JP2009140686A - Liquid fuel vaporizer, method, and liquid fuel vaporization system - Google Patents

Liquid fuel vaporizer, method, and liquid fuel vaporization system Download PDF

Info

Publication number
JP2009140686A
JP2009140686A JP2007314409A JP2007314409A JP2009140686A JP 2009140686 A JP2009140686 A JP 2009140686A JP 2007314409 A JP2007314409 A JP 2007314409A JP 2007314409 A JP2007314409 A JP 2007314409A JP 2009140686 A JP2009140686 A JP 2009140686A
Authority
JP
Japan
Prior art keywords
liquid fuel
kerosene
air
tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007314409A
Other languages
Japanese (ja)
Inventor
Koichi Kawamoto
浩一 川本
Hiromi Sasaki
広美 佐々木
Mototaka Kono
元貴 公野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2007314409A priority Critical patent/JP2009140686A/en
Publication of JP2009140686A publication Critical patent/JP2009140686A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce input energy such as power for heating and simplify a structure of a vaporizer in a technology of liquid fuel vaporization. <P>SOLUTION: At the same time of temperature rising of a desulfurizer, a heating mechanism 2 such as an electrical heater fitted at a desulfurized kerosene tank 1 is operated, and by adjusting a heating output based on an output value of a temperature sensor 4, the temperature inside the tank is heated to be around 70°C to 80°C. When the temperature in the tank reaches to a preset temperature, control valves 7a, 7b are open and air blower B is activated so as to flow air in the tank 1. The air is mixed with kerosene steam so that the temperature becomes around 30°C, then mixed with a low boiling point component of kerosene to flow into a combustor N. The mixed gas with kerosene steam and air with only such flow-in low boiling point component, is ignited with a spark plug not shown. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、灯油などの石油系液体燃料を用いる固体高分子型燃料電池システムにおける水蒸気改質装置の起動昇温に用いる技術に関する。   The present invention relates to a technique used for starting up a temperature of a steam reformer in a polymer electrolyte fuel cell system using petroleum-based liquid fuel such as kerosene.

近年、水素などの燃料と酸素などの酸化剤の電気化学反応で電力を得る燃料電池の開発が進み、燃料電池は、その開発段階などに応じ複数の種類が存在する。そのうち、灯油などの比較的高沸点の炭化水素の混合物である液体燃料を用いる水蒸気改質装置を含む固体高分子型燃料電池システムでは、通常運転時には、主成分が水素の燃料極排出ガスを燃焼させて、液体燃料を水蒸気改質するための熱源とすることが多い。   In recent years, development of a fuel cell that obtains electric power through an electrochemical reaction between a fuel such as hydrogen and an oxidant such as oxygen has progressed, and there are a plurality of types of fuel cells depending on the stage of development. Among them, in polymer electrolyte fuel cell systems that include a steam reformer that uses liquid fuel, which is a mixture of relatively high boiling point hydrocarbons such as kerosene, during normal operation, the fuel electrode exhaust gas whose main component is hydrogen burns. In many cases, the liquid fuel is used as a heat source for steam reforming.

また、起動時には、改質触媒層を昇温するための熱源として、液体燃料を燃焼させることが多く、とりわけ、改質装置のコンパクト化のため、水素も液体燃料も燃焼可能な一体型燃焼器を用いることが一般的である。   Further, at the time of start-up, liquid fuel is often burned as a heat source for raising the temperature of the reforming catalyst layer, and in particular, an integrated combustor capable of burning both hydrogen and liquid fuel for the purpose of making the reformer compact. Is generally used.

また、通常、灯油などの高沸点の液体燃料はそのままでは着火せず、気化したのちにはじめて燃焼に用いることが可能となる。固体高分子型燃料電池システムにおいてこのような液体燃料と燃料極排出ガスをともに燃焼させることが可能な一体化燃焼器の一例として、例えば、壁面気化方式の液体燃料気化器を用いる燃焼器が近年数多く提案されている(例えば、特許文献1参照)。   In general, high boiling liquid fuel such as kerosene is not ignited as it is, and can be used for combustion only after vaporization. As an example of an integrated combustor capable of combusting both liquid fuel and anode discharge gas in a polymer electrolyte fuel cell system, for example, a combustor using a wall-vaporization type liquid fuel vaporizer has recently been used. Many proposals have been made (for example, see Patent Document 1).

このような壁面気化方式の液体燃料気化器では、壁面温度が上昇しすぎると重合反応、いわゆるコーキング反応が起こり、炭素が析出して燃料ノズルを閉塞してしまう可能性があった。また、壁面温度が低すぎると、低沸点成分のみが蒸発し、高沸点成分が気化せず、液のまま燃焼器に流入して点火器に付着し着火を妨げるなどの問題があった。   In such a wall vaporization type liquid fuel vaporizer, if the wall temperature rises too much, a polymerization reaction, a so-called coking reaction occurs, and carbon may be deposited to block the fuel nozzle. Further, when the wall surface temperature is too low, only the low boiling point component evaporates, and the high boiling point component does not vaporize, and there is a problem that the liquid flows into the combustor and adheres to the igniter to prevent ignition.

このような問題の解決策として、気化部に冷却機構を設ける提案が存在する(例えば、特許文献2参照)。また、気化部の温度が安定しなくても、燃焼を継続する工夫として、バーナーマットを用いた燃焼と、通常の予混合燃焼を行う2段階の燃焼を行う提案も存在する(例えば、特許文献3参照)。また、一般に起動時に燃焼させる液体燃料の流量に比べて、運転時に改質器の効率を高めるために実施するいわゆる混焼のための灯油の流量は少なく、同一ポンプでの制御は難しいという問題があった。
特開2006−105482号 特開2006−12593号 特開2006−105480号
As a solution to such a problem, there is a proposal to provide a cooling mechanism in the vaporization section (see, for example, Patent Document 2). Further, as a device for continuing combustion even if the temperature of the vaporization section is not stable, there is a proposal for performing two-stage combustion in which combustion using a burner mat and normal premixed combustion are performed (for example, Patent Documents). 3). In addition, the flow rate of kerosene for so-called mixed combustion, which is generally performed to increase the efficiency of the reformer during operation, is small compared to the flow rate of liquid fuel burned at startup, and it is difficult to control with the same pump. It was.
JP 2006-105482 A JP 2006-12593 A JP 2006-105480 A

ここで、灯油などの炭化水素系液体燃料を用いる固体高分子型燃料電池システムの脱硫・改質システムは、少なくとも図3のシステムフローに示す基本構成をとることが多い。すなわち、システム外にある灯油タンク(システム内のタンクとの区別のため「灯油主タンク」と呼ぶこととする)から、灯油ポンプ10aを用いて脱硫器に灯油を送出し、調圧弁の作用によって0.6MPaGの高圧に保った状態で、脱硫器の図示しない加熱機構によって230度の状態を保って、脱硫を行う。   Here, a desulfurization / reformation system of a polymer electrolyte fuel cell system using a hydrocarbon-based liquid fuel such as kerosene often has at least the basic configuration shown in the system flow of FIG. That is, kerosene is sent from the kerosene tank outside the system (referred to as “kerosene main tank” for distinction from the tank in the system) to the desulfurizer using the kerosene pump 10a, and by the action of the pressure regulating valve. While maintaining a high pressure of 0.6 MPaG, desulfurization is performed while maintaining a state of 230 degrees by a heating mechanism (not shown) of the desulfurizer.

脱硫器を通過した灯油は一旦、脱硫済み灯油タンク(単に「灯油タンク」とも呼ぶこととする)11に溜まり、その液面を液面センサ6で検知して、灯油ポンプ10aで送出する灯油量を調節する制御を行う。同時に、灯油タンク11に蓄えられた脱硫済み灯油を、灯油ポンプ10bによって改質器へ送出すると、灯油は、途中の配管で蒸発器を出た高温の水蒸気と混合して蒸発する。この水蒸気と灯油の混合蒸気を、触媒層に流すと、水蒸気改質反応が生じ、水素、一酸化炭素、二酸化炭素、メタンの混合ガスとなって、図示しないCO除去装置へと流れる。   The kerosene that has passed through the desulfurizer temporarily accumulates in a desulfurized kerosene tank (also simply referred to as “kerosene tank”) 11, the liquid level is detected by the liquid level sensor 6, and the amount of kerosene sent out by the kerosene pump 10 a Control to adjust. At the same time, when the desulfurized kerosene stored in the kerosene tank 11 is sent to the reformer by the kerosene pump 10b, the kerosene is mixed with the high-temperature steam exiting the evaporator in the middle of the pipe and evaporated. When the mixed steam of steam and kerosene is passed through the catalyst layer, a steam reforming reaction occurs, and a mixed gas of hydrogen, carbon monoxide, carbon dioxide, and methane flows to a CO removal device (not shown).

このCO除去装置で一酸化炭素を除去したのち、図示しない燃料電池の燃料極(アノード)で水素を消費したうえ、発電に使われなかった水素(H)、および燃料電池の反応と無関係な二酸化炭素(CO)とメタン(CH)は、改質器へ戻り、空気ブロワによって送出された2次空気中の酸素と燃焼器で反応して拡散燃焼し、改質触媒層や蒸発器に熱を供給する。 After carbon monoxide is removed by this CO removal device, hydrogen is consumed at the fuel electrode (anode) of the fuel cell (not shown), and hydrogen (H 2 ) not used for power generation and the reaction of the fuel cell are irrelevant. Carbon dioxide (CO 2 ) and methane (CH 4 ) return to the reformer, react with the oxygen in the secondary air sent by the air blower, and diffuse and burn in the combustor, and the reforming catalyst layer and evaporator To supply heat.

起動時には、灯油ポンプ10cによって、燃焼器へ未脱硫の灯油を送り、気化器で蒸発させて、空気ブロワで送出した1次空気と予混合して着火し、同時に2次空気を流して、燃焼温度を調整する。灯油の燃焼によって得られた熱で、触媒層や蒸発器の温度が上昇する。   At start-up, undesulfurized kerosene is sent to the combustor by the kerosene pump 10c, vaporized by the vaporizer, premixed with the primary air sent by the air blower, ignited, and simultaneously the secondary air flows to burn Adjust the temperature. The heat of the kerosene combustion increases the temperature of the catalyst layer and the evaporator.

しかしながら、特許文献1、特許文献2、および特許文献3に代表される壁面気化式の液体燃料燃焼方式では、起動時には電気ヒータを用いて必要な液体燃料を加熱するが、灯油などの石油系液体燃料の場合は完全に蒸発させるために必要な温度と、コーキング反応が生じる温度とにあまり差がないため、冷却機構を設けるなどして温度を極めて精密にコントロールする必要があった。   However, in the wall-vaporization type liquid fuel combustion system represented by Patent Document 1, Patent Document 2, and Patent Document 3, necessary liquid fuel is heated using an electric heater at the time of startup, but petroleum-based liquid such as kerosene. In the case of fuel, there is not much difference between the temperature required for complete evaporation and the temperature at which the coking reaction occurs, so it was necessary to control the temperature very precisely by providing a cooling mechanism or the like.

そして、このような冷却機構があることにより、起動時にさらに多くの電力を電気ヒータに供給する必要があり、また気化器の構造が複雑になるなどの課題が存在した。また、起動時の燃焼用燃料として気化した液体燃料を用いていたため、着火するまでの未燃灯油は、一時的に燃焼室内に滞留するが、燃焼による温度上昇によって再び蒸発するため燃料過多の状態になり、着火前後の短時間の間、未燃灯油が排ガス中に混ざって排出し、白煙が生じる問題もあった。   Further, due to such a cooling mechanism, there is a problem that it is necessary to supply more electric power to the electric heater at the time of startup, and the structure of the vaporizer is complicated. In addition, since the vaporized liquid fuel was used as the combustion fuel at start-up, unburned kerosene until ignition temporarily stayed in the combustion chamber, but it was evaporated again due to the temperature rise due to combustion, so there was an excess of fuel. In the short time before and after ignition, unburned kerosene was mixed in the exhaust gas and discharged, resulting in white smoke.

本発明は、上記のような従来技術の課題を解決するもので、その目的は、液体燃料気化の技術において、加熱用電力の投入エネルギーを削減し、気化器の構成を単純化することである。   The present invention solves the above-described problems of the prior art, and its object is to reduce the input energy of heating power and simplify the configuration of the vaporizer in the liquid fuel vaporization technology. .

上記の目的を達成するため、本発明の一態様は、液体燃料を用いる固体高分子型燃料電池システムの改質器に用いる、液体燃料気化器であって、灯油タンクに、少なくとも、その灯油タンクを加熱する加熱手段と、その灯油タンクの温度を測定する温度測定手段と、その灯油タンクに空気を導入する空気導入配管と、その灯油タンクから灯油を排出する灯油排出配管と、その灯油タンクから灯油蒸気と前記空気の混合物を排出する配管と、を有することを特徴とする。   In order to achieve the above object, one aspect of the present invention is a liquid fuel vaporizer used for a reformer of a polymer electrolyte fuel cell system using a liquid fuel, wherein the kerosene tank includes at least the kerosene tank. A heating means for heating the tank, a temperature measuring means for measuring the temperature of the kerosene tank, an air introduction pipe for introducing air into the kerosene tank, a kerosene discharge pipe for discharging kerosene from the kerosene tank, and the kerosene tank And a pipe for discharging a mixture of kerosene vapor and the air.

本発明によれば、灯油タンクを温度測定しながら加熱しつつ空気を通し低沸点成分による優れた燃焼性の気体を得ることにより、高温を要さず加熱用電力などのエネルギーを節約し、構成の簡易化も実現する。   According to the present invention, by heating the kerosene tank while measuring the temperature and obtaining an excellent combustible gas through low-boiling components by passing air, energy such as heating power can be saved without requiring a high temperature. Simplification is also realized.

以下、本発明を実施するための最良の実施形態について、図面にそって説明する。なお、背景技術や課題での説明と共通の前提事項については、適宜省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings. Note that assumptions common to the explanation in the background art and problems are omitted as appropriate.

(構成)
本実施形態は、液体燃料を用いる固体高分子型燃料電池システムの改質器に用い、液体燃料の燃焼器Nを稼動させるための液体燃料気化器について、液体燃料として灯油を用いた場合を挙げて例示するものである。ここで、図1は、本実施形態において、固体高分子型燃料電池システムの脱硫・改質システムのシステムフローの一部を示したものである。
(Constitution)
In this embodiment, a case where kerosene is used as a liquid fuel is used for a liquid fuel vaporizer for operating a liquid fuel combustor N used in a reformer of a polymer electrolyte fuel cell system using liquid fuel. This is an example. Here, FIG. 1 shows a part of the system flow of the desulfurization / reformation system of the polymer electrolyte fuel cell system in the present embodiment.

まず、本実施形態では、図3に示した従来の構成に対して、図1に示すように、気化器をなくす一方、一次空気を脱硫済み灯油タンク(以下単に「灯油タンク」や「タンク」とも呼ぶ)1に導入し、また、灯油タンク1には、灯油タンク1を加熱する加熱手段すなわち加熱機構2を設けるとともに、その灯油タンク1の温度を測定する温度測定手段として温度センサ4を取り付け、また、停止中の圧力異常を検知するため圧力を測定する手段として圧力センサー8を取り付けた構成とした。   First, in the present embodiment, the carburetor is eliminated as shown in FIG. 1 while the primary air is removed from the desulfurized kerosene tank (hereinafter simply referred to as “kerosene tank” or “tank”), as shown in FIG. The kerosene tank 1 is provided with heating means for heating the kerosene tank 1, that is, a heating mechanism 2, and a temperature sensor 4 is attached as a temperature measuring means for measuring the temperature of the kerosene tank 1. In addition, the pressure sensor 8 is attached as a means for measuring pressure in order to detect abnormal pressure during stoppage.

ここで、図2は、図1に示した本実施形態において、液体燃料気化器を兼ねる灯油タンク1の構成を示す概念図である。すなわち、本実施形態では、脱硫済み灯油タンク1については、液体燃料を部分的に気化させる液体燃料気化器の役割をもたせ(以下「気化器1」のようにも呼ぶこととする)、図2に示すように、容器20に液面センサ6を設ける点は従来に準ずるが、さらに、容器20外周に電気ヒータに代表される加熱機構2と、温度センサ4を設けている。   Here, FIG. 2 is a conceptual diagram showing a configuration of a kerosene tank 1 that also serves as a liquid fuel vaporizer in the present embodiment shown in FIG. That is, in this embodiment, the desulfurized kerosene tank 1 has a role of a liquid fuel vaporizer that partially vaporizes the liquid fuel (hereinafter also referred to as “vaporizer 1”), and FIG. As shown in FIG. 4, the point that the liquid level sensor 6 is provided in the container 20 is the same as in the prior art, but a heating mechanism 2 represented by an electric heater and a temperature sensor 4 are further provided on the outer periphery of the container 20.

また、灯油タンク1には、脱硫器Dから灯油を供給する配管P1の他に、灯油タンク1に空気を導入する空気導入配管である一次空気配管P2と、灯油タンク1から灯油を排出する灯油排出配管P3と、灯油タンク1から灯油蒸気と前記空気の混合物を排出する混合気排出用配管P4と、を接続している。   The kerosene tank 1 includes a primary air pipe P2 that is an air introduction pipe for introducing air into the kerosene tank 1 and a kerosene that discharges kerosene from the kerosene tank 1 in addition to the pipe P1 that supplies kerosene from the desulfurizer D. The discharge pipe P3 and an air-fuel mixture discharge pipe P4 for discharging the mixture of kerosene vapor and the air from the kerosene tank 1 are connected.

さらに、灯油タンク1へ向かう一次空気配管P2の途中に、灯油タンク1に導入する空気を遮断する弁である制御バルブ7aと、逆流防止弁すなわち逆止弁5aを設け、また、脱硫済み灯油タンク1と燃焼器Nとを接続する接続配管P4に、遮断弁である制御バルブ7bと、逆流防止弁すなわち逆止弁5bを設けた。   Further, a control valve 7a, which is a valve that shuts off air introduced into the kerosene tank 1, and a check valve 5a, which is a valve that shuts off the air introduced into the kerosene tank 1, are provided in the middle of the primary air pipe P2 toward the kerosene tank 1, and a desulfurized kerosene tank A control pipe 7b that is a shut-off valve and a check valve, that is, a check valve 5b, are provided on the connection pipe P4 that connects 1 and the combustor N.

これら加熱機構、各センサ、バルブなどの各部は、マイコンなどの制御手段20で制御するが、図1において、制御手段20に関する破線矢印は、情報や制御の信号のうち代表的な一部だけを示したものである。なお、脱硫器Dは温度センサA1と圧力センサA2を有する。   These parts such as the heating mechanism, each sensor, and the valve are controlled by the control means 20 such as a microcomputer. In FIG. 1, the broken line arrows related to the control means 20 represent only a representative part of information and control signals. It is shown. The desulfurizer D has a temperature sensor A1 and a pressure sensor A2.

(作用)
次に、上記のように構成した本実施形態における液体燃料気化器の動作の一例について、図1を用いて説明する。動作の要点は、固体高分子型燃料電池システムの起動時に、制御手段20により、灯油タンク1について、温度センサ4で温度を測定しつつ、加熱機構2により加熱することで略70℃から80℃に加熱し、一次空気配管P2で空気を導入するとともに、灯油蒸気と前記空気の混合物を混合気排出用配管P4から排出することである。以下、具体的に説明する。
(Function)
Next, an example of the operation of the liquid fuel vaporizer in the present embodiment configured as described above will be described with reference to FIG. The main point of operation is that when the solid polymer fuel cell system is started, the controller 20 heats the kerosene tank 1 with the temperature sensor 4 while heating the kerosene tank 1 with the heating mechanism 2 so that the temperature is approximately 70 to 80 ° C. The air is introduced into the primary air pipe P2 and the mixture of kerosene vapor and the air is discharged from the mixture discharge pipe P4. This will be specifically described below.

まず、図示しない加熱機構を用いて脱硫器Dを起動し、昇温を開始する。このとき、脱硫器Dの圧力センサA2が0.6MPa以下にならないように、灯油ポンプ10aを断続的に運転する。   First, the desulfurizer D is started using a heating mechanism (not shown), and the temperature rise is started. At this time, the kerosene pump 10a is operated intermittently so that the pressure sensor A2 of the desulfurizer D does not become 0.6 MPa or less.

そして、脱硫器Dの温度センサA1が230℃、圧力センサA2が0.6MPaの状態になったら、脱硫済み灯油タンク1の液面センサ6と脱硫器Dの圧力センサA2の指示値に従って、灯油ポンプ10aを制御する。   When the temperature sensor A1 of the desulfurizer D is 230 ° C. and the pressure sensor A2 is 0.6 MPa, the kerosene is used according to the indicated values of the liquid level sensor 6 of the desulfurized kerosene tank 1 and the pressure sensor A2 of the desulfurizer D. The pump 10a is controlled.

すなわち、例えば、液面センサ6が所定の液面低位を示しているときは圧力センサA2の指示値によらず灯油ポンプ10aを4cc/minで一定運転し、液面センサ6が所定の液面高位を示している場合は、圧力センサA2が0.5MPa以上で灯油ポンプ10aを運転し、圧力センサーが0.6MPa以上で灯油ポンプ運転停止、という制御を行う。   That is, for example, when the liquid level sensor 6 indicates a predetermined low liquid level, the kerosene pump 10a is constantly operated at 4 cc / min regardless of the indicated value of the pressure sensor A2, and the liquid level sensor 6 When the high level is indicated, the kerosene pump 10a is operated when the pressure sensor A2 is 0.5 MPa or more, and the kerosene pump operation is stopped when the pressure sensor is 0.6 MPa or more.

上記脱硫器Dの昇温開始と同時に、脱硫済み灯油タンク1に設けた電気ヒータなどの加熱機構2を作動させ、温度センサ4の出力値をもとに加熱出力を調整することにより、タンク内の温度を70℃から80℃程度に加熱する。タンク内の温度が設定温度に到達すると、制御バルブ7a、7bを開とし、空気ブロワBを起動して、灯油タンク1内に空気を流す。この空気は灯油蒸気と混合して、30℃程度の温度となり、すなわち灯油の低沸点成分と混合した混合気となって、燃焼器Nへ流れる。このように流れてきた低沸点成分のみの灯油蒸気と空気の混合気に、図示しない点火プラグで着火する。   Simultaneously with the start of the temperature rise of the desulfurizer D, the heating mechanism 2 such as an electric heater provided in the desulfurized kerosene tank 1 is operated and the heating output is adjusted based on the output value of the temperature sensor 4, thereby Is heated to about 70 to 80 ° C. When the temperature in the tank reaches the set temperature, the control valves 7a and 7b are opened, the air blower B is activated, and the air flows through the kerosene tank 1. This air is mixed with kerosene vapor to a temperature of about 30 ° C., that is, an air-fuel mixture mixed with a low boiling point component of kerosene and flows to the combustor N. The mixture of kerosene vapor and air having only a low boiling point component that has flowed in this manner is ignited by a spark plug (not shown).

昇温中、気化器1内の灯油は、低沸点成分のみ蒸発して高沸点成分濃度が高くなるが、脱硫器Dから低沸点成分を含む灯油を供給するので、低沸点成分が尽きることはなく、燃焼を継続することができる。そして、昇温完了後、高沸点成分濃度の高まった灯油をタンク1より触媒層に供給すると同時に、制御バルブ7a、制御バルブ7bを閉止し、空気および、灯油の低沸点成分の供給を停止する。   During the temperature increase, the kerosene in the vaporizer 1 evaporates only the low-boiling components and increases the high-boiling component concentration. However, since kerosene containing the low-boiling components is supplied from the desulfurizer D, the low-boiling components are exhausted. And combustion can be continued. Then, after completion of the temperature increase, kerosene having a high high boiling point component concentration is supplied from the tank 1 to the catalyst layer, and at the same time, the control valve 7a and the control valve 7b are closed to stop the supply of air and low boiling point components of kerosene. .

これにより、しばらくは、燃焼器Nに燃料を供給しない状態となって、触媒層温度が低下するが、すぐに触媒層で発生した水素が、CO除去装置、燃料電池燃料極を通過して、燃焼器Nに戻ってくる。そして、アノード排出ガスの水素によって、再び燃焼が開始され、触媒層温度が上昇する。次に、制御バルブ7bのみを開放し、電気ヒータ2を好適な温度に調整することで、低沸点成分を必要流量だけ供給することで混焼を開始する。   As a result, the fuel is not supplied to the combustor N for a while, and the temperature of the catalyst layer decreases, but hydrogen generated in the catalyst layer immediately passes through the CO removal device and the fuel cell fuel electrode, Return to combustor N. And combustion is started again by hydrogen of the anode exhaust gas, and the catalyst layer temperature rises. Next, only the control valve 7b is opened, and the electric heater 2 is adjusted to a suitable temperature, so that the low boiling point component is supplied at a necessary flow rate to start mixed combustion.

(効果)
以上のように、本発明によれば、加熱機構2のはたらきにより、タンク1の温度を、適切な温度に調整できるので、灯油を単体で完全蒸発できる290℃以上の温度に上昇させる必要がなく、灯油の気化に必要な電力を削減できる。また、ブロワで流した一次空気をタンク1の灯油と直接接触して混合できるので、低沸点成分のみを燃焼用燃料として利用することができ、燃焼性を高めることができるので、起動時の未燃分を減少させることができる。
(effect)
As described above, according to the present invention, the temperature of the tank 1 can be adjusted to an appropriate temperature by the operation of the heating mechanism 2, so that it is not necessary to raise the temperature to 290 ° C. or higher at which kerosene can be completely evaporated. , Electricity required for vaporizing kerosene can be reduced. Further, since the primary air flowed by the blower can be directly contacted with the kerosene in the tank 1 and mixed, only the low boiling point components can be used as combustion fuel, and the combustibility can be improved. The amount of fuel can be reduced.

また、本実施形態では、気化器上流の空気導入配管に空気遮断用の制御バルブ7aを設けることにより、予混合空気を昇温中にのみ供給し運転中は供給停止できるので、アノード排出ガス中の水素と空気の気化器内での混合による予期せぬ燃焼状態が回避でき安全性も向上する。また、本実施形態では、気化器と燃焼器Nとの間の接続配管について、遮断弁である制御バルブ7bを設けることにより、運転中の予期せぬ気体の通流が防止でき安定稼動が確保できる。   Further, in this embodiment, by providing the air shutoff control valve 7a in the air introduction pipe upstream of the vaporizer, the premixed air can be supplied only during the temperature rise and the supply can be stopped during the operation. Unexpected combustion due to mixing of hydrogen and air in the vaporizer can be avoided and safety can be improved. Moreover, in this embodiment, by providing the control valve 7b which is a shutoff valve for the connection pipe between the vaporizer and the combustor N, unexpected gas flow during operation can be prevented and stable operation is ensured. it can.

また、本実施形態では、逆止弁5a、5bの作用により、水素が気化器内に流入することや、灯油が空気ブロワに逆流することを防止でき、予期せぬ現象を未然防止し安全かつ安定した稼動が確保可能となる。   In the present embodiment, the check valves 5a and 5b can prevent the hydrogen from flowing into the vaporizer and the backflow of kerosene to the air blower. Stable operation can be secured.

さらに、本実施形態では、起動時、混焼用に従来では必要であった灯油ポンプ10c(図3)が不要となる付帯的な効果を得ることもできる。さらに、本実施形態では、脱硫済み灯油を用いて燃焼するため、SOxの発生を抑えることができ、燃焼排ガス中の水分を凝縮回収して利用する固体高分子型燃料電池システムでは、イオン交換樹脂の負荷を低減できる付帯的な効果も得ることができる。   Further, in the present embodiment, it is possible to obtain an incidental effect that the kerosene pump 10c (FIG. 3), which has been conventionally required for mixed combustion, is unnecessary at the time of startup. Furthermore, in this embodiment, since it burns using desulfurized kerosene, it is possible to suppress the generation of SOx, and in a polymer electrolyte fuel cell system that condenses and recovers moisture in combustion exhaust gas, an ion exchange resin is used. The incidental effect which can reduce the load of can also be acquired.

本発明の実施形態におけるプロセスフローを示す模式図。The schematic diagram which shows the process flow in embodiment of this invention. 本発明の実施形態における液体燃料気化器の構造を示す図。The figure which shows the structure of the liquid fuel vaporizer | carburetor in embodiment of this invention. 従来の液体燃料改質・脱硫システムのプロセスフローを示す模式図。The schematic diagram which shows the process flow of the conventional liquid fuel reforming / desulfurization system.

符号の説明Explanation of symbols

1…液体燃料気化器兼脱硫済み灯油タンク
2…加熱手段
3…液体燃料
4…温度センサ
5a、5b…逆止弁
7a、5b…制御バルブ
P1〜P4…配管
DESCRIPTION OF SYMBOLS 1 ... Liquid fuel vaporizer and desulfurized kerosene tank 2 ... Heating means 3 ... Liquid fuel 4 ... Temperature sensor 5a, 5b ... Check valve 7a, 5b ... Control valve P1-P4 ... Piping

Claims (6)

液体燃料を用いる固体高分子型燃料電池システムの改質器に用いる、液体燃料気化器であって、灯油タンクに、少なくとも、
その灯油タンクを加熱する加熱手段と、
その灯油タンクの温度を測定する温度測定手段と、
その灯油タンクに空気を導入する空気導入配管と、
その灯油タンクから灯油を排出する灯油排出配管と、
その灯油タンクから灯油蒸気と前記空気の混合物を排出する配管と、
を有することを特徴とする液体燃料気化器。
A liquid fuel vaporizer used for a reformer of a polymer electrolyte fuel cell system using a liquid fuel, wherein the kerosene tank is at least,
Heating means for heating the kerosene tank;
Temperature measuring means for measuring the temperature of the kerosene tank;
An air introduction pipe for introducing air into the kerosene tank;
A kerosene discharge pipe for discharging kerosene from the kerosene tank;
Piping for discharging a mixture of kerosene vapor and the air from the kerosene tank;
A liquid fuel vaporizer characterized by comprising:
請求項1に記載の液体燃料気化器を用いる液体燃料気化システムにおいて、
灯油タンクへの前記導入に係る前記空気を遮断する弁を前記空気導入配管に設けたことを特徴とする液体燃料気化システム。
In the liquid fuel vaporization system using the liquid fuel vaporizer according to claim 1,
A liquid fuel vaporization system, wherein a valve for shutting off the air related to the introduction into the kerosene tank is provided in the air introduction pipe.
請求項1に記載の液体燃料気化器を用いる液体燃料気化システムにおいて、
前記空気導入配管に逆流防止弁を設けたことを特徴とする液体燃料気化システム。
In the liquid fuel vaporization system using the liquid fuel vaporizer according to claim 1,
A liquid fuel vaporization system, wherein a backflow prevention valve is provided in the air introduction pipe.
請求項1に記載の液体燃料気化器と、燃焼器と、を用いる液体燃料気化システムにおいて、
前記液体燃料気化器と前記燃焼器との接続配管に、逆流防止弁を設けたことを特徴とする液体燃料気化システム。
A liquid fuel vaporization system using the liquid fuel vaporizer according to claim 1 and a combustor.
A liquid fuel vaporization system, wherein a backflow prevention valve is provided in a connection pipe between the liquid fuel vaporizer and the combustor.
請求項1に記載の液体燃料気化器と、燃焼器と、を用いる液体燃料気化システムにおいて、
前記液体燃料気化器と前記燃焼器との接続配管に、遮断弁を設けたことを特徴とする液体燃料の気化システム。
A liquid fuel vaporization system using the liquid fuel vaporizer according to claim 1 and a combustor.
A liquid fuel vaporization system, wherein a shutoff valve is provided in a connecting pipe between the liquid fuel vaporizer and the combustor.
液体燃料を用いる固体高分子型燃料電池システムの改質器に用いる、液体燃料気化器であって、灯油タンクに少なくとも、加熱手段と、温度測定手段と、空気導入配管と、灯油排出配管と、混合気排出用配管と、各部を制御する制御手段と、を有する液体燃料気化器を用いる液体燃料気化方法であって、
固体高分子型燃料電池システムの起動時に、
前記制御手段により、前記灯油タンクについて、前記温度測定手段に温度を測定させつつ、前記加熱手段で加熱させることで略70℃から80℃に加熱させ、
前記空気導入配管で空気を導入するとともに、灯油蒸気と前記空気の混合物を前記混合気排出用配管から排出する
ことを特徴とする液体燃料気化方法。
A liquid fuel vaporizer used for a reformer of a polymer electrolyte fuel cell system using liquid fuel, wherein the kerosene tank has at least a heating means, a temperature measuring means, an air introduction pipe, a kerosene discharge pipe, A liquid fuel vaporization method using a liquid fuel vaporizer having a mixture discharge pipe and a control means for controlling each part,
When starting up the polymer electrolyte fuel cell system,
With the control means, the kerosene tank is heated from about 70 ° C. to 80 ° C. by being heated by the heating means while the temperature measuring means is measuring the temperature,
A liquid fuel vaporization method, wherein air is introduced through the air introduction pipe and a mixture of kerosene vapor and the air is discharged from the mixture discharge pipe.
JP2007314409A 2007-12-05 2007-12-05 Liquid fuel vaporizer, method, and liquid fuel vaporization system Pending JP2009140686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314409A JP2009140686A (en) 2007-12-05 2007-12-05 Liquid fuel vaporizer, method, and liquid fuel vaporization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314409A JP2009140686A (en) 2007-12-05 2007-12-05 Liquid fuel vaporizer, method, and liquid fuel vaporization system

Publications (1)

Publication Number Publication Date
JP2009140686A true JP2009140686A (en) 2009-06-25

Family

ID=40871119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314409A Pending JP2009140686A (en) 2007-12-05 2007-12-05 Liquid fuel vaporizer, method, and liquid fuel vaporization system

Country Status (1)

Country Link
JP (1) JP2009140686A (en)

Similar Documents

Publication Publication Date Title
KR101102804B1 (en) Method of starting solid oxide fuel cell system
JP4887048B2 (en) Fuel cell starting method and fuel cell system
JP6477868B2 (en) Fuel cell system
US6991663B2 (en) Hydrogen-rich gas supply device for fuel cell
JP2011204390A (en) Solid oxide fuel cell system and cogeneration system equipped with this
US10629926B2 (en) Solid oxide fuel cell system
US20130011758A1 (en) Indirect internal reforming solid oxide fuel cell system
JP5204757B2 (en) Hydrogen generator, operating method thereof, and fuel cell system,
KR20030038656A (en) Hydrogen formation apparatus
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP4098332B2 (en) Reformer and fuel cell system
JP5102938B2 (en) Fuel cell power generation system and starting method thereof
JP3856423B2 (en) Starting method of hydrogen generator
US20130344409A1 (en) Multi-fuel combustor with swirl flame stabilization
JP2016122629A (en) Fuel battery system and control method for the same
JP2004286281A (en) Catalytic combustion burner and fuel cell system
US10700368B2 (en) High-temperature operation fuel cell system
JP2009140686A (en) Liquid fuel vaporizer, method, and liquid fuel vaporization system
WO2009061299A1 (en) Catalytic burning of fuel cell anode exhaust upstream of homogeneous burning of startup reformate
JP2003077517A (en) Fuel cell system
JP2019169256A (en) High temperature operation fuel cell system
JP6424494B2 (en) Fuel cell system
JP2010108770A (en) Fuel cell power generation system, and control method of fuel cell power generation system
JP2010257823A (en) Combustion device of fuel cell system
JP5309792B2 (en) Reformer and fuel cell system