JP2009135182A - Application processor - Google Patents

Application processor Download PDF

Info

Publication number
JP2009135182A
JP2009135182A JP2007308546A JP2007308546A JP2009135182A JP 2009135182 A JP2009135182 A JP 2009135182A JP 2007308546 A JP2007308546 A JP 2007308546A JP 2007308546 A JP2007308546 A JP 2007308546A JP 2009135182 A JP2009135182 A JP 2009135182A
Authority
JP
Japan
Prior art keywords
exhaust
cup
substrate
wafer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007308546A
Other languages
Japanese (ja)
Other versions
JP4895984B2 (en
Inventor
Kazuo Sakamoto
和生 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007308546A priority Critical patent/JP4895984B2/en
Priority to KR1020080091513A priority patent/KR101385392B1/en
Publication of JP2009135182A publication Critical patent/JP2009135182A/en
Application granted granted Critical
Publication of JP4895984B2 publication Critical patent/JP4895984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent unevenness of application (marks with wind) by exhausting Ekman vortices generated by the rotation of a substrate upward. <P>SOLUTION: In an application processor for allowing a wafer held by a spin chuck to be subjected to treatment by ejecting an application liquid, an exhaust mechanism 20 includes: an inner cup 23 having an inner pipe portion 22 and an inner side hood portion 21 covering the entire periphery above in a wafer periphery side relative to a transition region (Ekman vortices) and turbulent flow of air flow flown on a wafer surface by rotation; an outer cup 26 having an outer pipe portion 25 and an outer side hood portion 24 covering the entire periphery above the Ekman vortices; exhaust pumps 31 and 32 in communication with exhaust paths 27a, 27b, and 28 of the inner cup and the outer cup; and a controller 40 for controlling the drive of a motor 2 of the spin chuck and the exhaust pump. The exhaust pump is driven when the wafer is rotated after the application liquid is ejected to the wafer surface. The exhaust amount of the exhaust path of the outer cup is set to be larger than the exhaust amount of the exhaust path of the inner cup, and the air flow of the Ekman vortices is exhausted to an upper side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、例えば半導体ウエハ等の基板の表面に塗布液を塗布する塗布処理装置に関するものである。   The present invention relates to a coating processing apparatus for coating a coating liquid on the surface of a substrate such as a semiconductor wafer.

一般に、半導体デバイスの製造のプロセスにおけるフォトリソグラフィー工程では、例えば半導体ウエハ(以下にウエハという)の下地膜上に塗布液であるレジスト液を塗布してレジスト膜を形成するレジスト塗布処理、ウエハ表面に所定の回路パターンが露光される露光処理、露光後のウエハを現像液により現像する現像処理、及びウエハの下地膜などを食刻するエッチング処理等が行われている。   In general, in a photolithography process in the process of manufacturing a semiconductor device, for example, a resist coating process for forming a resist film by applying a resist liquid as a coating liquid on a base film of a semiconductor wafer (hereinafter referred to as a wafer), An exposure process for exposing a predetermined circuit pattern, a development process for developing the exposed wafer with a developer, an etching process for etching a base film of the wafer, and the like are performed.

従来の塗布処理装置は、処理容器の内部に設けた鉛直軸回りに回転可能なスピンチャック上にウエハを保持して、ウエハを回転させながらレジスト液をウエハ表面に供給してレジスト膜を形成している。この塗布処理装置においては、高速回転時にレジスト液がミストとなってウエハの外方に飛散した後に、処理容器の内周面に衝突して、跳ね返ることによりウエハに再付着する虞がある。そのため、処理容器の上側にウエハ周りを排気する排気フードを設けて、上記ミストを強制的に外部に排気する必要がある。しかし、排気流量を増加することによってミストを速やかに処理容器の外部に排出できる反面、処理容器からの排気流量が増加されると、ウエハ周辺におけるレジストの乾燥が促進されて周辺部の膜厚が厚くなり、ウエハ中央部と周辺部とにおいて膜厚が不均一になるという問題があった。   Conventional coating processing apparatuses form a resist film by holding a wafer on a spin chuck that is rotatable around a vertical axis provided inside a processing container and supplying a resist solution to the wafer surface while rotating the wafer. ing. In this coating processing apparatus, there is a risk that the resist solution becomes a mist at the time of high-speed rotation and scatters to the outside of the wafer, then collides with the inner peripheral surface of the processing container and rebounds to reattach to the wafer. Therefore, it is necessary to provide an exhaust hood for exhausting the periphery of the wafer above the processing container to forcibly exhaust the mist to the outside. However, by increasing the exhaust flow rate, mist can be quickly discharged to the outside of the processing container, but when the exhaust flow rate from the processing container is increased, the drying of the resist around the wafer is promoted and the film thickness of the peripheral portion is increased. There has been a problem that the film thickness becomes thick and the film thickness becomes non-uniform at the center and the periphery of the wafer.

上記問題を解決する手段として、処理容器の上側にウエハ周りを排気するように配設されたメインフードの上側にフード開口との高さを調整自在なサブフードを配設した構造や、上記サブフードのフード開口面積を調整自在にした構造のものが知られている(例えば、特許文献1参照)。   As means for solving the above problems, a structure in which a sub hood whose height with the hood opening can be adjusted is provided on the upper side of the main hood arranged to exhaust the periphery of the wafer on the upper side of the processing container, The thing of the structure which made the food | hood opening area adjustable is known (for example, refer patent document 1).

上記特許文献1に記載の塗布処理装置によれば、ウエハ周りの排気流量を調整することによってウエハの中央部と周辺部とにおける膜厚分布のばらつきを抑制することができる。
特開平9−10658号公報(特許請求の範囲、図1,図2,図4,図5)
According to the coating processing apparatus described in Patent Document 1, it is possible to suppress variations in film thickness distribution between the central portion and the peripheral portion of the wafer by adjusting the exhaust flow rate around the wafer.
Japanese Patent Laid-Open No. 9-10658 (Claims, FIGS. 1, 2, 4, and 5)

ところで、塗布処理装置において、ウエハを高速回転すると、ウエハ表面を流れる気流が乱流及び遷移域(エクマン渦とも呼ばれる)となり、このエクマン渦により塗布膜のウエハ全面での均一な乾燥が行われない現象が生じ、この現象により塗布膜厚の均一性が得られないばかりか塗布むら(風きり跡)が生じる問題がある。なお、エクマン渦の生じる位置は回転系のレイノルズ数の式から求められる。すなわち、回転円盤でのレイノルズ数(Re)は、次式で表される。   By the way, in the coating processing apparatus, when the wafer is rotated at a high speed, the airflow flowing on the wafer surface becomes a turbulent flow and a transition region (also called an Ekman vortex), and the Ekman vortex does not uniformly dry the entire coating film on the wafer. A phenomenon occurs, and this phenomenon has a problem that not only uniformity of the coating film thickness can be obtained but also uneven coating (wind marks) occurs. The position where the Ekman vortex occurs can be obtained from the Reynolds number formula of the rotating system. That is, the Reynolds number (Re) in the rotating disk is expressed by the following equation.

Re=r2×ω×(ρ/μ) ・・・(1)
ここで、
r;半径位置
ω;回転角
ρ;密度(空気の場合;0.00119g/cm3)
μ;粘度(空気の場合;181μP)である。
Re = r 2 × ω × (ρ / μ) (1)
here,
r; radial position ω; rotation angle ρ; density (in the case of air; 0.00119 g / cm3)
μ: Viscosity (in the case of air; 181 μP).

上記レイノルズ数の式からエクマン渦が生じる半径位置が求められる。しかし、従来、一般の塗布機においては、レイノルズ数の値が約28万を越える条件で風きり跡が発生し始めるので、ウエハサイズが大径になると、ウエハの周縁から内方側にエクマン渦が生じる。   The radial position where the Ekman vortex occurs is determined from the above Reynolds number formula. However, conventionally, in a general coating machine, wind marks start to be generated under the condition that the Reynolds number exceeds about 280,000. Therefore, when the wafer size becomes large, the Ekman vortex is generated from the periphery of the wafer to the inward side. Occurs.

しかしながら、特許文献1に記載の技術は、ウエハ周りの外方に排気する方式であるため、エクマン渦の発生する位置の乱流が残った状態の排気となり、レジストの乾燥の均一が図れず、塗布むら(風きり跡)を生じる懸念がある。   However, since the technique described in Patent Document 1 is a method of exhausting outward around the wafer, the turbulent flow at the position where the Ekman vortex is generated remains exhausted, and the resist cannot be uniformly dried. There is a concern of uneven coating (wind marks).

したがって、上記塗布むら(風きり跡)をなくすには、ウエハを低速で回転させることが行われるが、低速では乾燥速度を速くすることができず、処理時間が長くなる問題がある。   Therefore, in order to eliminate the coating unevenness (wind mark), the wafer is rotated at a low speed. However, at a low speed, the drying speed cannot be increased, and there is a problem that the processing time becomes long.

この発明は、上記事情に鑑みてなされたもので、基板の高速回転時に生じるエクマン渦部分の上方に排気を行ってエクマン渦の気流を上方へ排気することにより膜厚の均一を図れるようにした塗布処理装置を提供することを課題とする。   The present invention has been made in view of the above circumstances, and it has been made possible to exhaust the Ekman vortex part generated when the substrate rotates at high speed and exhaust the Ekman vortex air flow upward to make the film thickness uniform. It is an object to provide a coating apparatus.

上記課題を解決するために、この発明の塗布処理装置は、処理容器内に配設され、基板の表面を上面にして保持する基板保持台と、上記基板保持台を鉛直軸回りに回転させる回転駆動機構と、上記基板保持台に保持された基板の表面に向かって塗布液を吐出するノズルと、上記基板保持台に保持された基板の周りを排気する排気機構と、を具備する塗布処理装置において、 上記排気機構は、上記基板保持台に保持された基板の回転に起因して基板表面を流れる気流の乱流及び遷移域より基板周縁側の上方の全周を覆う内側フード部及び上記基板保持台の側方を覆う内筒部を有する内カップと、上記基板表面を流れる気流の乱流及び遷移域の上方の全周を覆う外側フード部及び上記内カップの内筒部を覆う外筒部を有する外カップと、上記内カップに設けられた内側排気通路に連通する第1の排気装置と、上記外カップに設けられた外側排気通路に連通する第2の排気装置と、上記回転駆動機構、第1及び第2の排気装置の駆動を制御する制御手段と、を具備してなり、 上記制御手段からの制御信号に基づいて、上記ノズルから基板表面に塗布液が吐出された後、上記回転駆動機構により基板が回転した際に、上記第1及び第2の排気装置を駆動し、この際、上記外カップの外側排気通路の排気量を、内カップに設けられた内側排気通路の排気量より大きくして、上記乱流及び遷移域の気流を上方側へ排気する、ことを特徴とする(請求項1)。   In order to solve the above-described problems, a coating processing apparatus according to the present invention is provided in a processing container, and holds a substrate holding table with the surface of the substrate facing up, and a rotation for rotating the substrate holding table around a vertical axis. A coating processing apparatus comprising: a drive mechanism; a nozzle that discharges a coating liquid toward the surface of the substrate held on the substrate holding table; and an exhaust mechanism that exhausts the periphery of the substrate held on the substrate holding table. The evacuation mechanism includes an inner hood portion that covers the entire periphery above the substrate peripheral side from the turbulent flow and transition region of the airflow flowing on the substrate surface due to the rotation of the substrate held on the substrate holding table, and the substrate An inner cup having an inner cylinder portion that covers the side of the holding table, an outer hood portion that covers the entire circumference above the turbulent flow and transition region of the airflow flowing on the substrate surface, and an outer cylinder that covers the inner cylinder portion of the inner cup An outer cup having a portion, and the inner A first exhaust device communicating with the inner exhaust passage provided in the cup, a second exhaust device communicating with the outer exhaust passage provided in the outer cup, the rotational drive mechanism, the first and second And a control means for controlling the driving of the exhaust device, and after the coating liquid is discharged from the nozzle onto the substrate surface based on the control signal from the control means, the substrate is rotated by the rotational drive mechanism. When the first and second exhaust devices are driven, the exhaust amount of the outer exhaust passage of the outer cup is made larger than the exhaust amount of the inner exhaust passage provided in the inner cup, The turbulent flow and the airflow in the transition region are exhausted upward (Claim 1).

このように構成することにより、ノズルから基板表面に塗布液が吐出された後、回転駆動機構により基板を回転した際に、基板の回転に起因して生じる基板表面を流れる気流の乱流及び遷移域(エクマン渦)の気流を上方側から外カップの外側排気通路を介して排気し、エクマン渦より基板外周側の気流を内カップの内側排気通路を介して排気することができる。   With this configuration, when the coating liquid is discharged from the nozzle to the substrate surface and then the substrate is rotated by the rotation drive mechanism, the turbulent flow and transition of the airflow flowing on the substrate surface caused by the rotation of the substrate is generated. The airflow in the region (Ekman vortex) can be exhausted from the upper side through the outer exhaust passage of the outer cup, and the airflow on the outer periphery side of the substrate from the Ekman vortex can be exhausted through the inner exhaust passage of the inner cup.

この発明において、上記外カップに設けられた外側排気通路に排気量調整弁を介設し、上記排気量調整弁の開度を上記制御手段からの制御信号に基づいて調整可能に形成する方が好ましい(請求項2)。   In the present invention, an exhaust amount adjusting valve is provided in an outer exhaust passage provided in the outer cup, and the opening amount of the exhaust amount adjusting valve is formed so as to be adjustable based on a control signal from the control means. Preferred (claim 2).

このように構成することにより、基板の回転速度に応じて排気流量を調整することができる。   With this configuration, the exhaust gas flow rate can be adjusted according to the rotation speed of the substrate.

また、上記内カップの内筒部及び外カップの外筒部に基板搬入出口を設けると共に、この基板搬入出口を閉塞するシャッタを開閉可能に形成してもよい(請求項3)。   Further, a substrate loading / unloading port may be provided in the inner tube portion of the inner cup and the outer tube portion of the outer cup, and a shutter for closing the substrate loading / unloading port may be formed to be openable and closable.

このように構成することにより、内カップの内筒部及び外カップの外筒部に設けられた基板搬入出口を介して基板搬送手段と基板保持台との間で基板の受け渡しを行うことができる。   By comprising in this way, a board | substrate can be delivered between a board | substrate conveyance means and a board | substrate holding stand via the board | substrate carrying-in / out opening provided in the inner cylinder part of an inner cup, and the outer cylinder part of an outer cup. .

また、上記内カップ及び外カップを一体に形成し、この一体型カップを処理容器の上部に対して着脱可能に形成するようにしてもよい(請求項4)。   Further, the inner cup and the outer cup may be integrally formed, and the integrated cup may be formed so as to be detachable from the upper part of the processing container.

このように構成することにより、基板の大きさや回転速度を変えて処理する場合における最適な内カップ及び外カップを選択して装置に設置することができる。   By comprising in this way, the optimal inner cup and outer cup in the case of processing by changing the size and rotation speed of the substrate can be selected and installed in the apparatus.

また、上記内カップ及び外カップを基板保持台の上部において処理容器に対して昇降可能に形成すると共に、昇降機構によって昇降させるようにしてもよい(請求項5)。   Further, the inner cup and the outer cup may be formed so as to be movable up and down with respect to the processing container at the upper part of the substrate holding table, and may be moved up and down by a lifting mechanism.

このように構成することにより、内カップ及び外カップを基板保持台の上方に移動させた状態で、基板搬送手段と基板保持台との間で基板の受け渡しを行うことができる。   With this configuration, the substrate can be transferred between the substrate transfer means and the substrate holder while the inner cup and the outer cup are moved above the substrate holder.

以上に説明したように、この発明の塗布処理装置は、上記のように構成されているので、以下のような効果が得られる。   As described above, since the coating treatment apparatus of the present invention is configured as described above, the following effects can be obtained.

(1)請求項1記載の発明によれば、基板の回転に起因して生じる基板表面を流れるエクマン渦を上方側から外カップの外側排気通路を介して排気し、エクマン渦より基板外周側の気流を内カップの内側排気通路を介して排気するので、エクマン渦による塗布むら(風きり跡)を防止すると共に、塗布膜厚の均一化が図れる。また、エクマン渦による塗布むら(風きり跡)が発生しない高速回転処理が可能となるので、処理効率の向上が図れる。   (1) According to the invention described in claim 1, the Ekman vortex generated on the substrate surface caused by the rotation of the substrate is exhausted from the upper side through the outer exhaust passage of the outer cup, Since the airflow is exhausted through the inner exhaust passage of the inner cup, uneven coating (wind marks) due to the Ekman vortex can be prevented and the coating film thickness can be made uniform. In addition, since high-speed rotation processing that does not cause coating unevenness (wind marks) due to Ekman vortices is possible, the processing efficiency can be improved.

(2)請求項2記載の発明によれば、基板の回転速度に応じて排気流量を調整することができるので、上記(1)に加えて、更に処理条件の異なる塗布処理に対応することができる。   (2) According to the invention described in claim 2, since the exhaust gas flow rate can be adjusted according to the rotation speed of the substrate, in addition to the above (1), it is possible to cope with a coating process with different processing conditions. it can.

(3)請求項3,5記載の発明によれば、上記(1),(2)に加えて、内カップ及び外カップの構造を複雑にすることなく、基板搬送手段と基板保持台との間で基板の受け渡しを行うことができる。   (3) According to the inventions of claims 3 and 5, in addition to the above (1) and (2), the structure of the inner cup and the outer cup can be reduced without complicating the structure of the substrate transfer means and the substrate holder. The substrate can be transferred between them.

(4)請求項4記載の発明によれば、上記(1)〜(3)に加えて、更に基板の大きさや回転速度を変えて処理する場合における最適な内カップ及び外カップを選択して装置に設置することができる。   (4) According to the invention described in claim 4, in addition to the above (1) to (3), the optimum inner cup and outer cup are selected in the case of processing by changing the size and rotation speed of the substrate. Can be installed in the device.

以下に、この発明の最良の実施形態を添付図面に基づいて詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、この発明に係る塗布処理装置の第1実施形態を示す概略断面図、図2は、上記塗布処理装置における気体の流れの状態を示す概略平面図である。   FIG. 1 is a schematic cross-sectional view showing a first embodiment of a coating treatment apparatus according to the present invention, and FIG. 2 is a schematic plan view showing a state of gas flow in the coating treatment apparatus.

上記塗布処理装置は、処理容器10内に配設され、基板である半導体ウエハW(以下にウエハWという)の表面を上面にして保持する基板保持台であるスピンチャック1と、スピンチャック1を鉛直軸回りに回転させる回転駆動機構であるモータ2と、スピンチャック1に保持されたウエハWの表面に向かって塗布液(レジスト液)を吐出する塗布ノズル3と、スピンチャック1に保持されたウエハWの周りを排気する排気機構20と、を具備している。   The coating processing apparatus includes a spin chuck 1 that is a substrate holder and is disposed in a processing container 10 and holds a semiconductor wafer W (hereinafter referred to as a wafer W) that is a substrate as an upper surface, and the spin chuck 1. A motor 2 that is a rotation drive mechanism that rotates about a vertical axis, a coating nozzle 3 that discharges a coating liquid (resist liquid) toward the surface of the wafer W held by the spin chuck 1, and a spin chuck 1. And an exhaust mechanism 20 that exhausts the periphery of the wafer W.

上記排気機構20は、スピンチャック1に保持されたウエハWの回転に起因してウエハ表面を流れる気流の乱流及び遷移域(エクマン渦)の気流よりウエハ周縁側の上方の全周を覆う内側フード部21及びスピンチャック1の側方を覆う内筒部22を有する内カップ23と、ウエハ表面を流れるエクマン渦の上方の全周を覆う外側フード部24及び内カップ23の内筒部22を覆う外筒部25を有する外カップ26と、内カップ23に設けられた第1及び第2の内側排気通路27a,27bに連通する第1の排気装置である第1の排気ポンプ31と、外カップ26に設けられた外側排気通路28に連通する第2の排気装置である第2の排気ポンプ32と、を具備している。   The exhaust mechanism 20 is configured to cover the entire circumference on the wafer peripheral side from the turbulent flow of the air current flowing on the wafer surface due to the rotation of the wafer W held by the spin chuck 1 and the air flow of the transition region (Ekman vortex). An inner cup 23 having an inner cylindrical portion 22 that covers the side of the hood portion 21 and the spin chuck 1, an outer hood portion 24 that covers the entire circumference of the Ekman vortex flowing on the wafer surface, and an inner cylindrical portion 22 of the inner cup 23. A first exhaust pump 31 that is a first exhaust device communicating with first and second inner exhaust passages 27a and 27b provided in the inner cup 23; A second exhaust pump 32 which is a second exhaust device communicating with an outer exhaust passage 28 provided in the cup 26.

この場合、外側排気通路28は、内カップ23の内筒部22と外カップ26の外筒部25との間に形成される環状通路28aと、内カップ23の内筒部22の下端と外カップ26の外筒部25の下端とを連結する環状底部29の4箇所に設けられた連通口28bを介して連通する外部排気通路28cとで構成されている。また、外側排気通路28の外部排気通路28cには、第2の排気ポンプ32との間に部位に排気量調整弁33が介設されている。   In this case, the outer exhaust passage 28 includes an annular passage 28a formed between the inner cylindrical portion 22 of the inner cup 23 and the outer cylindrical portion 25 of the outer cup 26, and the lower end of the inner cylindrical portion 22 of the inner cup 23 and the outer side. The external exhaust passage 28c communicates through communication ports 28b provided at four locations of an annular bottom portion 29 that connects the lower end of the outer cylindrical portion 25 of the cup 26. Further, an exhaust amount adjusting valve 33 is interposed in a portion of the outer exhaust passage 28 between the second exhaust pump 32 and the external exhaust passage 28c.

また、上記内カップ23と外カップ26は、内カップ23の内筒部22の下端と外カップ26の外筒部25の下端とを連結する環状底部29によって一体に形成されている。このように一体に形成される一体型の内カップ23と外カップ26は、外カップ26の外筒部25の上端部側面に突設される取付ブラケット34を塗布装置の固定段部35に着脱可能に載置し、ボルト等の固定部材(図示せず)で固定することで、装置に設置される。   The inner cup 23 and the outer cup 26 are integrally formed by an annular bottom 29 that connects the lower end of the inner cylindrical portion 22 of the inner cup 23 and the lower end of the outer cylindrical portion 25 of the outer cup 26. The integrally formed inner cup 23 and outer cup 26 are integrally formed in this way, and a mounting bracket 34 protruding from the upper end side surface of the outer cylindrical portion 25 of the outer cup 26 is attached to and detached from the fixed step portion 35 of the coating device. It is installed in the apparatus by being mounted as possible and fixed by a fixing member (not shown) such as a bolt.

また、内カップ23の内筒部22と外カップ26の外筒部25の対向する位置にはウエハ搬入出口36が設けられており、外カップ26の外筒部25に設けられたウエハ搬入出口36は、図示しない昇降機構によって昇降されるシャッタ37によって開閉可能に閉塞されるように構成されている。したがって、シャッタ37を開放した状態で、スピンチャック1とウエハ搬送アーム4との間でウエハWの受け渡しを行うことができる。   Further, a wafer loading / unloading port 36 is provided at a position where the inner tube portion 22 of the inner cup 23 and the outer tube portion 25 of the outer cup 26 face each other, and the wafer loading / unloading port provided in the outer tube portion 25 of the outer cup 26 is provided. 36 is configured to be opened and closed by a shutter 37 that is lifted and lowered by a lifting mechanism (not shown). Therefore, the wafer W can be transferred between the spin chuck 1 and the wafer transfer arm 4 with the shutter 37 opened.

一方、上記処理容器10は、上記内カップ23と外カップ26下方に連接する筒状の容器本体11と、容器本体11の下部内方側において一方から他方に向かって下り勾配をもって配設される底板12と、底板12の中央部側に立設する円筒壁13の上端部に設置され、スピンチャック1により保持されたウエハWの裏面へのレジスト液の浸入を阻止する外面が拡径テーパ面14aを有する環状の浸入阻止部材14と、内カップ23の内筒部22との間に第1の内側排気通路27aを形成し、浸入阻止部材14の拡径テーパ面14aとの間に第2の内側排気通路27bを形成する環状の排気分散部材15と、を具備する。なお、底板12には、第1及び第2の内側排気通路27a,27bと連通する排気口16が設けられている。なお、浸入阻止部材14には、ウエハWのエッジ部及び裏面を洗浄するエッジ,裏面リンスノズル(図示せず)が装着されている。   On the other hand, the processing container 10 is disposed with a cylindrical container body 11 connected to the lower side of the inner cup 23 and the outer cup 26, and with a downward slope from one to the other on the lower inner side of the container body 11. The outer surface of the bottom plate 12 and the cylindrical wall 13 erected on the center side of the bottom plate 12 is an enlarged taper surface whose outer surface prevents resist solution from entering the back surface of the wafer W held by the spin chuck 1. A first inner exhaust passage 27 a is formed between the annular intrusion prevention member 14 having 14 a and the inner cylinder portion 22 of the inner cup 23, and a second is formed between the enlarged diameter tapered surface 14 a of the intrusion prevention member 14. And an annular exhaust dispersion member 15 forming an inner exhaust passage 27b. The bottom plate 12 is provided with an exhaust port 16 that communicates with the first and second inner exhaust passages 27a and 27b. The intrusion prevention member 14 is provided with an edge for cleaning the edge portion and the back surface of the wafer W, and a back surface rinsing nozzle (not shown).

上記排気口16には内部排気管17を介して第1の排気装置である第1の排気ポンプ31が接続されている。また、底板12の最低部にはドレイン口18が設けられており、このドレイン口18にドレイン管19が接続されている。なお、底板12の中央部にはスピンチャック1の回転軸1aが気水密な状態で回転自在に貫通している。   A first exhaust pump 31 as a first exhaust device is connected to the exhaust port 16 via an internal exhaust pipe 17. A drain port 18 is provided at the lowest part of the bottom plate 12, and a drain pipe 19 is connected to the drain port 18. In addition, the rotating shaft 1a of the spin chuck 1 passes through the center portion of the bottom plate 12 so as to be rotatable in an air-watertight state.

上記塗布ノズル3の移動機構(図示せず)と、レジスト液供給源の開閉弁(図示せず)と、モータ2,排気量調整弁33,第1及び第2の排気ポンプ31,32はそれぞれ制御手段であるコントローラ40と電気的に接続されており、コントローラ40からの制御信号に基づいて、塗布ノズル3からウエハ表面にレジスト液が吐出された後、モータ2によりウエハWが高速回転例えば回転速度3000rpmで回転した際に、第1及び第2の排気ポンプ31,32が駆動されると共に、排気量調整弁33の開度が調整されるようになっている。なお、排気する際は、外カップ26の外側排気通路28の排気量を、内カップ23に設けられた第1及び第2の内側排気通路27a,27bの排気量より大きくして、上記乱流及び遷移域(エクマン渦)の気流を上方側すなわち外カップ26の外側フード部24へ排気し、外側排気通路28を介して外部に排気する。これにより、エクマン渦による塗布むら(風きり跡)を解消することができる。また、エクマン渦よりウエハWの外周側の気流は内カップ23の第1,第2の内側排気通路27a,27bを介して外部に排気される。   The moving mechanism (not shown) of the coating nozzle 3, the opening / closing valve (not shown) of the resist solution supply source, the motor 2, the exhaust amount adjusting valve 33, the first and second exhaust pumps 31, 32 are respectively provided. The controller 40 is electrically connected to a controller 40 that is a control means. Based on a control signal from the controller 40, after the resist solution is discharged from the coating nozzle 3 onto the wafer surface, the wafer W is rotated at a high speed, for example, by the motor 2. When rotating at a speed of 3000 rpm, the first and second exhaust pumps 31 and 32 are driven, and the opening degree of the exhaust amount adjusting valve 33 is adjusted. When exhausting, the exhaust amount of the outer exhaust passage 28 of the outer cup 26 is made larger than the exhaust amount of the first and second inner exhaust passages 27a and 27b provided in the inner cup 23, so that the turbulent flow. In addition, the airflow in the transition region (Ekman vortex) is exhausted to the upper side, that is, the outer hood portion 24 of the outer cup 26, and is exhausted to the outside through the outer exhaust passage 28. Thereby, the coating nonuniformity (wind mark) by an Ekman vortex can be eliminated. Further, the airflow on the outer peripheral side of the wafer W from the Ekman vortex is exhausted to the outside through the first and second inner exhaust passages 27a and 27b of the inner cup 23.

上記のようにして、回転するウエハWの表面に生じる乱流及び遷移域(エクマン渦)の気流を外カップ26の外側フード部24へ排気し、エクマン渦よりウエハWの外周側の気流を内カップ23の第1,第2の内側排気通路27a,27bを介して外部に排気するには、内カップ23の内側フード部21のウエハ側端部からの寸法と、外カップ26の外側フード部24のウエハ側端部からの寸法を、処理に供されるウエハWの大きさ及び回転速度に応じてエクマン渦が生じる位置に設定する必要がある。また、内カップ23及び外カップ26の寸法の設定に加えて第1,第2の内側排気通路27a,27bと外側排気通路28の排気量の条件を設定する必要がある。   As described above, the turbulent flow generated on the surface of the rotating wafer W and the airflow in the transition region (Ekman vortex) are exhausted to the outer hood portion 24 of the outer cup 26, and the airflow on the outer peripheral side of the wafer W is evacuated from the Ekman vortex. In order to exhaust outside through the first and second inner exhaust passages 27a and 27b of the cup 23, the dimension from the wafer side end portion of the inner hood portion 21 of the inner cup 23, and the outer hood portion of the outer cup 26 It is necessary to set the dimension from the wafer side end of 24 to a position where the Ekman vortex is generated according to the size and rotation speed of the wafer W to be processed. In addition to setting the dimensions of the inner cup 23 and the outer cup 26, it is necessary to set the exhaust amount conditions of the first and second inner exhaust passages 27a, 27b and the outer exhaust passage 28.

次に、内カップ23及び外カップ26の寸法の設定と、第1,第2の内側排気通路27a,27bと外側排気通路28の排気量の条件について、図5ないし図7を参照して詳細に説明する。なお、図5は、内カップ23及び外カップ26の寸法と排気部を示す要部拡大断面図で、図5において、外側排気通路28の排気量;a,第1の内側排気通路27aの排気量;b,第2の内側排気通路27bの排気量;c,内カップ23の内側フード部21のウエハ外周端部からの寸法;e,外カップ26の外側フード部24のウエハ外周端部からの寸法;dとする。また、図6は、内カップ23及び外カップ26の排気部の気体の流れを示す要部拡大断面図、図7は、実験結果に基づく排気部における排気量と風きり跡との関係を示すグラフである。なお、図7に示す実験は、300mmサイズウエハで回転数3000rpmでの効果を調べたもので、d,e=0、d,e=20mm及びd=50mm,e=20mmの3つのタイプに対して外側排気通路28の開度を100%のものと、30%の条件について風きり跡の幅を調べたものである。なお、排気量の割合は、開度100%の場合は、a>b+cとなるが、開度30%の場合はa<b+cとなる。   Next, the setting of the dimensions of the inner cup 23 and the outer cup 26 and the exhaust amount conditions of the first and second inner exhaust passages 27a and 27b and the outer exhaust passage 28 will be described in detail with reference to FIGS. Explained. 5 is an enlarged cross-sectional view of the main part showing the dimensions of the inner cup 23 and the outer cup 26 and the exhaust portion. In FIG. 5, the exhaust amount of the outer exhaust passage 28; a, the exhaust of the first inner exhaust passage 27a. B, exhaust amount of the second inner exhaust passage 27b; c, dimensions from the wafer outer peripheral end of the inner hood portion 21 of the inner cup 23; e, from the wafer outer peripheral end of the outer hood portion 24 of the outer cup 26 Dimension d; 6 is an enlarged cross-sectional view of the main part showing the gas flow in the exhaust part of the inner cup 23 and the outer cup 26, and FIG. 7 shows the relationship between the exhaust amount in the exhaust part based on the experimental results and the wind mark. It is a graph. In the experiment shown in FIG. 7, the effect at a rotation speed of 3000 rpm was examined on a 300 mm size wafer. For three types of d, e = 0, d, e = 20 mm, and d = 50 mm, e = 20 mm. Thus, the width of the windbreak is examined under the condition that the opening degree of the outer exhaust passage 28 is 100% and 30%. The ratio of the exhaust amount is a> b + c when the opening degree is 100%, but a <b + c when the opening degree is 30%.

上記実験の結果、内カップ23及び外カップ26の寸法がd=e=0、つまり、ウエハWの外周より外に外側及び内側排気通路28及び27a,27bの排気口がある場合、風きり跡が幅35mm程度発生する。その状態では排気量を絞って開度30%にしても、全開の開度100%にしても大差がない。このことから、排気の効果がないことが判る。   As a result of the above experiment, if the dimensions of the inner cup 23 and the outer cup 26 are d = e = 0, that is, the outer and inner exhaust passages 28 and 27a, 27b are located outside the outer periphery of the wafer W, the wind mark Occurs about 35 mm in width. In this state, even if the exhaust amount is reduced and the opening degree is 30% or the opening degree is 100%, there is no significant difference. This shows that there is no exhaust effect.

次に、内カップ23及び外カップ26の寸法がd=e=20mm、つまり、ウエハWの外周より20mm内側まで外側及び内側排気通路28及び27a,27bの排気口の位置を移動させた場合、風きり跡の幅が開度30%で15mm、開度100%で6mmであった。   Next, when the dimensions of the inner cup 23 and the outer cup 26 are d = e = 20 mm, that is, when the positions of the exhaust ports of the outer and inner exhaust passages 28 and 27a, 27b are moved to the inner side of the wafer W by 20 mm, The width of the wind mark was 15 mm at an opening of 30% and 6 mm at an opening of 100%.

次に、内カップ23及び外カップ26の寸法がd=50mm、e=20mm、つまり、ウエハWの外周より20mm内側まで内側排気通路27a,27bの排気口の位置を移動させ、ウエハWの外周より50mm内側まで外側排気通路28の排気口の位置を移動させた場合、風きり跡の幅が開度30%の条件で4mm、開度100%の条件では風きり跡は発生しなくなる。   Next, the dimensions of the inner cup 23 and the outer cup 26 are d = 50 mm and e = 20 mm, that is, the positions of the exhaust ports of the inner exhaust passages 27a and 27b are moved to the inner side of the wafer W by 20 mm, and the outer periphery of the wafer W is moved. When the position of the exhaust port of the outer exhaust passage 28 is moved further to the inside by 50 mm, the wind mark does not occur when the wind mark width is 4 mm when the opening degree is 30% and the opening degree is 100%.

上記実験の結果より、内カップ23及び外カップ26の寸法をd=50mm、e=20mmとし、開度100%(a>b+c)とすることが、風きり跡の防止効果に不可欠であることが判った。   From the results of the above experiments, it is indispensable for the effect of preventing wind marks that the dimensions of the inner cup 23 and the outer cup 26 are d = 50 mm, e = 20 mm, and the opening degree is 100% (a> b + c). I understood.

次に、上記実験によるエクマン渦の生じる位置の裏付けの解析について説明する。まず、内カップ23及び外カップ26の寸法を設定するには、上述した回転系のレイノルズ数の式に基づいてエクマン渦の生じる位置を求める。すなわち、回転円盤でのレイノルズ数(Re)は、上述したように、次式で表される。   Next, the analysis of supporting the position where the Ekman vortex occurs by the above experiment will be described. First, in order to set the dimensions of the inner cup 23 and the outer cup 26, the positions where Ekman vortices are generated are obtained based on the Reynolds number formula of the rotating system described above. That is, the Reynolds number (Re) in the rotating disk is expressed by the following equation as described above.

Re=r2×ω×(ρ/μ) ・・・(1)
ここで、
r;半径位置(cm)
ω;回転角(ラジアン)
ρ;密度(空気の場合;0.00119g/cm3)
μ;粘度(空気の場合;181μP)である。
Re = r 2 × ω × (ρ / μ) (1)
here,
r; radial position (cm)
ω: rotation angle (radians)
ρ; density (in the case of air; 0.00119 g / cm3)
μ: Viscosity (in the case of air; 181 μP).

また、上述したように、従来、一般の塗布機においては、レイノルズ数の値が約28万を越える条件で風きり跡が発生し始めていた。例えば、ウエハ半径サイズがrwのとき、風きり跡が発生せずに回転させることができる最高回転数ωmaxは式(1)を使い、式(2)で表される。   Further, as described above, conventionally, in general coating machines, wind marks have started to be generated under the condition that the Reynolds number exceeds about 280,000. For example, when the wafer radius size is rw, the maximum number of rotations ωmax that can be rotated without generating a wind mark is expressed by equation (2) using equation (1).

280000=(rw)2×ωmax×(0.00119/181×10-6
ωmax=280000×181×10-6/0.00119/(rw)2 ・・・(2)
この発明の手法を用いることによって風きり跡が解消できるので、ωmaxは1.2〜2倍程度まで大きな値へ改善することが可能となる。ただし、排気口の場所は、従来の風きり跡が発生する半径位置rcに、対応した配置が必要である。その位置は、式(2)で得られたωmaxに対し、ここでA倍の改善を図るとして、まずはその時のrcを式(1)より計算する。
280000 = (rw) 2 × ωmax × (0.00119 / 181 × 10 -6 )
ωmax = 280000 × 181 × 10 −6 /0.00119/(rw) 2 (2)
Since the wind mark can be eliminated by using the method of the present invention, ωmax can be improved to a large value of about 1.2 to 2 times. However, the location of the exhaust port needs to be arranged corresponding to the conventional radial position rc where the wind mark is generated. The position is assumed to be improved by A times with respect to ωmax obtained in Expression (2). First, rc at that time is calculated from Expression (1).

280000=(rc)2×(A×ωmax)×(0.00119/181x10-6
(rc)2=(rw)2/A
rc=rw/A1/2 ・・・(3)
つまり、ウエハ半径サイズのA-1/2倍の半径位置にて風きり跡が発生することになる。
280000 = (rc) 2 × (A × ωmax) × (0.00119 / 181x10 −6 )
(Rc) 2 = (rw) 2 / A
rc = rw / A 1/2 (3)
That is, a wind mark is generated at a radius position A −1/2 times the wafer radius size.

上記実験により、この位置の前後15mm程度の範囲に新たに排気口を設けることで、風きり跡を発生させる原因となっているエクマン渦の発生を軽減できた。したがって、外カップ26及び内カップ23の寸法、d及びeの値は式(4)、式(5)で表される。   As a result of the above experiment, it was possible to reduce the occurrence of Ekman vortices, which cause wind marks, by newly providing an exhaust port in the range of about 15 mm before and after this position. Therefore, the dimensions of the outer cup 26 and the inner cup 23, and the values of d and e are expressed by the equations (4) and (5).

d=rw−rc+15 ・・・(4)
e=rw−rc−15 ・・・(5)
さて、ここで300mmウエハ(ウエハ半径サイズrw=15cm)において、改善率Aを1.7倍とした時の計算を行う。
d = rw−rc + 15 (4)
e = rw-rc-15 (5)
Now, for a 300 mm wafer (wafer radius size rw = 15 cm), calculation is performed when the improvement rate A is 1.7 times.

式(2)より、ωmaxの値を計算すると、
ωmax≒188.5(ラジアン)となる。これを回転数に換算すると、188.5÷2π×60≒1800(rpm)に当たる。1.7倍の改善率として、限界の回転数は3000rpmまで可能となる。
From the equation (2), when calculating the value of ωmax,
ωmax≈188.5 (radian). When this is converted into the rotation speed, it corresponds to 188.5 ÷ 2π × 60≈1800 (rpm). As an improvement rate of 1.7 times, the limit number of revolutions can be up to 3000 rpm.

排気口の位置を計算すると、式(3)より、
rc≒0.77×15=11.6(cm)
つまり、ウエハ中心より116mmの位置にてエクマン渦が発生する。これは、ウエハ外周より34mm内側の位置になる。
When calculating the position of the exhaust port, from equation (3):
rc ≒ 0.77 × 15 = 11.6 (cm)
That is, an Ekman vortex is generated at a position 116 mm from the wafer center. This is a position 34 mm inside the outer periphery of the wafer.

したがって、式(4)、式(5)より、d,eの値が具体的に求まる。   Therefore, the values of d and e are specifically obtained from the equations (4) and (5).

d=0.23×15+15≒5(cm)
e=0.23×15−15≒2(cm)
以上の理由により、300mmウエハを回転数3000rpmで塗布処理する場合、内カップ23及び外カップ26の寸法をd=50mm、e=20mmとすることが好適である。
d = 0.23 × 15 + 15 ≒ 5 (cm)
e = 0.23 × 15−15 ≒ 2 (cm)
For the above reasons, when a 300 mm wafer is coated at a rotation speed of 3000 rpm, it is preferable that the dimensions of the inner cup 23 and the outer cup 26 are d = 50 mm and e = 20 mm.

なお、改善率を1.7倍としたが、改善率を1.7倍より大きくすることも可能であるが、この値は、排気量に関係するため、工場施設の排気能力を考慮して、むやみに大きな数値とすることはできない。   Although the improvement rate is 1.7 times, it is possible to increase the improvement rate to more than 1.7 times. However, this value is related to the displacement, so it is inconsequential considering the exhaust capacity of the factory facility. It cannot be a large number.

次に、上記のように構成されたこの発明に係る塗布処理装置の具体的な動作態様について、表1を参照して説明する。

Figure 2009135182
Next, specific operation modes of the coating apparatus according to the present invention configured as described above will be described with reference to Table 1.
Figure 2009135182

まず、シャッタ37を下降してウエハ搬入出口36を開放し、ウエハ搬送アーム4によって搬送されたウエハWをスピンチャック1に受け渡す(ステップ1)。その後、ウエハ搬送アーム4はカップ外に後退し、シャッタ37がウエハ搬入出口36を閉塞する。次に、塗布ノズル3をウエハWの中心上方に移動し、塗布ノズル3からウエハWの中央部に向かってレジスト液を供給(吐出)する(ステップ2)。レジスト液の供給を4秒(s)間行った後、モータ2によりスピンチャック1が回転してウエハWを高速回転(3000rpm)すると共に、第1及び第2の排気ポンプ31,32が駆動して、外側排気通路28及び第1,第2の内側排気通路27a,27bからウエハWの上部を排気する(ステップ4)。この際、外側排気通路28の排気量を第1,第2の内側排気通路27a,27bの排気量より大きくする。このように排気することにより、ウエハWの高速回転に起因して生じるウエハ表面を流れる気流の乱流及び遷移域(エクマン渦)の気流を上方側から外カップ26の外側排気通路28を介して排気し、エクマン渦よりウエハ外周側の気流を内カップ23の第1及び第2の内側排気通路を介して排気することができる。これにより、ウエハ表面の風きり跡を防止することができ、ウエハ全面の塗布膜を均一にすることができる。   First, the shutter 37 is lowered to open the wafer loading / unloading port 36, and the wafer W transferred by the wafer transfer arm 4 is transferred to the spin chuck 1 (step 1). Thereafter, the wafer transfer arm 4 moves backward out of the cup, and the shutter 37 closes the wafer loading / unloading port 36. Next, the coating nozzle 3 is moved above the center of the wafer W, and a resist solution is supplied (discharged) from the coating nozzle 3 toward the center of the wafer W (step 2). After supplying the resist solution for 4 seconds (s), the spin chuck 1 is rotated by the motor 2 to rotate the wafer W at a high speed (3000 rpm), and the first and second exhaust pumps 31 and 32 are driven. Then, the upper portion of the wafer W is exhausted from the outer exhaust passage 28 and the first and second inner exhaust passages 27a and 27b (step 4). At this time, the exhaust amount of the outer exhaust passage 28 is made larger than the exhaust amounts of the first and second inner exhaust passages 27a and 27b. By exhausting in this way, the turbulent flow of the airflow flowing on the wafer surface and the airflow of the transition region (Ekman vortex) generated due to the high-speed rotation of the wafer W are passed through the outer exhaust passage 28 of the outer cup 26 from the upper side. It is possible to evacuate the air flow on the outer peripheral side of the wafer from the Ekman vortex through the first and second inner exhaust passages of the inner cup 23. Thereby, wind traces on the wafer surface can be prevented and the coating film on the entire wafer surface can be made uniform.

塗布膜を形成した後、ウエハWの回転数を1000rpmにし、上部排気を停止した状態で、図示しないエッジ,裏面リンスノズルからウエハWのエッジ部及び裏面にリンス液を供給して、洗浄処理を行う(ステップ5)。次いで、ウエハWを高速回転(2000rpm)にしてウエハWに付着したリンス液を振り切り乾燥する(ステップ7)。   After forming the coating film, the number of rotations of the wafer W is set to 1000 rpm, and the top exhaust is stopped, and the rinse liquid is supplied to the edge portion and the back surface of the wafer W from the edge and back surface rinse nozzles (not shown) to perform the cleaning process. Perform (Step 5). Next, the wafer W is rotated at a high speed (2000 rpm), and the rinse liquid adhering to the wafer W is shaken off and dried (step 7).

乾燥処理を行った後、モータ2の駆動を停止し、次いで、シャッタ37を開放し、開放されたウエハ搬入出口36からカップ内に進入するウエハ搬送アーム4がスピンチャック1からウエハWを受け取ってカップ内からウエハW搬出する。   After performing the drying process, the driving of the motor 2 is stopped, then the shutter 37 is opened, and the wafer transfer arm 4 entering the cup through the opened wafer loading / unloading port 36 receives the wafer W from the spin chuck 1. The wafer W is unloaded from the cup.

なお、上記実施形態では、内カップ23と外カップ26が一体型に形成され、外カップ26に設けられたウエハ搬入出口36を閉塞するシャッタ37を開放して、ウエハ搬送アーム4とスピンチャック1との間でウエハWを受け渡す場合について説明したが、別の構造にして、ウエハ搬送アーム4とスピンチャック1との間でウエハWを受け渡すことも可能である。例えば、図4に示すように、内カップ23及び外カップ26をスピンチャック1の上部において処理容器10に対して昇降可能に形成し、外カップ26の外筒部25の側面に突設されたブラケット38に昇降機構例えば昇降シリンダ39のピストンロッド39aの先端部を連結した構造としてもよい。このように構成することにより、昇降シリンダ39を駆動して内カップ23及び外カップ26を処理容器10に対して上昇させてスピンチャック1の上方を開放し、この状態で、ウエハ搬送アーム4とスピンチャック1との間でウエハWを受け渡すことができる。   In the above embodiment, the inner cup 23 and the outer cup 26 are integrally formed, the shutter 37 that closes the wafer loading / unloading port 36 provided in the outer cup 26 is opened, and the wafer transfer arm 4 and the spin chuck 1 are opened. In the above description, the wafer W is transferred between the wafer transfer arm 4 and the spin chuck 1, but the wafer W can be transferred between the wafer transfer arm 4 and the spin chuck 1. For example, as shown in FIG. 4, the inner cup 23 and the outer cup 26 are formed so as to be movable up and down with respect to the processing container 10 in the upper part of the spin chuck 1, and protruded from the side surface of the outer cylinder portion 25 of the outer cup 26. It is good also as a structure which connected the front-end | tip part of the piston rod 39a of the raising / lowering mechanism, for example, the raising / lowering cylinder 39, to the bracket 38. FIG. With this configuration, the elevating cylinder 39 is driven to raise the inner cup 23 and the outer cup 26 with respect to the processing container 10 so as to open the upper side of the spin chuck 1. The wafer W can be delivered to and from the spin chuck 1.

なお、上記実施形態では、内カップ23と外カップ26を一体型に形成されているが、ウエハWの大きさや処理時の回転数によって外カップ26及び内カップ23の寸法(d,e)が異なる場合にも対応できるようにする必要がある。このような場合には、外カップ26及び内カップ23の寸法(d,e)の異なる数種のカップを用意しておき、必要に応じて最適な寸法のカップと交換すればよい。   In the above embodiment, the inner cup 23 and the outer cup 26 are integrally formed. However, the dimensions (d, e) of the outer cup 26 and the inner cup 23 depend on the size of the wafer W and the number of rotations during processing. It is necessary to be able to cope with different cases. In such a case, several types of cups having different dimensions (d, e) of the outer cup 26 and the inner cup 23 may be prepared and replaced with cups having optimum dimensions as necessary.

この発明に係る塗布処理装置の第1実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing a first embodiment of a coating treatment apparatus according to the present invention. 上記塗布処理装置における気体の流れの状態を示す概略平面図である。It is a schematic plan view which shows the state of the gas flow in the said coating treatment apparatus. この発明におけるウエハの搬送部の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the conveyance part of the wafer in this invention. ウエハの搬送部の別の例を示す概略斜視図である。It is a schematic perspective view which shows another example of the conveyance part of a wafer. この発明における排気部の要部拡大断面図である。It is a principal part expanded sectional view of the exhaust part in this invention. この発明における排気部の気体の流れを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the flow of the gas of the exhaust part in this invention. この発明における排気部の排気量と風きり跡の幅との関係を示すグラフである。It is a graph which shows the relationship between the exhaust_gas | exhaustion amount of an exhaust_gas | exhaustion part in this invention, and the width | variety of a wind mark.

符号の説明Explanation of symbols

W 半導体ウエハ(基板)
1 スピンチャック(基板保持台)
2 モータ(回転駆動機構)
3 塗布ノズル
4 ウエハ搬送アーム(基板搬送アーム)
10 処理容器
20 排気機構
21 内側フード部
22 内筒部
23 内カップ
24 外側フード部
25 外筒部
26 外カップ
27a 第1の内側排気通路
27b 第2の内側排気通路
28 外側排気通路
31 第1の排気ポンプ(第1の排気装置)
32 第2の排気ポンプ(第2の排気装置)
33 排気量調整弁
34 取付ブラケット
35 固定段部
36 ウエハ搬入出口(基板搬入出口)
37 シャッタ
38 ブラケット
39 昇降シリンダ
39a ピストンロッド
40 コントローラ(制御手段)
W Semiconductor wafer (substrate)
1 Spin chuck (substrate holder)
2 Motor (Rotary drive mechanism)
3 Coating nozzle 4 Wafer transfer arm (substrate transfer arm)
DESCRIPTION OF SYMBOLS 10 Processing container 20 Exhaust mechanism 21 Inner hood part 22 Inner cylinder part 23 Inner cup 24 Outer hood part 25 Outer cylinder part 26 Outer cup 27a First inner exhaust passage 27b Second inner exhaust passage 28 Outer exhaust passage 31 First Exhaust pump (first exhaust device)
32 Second exhaust pump (second exhaust device)
33 Exhaust gas adjustment valve 34 Mounting bracket 35 Fixed step 36 Wafer loading / unloading (substrate loading / unloading)
37 Shutter 38 Bracket 39 Elevating cylinder 39a Piston rod 40 Controller (control means)

Claims (5)

処理容器内に配設され、基板の表面を上面にして保持する基板保持台と、上記基板保持台を鉛直軸回りに回転させる回転駆動機構と、上記基板保持台に保持された基板の表面に向かって塗布液を吐出するノズルと、上記基板保持台に保持された基板の周りを排気する排気機構と、を具備する塗布処理装置において、
上記排気機構は、上記基板保持台に保持された基板の回転に起因して基板表面を流れる気流の乱流及び遷移域より基板周縁側の上方の全周を覆う内側フード部及び上記基板保持台の側方を覆う内筒部を有する内カップと、上記基板表面を流れる気流の乱流及び遷移域の上方の全周を覆う外側フード部及び上記内カップの内筒部を覆う外筒部を有する外カップと、上記内カップに設けられた内側排気通路に連通する第1の排気装置と、上記外カップに設けられた外側排気通路に連通する第2の排気装置と、上記回転駆動機構、第1及び第2の排気装置の駆動を制御する制御手段と、を具備してなり、
上記制御手段からの制御信号に基づいて、上記ノズルから基板表面に塗布液が吐出された後、上記回転駆動機構により基板が回転した際に、上記第1及び第2の排気装置を駆動し、この際、上記外カップの外側排気通路の排気量を、内カップに設けられた内側排気通路の排気量より大きくして、上記乱流及び遷移域の気流を上方側へ排気する、ことを特徴とする塗布処理装置。
A substrate holder that is disposed in the processing container and holds the substrate surface upside; a rotation drive mechanism that rotates the substrate holder around a vertical axis; and a substrate surface held on the substrate holder. In a coating processing apparatus comprising: a nozzle that discharges a coating liquid toward the substrate; and an exhaust mechanism that exhausts the periphery of the substrate held by the substrate holder.
The exhaust mechanism includes an inner hood portion that covers the entire periphery of the substrate peripheral side above the turbulent flow and transition region of the airflow flowing on the substrate surface due to rotation of the substrate held on the substrate holding table, and the substrate holding table An inner cup having an inner cylinder portion that covers the side of the outer hood portion, an outer hood portion that covers the entire circumference above the turbulent flow and transition region of the airflow flowing on the substrate surface, and an outer cylinder portion that covers the inner cylinder portion of the inner cup. An outer cup, a first exhaust device communicating with an inner exhaust passage provided in the inner cup, a second exhaust device communicating with an outer exhaust passage provided in the outer cup, the rotational drive mechanism, Control means for controlling the driving of the first and second exhaust devices,
Based on the control signal from the control means, after the coating liquid is discharged from the nozzle to the substrate surface, when the substrate is rotated by the rotation drive mechanism, the first and second exhaust devices are driven, At this time, the exhaust amount of the outer exhaust passage of the outer cup is made larger than the exhaust amount of the inner exhaust passage provided in the inner cup, and the turbulent flow and the airflow in the transition region are exhausted upward. A coating treatment apparatus.
請求項1記載の塗布処理装置において、
上記外カップに設けられた外側排気通路に排気量調整弁を介設し、上記排気量調整弁の開度を上記制御手段からの制御信号に基づいて調整可能に形成してなる、ことを特徴とする塗布処理装置。
The coating treatment apparatus according to claim 1,
An exhaust amount adjustment valve is provided in an outer exhaust passage provided in the outer cup, and the opening degree of the exhaust amount adjustment valve is formed so as to be adjustable based on a control signal from the control means. A coating treatment apparatus.
請求項1又は2に記載の塗布処理装置において、
上記内カップの内筒部及び外カップの外筒部に基板搬入出口を設けると共に、この基板搬入出口を閉塞するシャッタを開閉可能に形成してなる、ことを特徴とする塗布処理装置。
In the coating treatment apparatus according to claim 1 or 2,
A coating processing apparatus characterized in that a substrate loading / unloading port is provided in the inner tube portion of the inner cup and the outer tube portion of the outer cup, and a shutter that closes the substrate loading / unloading port is formed to be openable and closable.
請求項1ないし3のいずれかに記載の塗布処理装置において、
上記内カップ及び外カップを一体に形成し、この一体型カップを処理容器の上部に対して着脱可能に形成してなる、ことを特徴とする塗布処理装置。
In the coating treatment apparatus according to any one of claims 1 to 3,
A coating processing apparatus, wherein the inner cup and the outer cup are integrally formed, and the integrated cup is formed to be detachable from an upper portion of the processing container.
請求項1又は2に記載の塗布処理装置において、
上記内カップ及び外カップを基板保持台の上部において処理容器に対して昇降可能に形成すると共に、昇降機構によって昇降させる、ことを特徴とする塗布処理装置。
In the coating treatment apparatus according to claim 1 or 2,
A coating processing apparatus, wherein the inner cup and the outer cup are formed so as to be movable up and down relative to the processing container at an upper part of the substrate holding table, and are moved up and down by a lifting mechanism.
JP2007308546A 2007-11-29 2007-11-29 Application processing equipment Active JP4895984B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007308546A JP4895984B2 (en) 2007-11-29 2007-11-29 Application processing equipment
KR1020080091513A KR101385392B1 (en) 2007-11-29 2008-09-18 Coating processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308546A JP4895984B2 (en) 2007-11-29 2007-11-29 Application processing equipment

Publications (2)

Publication Number Publication Date
JP2009135182A true JP2009135182A (en) 2009-06-18
JP4895984B2 JP4895984B2 (en) 2012-03-14

Family

ID=40866831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308546A Active JP4895984B2 (en) 2007-11-29 2007-11-29 Application processing equipment

Country Status (2)

Country Link
JP (1) JP4895984B2 (en)
KR (1) KR101385392B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009180A (en) * 2013-06-27 2015-01-19 東京エレクトロン株式会社 Coating film formation device, coating film formation method and recording medium
CN116984194A (en) * 2023-09-27 2023-11-03 宁波润华全芯微电子设备有限公司 Wafer rubber coating unit wind channel structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6281161B2 (en) * 2013-09-27 2018-02-21 東京エレクトロン株式会社 Liquid processing equipment
KR102635384B1 (en) 2020-11-23 2024-02-14 세메스 주식회사 Apparatuse for treating substrate
KR102635385B1 (en) * 2020-11-23 2024-02-14 세메스 주식회사 Apparatuse for treating substrate
KR102573602B1 (en) 2020-11-23 2023-09-01 세메스 주식회사 Apparatuse for treating substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225268A (en) * 1986-03-26 1987-10-03 Hitachi Ltd Coating device
JPH0910658A (en) * 1995-06-27 1997-01-14 Hitachi Ltd Coating method and coater
JPH09122558A (en) * 1995-11-06 1997-05-13 Dainippon Screen Mfg Co Ltd Spin coater
JPH10247633A (en) * 1997-03-04 1998-09-14 Toshiba Corp Substrate-treating device
JP2005235950A (en) * 2004-02-18 2005-09-02 Tokyo Electron Ltd Apparatus and method of processing application
JP2006269920A (en) * 2005-03-25 2006-10-05 Tokyo Electron Ltd Heating apparatus, applying and developing apparatus and heating method
JP2007311776A (en) * 2006-04-18 2007-11-29 Tokyo Electron Ltd Liquid processing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225268A (en) * 1986-03-26 1987-10-03 Hitachi Ltd Coating device
JPH0910658A (en) * 1995-06-27 1997-01-14 Hitachi Ltd Coating method and coater
JPH09122558A (en) * 1995-11-06 1997-05-13 Dainippon Screen Mfg Co Ltd Spin coater
JPH10247633A (en) * 1997-03-04 1998-09-14 Toshiba Corp Substrate-treating device
JP2005235950A (en) * 2004-02-18 2005-09-02 Tokyo Electron Ltd Apparatus and method of processing application
JP2006269920A (en) * 2005-03-25 2006-10-05 Tokyo Electron Ltd Heating apparatus, applying and developing apparatus and heating method
JP2007311776A (en) * 2006-04-18 2007-11-29 Tokyo Electron Ltd Liquid processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009180A (en) * 2013-06-27 2015-01-19 東京エレクトロン株式会社 Coating film formation device, coating film formation method and recording medium
CN116984194A (en) * 2023-09-27 2023-11-03 宁波润华全芯微电子设备有限公司 Wafer rubber coating unit wind channel structure

Also Published As

Publication number Publication date
KR101385392B1 (en) 2014-04-14
JP4895984B2 (en) 2012-03-14
KR20090056805A (en) 2009-06-03

Similar Documents

Publication Publication Date Title
TWI789048B (en) Substrate processing method, substrate processing system, and computer-readable storage medium
JP4895984B2 (en) Application processing equipment
JP5029486B2 (en) Coating apparatus, coating method, and storage medium
JP2002176026A (en) Method and device for single substrate cleaning
JP2004207573A (en) Coating processor
TWI459159B (en) Developing processing method and substrate processing method
JP4043444B2 (en) Coating processing apparatus and coating processing method
JP2009212301A (en) Substrate processing method and apparatus
JP6712482B2 (en) Substrate processing method and substrate processing apparatus
TW202113950A (en) Etching apparatus and etching method
JP2007220989A (en) Substrate processing method, substrate processing apparatus, its control program, and storage medium processed in reading by computer
JP6465000B2 (en) Coating film forming method, coating film forming apparatus, and storage medium
KR101550084B1 (en) Liquid processing apparatus and liquid processing method
JP2015170617A (en) Liquid processing apparatus
JP7056746B2 (en) Coating film forming method and coating film forming device
JP2010239013A (en) Substrate treatment apparatus and substrate treatment method
KR102243841B1 (en) Coating film forming apparatus, coating film forming method and storage medium
JP6432644B2 (en) Coating film forming apparatus, coating film forming method, and storage medium
JP2017183375A (en) Substrate processing method and substrate processing apparatus
KR20230125620A (en) Device for etching the periphery edge of a substrate and method for controlling etching thereof
JP3160832B2 (en) Method and apparatus for forming coating film
JP3638374B2 (en) Rotary substrate processing equipment
JP7051334B2 (en) Board processing equipment and board processing method
JP6402216B2 (en) Substrate processing method and substrate processing apparatus
JP6402215B2 (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250