JP2009140638A - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP2009140638A
JP2009140638A JP2007313268A JP2007313268A JP2009140638A JP 2009140638 A JP2009140638 A JP 2009140638A JP 2007313268 A JP2007313268 A JP 2007313268A JP 2007313268 A JP2007313268 A JP 2007313268A JP 2009140638 A JP2009140638 A JP 2009140638A
Authority
JP
Japan
Prior art keywords
temperature
heating
heated
control
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007313268A
Other languages
Japanese (ja)
Inventor
Shintaro Noguchi
新太郎 野口
Kenji Watanabe
賢治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007313268A priority Critical patent/JP2009140638A/en
Publication of JP2009140638A publication Critical patent/JP2009140638A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooker which minimizes detecting errors of load volume in a heated object and lessens a control range of a temperature adjustment level and an error range to the target and enhances accuracy of temperature adjustment. <P>SOLUTION: A temperature control means 31 includes a first temperature slope calculation means 32a for calculating an amount of variations C between a temperature difference A before and after passing a first predetermined time detected by a temperature detection means 19 and a temperature difference B before and after passing a second predetermined time, a second temperature slope calculation means 32b for calculating a temperature difference D between temperature after passing a third predetermined time detected by the temperature detection means 19 while renewing at every optional time interval and current temperature, and a linear load volume calculation means 33 for linearly calculating the actual load volume in the heated object 18 from the settled values of the amount of variations C and the temperature difference D. Thus, accuracy of the temperature adjustment can be raised so that determination of the load volume and temperature adjustment control in fried food cooking can be linearly developed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、誘導加熱調理器などの加熱調理器に関するものである。   The present invention relates to a cooking device such as an induction cooking device.

従来、誘導加熱調理器では、トッププレートに置かれた鍋などの被加熱物の底面からの熱伝導と、熱伝導を受けたサーミスタからの出力に応じて被加熱物の底面温度を算出する温度算出手段から2階微分値で被加熱物の反り量を推定し、平坦鍋、反り1鍋、反り2鍋のように階段方式に分け、また熱伝達方程式を用いて被加熱物の熱容量と被加熱物底の温度から油量を推定し、少量油、中量油、多量油のように階段方式に分け、それらの結果に基づいて加熱手段の出力を制御するものが知られている(例えば、特許文献1参照)。
特開2001−351771号公報
Conventionally, in induction heating cookers, the temperature at which the bottom surface temperature of a heated object is calculated according to the heat conduction from the bottom surface of the heated object such as a pan placed on the top plate and the output from the thermistor that has received the heat conduction. The amount of warpage of the object to be heated is estimated by the second-order differential value from the calculation means, divided into a staircase system such as a flat pan, one warp pan, and two warps pan. It is known that the oil amount is estimated from the temperature of the bottom of the heated object, divided into steps such as small amount oil, medium amount oil and large amount oil, and the output of the heating means is controlled based on the results (for example, , See Patent Document 1).
Japanese Patent Laid-Open No. 2001-351717

しかしながら、前記従来の構成では、揚げ物調理においては、被加熱物底の反りのばらつきによって反りの設定閾値近辺で反り量が検出される場合、また設定閾値近辺に油量が検出される場合には、判定時の境界ゾーンが粗いため、誤検知することが生じる。誤検知が生じた場合にはその後の温度調整の制御レベルが大きくずれていき、温度の微調整や油量の検知を高精度で行うことが困難となる。例えば、反った被加熱物を平坦鍋と誤検知すれば、平坦鍋の制御温度に実際のサーミスタの検知が追随できず油温が高温側となることもあり、また調理物投入後の火力復帰時間が遅れるなど調理レベルも低下する。また、少量の油を多量の油と判定した場合には、少量の油に対し入力電力を大きくして長時間入力するので、保護センサなどの安全手段がなければ発火温度に達する恐れも否めないという課題を有していた。   However, in the above-described conventional configuration, in deep-fried food cooking, when the amount of warpage is detected near the set threshold value of warpage due to variation in the warp of the bottom of the object to be heated, and when the amount of oil is detected near the set threshold value Since the boundary zone at the time of determination is rough, erroneous detection may occur. When an erroneous detection occurs, the control level of the subsequent temperature adjustment greatly shifts, making it difficult to finely adjust the temperature and detect the oil amount with high accuracy. For example, if a warped heated object is mistakenly detected as a flat pan, the actual thermistor may not be able to follow the control temperature of the flat pan, and the oil temperature may become high. The cooking level will also decrease, such as time delays. Also, if a small amount of oil is judged as a large amount of oil, the input power is increased for a small amount of oil and input for a long time, so there is no denying that the ignition temperature may be reached without safety means such as a protective sensor. It had the problem that.

本発明は、前記従来の課題を解決するもので、被加熱物内の負荷(油)の量を検知する誤差を最小限にとどめ、温度調整レベルの制御も狙いに対する誤差を小さくし、温度調整の精度を高めることができる加熱調理器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, minimizes the error in detecting the amount of load (oil) in the object to be heated, reduces the error with respect to the control of the temperature adjustment level, and adjusts the temperature. An object of the present invention is to provide a cooking device that can improve the accuracy of the cooking.

前記従来の課題を解決するために、本発明の加熱調理器は、被加熱物を加熱する加熱手段と、前記被加熱物の温度を検知する温度検知手段と、前記温度検知手段の出力に基づいて加熱手段を制御して被加熱物の加熱電力量を制御する温度制御手段とを備え、前記温度制御手段は、温度検知手段により検出される第一の所定時間経過前と第一の所定時間経過後との温度差Aと第二の所定時間経過前と第二の所定時間経過後との温度差Bの変化量Cを算出する第一の温度勾配算出手段と、温度検知手段により任意時間毎に更新しながら検出される第三の所定時間経過後の温度と現在の温度との温度差Dを算出する第二の温度勾配算出手段と、変化量Cと温度差Dの確定値から被加熱物内の実際の負荷量を線形算出する線形負荷量算出手段とを有するものである。   In order to solve the above-described conventional problems, a heating cooker according to the present invention is based on heating means for heating an object to be heated, temperature detecting means for detecting the temperature of the object to be heated, and an output of the temperature detecting means. Temperature control means for controlling the heating power of the object to be heated by controlling the heating means, the temperature control means before the first predetermined time and the first predetermined time detected by the temperature detection means. A first temperature gradient calculating means for calculating a temperature difference A after the lapse of time and a change amount C of the temperature difference B between the lapse of the second predetermined time and the lapse of the second predetermined time, and an arbitrary time by the temperature detecting means. Second temperature gradient calculating means for calculating the temperature difference D between the temperature after the elapse of the third predetermined time detected while updating each time and the current temperature, and the change amount C and the determined value of the temperature difference D from the determined value. A linear load amount calculation means for linearly calculating the actual load amount in the heated object It is intended.

これによって、特に、揚げ物調理における負荷量判定および温度調整制御をリニアに展開できるので、被加熱物内の負荷(油)の量を検知する誤差を最小限にとどめ、温度調整レベルの制御も狙いに対する誤差を小さくし、温度調整の精度を高めることができる。   In particular, load determination and temperature adjustment control in deep-fried food cooking can be developed linearly, minimizing errors in detecting the amount of load (oil) in the object to be heated and aiming at temperature adjustment level control. Can be reduced, and the accuracy of temperature adjustment can be increased.

本発明の加熱調理器は、被加熱物内の負荷(油)の量を検知する誤差を最小限にとどめ、温度調整レベルの制御も狙いに対する誤差を小さくし、温度調整の精度を高めることができる。   The cooking device of the present invention can minimize the error in detecting the amount of load (oil) in the object to be heated, reduce the error with respect to the control of the temperature adjustment level, and increase the accuracy of temperature adjustment. it can.

第1の発明は、被加熱物を加熱する加熱手段と、前記被加熱物の温度を検知する温度検知手段と、前記温度検知手段の出力に基づいて加熱手段を制御して被加熱物の加熱電力量を制御する温度制御手段とを備え、前記温度制御手段は、温度検知手段により検出される第一の所定時間経過前と第一の所定時間経過後との温度差Aと第二の所定時間経過前と第二の所定時間経過後との温度差Bの変化量Cを算出する第一の温度勾配算出手段と、温度検知手段により任意時間毎に更新しながら検出される第三の所定時間経過後の温度と現在の温度との温度差Dを算出する第二の温度勾配算出手段と、変化量Cと温度差Dの確定値から被加熱物内の実際の負荷量を線形算出する線形負荷量算出手段とを有する加熱調理器としたものである。これによって、特に、揚げ物調理における負荷量判定および温度調整制御をリニアに展開できるので、被加熱物内の負荷(油)の量を検知する誤差を最小限にとどめ、温度調整レベルの制御も狙いに対する誤差を小さくし、温度調整の精度を高めることができる。   The first invention is a heating means for heating an object to be heated, a temperature detecting means for detecting the temperature of the object to be heated, and heating the object to be heated by controlling the heating means based on the output of the temperature detecting means. Temperature control means for controlling the amount of electric power, and the temperature control means is configured to detect a temperature difference A between the first predetermined time and the second predetermined time detected by the temperature detection means and the second predetermined time. A first temperature gradient calculating means for calculating a change amount C of the temperature difference B between before the passage of time and after the passage of a second predetermined time; and a third predetermined detected by the temperature detecting means while being updated every arbitrary time. The second temperature gradient calculating means for calculating the temperature difference D between the temperature after the lapse of time and the current temperature, and the actual load amount in the heated object is linearly calculated from the change amount C and the determined value of the temperature difference D. The heating cooker has a linear load amount calculation means. In particular, load determination and temperature adjustment control in deep-fried food cooking can be developed linearly, minimizing errors in detecting the amount of load (oil) in the object to be heated and aiming at temperature adjustment level control. Can be reduced, and the accuracy of temperature adjustment can be increased.

第2の発明は、特に、第1の発明において、反りレベルの確定値と線形負荷量算出手段で求まった値から、温度制御を線形算出手段で展開していく線形温度制御算出手段を設けたことにより、温度調整レベルの制御も狙いに対する誤差を小さくすることができるので温度調整の精度を高めることができる。   According to a second aspect of the invention, in particular, in the first aspect of the invention, a linear temperature control calculation unit is provided that expands the temperature control by the linear calculation unit based on the determined value of the warp level and the value obtained by the linear load amount calculation unit. As a result, it is possible to reduce the error with respect to the control of the temperature adjustment level, so that the accuracy of temperature adjustment can be increased.

第3の発明は、特に、第1または第2の発明において、調理を揚げ物調理とすることにより、特に、被加熱物の反り量または油量の判定誤検知によって、温度検知手段が正確に行われない場合には油発火の危険性を否めない揚げ物調理においては、被加熱物の反り判定および負荷(油)量判定の誤差を最小限にとどめられる。また温度調整レベルの制御も狙いに対する誤差を小さくすることができるので、温度調整の精度が高められ、かつ被加熱物反り判定を誤判定した場合にも判定値に大きなずれが生じることがないため、油調理の安全性も高めることができる。   According to a third aspect of the invention, in particular, in the first or second aspect of the invention, the temperature detection means accurately performs the cooking by using deep-fried food cooking, particularly by erroneous detection of the amount of warpage or oil amount of the object to be heated. In the case of fried food cooking that cannot deny the risk of oil ignition if it is not done, errors in warping judgment and load (oil) quantity judgment of the object to be heated can be minimized. Also, since the temperature adjustment level control can reduce the error with respect to the aim, the accuracy of the temperature adjustment can be improved, and even if the heated object warpage determination is misjudged, there is no significant deviation in the determination value. Also, the safety of oil cooking can be improved.

第4の発明は、特に、第1〜第3のいずれか1つの発明において、検出する負荷レベルの判定値に制限を設けて第二の温度勾配算出手段の閾値に到達した際には、入力電力をオフして温度検知手段の温度上昇レベルを検知しながら第二の温度勾配算出手段の閾値に到達する前の入力電力よりも低い入力電力で温度制御を行いながら加熱制御することにより、極少量の油のような負荷が入った被加熱物においては、低い入力電力で温度制御を行う。このため、被加熱物の過熱あるいは発火を防止するとともに少量油の温度制御を可能にすることができる。   In the fourth aspect of the invention, in particular, in any one of the first to third aspects, when the limit value of the load level to be detected is limited and the threshold value of the second temperature gradient calculating means is reached, the input is performed. By turning off the power and detecting the temperature rise level of the temperature detecting means while performing temperature control with input power lower than the input power before reaching the threshold of the second temperature gradient calculating means, the heating control is performed. For objects to be heated that are loaded with a small amount of oil, temperature control is performed with low input power. For this reason, it is possible to prevent overheating or ignition of the heated object and to control the temperature of the small amount of oil.

第5の発明は、特に、第1〜第4のいずれか1つの発明において、線形温度制御算出手段に補正手段を設けたことにより、内部構成の変更などで条件が変化した場合において、線形温度制御算出手段の定数を補正するだけで温度制御の微調整に対応することができるので、効率的に温度補正できるとともに適切な温度制御を行うことができる。   According to a fifth aspect of the invention, in particular, in any one of the first to fourth aspects of the invention, when the linear temperature control calculation means is provided with a correction means, and the condition changes due to a change in the internal configuration or the like, the linear temperature Since it is possible to cope with fine adjustment of the temperature control only by correcting the constant of the control calculation means, it is possible to efficiently correct the temperature and perform appropriate temperature control.

第6の発明は、特に、第1〜第4のいずれか1つの発明において、線形負荷量算出手段から求まった値を表示部に表示することにより、使用している被加熱物の反り量および負荷量(油量)を使用者が目視で認識することができるので、より安全で正確に調理することができる。   In a sixth aspect of the invention, in particular, in any one of the first to fourth aspects of the invention, by displaying the value obtained from the linear load amount calculation means on the display unit, Since the user can visually recognize the load amount (oil amount), cooking can be performed more safely and accurately.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態)
図は、本発明の実施の形態における加熱調理器として誘導加熱調理器を例示している。
(Embodiment)
The figure has illustrated the induction heating cooking appliance as a heating cooking appliance in embodiment of this invention.

図1に示すように、調理器の本体1はキッチンキャビネットのワークトップ2に上から落とし込んで組み込まれている。本体1の上面は結晶化ガラスを素材としたトッププレート3の周囲をプレート枠4で囲んで覆われている。また、トッププレート3には誘導加熱式の加熱部5a、5b、および電気抵抗発熱式の加熱部6(ラジェントヒーター部)を配置し、トッププレート3の前部には加熱部5a、5b、および加熱部6に対応する加熱操作部7、8、および加熱操作部9が配置されている。これら加熱操作部7、8、9はトッププレート3に印刷された電極部を触れることで電気的容量が変化することに反応する静電容量検知式のタッチキーとし、天面に凹凸がないため手入れなどの取扱いがし易い平面接触式を実現している。   As shown in FIG. 1, the main body 1 of the cooking device is dropped into the work top 2 of the kitchen cabinet and incorporated. The upper surface of the main body 1 is covered with a plate frame 4 surrounding the top plate 3 made of crystallized glass. The top plate 3 is provided with induction heating type heating units 5a and 5b and an electric resistance heating type heating unit 6 (radiant heater unit), and the top plate 3 has heating units 5a, 5b, Heating operation units 7 and 8 and a heating operation unit 9 corresponding to the heating unit 6 are arranged. These heating operation portions 7, 8, and 9 are capacitance detection type touch keys that react to changes in electrical capacitance by touching the electrode portion printed on the top plate 3, and the top surface has no irregularities. A flat contact type that is easy to handle, etc. is realized.

なお、本実施の形態の加熱操作部7、8、9は静電容量検知式に限定するものではなく、タクト式などの押しボタン式操作部でも効果は同じである。また、中央部の加熱部6はラジェントヒーター部に限定するものではなく、誘導加熱式の加熱部でもよい。   In addition, the heating operation parts 7, 8, and 9 of this Embodiment are not limited to an electrostatic capacitance detection type, The effect is the same also with push button type operation parts, such as a tact type. Further, the central heating unit 6 is not limited to the radial heater unit, and may be an induction heating type heating unit.

また、本体1側面には、本体1側面左内部に配置するグリル部10と、グリル部10を操作するためのタクト式スイッチの収納可能なグリル操作部11が配されている。なお、天面中央部に配する加熱部6の加熱操作部9は、グリル操作部11にまとめてもよいものである。   Also, on the side surface of the main body 1, there are disposed a grill portion 10 disposed inside the left side of the main body 1 and a grill operation portion 11 capable of storing a tact switch for operating the grill portion 10. Note that the heating operation unit 9 of the heating unit 6 disposed in the center of the top surface may be combined into the grill operation unit 11.

図1では示していないが、加熱部5a、5b、および加熱部6に対応する本体1内部には、加熱手段を構成する誘導加熱コイルと、ラジェントヒーターが配されている。誘導加熱コイルの電源回路である通電制御回路が誘導加熱コイルの下方に配され、回路ユニットに対応した前方で回路ユニット下の位置にそれぞれ冷却ファンを配置し、その下方の本体1奥行きには吸気口がある。   Although not shown in FIG. 1, an induction heating coil constituting a heating unit and a radial heater are arranged inside the main body 1 corresponding to the heating units 5 a and 5 b and the heating unit 6. An energization control circuit, which is a power circuit for the induction heating coil, is arranged below the induction heating coil, and a cooling fan is disposed in front of the circuit unit at a position below the circuit unit. There is a mouth.

また、図2に示すように、加熱部5aに対応する加熱操作部7は、例えば、加熱入切キー7aや、揚げ物調理を行うための揚げ物キー7eの他、加熱部5aの火力を調節するための火力アップキー7bおよび火力ダウンキー7cや、調理時間を設定するためのタイマ時間設定キー7f、またオート調理キー7gなどを配置する。表示部7dはLCDやLEDにより入力状態やタイマ時間、設定火力、設定温度などを表示するものである。なお、加熱操作部8、9、およびグリル操作部11においても同様な操作キーを配置しているものである。   Moreover, as shown in FIG. 2, the heating operation part 7 corresponding to the heating part 5a adjusts the heating power of the heating part 5a in addition to the heating on / off key 7a and the fried food key 7e for fried food cooking, for example. A thermal power up key 7b and a thermal power down key 7c for timer, a timer time setting key 7f for setting cooking time, an automatic cooking key 7g, and the like are arranged. The display unit 7d displays an input state, a timer time, a set heating power, a set temperature, and the like by an LCD or LED. Note that similar operation keys are also arranged in the heating operation units 8 and 9 and the grill operation unit 11.

また、図示していないが、本体1には、使用者に加熱調理器の状態を報知するためのブザーあるいは音声などを報知できるスピーカ、アンプと音声情報から構成する報知手段が設けてある。また、本実施の形態における加熱調理器の制御はマイコンを用いて実現する。   Although not shown, the main body 1 is provided with a buzzer for notifying the user of the state of the cooking device or a speaker capable of notifying a voice, a speaker, an amplifier, and voice information. Moreover, control of the heating cooker in this Embodiment is implement | achieved using a microcomputer.

図3に示すように、サーミスタよりなる温度検知手段19は、誘導加熱コイルよりなる加熱手段16の中心近傍に設け、鍋などの被加熱物18からトッププレート3を介して温度を検出する。また、温度検知手段19は中心近傍に配置されていることにより、加熱手段16からの磁束の影響を受けにくくしている。また、インバータ回路23は加熱手段16に高周波電流を供給するものである。   As shown in FIG. 3, the temperature detection means 19 made of a thermistor is provided in the vicinity of the center of the heating means 16 made of an induction heating coil, and detects the temperature from the heated object 18 such as a pan via the top plate 3. Further, since the temperature detecting means 19 is arranged in the vicinity of the center, the temperature detecting means 19 is hardly affected by the magnetic flux from the heating means 16. The inverter circuit 23 supplies high-frequency current to the heating means 16.

次に、図4に示す制御ブロック図から検知動作について説明する。   Next, the detection operation will be described from the control block diagram shown in FIG.

商用電源25は整流平滑部26に入力される。整流平滑部26にはブリッジダイオードで構成される全波整流器とその直流出力端子間にチョークコイルと平滑コンデンサで構成されるローパスフィルタが接続される。整流平滑部26の出力にはインバータ回路23が接続され、インバータ回路23に加熱手段16が接続される。インバータ回路23と加熱手段16は高周波インバータを構成する。インバータ回路23には、スイッチング素子27(本実施の形態ではIGBT)が設けられる。ダイオード28がスイッチング素子27に逆並列に接続されている。加熱手段16に並列に共振コンデンサ29が接続されている。インバータ回路23は出力制御手段30からの信号によりスイッチング素子27の通電率を制御することで加熱手段16に流れる電流を制御し、鍋などの被加熱物18を加熱する火力の強弱を制御する。   The commercial power supply 25 is input to the rectifying / smoothing unit 26. The rectifying / smoothing unit 26 is connected to a full-wave rectifier formed of a bridge diode and a low-pass filter formed of a choke coil and a smoothing capacitor between its DC output terminals. An inverter circuit 23 is connected to the output of the rectifying and smoothing unit 26, and the heating means 16 is connected to the inverter circuit 23. The inverter circuit 23 and the heating means 16 constitute a high frequency inverter. The inverter circuit 23 is provided with a switching element 27 (IGBT in the present embodiment). A diode 28 is connected to the switching element 27 in antiparallel. A resonance capacitor 29 is connected in parallel with the heating means 16. The inverter circuit 23 controls the current flowing through the heating means 16 by controlling the energization rate of the switching element 27 in accordance with a signal from the output control means 30, and controls the strength of the heating power for heating the heated object 18 such as a pan.

温度検知手段19の検出値は温度制御手段31に伝達される。温度制御手段31は、被加熱物18からの伝熱を検知し、温度検知手段19の出力に基づいて加熱手段16の高周波電流を制御して被加熱物18の加熱電力量を制御する。また、温度制御手段31は温度検知手段19の検出値と記憶手段35に記憶された制御温度とを比較し、検出値が制御温度を上回れば出力制御手段30に出力を低下させるか停止する信号を伝達する。   The detection value of the temperature detection means 19 is transmitted to the temperature control means 31. The temperature control means 31 detects heat transfer from the object to be heated 18 and controls the high-frequency current of the heating means 16 based on the output of the temperature detection means 19 to control the heating power amount of the object to be heated 18. Further, the temperature control means 31 compares the detection value of the temperature detection means 19 with the control temperature stored in the storage means 35, and if the detection value exceeds the control temperature, the output control means 30 reduces or stops the output. To communicate.

温度制御手段31を構成する温度勾配算出手段32は、温度検知手段19により検出される第一の所定時間経過前と第一の所定時間経過後との温度差Aと第二の所定時間経過前と第二の所定時間経過後との温度差Bの変化量Cを算出する第一の温度勾配算出手段32aと、温度検知手段19により任意時間毎に更新しながら検出される第三の所定時間経過後の温度と現在の温度との温度差Dを算出する第二の温度勾配算出手段32bとを有する。また、線形負荷量算出手段33は、変化量Cと温度差Dの確定値から被加熱物18内の実際の負荷量を線形算出する。また、線形算出手段34は、線形負荷量算出手段33の算出値を得て出力制御手段30に伝達し、出力制御手段30はスイッチング素子27の通電率を制御し被加熱物18を確定した火力で加熱する。さらに、温度制御手段31は目標温度設定手段36を有する。   The temperature gradient calculating means 32 that constitutes the temperature control means 31 includes a temperature difference A detected by the temperature detecting means 19 between the first predetermined time and the first predetermined time, and the second predetermined time. The first temperature gradient calculating means 32a for calculating the change amount C of the temperature difference B between the second predetermined time and the third predetermined time detected by the temperature detecting means 19 while being updated every arbitrary time. A second temperature gradient calculating means 32b for calculating a temperature difference D between the temperature after the lapse and the current temperature; Further, the linear load amount calculation means 33 linearly calculates the actual load amount in the article to be heated 18 from the determined values of the change amount C and the temperature difference D. Further, the linear calculation means 34 obtains the calculated value of the linear load amount calculation means 33 and transmits it to the output control means 30, and the output control means 30 controls the energization rate of the switching element 27 to determine the object 18 to be heated. Heat with. Further, the temperature control means 31 has a target temperature setting means 36.

記憶手段35は、前記変化量Cを被加熱物18の底の反りレベルと定義し、これを記憶している第一の記憶手段35aと、前記温度差Dは温度検知手段19が任意の温度に到達したときに確定して被加熱物18内の負荷レベルと定義し、これを記憶している第二の記憶手段35bとを有する。   The storage means 35 defines the amount of change C as the warp level of the bottom of the article 18 to be heated, and the first storage means 35a that stores this, and the temperature difference D is determined by the temperature detection means 19 at an arbitrary temperature. And the second storage means 35b for defining the load level in the article to be heated 18 and storing it.

次に、温度勾配算出手段32の動作、作用を図5〜図8により説明する。   Next, the operation and action of the temperature gradient calculating means 32 will be described with reference to FIGS.

図5は、被加熱物18に油を入れて一定入力電力で任意時間加熱した場合の温度検知手段19の検出値から算出した温度差の変化量を示す。   FIG. 5 shows the amount of change in the temperature difference calculated from the detection value of the temperature detection means 19 when oil is put into the article to be heated 18 and heated at a constant input power for an arbitrary time.

加熱開始後、一定の入力電力を数十秒(例えば、40秒程度)入力した時の温度差の変化量を温度検知手段19の検出値から、第一の所定時間(例えば、10秒)経過前と前記第一の所定時間経過後との温度差A(以下、ΔTS1とする)と、第二の所定時間(例えば、10秒)経過前と前記第二の所定時間経過後との温度差B(以下、ΔTS2とする)の変化量Cとして、温度差ΔTS1と経過後の温度差ΔTS2の差ΔTS=ΔTS2−ΔTS1を被加熱物18底の反りレベルと定義する。なお、反りレベルを表すΔTSの値が大きいほど被加熱物18底の反りレベルが小さく、ΔTSの値が小さいほど被加熱物18底の反りレベルが大きいとみなす。   The first predetermined time (for example, 10 seconds) elapses from the detected value of the temperature detection means 19 when the constant input power is input for several tens of seconds (for example, about 40 seconds) after heating is started. Temperature difference A between before and after the first predetermined time has elapsed (hereinafter referred to as ΔTS1), temperature difference between before the second predetermined time (for example, 10 seconds) and after the second predetermined time has elapsed As a change amount C of B (hereinafter referred to as ΔTS2), a difference ΔTS = ΔTS2−ΔTS1 between the temperature difference ΔTS1 and the temperature difference ΔTS2 after the passage is defined as a warp level of the bottom of the article 18 to be heated. Note that the warp level at the bottom of the object to be heated 18 is small as the value of ΔTS representing the warp level is large, and the warp level at the bottom of the object to be heated 18 is large as the value of ΔTS is small.

また、図6(a)は、一定入力電力で加熱する間、例えば、一秒毎に更新しながら温度検知手段19により刻々と更新しながら検出される第三の所定時間経過後(例えば、60秒)の温度と現在の温度との温度差D(現在温度と60秒前の温度の差)を、図5で算出された反りレベルΔTSの結果に基づく温度検知手段19温度の所定値Tpとした負荷量判定終了温度と定義し、所定値Tpに到達したときの温度差Dを仮負荷量ΔTQと定義する。なお、図6(b)に示すように、負荷量判定終了温度Tpの値は、あらかじめ被加熱物18の反り量と負荷量判別のための温度検知手段19の検出値との関係(傾向)を一次関数の式にしておき、求まった反りレベルΔTSの値を代入することにより確定する構成とする(Tp=aΔTS+b(a、bは任意))。被加熱物18が大きく反っている場合には、温度検知手段19が被加熱物18底温度を検出しきれないため、過熱を防止するためTpを低めに設定し、またTpの値には計算結果に関わらず上限および下限を設ける。   FIG. 6 (a) shows a state in which, for example, after a third predetermined time detected while being updated by the temperature detection means 19 while being updated every second during heating with a constant input power (for example, 60%). The temperature difference D between the temperature (second) and the current temperature (difference between the current temperature and the temperature 60 seconds before) is a predetermined value Tp of the temperature detection means 19 based on the result of the warp level ΔTS calculated in FIG. The temperature difference D when the predetermined amount Tp is reached is defined as a temporary load amount ΔTQ. As shown in FIG. 6B, the value of the load amount determination end temperature Tp is a relationship (trend) between the amount of warpage of the object to be heated 18 and the detected value of the temperature detecting means 19 for determining the load amount in advance. Is determined by substituting the value of the obtained warpage level ΔTS (Tp = aΔTS + b (a and b are arbitrary)). When the object to be heated 18 is greatly warped, the temperature detecting means 19 cannot detect the bottom temperature of the object to be heated 18, so that Tp is set low to prevent overheating, and the value of Tp is calculated. Regardless of the result, upper and lower limits are set.

次に、図7は、実際の負荷量Qに対する前述した検出値ΔTQとの関係をプロットしたもので、使用する本体1(機器)に応じてあらかじめ傾向データを取得しておく。図中のQ1〜Q3は、ΔTSとΔTQから求まる一次関数で、ΔTSに上限値および下限値を設け、ΔTSの値が大きいほど、すなわち被加熱物18の反りレベルが小さいほどQ1側の式へ、ΔTSの値が小さいほど、すなわち被加熱物18の反りレベルが大きいほどQ3側の式へ、ΔTS上限値ではQ1式を、下限値ではQ3式を用いる。例えば、Q式は、Q=E(ΔTQ)+Fとし、係数Eおよび切片Fは、ΔTSの結果から決まり、Q1〜Q3のいずれかを適用する。Q1〜Q2、またQ2〜Q3の間の式は、ΔTSの値に応じて比例式で補間し、Q1〜Q3は連続した直線の式で満たされる。以上のようにして、負荷量を線形的に算出する。   Next, FIG. 7 is a plot of the relationship between the detected value ΔTQ and the actual load amount Q. Trend data is acquired in advance according to the main body 1 (device) to be used. Q1 to Q3 in the figure are linear functions obtained from ΔTS and ΔTQ, and an upper limit value and a lower limit value are provided for ΔTS. The smaller the value of ΔTS, that is, the higher the warpage level of the article 18 to be heated, the equation on the Q3 side is used. For example, the Q formula is Q = E (ΔTQ) + F, the coefficient E and the intercept F are determined from the result of ΔTS, and any one of Q1 to Q3 is applied. The expressions between Q1 and Q2 and between Q2 and Q3 are interpolated by a proportional expression according to the value of ΔTS, and Q1 and Q3 are satisfied by a continuous straight line expression. As described above, the load amount is calculated linearly.

次に、図8は、反り量および負荷量確定後、反り量ΔTSの値に応じて変化する制御温度の設定値を数式化し、これを線形温度制御算出手段としたものである。例えば、使用者が揚げ物時に設定した火力を180℃と設定とすると、制御温度はTset180=a2ΔTS+b2(a2、b2は任意)を用い、被加熱物18の反り量ΔTSの値によって制御される。   Next, FIG. 8 formulates a set value of the control temperature that changes in accordance with the value of the warpage amount ΔTS after the warpage amount and the load amount are determined, and uses this as a linear temperature control calculation means. For example, if the heating power set by the user during frying is set to 180 ° C., the control temperature is Tset180 = a2ΔTS + b2 (a2 and b2 are arbitrary), and is controlled by the value of the warp amount ΔTS of the object 18 to be heated.

以上のように、反り判定確定後の負荷量判定およびその後の温度調整制御を線形制御することで、連続した線形の判定式で制御を可能とするので、被加熱物18内の負荷量を検知する際の誤差を最小限にとどめることができるとともに、温度調整レベルの制御も狙いに対する誤差を小さくすることができるので温度調整の精度を高められる。   As described above, since the load amount determination after the warpage determination is confirmed and the subsequent temperature adjustment control are linearly controlled, the control can be performed with a continuous linear determination formula, so the load amount in the object to be heated 18 is detected. In addition to minimizing the error in performing the adjustment, the temperature adjustment level control can also reduce the error with respect to the aim, so that the temperature adjustment accuracy can be improved.

また、本実施の形態のように、揚げ物調理においては、特に、被加熱物18の反り量または油量の判定誤検知によって、温度検知手段19が正確に行われない場合には油発火の危険性を否めないので、負荷(油)量判定の誤差を最小限にとどめられるとともに、また温度調整レベルの制御も狙いに対する誤差を小さくすることができるので、温度調整の精度が高められ、かつ被加熱物18反り判定を誤判定した場合にも判定値に大きなずれが生じることがないため安全性も高められる。   Further, as in the present embodiment, in deep-fried food cooking, there is a risk of oil ignition especially when the temperature detection means 19 is not accurately performed due to the erroneous detection of the warpage amount or the oil amount of the heated object 18. Therefore, the error in determining the load (oil) amount can be kept to a minimum, and the control of the temperature adjustment level can also reduce the error with respect to the aim. Even when the determination of warpage of the heated object 18 is erroneously determined, the determination value does not greatly deviate, so that safety can be improved.

また、検知する負荷レベル判定値に制限、例えば、ΔTQ≧700のように制限を設けて第二の温度勾配算出手段32bの閾値ΔTQ=700に到達した際には、入力電力をオフして温度検知手段19の温度上昇レベルを検知しながら前記第二の温度勾配算出手段32bの閾値に到達する前の入力電力よりも低い入力電力で温度制御を行いながら加熱を制御すると、極少量の油のような負荷が入った被加熱物18においては低い入力電力で温度制御を行うので被加熱物18の過熱あるいは発火を防止するとともに少量油の温度制御を可能にすることができる。   In addition, when the threshold value ΔTQ = 700 of the second temperature gradient calculation unit 32b is reached by limiting the load level determination value to be detected, for example, ΔTQ ≧ 700 and limiting the temperature, When heating is controlled while performing temperature control with input power lower than the input power before reaching the threshold value of the second temperature gradient calculating means 32b while detecting the temperature rise level of the detecting means 19, a very small amount of oil Since the temperature control is performed with a low input power in the object to be heated 18 having such a load, it is possible to prevent the object to be heated 18 from being overheated or ignited and to control the temperature of a small amount of oil.

また、線形温度制御算出手段に補正手段を設けることで、本体1の内部構成の変更などで冷却条件などが変化した場合においては、線形温度制御算出手段の定数を補正(例えば、操作キーからの入力で線形制御温度式の切片を変更できるようにする)するだけで温度制御の微調整に対応することができるので、効率的に温度補正できるとともに適切な温度制御を行うことができる。   Further, by providing a correction means in the linear temperature control calculation means, when the cooling condition or the like changes due to a change in the internal configuration of the main body 1, the constant of the linear temperature control calculation means is corrected (for example, from the operation key). It is possible to cope with fine adjustment of the temperature control simply by changing the intercept of the linear control temperature equation by input), so that the temperature can be corrected efficiently and appropriate temperature control can be performed.

また、反り判定レベルおよび線形負荷量算出手段から求まった値を表示部7dに表示するようにすると、使用している被加熱物18の反り量および負荷量(油量)を使用者が目視で認識することができるので、より安全で正確に調理することができる。   Further, when the value obtained from the warpage determination level and the linear load amount calculation means is displayed on the display unit 7d, the user visually determines the warpage amount and load amount (oil amount) of the heated object 18 being used. Because it can be recognized, it is possible to cook more safely and accurately.

以上のように、本発明にかかる加熱調理器は、被加熱物内の負荷(油)の量を検知する誤差を最小限にとどめ、温度調整レベルの制御も狙いに対する誤差を小さくし、温度調整の精度を高めることができるので、誘導加熱調理器に関わらず加熱調理器全般に適用できる。   As described above, the heating cooker according to the present invention minimizes the error in detecting the amount of load (oil) in the object to be heated, reduces the error with respect to the control of the temperature adjustment level, and adjusts the temperature. Therefore, the present invention can be applied to all cooking devices regardless of induction cooking devices.

本発明の実施の形態における加熱調理器の平面図The top view of the heating cooker in embodiment of this invention 同加熱調理器の加熱操作部の拡大平面図An enlarged plan view of the heating operation unit of the cooking device 同加熱調理器の構成を示す断面図Sectional drawing which shows the structure of the heating cooker 同加熱調理器の制御ブロック図Control block diagram of the cooking device 同加熱調理器の被加熱物の反りレベルの検知を示す図The figure which shows the detection of the curvature level of the to-be-heated material of the heating cooker (a)同加熱調理器の負荷量検知を示す図(b)同負荷量判定終了温度検出を示す図(A) The figure which shows the load amount detection of the same heating cooker (b) The figure which shows the same load amount determination end temperature detection 同加熱調理器の負荷量と仮負荷量の関係を示す図The figure which shows the relationship between the load amount and temporary load amount of the heating cooker 同加熱調理器における線形温度制御算出手段の算出値の変化を示す図The figure which shows the change of the calculated value of the linear temperature control calculation means in the same heating cooker

符号の説明Explanation of symbols

1 本体
16 加熱手段
18 被加熱物
19 温度検知手段
31 温度制御手段
32 温度勾配算出手段
32a 第一の温度勾配算出手段
32b 第二の温度勾配算出手段
33 線形負荷量算出手段
34 線形算出手段
35 記憶手段
35a 第一の記憶手段
35b 第二の記憶手段
DESCRIPTION OF SYMBOLS 1 Main body 16 Heating means 18 Object to be heated 19 Temperature detection means 31 Temperature control means 32 Temperature gradient calculation means 32a First temperature gradient calculation means 32b Second temperature gradient calculation means 33 Linear load amount calculation means 34 Linear calculation means 35 Storage Means 35a First storage means 35b Second storage means

Claims (6)

被加熱物を加熱する加熱手段と、前記被加熱物の温度を検知する温度検知手段と、前記温度検知手段の出力に基づいて加熱手段を制御して被加熱物の加熱電力量を制御する温度制御手段とを備え、前記温度制御手段は、温度検知手段により検出される第一の所定時間経過前と第一の所定時間経過後との温度差Aと第二の所定時間経過前と第二の所定時間経過後との温度差Bの変化量Cを算出する第一の温度勾配算出手段と、温度検知手段により任意時間毎に更新しながら検出される第三の所定時間経過後の温度と現在の温度との温度差Dを算出する第二の温度勾配算出手段と、変化量Cと温度差Dの確定値から被加熱物内の実際の負荷量を線形算出する線形負荷量算出手段とを有する加熱調理器。 A heating means for heating the object to be heated, a temperature detecting means for detecting the temperature of the object to be heated, and a temperature for controlling the heating power amount of the object to be heated by controlling the heating means based on the output of the temperature detecting means. Control means, wherein the temperature control means detects the temperature difference A between the first predetermined time and the first predetermined time detected by the temperature detecting means, the second predetermined time and the second A first temperature gradient calculating unit that calculates a change amount C of the temperature difference B from the elapse of a predetermined time, and a temperature after elapse of a third predetermined time detected while being updated every arbitrary time by the temperature detection unit Second temperature gradient calculating means for calculating a temperature difference D from the current temperature, linear load amount calculating means for linearly calculating the actual load amount in the object to be heated from the change amount C and the determined value of the temperature difference D, and Having a heating cooker. 反りレベルの確定値と線形負荷量算出手段で求まった値から、温度制御を線形算出手段で展開していく線形温度制御算出手段を設けた請求項1に記載の加熱調理器。 The cooking device according to claim 1, further comprising linear temperature control calculation means for developing temperature control by the linear calculation means based on the determined value of the warp level and the value obtained by the linear load amount calculation means. 調理を揚げ物調理とする請求項1または2に記載の加熱調理器。 The cooking device according to claim 1 or 2, wherein cooking is fried food cooking. 検出する負荷レベルの判定値に制限を設けて第二の温度勾配算出手段の閾値に到達した際には、入力電力をオフして温度検知手段の温度上昇レベルを検知しながら第二の温度勾配算出手段の閾値に到達する前の入力電力よりも低い入力電力で温度制御を行いながら加熱制御する請求項1〜3のいずれか1項に記載の加熱調理器。 When the limit value of the load level to be detected is limited and the threshold value of the second temperature gradient calculating means is reached, the second temperature gradient is detected while turning off the input power and detecting the temperature rise level of the temperature detecting means. The cooking device according to any one of claims 1 to 3, wherein the heating control is performed while performing temperature control with an input power lower than an input power before reaching a threshold value of the calculating means. 線形温度制御算出手段に補正手段を設けた請求項1〜4のいずれか1項に記載の加熱調理器。 The cooking device according to any one of claims 1 to 4, wherein the linear temperature control calculation means is provided with correction means. 線形負荷量算出手段から求まった値を表示部に表示する請求項1〜5のいずれか1項に記載の加熱調理器。 The cooking device according to any one of claims 1 to 5, wherein a value obtained from the linear load amount calculating means is displayed on a display unit.
JP2007313268A 2007-12-04 2007-12-04 Cooker Pending JP2009140638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313268A JP2009140638A (en) 2007-12-04 2007-12-04 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313268A JP2009140638A (en) 2007-12-04 2007-12-04 Cooker

Publications (1)

Publication Number Publication Date
JP2009140638A true JP2009140638A (en) 2009-06-25

Family

ID=40871078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313268A Pending JP2009140638A (en) 2007-12-04 2007-12-04 Cooker

Country Status (1)

Country Link
JP (1) JP2009140638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357616A (en) * 2018-12-04 2019-02-19 宁波吉吉娃电子科技有限公司 Automate frequency conversion light-wave cooker
WO2022065074A1 (en) * 2020-09-25 2022-03-31 ソニーグループ株式会社 Information processing device, information processing method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109357616A (en) * 2018-12-04 2019-02-19 宁波吉吉娃电子科技有限公司 Automate frequency conversion light-wave cooker
CN109357616B (en) * 2018-12-04 2020-08-28 温岭市第二绝缘材料厂 Automatic frequency conversion light wave stove
WO2022065074A1 (en) * 2020-09-25 2022-03-31 ソニーグループ株式会社 Information processing device, information processing method, and program

Similar Documents

Publication Publication Date Title
JP4910667B2 (en) Cooker
CN102356694B (en) Induction heating cooker
KR101981671B1 (en) Induction heating cooker and control method thereof
JP2006253007A (en) Ih cooker
JP4393799B2 (en) Induction heating cooker
JP5047222B2 (en) Electromagnetic cooker
JP4932646B2 (en) Induction heating cooker
JP2009140638A (en) Cooker
JP2008262722A (en) Induction heating cooker
JP5747178B2 (en) Induction heating cooker and its program
JP4972611B2 (en) Induction heating cooker
KR20200066529A (en) induction cooker with double safety structure
JP5218286B2 (en) Induction heating cooker
JP2009043587A (en) Induction heating cooker
JP4497196B2 (en) Induction heating cooker
JP2001230063A (en) Induction heating cooking device
JP5979990B2 (en) Induction heating cooker
JP4830658B2 (en) Cooker
JP2005078993A5 (en)
JP4823152B2 (en) Cooker
JP5182172B2 (en) Induction heating cooker
JP2010170784A (en) Heating cooker
JP2005150013A (en) Induction heating cooker
JP5047225B2 (en) Induction heating cooker
JP2008060088A5 (en)