発熱体の床材の加熱に連動して、送風方向を室内から当該中空体を経て屋外への方向に制御されて送風手段が送風することにより、当該発熱体が低温熱源を必要とする場合においては、暖房された室内から取り入れられた空気の熱を当該中空体内部において熱交換手段を介して当該発熱体が取得して、当該室内から取り入れられた空気の熱を当該発熱体の発熱に利用することが可能となる。同時に室内空気が屋外に排出されて、室内は換気される。 Further, in conjunction with the heating of the floor of the heat generating element, the air blowing direction is controlled from the room to the direction through the hollow body to the outdoors, and the air blowing means blows, so that the heat generating element requires a low-temperature heat source. In this case, the heating element acquires the heat of the air taken from the heated room through the heat exchanging means inside the hollow body, and the heat of the air taken from the room is It can be used for heat generation. At the same time, indoor air is discharged to the outside and the room is ventilated.

このとき、床材及び発熱体から下方への熱損失が発生するため、当該熱損失も、当該低温熱源を必要とする発熱体が取得して、当該発熱体の発熱に有効利用することが可能となる。このようにして、換気による熱損失、床材及び発熱体から下方への熱損失を有効利用して当該発熱体が発熱し、床材に放熱し、当該床材が加熱される。 At this time, since heat loss occurs downward from the flooring and the heating element, the heating loss can be acquired by the heating element that requires the low-temperature heat source and effectively used for the heat generation of the heating element. It becomes. Thus, the heat loss due to ventilation and the heat loss from the floor material and the heating element downward are effectively utilized to generate heat, dissipate heat to the floor material, and the floor material is heated.

また、発熱体が低温熱源を必要としない場合においては、暖房された室内空気が発熱体の直下に配設された当該中空体に取り込まれることにより、床材及び発熱体と下方との温度差が小さくなり、床材及び発熱体から下方への熱損失を減少させることが可能となる。 In addition, when the heating element does not require a low-temperature heat source, the heated indoor air is taken into the hollow body arranged immediately below the heating element, so that the temperature difference between the flooring and the heating element and the lower part is reduced. Becomes smaller, and it becomes possible to reduce the heat loss downward from the flooring and the heating element.

請求項4の記述は、放熱手段に関するものである。床暖房装置において、発熱体からの熱は、均一且つ速やかに床材に放熱されるべきものである。そのため、本発明装置においては、水密性を有する中空状の熱伝導板をその筐体とする。当該中空上である熱伝導板の内部に熱媒液が充填されたものを放熱手段とする。 The description of claim 4 relates to the heat dissipation means. In the floor heating device, heat from the heating element should be radiated to the floor material uniformly and promptly. Therefore, in the device of the present invention, a hollow heat conductive plate having water tightness is used as the casing. The heat conductive plate that is above the hollow is filled with the heat transfer fluid is used as the heat radiating means.

発熱体から当該放熱手段に伝熱すると、当該筐体が加熱される。当該筐体が加熱されると当該筐体は熱伝導性を有するため、内部に充填された熱媒液に伝熱する。加熱された熱媒液は、加熱されると膨張により密度が小さくなり、上方へ自然対流し、当該中空状の熱伝導板の上方の側壁に到達すると、それ以上、上方に対流できなくなり、水平方向に対流する。当該水平方向の対流の過程で、当該熱媒液が当該筐体を介して床材に放熱すると、密度が大きくなり下方へ自然対流する。この、上方、水平方向、下方の対流サイクルにより、均一且つ速やかに床材を加熱することが可能となる。 When heat is transferred from the heating element to the heat radiating means, the casing is heated. When the casing is heated, the casing has thermal conductivity, and therefore heat is transferred to the heat transfer fluid filled therein. When the heated heat transfer fluid is heated, its density decreases due to expansion, naturally convects upward, and when it reaches the upper side wall of the hollow heat conduction plate, it can no longer convect upward, Convection in the direction. If the heat transfer fluid dissipates heat to the flooring through the housing in the process of horizontal convection, the density increases and natural convection occurs downward. This convection cycle in the upper, horizontal, and lower directions makes it possible to heat the flooring uniformly and quickly.

また、通常の熱媒液は、金属板、空気などと比して定積比熱が大きいため、数2より、発熱体冷却時の室内の暖房能力が増大し、室内の快適温度に到達するまでの時間を短縮することが可能となる。また、当該熱媒液は、ある温度に到達すると蒸発するため、熱媒液の蒸発潜熱取得により、発熱体が過熱して破損することを防ぐこともできる。 In addition, since the normal heat medium liquid has a large specific volume heat as compared with a metal plate, air, etc., the heating capacity of the room at the time of cooling the heating element increases from Equation 2, until the indoor comfortable temperature is reached. It becomes possible to shorten the time. Further, since the heat transfer fluid evaporates when it reaches a certain temperature, it is possible to prevent the heating element from being overheated and damaged by acquiring the latent heat of evaporation of the heat transfer fluid.

請求項5の記述は、放熱手段から床材への放熱効率を高めるための手段に関するものである。接触するある2物体間の伝熱量は、2物体間の温度差に熱通過率と伝熱面積を乗じた値である。また、接触面に隙間があると、当該隙間内空気への熱伝達率が大きくなり、当該熱通過率が大きくなる。従って、2物体間が密着することで、伝熱面積が大きくなり、且つ、隙間がなくなり当該熱伝達率が限りなく0に近づくため、2物体間の伝熱量は増大する。 The description of claim 5 relates to a means for improving the heat radiation efficiency from the heat radiation means to the flooring. The amount of heat transfer between two objects in contact with each other is a value obtained by multiplying the temperature difference between the two objects by the heat passage rate and the heat transfer area. Further, if there is a gap on the contact surface, the heat transfer rate to the air in the gap increases, and the heat transfer rate increases. Accordingly, when the two objects are in close contact with each other, the heat transfer area is increased, the gap is eliminated, and the heat transfer coefficient approaches 0 as much as possible, so the amount of heat transfer between the two objects increases.

本発明装置においては、放熱手段から床材への伝熱量を増大させるために、放熱手段の上面に熱伝導性ゲルから成る面状体を具備するものとする。ゲル体の持つ高い粘弾性により、凹凸を有する床材及び放熱手段に密着できるため、隙間なく、且つ、伝熱面積を大きくでき、また、当該ゲル体自体に熱伝導性があるため、当該放熱手段から当該床材への放熱を速やか且つ効率的に行うことが可能となる。 In the apparatus of the present invention, in order to increase the amount of heat transfer from the heat radiating means to the floor material, a planar body made of a heat conductive gel is provided on the upper surface of the heat radiating means. Because the gel body has high viscoelasticity, it can be in close contact with uneven flooring and heat dissipation means, so there is no gap, the heat transfer area can be increased, and the gel body itself has thermal conductivity, so the heat dissipation It is possible to quickly and efficiently dissipate heat from the means to the floor material.

請求項6の記述は、床下への熱損失を軽減させ、且つ当該熱損失を有効利用するための床暖房装置の構造に関するものである。炭素繊維を織り上げたものから成る面状体が、繊維方向を水平にして床材の下方に、且つ、当該面状体の任意の部位が、低温熱源を必要とする場合の発熱体の吸熱部位に接する形で敷設された構造を用いる。 The description of claim 6 relates to the structure of a floor heating apparatus for reducing heat loss to the underfloor and effectively utilizing the heat loss. An endothermic part of a heating element when a planar body made of woven carbon fibers is placed below the flooring with the fiber direction horizontal and any part of the planar body requires a low-temperature heat source Use a structure laid in contact with.

炭素繊維は、熱伝導率が比較的高い炭素を基材とする繊維である。熱伝導率の高い物体でも繊維の集合体を形成すると、その繊維間に空気層が形成されるため、繊維方向と垂直を成す方向の熱伝導率が低くなる。炭素繊維から成る面状体は、繊維方向に熱が通過する場合には、空気層に遮られることがないため熱伝導性が高く、繊維方向と垂直を成して熱が通過する場合には、空気層に遮られるため熱伝導性が低くなる。従って、当該面状体が所定の厚さを確保することで、下方への熱伝導性は低くなり、水平方向への熱伝導性は高くなる。 Carbon fiber is a fiber based on carbon having a relatively high thermal conductivity. When an aggregate of fibers is formed even with an object having a high thermal conductivity, an air layer is formed between the fibers, so that the thermal conductivity in the direction perpendicular to the fiber direction becomes low. Planar body made of carbon fiber has high thermal conductivity because heat is not blocked by the air layer when heat passes in the fiber direction, and when heat passes perpendicular to the fiber direction. Since it is blocked by the air layer, the thermal conductivity is lowered. Therefore, by ensuring the predetermined thickness of the planar body, the downward thermal conductivity is lowered and the horizontal thermal conductivity is increased.

発熱体及び床材が加熱されると、数3右辺第2項で表されるとおり、下方、即ち当該面状体の繊維方向と垂直を成す方向への伝熱が発生する。当該伝熱は、当該面状体に到達すると、当該面状体は繊維方向と垂直を成す方向への熱伝導性が低いため、さらに下方への伝熱量を軽減させるとともに、熱伝導性の高い繊維方向に伝導し、当該面状体に接する発熱体の吸熱部位に集熱されることになる。即ち、炭素繊維から成る面状体を、繊維方向を水平にして床材の下方に、且つ、当該面状体の任意の部位が、低温熱源を必要とする場合の発熱体の吸熱部位に接する形で敷設することで、床下への熱損失を防ぐとともに、当該熱損失を発熱体の発熱に有効利用できる。 When the heating element and the flooring are heated, heat transfer occurs downward, that is, in a direction perpendicular to the fiber direction of the planar body, as represented by the second term on the right side of Formula 3. When the heat transfer reaches the planar body, the planar body has low thermal conductivity in the direction perpendicular to the fiber direction, and thus further reduces the amount of heat transfer downward and has high thermal conductivity. The heat is conducted in the fiber direction and is collected at the endothermic portion of the heating element in contact with the planar body. That is, the planar body made of carbon fiber is placed below the flooring with the fiber direction horizontal, and any part of the planar body is in contact with the endothermic part of the heating element when a low-temperature heat source is required. By laying in the form, heat loss under the floor can be prevented and the heat loss can be effectively used for heat generation of the heating element.

請求項7の記述は、熱交換手段に関するものである。本発明装置においては、熱交換手段として熱伝導性フィンを用いる。当該熱伝導性フィンは、該発熱体の吸熱部位又は冷却時の排熱の放出部位に固着されていて、該熱輸送手段の筐体を貫通して該熱輸送手段内部に配設されたている。 The description of claim 7 relates to heat exchange means. In the apparatus of the present invention, heat conductive fins are used as heat exchange means. The heat conductive fin is fixed to an endothermic part of the heating element or a discharge part of exhaust heat during cooling, and is disposed inside the heat transporting means through the housing of the heat transporting means. Yes.

フィンは、その構造により、熱輸送手段内部空間との接触面積が大きくなり、効果的に当該熱輸送手段から熱を取得して発熱体に伝熱させ、又は、当該発熱体から熱を取得して当該熱輸送手段に放熱することができる。当該熱輸送手段が作動流体を使用する場合においては、対流熱伝達熱量も大きくなり、より効率的な熱交換が可能となる。 Due to its structure, the fin has a large contact area with the internal space of the heat transport means, effectively acquiring heat from the heat transport means and transferring it to the heating element, or acquiring heat from the heating element. The heat can be radiated to the heat transport means. When the heat transporting means uses a working fluid, the convective heat transfer heat amount is also increased, and more efficient heat exchange is possible.

本発明の床暖房装置は、発熱体が従来の床暖房装置よりも高温に発熱することで、床面が適正温度までの到達時間を大幅に短縮する。床暖房装置は、発熱体の温度が高くなると、床材が過熱状態に成り、使用者が低温火傷を被る危険性があるものであるが、本発明装置は、発熱体に冷却手段を具備させることにより、当該低温火傷を被る危険性を発生させることなく、床材の加熱に要する時間を短縮できるものである。   In the floor heating apparatus of the present invention, the heating element generates heat at a higher temperature than the conventional floor heating apparatus, so that the time required for the floor surface to reach the appropriate temperature is greatly shortened. In the floor heating device, when the temperature of the heating element becomes high, the flooring material becomes overheated and there is a risk that the user suffers low-temperature burns. However, the apparatus of the present invention includes a cooling means in the heating element. Thus, the time required for heating the flooring can be shortened without generating the risk of suffering from the low-temperature burn.

また、当該冷却に伴う排熱を熱輸送手段にて室内に輸送することで、冷却に伴うエネルギーロスを室内暖房に有効利用するとともに、室内を快適温度まで暖房するために要する時間をも短縮するものである。快適温度までの到達時間を短縮することにより、使用者の利便性を高めるのみならず、使用者が事前に床暖房装置を起動させておく必要がなくなり、床暖房装置の起動時間が短縮し、結果的にエネルギー消費の削減に繋がるものである。以上、請求項1の記述の効果である。 In addition, by transporting the exhaust heat accompanying the cooling into the room by a heat transport means, the energy loss associated with the cooling is effectively used for room heating, and the time required for heating the room to a comfortable temperature is also shortened. Is. By shortening the time to reach the comfortable temperature, not only the convenience of the user is improved, but it is not necessary for the user to activate the floor heating device in advance, the activation time of the floor heating device is shortened, As a result, energy consumption is reduced. The above is the effect of the description of claim 1.

また、発熱体に通電による応答性の速いペルチェ素子を用いることにより、床材を瞬時に加熱することが可能となる。また、ペルチェ素子は、送電方向を逆転させると加熱冷却面も逆転するため、冷却手段として兼用することができるとともに、薄型板状の素子であり、配設に際し大きなスペースを必要としないため、床材の直下という限られたスペースに配設するのに適した発熱、冷却手段である。 Moreover, it becomes possible to heat a floor material instantaneously by using the Peltier device with quick response by electricity supply to a heat generating body. In addition, since the Peltier element also reverses the heating and cooling surface when the power transmission direction is reversed, it can also be used as a cooling means and is a thin plate-like element and does not require a large space for installation. It is a heat generation and cooling means suitable for being arranged in a limited space directly under the material.

ペルチェ素子は、省スペース性、瞬間加熱性のみならず、エネルギー効率の上からも有効な発熱手段である。ペルチェ素子の放熱側における発熱量は、ジュール熱とペルチェ熱から成るものであり、投入電気エネルギー量を超えるものである。また、床材を加熱するべく当該ペルチェ素子の上面を放熱面とした場合、下面が吸熱面となり、床材から下方への熱損失を低温熱源として床材の加熱に利用できるため、投入エネルギー量に比して大きな加熱性能を発揮できる。 The Peltier element is a heat generating means that is effective not only for space saving and instantaneous heating but also for energy efficiency. The amount of heat generated on the heat dissipation side of the Peltier element is composed of Joule heat and Peltier heat, which exceeds the amount of input electric energy. In addition, when the upper surface of the Peltier element is used as a heat dissipation surface to heat the flooring, the lower surface becomes an endothermic surface, and heat loss from the flooring to the bottom can be used for heating the flooring as a low-temperature heat source. Larger heating performance can be demonstrated compared to.

ペルチェ素子にて加熱された放熱手段を冷却する場合は、当該ペルチェ素子の下面から当該冷却に伴う排熱が放熱されることになるが、このときの放熱量も放熱手段から吸熱されるペルチェ熱に当該ペルチェ素子の内部抵抗によるジュール熱が加わる。上記数3にあてはめると、右辺第1項がペルチェ熱に相当する。ペルチェ素子を発熱体の冷却手段として用いた場合、同式にジュール熱の要素が加わるため、熱輸送手段による輸送熱量は大きくなり、さらに大きな室内暖房性能を発揮できる。以上、請求項2の記述の効果である。 When cooling the heat dissipating means heated by the Peltier element, the exhaust heat accompanying the cooling is radiated from the lower surface of the Peltier element. At this time, the amount of heat dissipated is also Peltier heat absorbed from the heat dissipating means. Joule heat due to the internal resistance of the Peltier element is applied. When applied to Equation 3, the first term on the right side corresponds to Peltier heat. When the Peltier element is used as a cooling means for the heating element, since an element of Joule heat is added to the same formula, the amount of heat transported by the heat transport means becomes large, and a larger indoor heating performance can be exhibited. The above is the effect of the description of claim 2.

また、当該冷却に伴う排熱を室内に輸送する熱輸送手段として、送風方向を制御可能な所定の送風手段を用いることにより、当該排熱を有効利用するとともに、換気による暖房負荷の増大を防ぐ機能も兼備できる。 In addition, as a heat transporting means for transporting the exhaust heat accompanying the cooling into the room, by using a predetermined air blowing means capable of controlling the air blowing direction, the exhaust heat is effectively used and an increase in heating load due to ventilation is prevented. Can also have functions.

屋外から室内方向へ送風する場合においては、従来の換気方法に比して、外気が熱を取得した上で室内に取り込まれるため、換気が原因となるコールドドラフトが発生しない。また、室内から屋外方向へ送風する場合は、特に発熱体がペルチェ素子のように低温熱源を必要とする場合においては、暖房された室内の空気の有する熱が低温熱源となるため、換気による暖房負荷の相当熱量が発熱体の発熱に有効利用することができ、その結果、換気による暖房負荷が発生しない場合と同様のエネルギー収支と成り、当該換気による暖房負荷の削減を実現したことになる。以上、請求項3の記述の効果である。 In the case of blowing air from the outside to the room, since the outside air captures heat and is taken into the room as compared with the conventional ventilation method, a cold draft caused by ventilation does not occur. When air is blown from the room to the outside, especially when the heating element requires a low-temperature heat source such as a Peltier element, the heat of the heated indoor air becomes the low-temperature heat source. The amount of heat corresponding to the load can be effectively used for the heat generation of the heating element, and as a result, the energy balance is the same as when the heating load due to ventilation is not generated, and the reduction of the heating load due to the ventilation is realized. The above is the effect of the description of claim 3.

発熱体が放熱手段を瞬間的に高温に加熱しようとすると、当該放熱手段の熱抵抗により、温度ムラが発生する。当該温度ムラは、局所的な過熱状態を発生させる要因となり、当該過熱状態は、発熱体及び放熱手段、床材の反りなどの変形、及び焼損を発生させる要因となる。 When the heating element instantaneously heats the heat dissipation means to a high temperature, temperature unevenness occurs due to the thermal resistance of the heat dissipation means. The temperature unevenness causes a local overheating state, and the overheating state causes deformation such as warpage of the heating element, the heat radiating means, and the floor material, and burning.

当該放熱手段に熱媒液を充填した中空状の熱伝導板を用いることにより、当該熱媒液の自然対流により、均一に伝熱させることが可能となる。これにより、上記発熱体及び放熱手段、床材の反りなどの変形、及び焼損を防ぐとともに、局所的な過熱状態により使用者が低温火傷を被る危険性を回避することができる。 By using a hollow heat conduction plate filled with a heat transfer medium for the heat dissipating means, it becomes possible to transfer heat uniformly by natural convection of the heat transfer liquid. Thereby, while preventing a deformation | transformation of the said heat generating body and a thermal radiation means, the curvature of a flooring, and burning, the danger that a user suffers a low-temperature burn by a local overheating state can be avoided.

熱媒液を使用する効果は、均一な伝熱のみでなく、その比熱の大きさも長所となる。一般的に熱媒液として用いられるエチレングリコールなどは、金属などに比して比熱が大きいため、数2より、熱輸送手段による輸送熱量が大きくなる。そのため、室内を快適温度まで高めるための所要時間の短縮に繋がる。以上、請求項4に記述の効果である。 The effect of using the heat transfer liquid is not only uniform heat transfer, but also the magnitude of its specific heat. Since ethylene glycol or the like generally used as a heat transfer liquid has a larger specific heat than metal or the like, the amount of heat transported by the heat transport means becomes larger from Equation 2. For this reason, the time required for raising the room to a comfortable temperature is shortened. The above is the effect described in claim 4.

また、放熱手段から、床材への放熱効率は、床暖房装置の暖房性能の一要因となるが、従来工法では、床材と放熱手段との間に隙間が発生し、当該隙間が形成する空気層により、熱抵抗を発生させていた。当該放熱手段の上面に熱伝導ゲルから成る面状体を具備し、当該放熱手段と床材とが当該面状体を介して密着することにより、熱抵抗が減少し、床材を速やかに加熱することができる。 In addition, the efficiency of heat dissipation from the heat dissipation means to the flooring is a factor in the heating performance of the floor heating device. However, in the conventional method, a gap is generated between the flooring and the heat dissipation means, and the gap is formed. Thermal resistance was generated by the air layer. A heat conductive gel is provided on the upper surface of the heat dissipating means, and the heat dissipating means and the flooring are brought into close contact with each other through the surface member to reduce the thermal resistance and quickly heat the flooring. can do.

また、発熱体が高温に発熱したとき、床材への放熱が不十分であると放熱手段及び発熱体が蓄熱して過熱状態になり、発熱体及び放熱手段が焼損する可能性があるが、当該面状体が放熱手段と床材との間に介在することで円滑な放熱が行われ、当該焼損を回避することができる。以上、請求項5の記述の効果である。 In addition, when the heating element generates heat at a high temperature, if the heat dissipation to the flooring is insufficient, the heat dissipation means and the heating element will accumulate heat and become overheated, and the heating element and the heat dissipation means may burn out. Since the planar body is interposed between the heat dissipation means and the flooring material, smooth heat dissipation is performed, and the burnout can be avoided. The above is the effect of the description of claim 5.

床材が加熱されると床下への熱損失が発生することは、上記のとおりであるが、当該床材の下方に、発熱体の吸熱部位に接する形で炭素繊維から成る面状体を備えることにより、当該炭素繊維から成る面状体よりさらに下方への伝熱を防ぐとともに、当該炭素繊維から成る面状体に対して伝熱する熱を、ペルチェ素子などの発熱体の吸熱部位に速やかに伝熱するため、本発明装置の床下への熱損失の有効利用性能をさらに高めることが可能となる。以上、請求項5の記述の効果である。 As described above, when the flooring is heated, heat loss to the underfloor is generated, but a planar body made of carbon fiber is provided below the flooring so as to be in contact with the heat absorbing portion of the heating element. As a result, heat transfer further downward than the planar body made of the carbon fiber is prevented, and heat transferred to the planar body made of the carbon fiber is promptly transmitted to the heat absorbing portion of the heating element such as a Peltier element. Therefore, the effective utilization performance of heat loss under the floor of the device of the present invention can be further enhanced. The above is the effect of the description of claim 5.

上記の発熱体と熱輸送手段との間の熱交換手段に、熱伝導性フィンを用いることで、熱輸送手段との対流熱伝達率が大きくなり、発熱体と熱輸送手段との間の熱交換効率が高まり、上記の効果をさらに高めることができる。以上、請求項6の記述の効果である。 By using heat conductive fins for the heat exchange means between the heating element and the heat transporting means, the convective heat transfer coefficient with the heat transporting means is increased, and the heat between the heating element and the heat transporting means is increased. The exchange efficiency is increased, and the above effect can be further enhanced. The above is the effect of the description of claim 6.

以上のとおり、請求項1から6に記載の発明を実施することで、床暖房装置にて室内を暖房する場合において、床面及び室内を瞬時に加熱して使用者の利便性を高めるとともに、無駄なエネルギー消費の削減も実現するという効果を、安全且つ円滑に実現することができる。 As described above, when the room is heated by the floor heating device by implementing the invention according to claims 1 to 6, the floor surface and the room are instantaneously heated to improve the convenience for the user, The effect of realizing wasteful energy consumption reduction can be realized safely and smoothly.

床暖房装置の発熱体が高温に発熱して床面を瞬時に加熱し、床面が適正温度に達すると発熱体を所定の温度に冷却し、当該冷却に伴う排熱を室内に輸送にて室内を瞬時に暖房するために、発熱体にペルチェ素子、熱輸送手段には送風装置を用いて、従来工法の床暖房装置の構造を利用して、最少の部品点数にて実現した。   The heating element of the floor heating device heats up to a high temperature and instantly heats the floor surface.When the floor surface reaches an appropriate temperature, the heating element is cooled to a predetermined temperature and the exhaust heat associated with the cooling is transported indoors. In order to instantaneously heat the room, a Peltier element was used as the heating element, a blower was used as the heat transport means, and the structure of the floor heating device of the conventional method was used to achieve the minimum number of parts.

図1は、本発明の1実施例の全体投影図である。本実施例は、在来工法の建築体への配設を想定しており、10で示される大引の上に、11で示される根太が組まれ、当該根太の上面に2で示される床材が固着された構造の建築体における実施例である。RC構造などの建築体では、コンクリート床が当該大引に相当する。本実施例では、当該根太間に形成される空間に発熱体が配設されるものである。   FIG. 1 is an overall projection view of an embodiment of the present invention. The present embodiment assumes that the conventional construction method is installed in a building body, and a joist shown by 11 is assembled on an overdraw shown by 10, and a floor shown by 2 on the upper surface of the joist. It is an Example in the building of the structure where the material adhered. In an architectural structure such as an RC structure, a concrete floor corresponds to the large draw. In the present embodiment, a heating element is disposed in a space formed between the joists.

当該発熱体の構造は、図2及び図3で示されるとおりである。当該発熱体は、その上部に放熱手段として、15で示される中空状の熱伝導性函体を具備し、当該熱伝導性函体の内部には、14で示される熱媒液が充填されている。当該熱伝導性函体は、銅、アルミニウムなどの熱伝導率の高い素材から成る。当該熱伝導性函体の上面には、熱伝導性ゲルから成る面状体が均一に展着されていて、当該熱伝導性ゲルを介して当該熱伝導性函体の上面に、2で示されるとおり、床材が固着されている。   The structure of the heating element is as shown in FIGS. The heat generating body includes a hollow heat conductive box indicated by 15 as a heat radiating means at an upper portion thereof, and the heat conductive liquid indicated by 14 is filled in the heat conductive box. Yes. The heat conductive box is made of a material having high heat conductivity such as copper or aluminum. On the upper surface of the thermally conductive box, a planar body made of a thermally conductive gel is uniformly spread, and the upper surface of the thermally conductive box is indicated by 2 through the thermally conductive gel. As shown, the flooring is fixed.

また、当該発熱体は、その下部に熱輸送手段として、17で示される熱輸送函体を具備している。当該熱輸送函体の内部には、20で示されるとおり、複数から成る熱伝導性フィンが配設されていて、当該熱輸送函体本体と、熱輸送函体内部の空気との間の効率的な伝熱が可能な構造となっている。   Moreover, the said heat generating body has comprised the heat transport box shown by 17 as the heat transport means in the lower part. Inside the heat transport box, as shown by 20, a plurality of heat conductive fins are arranged, and the efficiency between the heat transport box body and the air inside the heat transport box It has a structure that can transfer heat.

16で示されるのがペルチェ素子であり、上記熱伝導性函体と熱輸送函体とが複数から成るペルチェ素子を挟持している。当該熱伝導性函体と熱輸送函体との間のペルチェ素子がない隙間となる部分には、18で示される断熱材が配設されていて、さらに当該断熱材と熱輸送函体との接触面には、19で示される炭素繊維から成る面状体が配設されている。当該炭素繊維から成る面状体は、繊維方向が水平方向に配設されるものである。   Reference numeral 16 denotes a Peltier element, and the heat conductive box and the heat transport box sandwich a plurality of Peltier elements. In a portion where there is no Peltier element between the heat conductive box and the heat transport box, a heat insulating material indicated by 18 is disposed. Further, the heat insulating box and the heat transport box A planar body made of carbon fiber 19 is disposed on the contact surface. The planar body made of the carbon fiber has a fiber direction arranged in a horizontal direction.

ここで再び図1に戻り、本実施例の全体構成を説明する。当該発熱体の熱輸送函体の一端は、4で示される給気風道と連通していて、さらに当該給気風道は、5で示される送気ファンと連通している。また、当該送気ファンは、同じく4で示される給気風道、及び、6で示される屋外通気口を介して屋外と連通している。   Here, returning to FIG. 1 again, the overall configuration of the present embodiment will be described. One end of the heat transport box of the heat generating body communicates with an air supply air passage indicated by 4, and further, the air supply air passage communicates with an air supply fan indicated by 5. In addition, the air supply fan communicates with the outdoors via an air supply passage indicated by 4 and an outdoor vent indicated by 6.

同時に、当該発熱体の熱輸送函体のもう一方の端部は、3で示される給気スリットを介して本実施例使用室内と連通している。従って、当該室内と屋外とは、当該発熱体の熱輸送函体と送気ファン及び給気風道などのその他の付帯要素を介して連通して、通気経路を形成する。当該送気ファンは、送風方向が制御可能なものであるため、当該通気経路内において、室内から屋外方向、及び、屋外から室内方向への送風が可能となる。   At the same time, the other end of the heat transport box of the heating element communicates with the use chamber of this embodiment through an air supply slit indicated by 3. Therefore, the room and the outside communicate with each other via the heat transport box of the heating element and other auxiliary elements such as an air supply fan and an air supply air passage to form a ventilation path. Since the air supply fan is controllable in the air blowing direction, air can be blown from the indoor direction to the outdoor direction and from the outdoor direction to the indoor direction in the ventilation path.

図4及び図5は、本実施例における、当該送風の流れを模式的に表したものである。図4は、当該送気ファンにより、当該室内から屋外へ送風する場合の当該送風の流れを表し、図5は、当該送気ファンにより、屋外から当該室内へ送風する場合の当該送風の流れを表す。両図において、当該送風の流れは、21の矢印の方向で示される。   4 and 5 schematically show the flow of the air blow in the present embodiment. FIG. 4 shows the flow of the air flow when the air supply fan blows air from the room to the outdoors. FIG. 5 shows the flow of the air flow when air is blown from the outdoors to the room by the air supply fan. To express. In both figures, the flow of the air flow is shown in the direction of 21 arrows.

図6は、本実施例の電気回路の構成を表す。7で示される制御回路ボックスは、9で示される送電線にて24で示される商用交流電源と接続されていて、交流電流が供給されている。さらに、16で示されるペルチェ素子と当該制御ボックス、5で示される送気ファンと当該制御ボックスとは、それぞれ9で示される送電線にて電気的に接続されている。 FIG. 6 shows the configuration of the electric circuit of this embodiment. The control circuit box indicated by 7 is connected to a commercial AC power source indicated by 24 by a power transmission line indicated by 9, and is supplied with an alternating current. Further, the Peltier element indicated by 16 and the control box are electrically connected to the air supply fan indicated by 5 and the control box respectively by power transmission lines indicated by 9.

さらに、23で示されるサーミスタと当該制御ボックスとも、9で示される送電線にて電気的に接続されていて、発熱体の温度を当該制御ボックスが認識可能となっている。また、22で示される制御スイッチと当該制御ボックスとは25で示される信号線にて電気的に接続されていて、外部からの手動による制御が可能となっている。   Furthermore, the thermistor indicated by 23 and the control box are both electrically connected by a power transmission line indicated by 9 so that the temperature of the heating element can be recognized by the control box. Further, the control switch indicated by 22 and the control box are electrically connected by a signal line indicated by 25, so that manual control from the outside is possible.

以上の回路構成により、使用者の手動操作による当該制御スイッチからの信号を、当該制御ボックスが受信して、当該制御ボックスがペルチェ素子および送気ファンに送電することにより、本実施例の床暖房装置が起動する。このとき、サーミスタを通じて、発熱体の温度を当該制御ボックスが認識し、当該発熱体の温度に応じて当該制御ボックスが当該ペルチェ素子及び当該送気ファンへの送電方向及び送電電流を制御しての送電が可能となっている。   With the above circuit configuration, the control box receives a signal from the control switch manually operated by the user, and the control box transmits power to the Peltier element and the air supply fan. The device starts up. At this time, the temperature of the heating element is recognized by the control box through the thermistor, and the control box controls the transmission direction and the transmission current to the Peltier element and the air supply fan according to the temperature of the heating element. Power transmission is possible.

上記の電気回路構成にて、上記サーミスタが床材に接して配設されることにより、床材の温度に応じて、発熱体及び送気ファンの運転が可能となる。この、床材の温度に応じた発熱体及び送気ファンの運転による熱及び空気の流れは、図7及び図8で表される。 With the electrical circuit configuration described above, the thermistor is disposed in contact with the floor material, so that the heating element and the air supply fan can be operated according to the temperature of the floor material. The flow of heat and air due to the operation of the heating element and the air supply fan according to the temperature of the flooring is represented in FIGS.

図7は、当該制御スイッチが操作されたとき、当該サーミスタから当該制御ボックスが、床材の温度を加熱された状態ではないと認識した場合の熱及び空気の流れを表したものである。当該制御ボックスがペルチェ素子に所定の送電方向及び電流量にて送電することにより、当該ペルチェ素子が26で示されるとおりに、下面から上面に向かってペルチェ効果による熱輸送が行われ、15で示される熱伝導性函体に伝熱する。 FIG. 7 shows the flow of heat and air when the thermistor recognizes that the temperature of the flooring is not in a heated state when the control switch is operated. When the control box transmits power to the Peltier element in a predetermined power transmission direction and amount of current, heat transfer by the Peltier effect is performed from the lower surface to the upper surface as indicated by 26, which is indicated by 15. Heat is transferred to the heat conductive box.

同時に、当該制御ボックスが送気ファンに所定の送電方向及び電流量にて送電することにより、本図(図7)の21で示されるとおり室内から屋外への方向に送風される。このときの送風については、図4の21においても同様に示される。このときの室内から送風される空気の温度は、当然、室内の温度と同一である。また、当該送風は、室内からの排気となり、当該排気及び排気による室内負圧解消のため図1の8で示される給排気口からの給気により、当該室内の換気も同時に行われる。 At the same time, the control box transmits power to the air supply fan in a predetermined power transmission direction and current amount, so that air is blown in the direction from the room to the outside as indicated by 21 in this figure (FIG. 7). The air blowing at this time is similarly shown in 21 of FIG. The temperature of the air blown from the room at this time is naturally the same as the room temperature. Further, the blown air is exhausted from the room, and the indoor ventilation is simultaneously performed by supplying air from the air supply / exhaust port indicated by 8 in FIG.

当該送風された空気は、図7の17で示される熱輸送函体に到達する。ペルチェ素子が既にペルチェ効果による熱輸送をしているため、当該熱輸送函体は既に温度が下がっている。従って、当該送風された空気と当該熱輸送函体との間に温度差が存在するため、同図の28で示されるとおり、熱伝導が発生して、当該送風された空気の有する熱が当該ペルチェ素子に伝熱する。 The blown air reaches the heat transport box indicated by 17 in FIG. Since the Peltier element has already transported heat by the Peltier effect, the temperature of the heat transport box has already decreased. Therefore, since there is a temperature difference between the blown air and the heat transport box, as shown by 28 in the figure, heat conduction occurs, and the heat of the blown air is Heat is transferred to the Peltier element.

さらに、当該ペルチェ素子に伝導した熱は、段落0106に記載のペルチェ効果による熱輸送により、熱伝導性函体に輸送される。即ち、室内換気の排気の有する熱を、熱伝導性函体の加熱に有効利用することになる。この熱の流れは、ペルチェ素子及び送気ファンに所定の送電方向及び電流量で送電され続ける限り発生する。 Further, the heat conducted to the Peltier element is transported to the thermally conductive box by heat transport due to the Peltier effect described in paragraph 0106. That is, the heat of the exhaust of the room ventilation is effectively used for heating the heat conductive box. This heat flow is generated as long as power is transmitted to the Peltier element and the air supply fan in a predetermined power transmission direction and current amount.

熱伝導性函体には、14で示されるとおり熱媒液が充填されていて、ペルチェ効果により当該熱伝導性函体に伝導してきた熱が当該熱媒液に熱伝達する。熱伝達されて加熱された熱媒液は、膨張に伴う密度変化により自然対流する。当該自然対流により、27で示される対流熱伝達が発生し、当該熱伝導性函体内の温度ムラが解消されて、さらに当該熱伝導性函体の上面を介して床材に熱伝導し、床材が均一に加熱される。 The heat conductive box is filled with the heat transfer medium as indicated by 14, and the heat conducted to the heat transfer case due to the Peltier effect is transferred to the heat transfer liquid. The heat transfer fluid heated by heat transfer convects naturally due to density changes accompanying expansion. Due to the natural convection, convective heat transfer indicated by 27 is generated, temperature unevenness in the thermally conductive box is eliminated, and heat is further conducted to the flooring through the upper surface of the thermally conductive box. The material is heated uniformly.

このときの当該熱伝導性函体から当該床材への伝熱量は、当該熱伝導性函体から当該床材までの熱通過率に、当該熱伝導性函体と当該床材との温度差及び伝熱面積を乗じた値となる。即ち、当該伝熱量は、当該温度差に比例して大きくなる。従って、当該熱伝導性函体の温度を高くすることで、当該床材が加熱されて適正温度になるまでの時間を短縮することが可能となる。 The amount of heat transfer from the thermally conductive box to the flooring material at this time is the difference in temperature between the thermally conductive box and the flooring material in the heat transfer rate from the thermally conductive box to the flooring material. And the value multiplied by the heat transfer area. That is, the amount of heat transfer increases in proportion to the temperature difference. Therefore, by increasing the temperature of the heat conductive box, it is possible to shorten the time until the floor material is heated to an appropriate temperature.

ペルチェ素子は、通電により、電流の流れる速度、即ち、光速での熱輸送が行われる。このときの輸送熱量は、数5のとおり、電流値により変化する。また、当該ペルチェ素子にて加熱される熱伝導性函体の温度は、当該ペルチェ素子からの取得熱量を当該熱伝導性函体の定積比熱(充填されている熱媒液を含む)及び当該熱伝導性函体の体積で除した値である。即ち、当該ペルチェ素子への通電電流量で、当該熱伝導性函体の温度を制御することが可能である。 When the Peltier element is energized, heat transport is performed at a current flow rate, that is, at the speed of light. The amount of transport heat at this time varies depending on the current value as shown in Equation 5. Moreover, the temperature of the heat conductive box heated by the Peltier element is the same as the constant heat of the heat conductive box (including the heat medium liquid filled) and the amount of heat obtained from the Peltier element. It is the value divided by the volume of the thermally conductive box. That is, the temperature of the heat conductive box can be controlled by the amount of current flowing to the Peltier element.

従来技術における床暖房装置の発熱体の温度は、床暖房装置使用者の低温火傷を回避するため、40度―80度程度である。当該熱伝導性函体を、それよりも高い温度に加熱すれば、段落0111の記述により、床材を適正温度に加熱するまでの時間を、従来技術よりも短縮することができる。 The temperature of the heating element of the floor heating device in the prior art is about 40 to 80 degrees in order to avoid low temperature burns of the floor heating device user. If the heat conductive box is heated to a temperature higher than that, the time until the flooring is heated to an appropriate temperature can be shortened as compared with the prior art according to the description in paragraph 0111.

また、前段落の記述により、当該熱伝導性函体の温度は、当該ペルチェ素子への通電電流量にて制御可能である。従って、当該ペルチェ素子に、上記の当該熱伝導性函体の取得熱量を満たすような所定の送電方向及び電流量にて当該ペルチェ素子に送電することにより、従来技術よりも、床材の適正温度への到達時間を短縮しての加熱が可能となる。 Further, according to the description in the previous paragraph, the temperature of the heat conductive box can be controlled by the amount of current flowing to the Peltier element. Therefore, by transmitting power to the Peltier element in a predetermined power transmission direction and current amount that satisfies the acquired heat amount of the heat conductive box, the Peltier element has a more appropriate floor material temperature than the prior art. Heating with reduced time to reach is possible.

上記の所定の送電方向及び電流量にて当該ペルチェ素子に送電し続けると、所定の時間経過後に、床材が適正温度まで加熱される。このとき熱伝導性函体は、従来技術のものより高温に加熱されているため、このままでは、床材がさらに加熱されて、当該床材が過熱状態になってしまう。   When power is continuously transmitted to the Peltier element in the predetermined power transmission direction and current amount, the flooring is heated to an appropriate temperature after a predetermined time has elapsed. At this time, since the heat conductive box is heated to a higher temperature than that of the prior art, the floor material is further heated and the floor material is overheated as it is.

このとき、サーミスタが床材の温度を検知して、当該床材が適正温度になる以前に、制御ボックスが送電方向を逆転して送電することにより、ペルチェ素子の熱輸送の方向が逆転して、熱伝導性函体が冷却される。この冷却は、当該熱伝導性函体が所定の温度になるまで行われる。同時に、送気ファンの送気方向も、当該制御ボックスの制御により逆転される。   At this time, the thermistor detects the temperature of the flooring, and before the flooring reaches the proper temperature, the control box reverses the direction of power transmission and transmits power, thereby reversing the direction of heat transport of the Peltier element. The heat conductive box is cooled. This cooling is performed until the heat conductive box reaches a predetermined temperature. At the same time, the air supply direction of the air supply fan is also reversed by the control of the control box.

このときの熱及び空気の流れは図8で示される。26で示されるのがペルチェ熱であり、ペルチェ効果により熱伝導性函体の有する熱が輸送されて、当該熱伝導性函体が冷却されるとともに、ペルチェ熱が熱輸送函体に伝熱する。このとき、ペルチェ素子の内部抵抗によるジュール熱も当該熱輸送函体に伝熱する。このときのペルチェ素子による輸送熱量は、数5のとおりである。   The flow of heat and air at this time is shown in FIG. Peltier heat is indicated by 26, the heat of the heat conductive box is transported by the Peltier effect, the heat conductive box is cooled, and Peltier heat is transferred to the heat transport box. . At this time, Joule heat due to the internal resistance of the Peltier element is also transferred to the heat transport box. The amount of heat transported by the Peltier element at this time is as shown in Equation 5.

このとき、同図の21で示されるとおり、送気ファンの送気方向は、逆転されて屋外から室内への方向となっており、28で示されるとおり、対流熱伝達により、当該熱輸送函体に伝熱したペルチェ熱及びジュール熱を当該送気ファンが送気する空気が取得した上で、室内に輸送される。この熱を取得して室内に輸送された空気にて、当該室内は暖房される。同時に、室内は陽圧となり、図1の8で示される給排気口から自然排気が行われ、室内は換気される。   At this time, the air supply direction of the air supply fan is reversed to the direction from the outside to the room as indicated by 21 in the figure, and as indicated by 28, the heat transfer box is transferred by convection heat transfer. The Peltier heat and Joule heat transferred to the body are transported indoors after the air sent by the air supply fan is acquired. The room is heated by the air obtained by acquiring this heat and transported into the room. At the same time, the room has a positive pressure, natural exhaust is performed from the air supply / exhaust port indicated by 8 in FIG. 1, and the room is ventilated.

従来技術の床暖房装置は、床材から室内への放熱により室内を暖房するものであったが、本発明装置においては上記ペルチェ熱及びジュール熱を取得した空気により室内を暖房するため、従来技術に比べて当該室内と当該床材との温度差が小さくなり、当該床材からの放熱量が少なくなる。従って、当該温度差の減少によっても、当該床材が適正温度まで加熱されるまでの時間を短縮することができるとともに、室内が快適温度まで暖房される時間を短縮することもできる。   Although the floor heating device of the prior art is for heating the room by heat radiation from the floor material to the room, in the apparatus of the present invention, the room is heated by the air that has acquired the Peltier heat and Joule heat. As compared with the above, the temperature difference between the room and the flooring is reduced, and the heat radiation from the flooring is reduced. Therefore, even when the temperature difference is reduced, the time until the flooring is heated to an appropriate temperature can be shortened, and the time during which the room is heated to a comfortable temperature can be shortened.

以上のとおり、本実施例の床暖房装置は、ペルチェ素子の加熱及び冷却作用、送気ファンによる換気を用いて、瞬間的に床材を適正温度まで加熱するとともに、室内を瞬間的に快適温度まで暖房する。その後、暖房負荷として、発熱体から床下及び室内から室外への熱伝導が発生するため、当該暖房負荷に相当する熱量のみを放熱する必要がある。   As described above, the floor heating apparatus of this embodiment uses the heating and cooling action of the Peltier element and the ventilation by the air supply fan to instantaneously heat the flooring to an appropriate temperature, and instantaneously to the comfortable temperature in the room. Heat up to. After that, heat conduction occurs from the heating element to the under floor and from the room to the outside as the heating load. Therefore, it is necessary to radiate only the amount of heat corresponding to the heating load.

このときサーミスタを通じて制御ボックスが床材の温度及び発熱体の温度を検知して、当該制御ボックスが、当該ペルチェ素子及び送気ファンに再び所定の送電方向に送電して、ペルチェ素子が当該暖房負荷に相当する熱量の放熱を行う。このときの熱及び空気の流れは、放熱量が上記起動直後と異なるだけで、再び図7のとおりとなる。 At this time, the control box detects the temperature of the flooring and the temperature of the heating element through the thermistor, the control box transmits power again to the Peltier element and the air supply fan in a predetermined power transmission direction, and the Peltier element is related to the heating load. Dissipates heat with the amount of heat equivalent to. The flow of heat and air at this time is as shown in FIG. 7 again, except that the amount of heat release is different from that immediately after the activation.

この時点で、床材は十分に加熱されており、床材とその下方との温度差により、29で示されるとおり、床材から下方への熱伝導が発生する。当該熱伝導は、室内の暖房に利用されないため、熱損失となってしまう。   At this point, the flooring is sufficiently heated and, due to the temperature difference between the flooring and below, heat conduction from the flooring to the bottom occurs as indicated at 29. Since the heat conduction is not used for indoor heating, heat loss occurs.

本実施例の発熱体は、図2、図3及び図4の19で示されるとおり、ペルチェ素子のない部分の下部に、炭素繊維から成る面状体を具備している。当該炭素繊維は、繊維方向の熱通過率が高く、繊維方向と垂直を成す方向の熱通過率が低い特性があり、当該繊維方向が床面と平行に成るように配設する。 As shown by 19 in FIGS. 2, 3 and 4, the heating element of the present example is provided with a planar body made of carbon fiber at the lower part of the portion without the Peltier element. The carbon fiber has a characteristic that the heat passage rate in the fiber direction is high and the heat passage rate in the direction perpendicular to the fiber direction is low, and the fiber direction is arranged so as to be parallel to the floor surface.

上記のとおりの炭素繊維の配設のより、当該床材から下方への熱伝導が発生しても、当該炭素繊維のところで、図7の29で示されるとおり、多くはさらに下方へ伝熱せずにペルチェ素子に伝熱する。ペルチェ素子は、26で示されるとおりに熱輸送を行っているため、当該床材から下方への熱伝導は、再び、床材の加熱に利用されることになり、床下への熱損失を防ぐことになる。 Even when heat conduction from the floor material occurs downward due to the arrangement of the carbon fibers as described above, as shown by 29 in FIG. 7, many do not further transfer heat downward at the carbon fibers. Heat is transferred to the Peltier element. Since the Peltier element performs heat transport as indicated by 26, the heat conduction downward from the floor material is used again for heating the floor material, thereby preventing heat loss under the floor. It will be.

また、このときの送気ファンによる送気方向は、図7の21のとおりであり、室内から屋外方向への送気となるため、室内は負圧にあり、図1の8で示される給排気口から自然給気されて、室内は換気される。このとき室内は快適温度まで暖房されているため、当該送気は、熱を有するものである。   Further, the air supply direction by the air supply fan at this time is as shown in 21 of FIG. 7, and since air is supplied from the room to the outdoor direction, the room is at a negative pressure, and the air supply indicated by 8 in FIG. The room is ventilated by natural air supply from the exhaust port. At this time, since the room is heated to a comfortable temperature, the air supply has heat.

この時点でもペルチェ素子は、下方から上方へ熱輸送をしているため、当該送気が有する熱も熱伝導性フィン及び熱輸送函体を介してペルチェ素子が熱伝導性函体に輸送して床材の加熱に利用される。即ち、換気による熱損失の相当熱量を、床材の加熱に利用することを可能とするものである。 Even at this time, the Peltier element still transports heat from below to above, so that the heat of the air supply is also transported to the heat conductive box through the heat conductive fins and the heat transport box. Used for heating flooring. That is, the equivalent amount of heat loss due to ventilation can be used for heating the flooring.

本発明は、電気式、温水式等、方式を問わず、ほとんどすべての床暖房装置の補助加熱装置としての利用が可能であり、且つ、建築基準法によりすべての建物の居室に常時換気の設置が義務付けられているため、その常時換気を利用すれば、大きなイニシャルコストの増大を発生させることなく、床暖房装置を使用するあらゆる事案で、省エネ、ランニングコストの削減及び瞬間加熱による使用者の利便性向上を実現できる。   The present invention can be used as an auxiliary heating device for almost all floor heating devices regardless of the system, such as electric and hot water, and is always installed in all building rooms by the Building Standard Law. Therefore, if the constant ventilation is used, it is possible to save energy, reduce running costs, and improve convenience for the user in every case where the floor heating system is used without causing a significant increase in initial cost. Can be improved.

本装置全体投影図。実施例1の全体構成を記す。FIG. The overall configuration of Example 1 will be described. 本装置床構造及び発熱体断面図。実施例1のB−B断面における床構造及び発熱体の断面構造を記す。The apparatus floor structure and the heating element cross-sectional view. The floor structure in the BB cross section of Example 1 and the cross-sectional structure of a heat generating body are described. 本装置床構造及び発熱体側方断面図。実施例1のA−A断面における床構造及び発熱体の断面構造を記す。FIG. 3 is a side sectional view of the apparatus floor structure and a heating element. The floor structure in the AA cross section of Example 1 and the cross-sectional structure of a heat generating body are described. 本装置側方断面図1。実施例1のA−A断面における床構造及びシステム構成の断面構造及び加熱時の空気の流れを記す。FIG. The floor structure in the AA section of Example 1, the cross-sectional structure of the system configuration, and the flow of air during heating are described. 本装置側方断面図2。実施例1のA−A断面における床構造及びシステム構成の断面構造及び冷却時の空気の流れを記す。。FIG. The floor structure in the AA section of Example 1, the cross-sectional structure of the system configuration, and the air flow during cooling are described. . 本装置電気回路図。実施例1の電気回路の概略を記す。FIG. The outline of the electric circuit of Example 1 is described. 本装置システム図1。実施例1の起動直後及び平常運転時の熱及び空気の流れを模式的に記す。This device system FIG. The flow of heat and air immediately after startup of Example 1 and during normal operation will be schematically described. 本装置システム図2。実施例1の過熱冷却時の熱及び空気の流れを模式的に記す。This device system FIG. The flow of heat and air during superheat cooling in Example 1 will be schematically described.

符号の説明Explanation of symbols

1 発熱体
2 床材
3 給気スリット
4 通気ダクト
5 送気ファン
6 屋外通気口
7 制御回路ボックス
8 給排気口
9 送電線
10 大引
11 根太
12 基礎構造体
13 壁体
14 熱媒液
15 熱伝導性函体
16 ペルチェ素子
17 熱輸送函体
18 断熱材
19 炭素繊維から成る面状体
20 熱伝導性フィン
21 送気ファンによる空気の流れ
22 制御スイッチ
23 サーミスタ
24 商用交流電源
25 信号線
26 ペルチェ熱
27 対流熱伝達
28 熱伝導
29 熱損失
DESCRIPTION OF SYMBOLS 1 Heat generating body 2 Flooring material 3 Air supply slit 4 Ventilation duct 5 Air supply fan 6 Outdoor vent 7 Control circuit box 8 Air supply / exhaust port 9 Power transmission line 10 Oki 11 Jouda 12 Foundation structure 13 Wall body 14 Heat transfer liquid 15 Heat Conductive box 16 Peltier element 17 Heat transport box 18 Heat insulating material 19 Planar body 20 made of carbon fiber 20 Thermal conductive fin 21 Air flow by air supply fan 22 Control switch 23 Thermistor 24 Commercial AC power supply 25 Signal line 26 Peltier Heat 27 Convective heat transfer 28 Heat conduction 29 Heat loss

Claims (7)

建物の室内の床材を加熱可能な発熱体が、該床材の直下に水平方向に配設されて、該発熱体が所定の温度に発熱することにより該床材が加熱されて室内を暖房する床暖房装置であって、該発熱体は、該発熱体から該床材への放熱手段、及び、所定の冷却手段、及び、該発熱体の加熱又は冷却熱量の制御手段を具備するとともに、該冷却に伴う排熱の該室内への熱輸送手段、及び、該発熱体と該熱輸送手段との間の熱交換手段を該床材の下方に具備し、該制御手段の制御により、本装置が起動してから該床材が適正温度に加熱されるまでは、該発熱体を該所定の温度よりも高温に発熱させることで該床材が瞬時に加熱され、該床材が適正温度に加熱されてからは、該制御手段の制御により、該発熱体を該所定の温度まで冷却するとともに、該冷却に伴い該発熱体から放出される排熱を、該熱交換手段を介して該熱輸送手段が該室内に輸送することで、該床材が過熱状態になることなく該室内を瞬時に暖房することを特徴とする床暖房装置。   A heating element capable of heating the flooring in the room of the building is disposed in a horizontal direction directly below the flooring, and the flooring is heated by heating the heating element to a predetermined temperature, thereby heating the room. The heating element comprises a heat radiating means from the heating element to the floor material, a predetermined cooling means, and a heating or cooling heat amount control means for the heating element, A heat transporting means for exhaust heat accompanying the cooling into the room and a heat exchanging means between the heating element and the heat transporting means are provided below the flooring, and are controlled by the control means. From the start of the apparatus until the flooring is heated to an appropriate temperature, the flooring is heated instantaneously by heating the heating element to a temperature higher than the predetermined temperature, and the flooring is heated to an appropriate temperature. After being heated, the heating element is cooled to the predetermined temperature under the control of the control means, and the cooling is performed. Accordingly, the heat transporting means transports the exhaust heat released from the heating element through the heat exchanging means into the room, thereby heating the room instantaneously without the flooring being overheated. A floor heating device characterized by that. 請求項1に記載の床暖房装置であって、該発熱体が、該放熱手段と該熱交換手段とで少なくともひとつのペルチェ素子を挟持する構造から成り、該放熱手段を上方に、該熱交換手段を下方にして配設され、該制御手段が送電方向及び電流量を制御可能な直流電源であって、該制御手段と該ペルチェ素子とが所定の送電線にて接続され、該制御手段が所定の送電方向及び所定の電流量に制御して送電することにより、該床材又は該発熱体から下方へ伝導する熱損失を含む該熱交換手段の周囲の熱を、該熱交換手段を介して該ペルチェ素子が輸送するペルチェ熱、及び、該ペルチェ素子の内部抵抗によるジュール熱が発生し、該ペルチェ熱及び該ジュール熱が該放熱手段を介して放熱されて該床材が加熱されるとともに、該制御手段が該所定の送電方向から送電方向を逆転して送電することにより、該ペルチェ素子が、該所定の冷却手段として、該放熱手段を冷却し、該冷却に伴う排熱が該熱交換手段を介して該熱輸送手段に伝熱され、該熱輸送手段が該排熱を該室内に輸送して該室内を暖房することを特徴とする床暖房装置。   2. The floor heating apparatus according to claim 1, wherein the heating element has a structure in which at least one Peltier element is sandwiched between the heat dissipating means and the heat exchanging means, and the heat exchanging means is disposed upward. The control means is a direct current power source that can control the power transmission direction and the amount of current, the control means and the Peltier element are connected by a predetermined power transmission line, and the control means By transmitting power in a predetermined power transmission direction and a predetermined amount of current, heat around the heat exchange means including heat loss conducted downward from the flooring or the heating element is passed through the heat exchange means. Peltier heat transported by the Peltier element and Joule heat due to the internal resistance of the Peltier element is generated, and the Peltier heat and the Joule heat are radiated through the heat radiating means to heat the flooring. The control means performs the predetermined transmission. The Peltier element cools the heat dissipating means as the predetermined cooling means by transmitting power with the power transmission direction reversed from the direction, and the exhaust heat accompanying the cooling passes through the heat exchanging means. The floor heating device is characterized in that the heat transport means transports the exhaust heat to the room and heats the room. 請求項1又は請求項2に記載の床暖房装置であって、該熱輸送手段が、送風方向を制御可能な所定の送風手段を備え、該熱交換手段と接して該発熱体の直下に水平方向に配設され、一端が該室内と、他端が屋外と連通し、気密性を有する中空体から成る熱輸送手段であって、該発熱体が冷却される場合においては、該送風手段にて屋外から外気を、該中空体を経て該室内に送風することにより、該冷却に伴う排熱を該発熱体から該熱交換手段を介して該外気が取得し該室内に輸送されて、該室内を換気すると同時に暖房するとともに、該送風手段にて該室内の空気を、該中空体を経て屋外に送風することにより、該室内を換気すると同時に、該発熱体が発熱するために低温熱源を必要とする場合においては、該室内から該中空体に取り込まれた空気の有する熱及び該床材又は該発熱体から下方へ伝導する損失熱を、該発熱体が該熱交換手段を介して取得することにより該発熱体が発熱して、該床材に放熱することにより該床材が加熱されることを特徴とする床暖房装置。 3. The floor heating apparatus according to claim 1, wherein the heat transporting unit includes a predetermined blowing unit capable of controlling a blowing direction, and is in contact with the heat exchanging unit and horizontally below the heating element. When the heat generating device is cooled, the air blowing device is connected to the air blowing device when the heat generating device is cooled. By blowing outside air from the outside through the hollow body into the room, the outside air is acquired from the heating element through the heat exchanging means, and the outside air is transported into the room. The room is ventilated and heated at the same time, and the air in the room is blown to the outside through the hollow body by the air blowing means. When necessary, it is taken into the hollow body from the room. The heat generating body generates heat and dissipates heat to the floor material when the heat generating body acquires the heat of the air and the loss heat conducted downward from the floor material or the heat generating body through the heat exchange means. The floor heating apparatus is characterized in that the flooring is heated. 請求項1又は請求項2又は請求項3に記載の床暖房装置であって、該放熱手段が水密性を有する中空状の熱伝導板から成り、該熱伝導板の内部に熱媒液が充填された放熱手段であって、該熱媒液の自然対流により、該発熱体の熱を均一に該床材に放熱することを特徴とする床暖房装置。   The floor heating apparatus according to claim 1, 2 or 3, wherein the heat dissipating means comprises a water-tight hollow heat conduction plate, and the heat conduction plate is filled with a heat transfer liquid. A floor heating device, wherein the heat is uniformly radiated to the floor material by natural convection of the heat transfer liquid. 請求項1又は請求項2又は請求項3又は請求項4に記載の床暖房装置であって、該放熱手段の上面に熱伝導性ゲルから成る面状体を具備し、該放熱手段が該面状体を介して該床材と密着することにより、該放熱手段から該床材への伝熱効率を増大させることを特徴とする床暖房装置。 5. The floor heating apparatus according to claim 1 or claim 2, or claim 3 or claim 4, further comprising a planar body made of a heat conductive gel on the upper surface of the heat dissipating means. A floor heating apparatus characterized by increasing heat transfer efficiency from the heat dissipating means to the floor material by being in close contact with the floor material via a body. 請求項1又は請求項2又は請求項3又は請求項4又は請求項5に記載の床暖房装置であって、該床材の下方に炭素繊維から成る面状体を備え、該面状体は該炭素繊維の繊維方向が水平に、該発熱体の吸熱部位に接して備えられ、該面状体の繊維方向に対して垂直方向の熱伝導を減少させるとともに、該発熱体が低温熱源を必要とする場合においては、該床材又は該発熱体から下方へ伝導した熱を該面状体が取得して繊維方向に伝導し、該発熱体の冷却部位へ伝導して該熱を該発熱体の発熱、又は、該熱輸送手段により該室内の暖房に利用することを特徴とする床暖房装置。 The floor heating device according to claim 1, claim 2, claim 3, claim 4, or claim 5, comprising a planar body made of carbon fiber below the flooring, the planar body being The fiber direction of the carbon fiber is provided horizontally and in contact with the heat absorbing portion of the heating element, reduces heat conduction in a direction perpendicular to the fiber direction of the planar body, and the heating element requires a low-temperature heat source. In this case, the sheet-like body acquires the heat conducted downward from the flooring or the heating element, conducts it in the fiber direction, and conducts the heat to the cooling part of the heating element to transmit the heat to the heating element. The floor heating device is used for heating of the room by the heat generation or the heat transporting means. 請求項1又は請求項2又は請求項3又は請求項4又は請求項5又は請求項6に記載の床暖房装置であって、該熱交換手段が、該発熱体の吸熱部位又は冷却時の排熱の放出部位に固着された熱伝導性フィンから成り、該熱伝導性フィンが該熱輸送手段の筐体を貫通して該熱輸送手段内部に配設された熱交換手段であって、該熱伝導性フィンが、該熱輸送手段から熱を取得して該発熱体に伝熱させ、又は、該熱伝導性フィンが、該発熱体から熱を取得して該熱輸送手段に放熱することを特徴とする床暖房装置。   The floor heating device according to claim 1 or claim 2 or claim 3 or claim 4 or claim 5 or claim 6, wherein the heat exchanging means is an endothermic part of the heating element or exhaust during cooling. A heat exchanging means comprising heat conductive fins fixed to a heat release site, the heat conductive fins penetrating the housing of the heat transport means and disposed inside the heat transport means, The heat conductive fin acquires heat from the heat transport means and transfers the heat to the heating element, or the heat conductive fin acquires heat from the heat generation element and dissipates it to the heat transport means. A floor heating device.
JP2008183271A 2007-11-22 2008-07-15 Instantaneous heating type floor heating device Pending JP2009145035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183271A JP2009145035A (en) 2007-11-22 2008-07-15 Instantaneous heating type floor heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007302322 2007-11-22
JP2008183271A JP2009145035A (en) 2007-11-22 2008-07-15 Instantaneous heating type floor heating device

Publications (1)

Publication Number Publication Date
JP2009145035A true JP2009145035A (en) 2009-07-02

Family

ID=40915813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183271A Pending JP2009145035A (en) 2007-11-22 2008-07-15 Instantaneous heating type floor heating device

Country Status (1)

Country Link
JP (1) JP2009145035A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170017136A (en) * 2015-08-05 2017-02-15 한온시스템 주식회사 Radiant heater for vehicle
KR102484392B1 (en) * 2021-07-28 2023-01-03 주식회사 양양 Wood panel with cooling and heatinhg control function
KR20230017631A (en) * 2021-07-28 2023-02-06 주식회사 양양 Outdoor deck for camping with cooling and heatinhg control function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170017136A (en) * 2015-08-05 2017-02-15 한온시스템 주식회사 Radiant heater for vehicle
KR102349911B1 (en) 2015-08-05 2022-01-12 한온시스템 주식회사 Radiant heater for vehicle
KR102484392B1 (en) * 2021-07-28 2023-01-03 주식회사 양양 Wood panel with cooling and heatinhg control function
KR20230017631A (en) * 2021-07-28 2023-02-06 주식회사 양양 Outdoor deck for camping with cooling and heatinhg control function
KR102657376B1 (en) * 2021-07-28 2024-04-16 주식회사 양양 Outdoor deck for camping with cooling and heatinhg control function

Similar Documents

Publication Publication Date Title
CA2477332A1 (en) Heat recovery unit and heat recovery system of building utilizing it
KR102309751B1 (en) Cold and hot bench
CN208952204U (en) A kind of thermoelectricity floor heating system
JP2009145035A (en) Instantaneous heating type floor heating device
CA2782291A1 (en) Operation of a hvac system using a combined hydronic and forced air system
JP2004301470A (en) Underground heat utilizing system
JP4605759B2 (en) Indoor air conditioning system for buildings
JP4268506B2 (en) Heating and cooling device and heating device
JP6543867B1 (en) House indoor generator and air conditioner for house
KR101708902B1 (en) Partition for controlling temperature
KR101842619B1 (en) The cooling and heating apparatus using vacuum chamber
JP2017133713A (en) Heat storage body and air conditioning system using the same
JPH1137493A (en) Cooling system, heating system and both cooling and heating systems
JPH10246458A (en) Personal air conditioner and method for using it
JPH06257800A (en) Air conditioner
KIM et al. Optimal performance of air/air thermoelectric heat pump (THP) coupled to energy-efficient buildings coupling in different climate conditions
CN216011092U (en) Temperature control system in space
JPH03247315A (en) Chair with cooling or heating function
CN219454122U (en) Thermoelectric semiconductor air conditioner
TWI357804B (en)
JP5947186B2 (en) Heating system and heating method
CN217482839U (en) Novel movable heater
JP2004211916A (en) Building having air conditioner
KR102267440B1 (en) Cooling apparatus comprising heat pipe for cooling indoor heating unit
JP2007192542A (en) Heat collecting air supply system for floor heated room