JP2009133721A - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP2009133721A
JP2009133721A JP2007310108A JP2007310108A JP2009133721A JP 2009133721 A JP2009133721 A JP 2009133721A JP 2007310108 A JP2007310108 A JP 2007310108A JP 2007310108 A JP2007310108 A JP 2007310108A JP 2009133721 A JP2009133721 A JP 2009133721A
Authority
JP
Japan
Prior art keywords
liquid
sample
plate
sample chamber
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007310108A
Other languages
Japanese (ja)
Inventor
Hideo Kojima
嶋 秀 夫 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2007310108A priority Critical patent/JP2009133721A/en
Publication of JP2009133721A publication Critical patent/JP2009133721A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fix surely a sample in liquid, relative to a scanning probe microscope. <P>SOLUTION: In this scanning probe microscope, a probe 3 and a sample 5 are arranged close oppositely in liquid in a sample chamber 9', and a relative position between the probe 3 and the sample 5 is changed, and image information of a sample surface is acquired based on interaction between the probe 3 and the sample 5. In the microscope, a plate 20 on which holes 21A, 21B, 21C, etc., are bored is installed in the sample chamber 9' so that the inside of the sample chamber 9' is divided in two, upper and lower parts, by the plate 20. The sample 5 is set on the upper surface of the plate 20 so as to close the holes 21A, 21B, 21C, etc., so that liquid flows along the upper surface and the lower surface of the plate 20 respectively, and that a flow rate of liquid flowing along the lower surface of the plate 20 is higher than a flow rate of liquid flowing along the upper surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は液中の試料観察に適した走査プローブ顕微鏡に関する。   The present invention relates to a scanning probe microscope suitable for observing a sample in a liquid.

最近、探針付きカンチレバーと試料を接近させて対向配置し、探針により試料表面を走査することにより、探針と試料間に働く原子間力,或いは磁気力,或いは静電気力等を測定し、該測定に基づいて試料表面の凹凸像を得るように成した走査プローブ顕微鏡や、探針と試料を接近させて対向配置し、且つ探針と試料間にバイアス電圧を印加し、探針により試料表面を走査することにより、探針と試料間に流れるトンネル電流を測定し、該測定に基づいて試料表面の凹凸像等を得るように成した走査プローブ顕微鏡が注目されている。   Recently, the cantilever with the probe and the sample are placed close to each other, and the surface of the sample is scanned with the probe to measure the atomic force, magnetic force, electrostatic force, etc. acting between the probe and the sample. A scanning probe microscope configured to obtain a concavo-convex image of the sample surface based on the measurement, a probe and a sample are placed close to each other, a bias voltage is applied between the probe and the sample, and the sample is detected by the probe. Attention has been focused on a scanning probe microscope which measures a tunnel current flowing between a probe and a sample by scanning the surface and obtains an uneven image on the sample surface based on the measurement.

さて、この様な走査プローブ顕微鏡における試料観察において、液中の試料を観察する場合がある。この液中の試料観察では、液中の試料が受ける腐食の過程やエッチングの過程等の観察が行われる。   Now, in sample observation with such a scanning probe microscope, a sample in the liquid may be observed. In the sample observation in the liquid, the corrosion process, the etching process, and the like that the sample in the liquid receives are observed.

図1は液中の試料を観察するための原子間力顕微鏡の一概略例を示している。   FIG. 1 shows a schematic example of an atomic force microscope for observing a sample in a liquid.

図中1は光源(例えば、レーザー光源)、2は先端に探針3が付けられ前記光源1から発せられた光を反射させるカンチレバー、4は該カンチレバーで反射された反射光を検出する光検出器(例えば、二分割若しくは四分割半導体光検出器)である。   In the figure, 1 is a light source (for example, a laser light source), 2 is a cantilever with a probe 3 attached to the tip and reflects light emitted from the light source 1, and 4 is light detection for detecting reflected light reflected by the cantilever. (For example, a two-part or four-part semiconductor photodetector).

5は試料載置台6に取り付けられた試料、7は例えば、圧電素子から成り、前記試料載置台6を介して前記試料5を載置し、且つ前記試料載置台6を通じて前記試料5をX,Y,Z軸方向に独立して移動させるスキャナ、8は該スキャナ7を支持するベースである。   Reference numeral 5 denotes a sample attached to the sample mounting table 6, and 7 denotes, for example, a piezoelectric element. The sample 5 is mounted via the sample mounting table 6, and the sample 5 is set to X, X through the sample mounting table 6. A scanner 8 that moves independently in the Y and Z axis directions is a base that supports the scanner 7.

9は、下蓋体10,例えば、ゲルOリング体(例、ゲル状のシリコン製Oリング)から形成される側壁体11及び上蓋体12から成る試料室で、前記下蓋体10は前記スキャナ7と試料載置台6の間に設けられ、前記上蓋体12はドーナツ状に形成されており、その空間部にガラス板の如き透明板13が嵌められている。この試料室9の側壁体下部には液導入管14、その対抗には液排出管15が設けられている。又、前記透明板13には前記カンチレバー2を取り付けたホルダー16が取り付けられている。   Reference numeral 9 denotes a sample chamber composed of a side cover body 11 and an upper cover body 12 formed from a lower lid body 10, for example, a gel O-ring body (for example, a gel-like silicon O-ring), and the lower lid body 10 is the scanner. 7 and the sample mounting table 6, the upper lid 12 is formed in a donut shape, and a transparent plate 13 such as a glass plate is fitted in the space. A liquid introduction pipe 14 is provided at the lower part of the side wall body of the sample chamber 9, and a liquid discharge pipe 15 is provided at the opposite side. A holder 16 to which the cantilever 2 is attached is attached to the transparent plate 13.

この様な原子間顕微鏡では、カンチレバー2が最大変位した時に該カンチレバーの反射面を液体が満たす程度になるまで液導入管14から試料室9に液体を導入する。   In such an atomic microscope, when the cantilever 2 is displaced to the maximum, the liquid is introduced from the liquid introduction tube 14 into the sample chamber 9 until the liquid fills the reflection surface of the cantilever.

この状態で、スキャンジェネレータ(図示せず)からZ軸方向(図では上下方向)の高さ調整信号によりスキャナ7のZ軸圧電素子(図示せず)が駆動されて、探針3と試料5の間の距離が初期設定距離に設定される。   In this state, a Z-axis piezoelectric element (not shown) of the scanner 7 is driven by a height adjustment signal in the Z-axis direction (vertical direction in the figure) from a scan generator (not shown), and the probe 3 and the sample 5 are driven. Is set to the default distance.

一方、光源1から発せられた光はカンチレバー2の試料側と反対側の面に当たって反射し、その反射光が光検出器4によって検出される。   On the other hand, light emitted from the light source 1 strikes and reflects the surface of the cantilever 2 opposite to the sample side, and the reflected light is detected by the photodetector 4.

この状態において、前記スキャンジェネレータ(図示せず)からの制御信号により、前記スキャナ7のX軸,Y軸圧電素子(図示せず)がそれぞれ駆動されて、前記試料5がX軸方向(図1の左右方向)及びY軸方向(図1の紙面に直行する方向)にそれぞれ移動される。   In this state, the X-axis and Y-axis piezoelectric elements (not shown) of the scanner 7 are driven by control signals from the scan generator (not shown), and the sample 5 is moved in the X-axis direction (FIG. 1). And the Y-axis direction (direction perpendicular to the paper surface of FIG. 1).

前記試料5の観察すべき表面には凹凸があり、該凹凸に従って前記探針3と前記試料5の観察表面との間の距離が前記初期設定距離からずれるので前記探針3と前記試料5間の原子間力が変位する。   The surface to be observed of the sample 5 has irregularities, and the distance between the probe 3 and the observation surface of the sample 5 deviates from the initial set distance according to the irregularities, so that the distance between the probe 3 and the sample 5 is The atomic force of is displaced.

この場合、前記探針3は前記初期設定距離を保持しようとして前記試料5の観察表面の凸凹に応じて上下動する。その為、この上下動に応じて前記カンチレバー2の傾きも変化するので、前記光検出器4に入る反射光の位置も変化する。   In this case, the probe 3 moves up and down according to the unevenness of the observation surface of the sample 5 so as to maintain the initial set distance. For this reason, the inclination of the cantilever 2 also changes in accordance with this vertical movement, so that the position of the reflected light that enters the photodetector 4 also changes.

この検出した反射光の位置変化をZ軸方向の位置変化に換算し、該換算した信号(画像信号)に基づいて液中にある試料表面の凸凹像が観察される。   The detected position change of the reflected light is converted into a position change in the Z-axis direction, and an uneven image of the sample surface in the liquid is observed based on the converted signal (image signal).

そして、この凹凸象の観察に基づいて、液中の試料が受ける腐食の過程やエッチングの過程等の観察が行われるのである。   Based on the observation of the irregularities, the corrosion process and the etching process that the sample in the liquid receives are observed.

特開2000−221129号公報JP 2000-221129 A

さて、前述した様な原子間力顕微鏡において、試料5が試料載置台6から容易に取れない様に、例えば、接着テープの如き粘着材によって前記試料5を試料載置台6に取り付けている。   Now, in the atomic force microscope as described above, the sample 5 is attached to the sample mounting table 6 with an adhesive material such as an adhesive tape so that the sample 5 cannot be easily removed from the sample mounting table 6.

しかし、液中での観察中に、前記接着テープが前記試料5や試料載置台6から剥がれたり、又、使用する液体によっては液中での観察中に溶解してしまい、前記試料5の観察に支障を来してしまう。   However, during the observation in the liquid, the adhesive tape is peeled off from the sample 5 or the sample mounting table 6, or depending on the liquid used, the adhesive tape is dissolved during the observation in the liquid. Will cause trouble.

本発明は、このような問題点を解決するためになされたもので、新規な走査プローブ顕微鏡を提供することを目的とする。   The present invention has been made to solve such problems, and an object thereof is to provide a novel scanning probe microscope.

本発明の走査プローブ顕微鏡は試料室内の液中で探針と試料を接近させて対向配置し、該探針と試料との相対位置を変化させ、該探針と試料間の相互作用に基づいて該試料表面の像情報を得る様に成した走査プローブ顕微鏡において、前記試料室内を上下に二分する様に、少なくとも1個の孔が穿たれたプレートを該試料室内に設け、該プレート上面に前記孔を塞ぐ様に試料が置かれた該プレートの上面及び下面各々に沿って液が流れる様に成し、該下面に沿って流れる液の流速が上面に沿って流れる液の流速より速くなる様に成したことを特徴とする。   In the scanning probe microscope of the present invention, the probe and the sample are placed close to each other in the liquid in the sample chamber, the relative position between the probe and the sample is changed, and the interaction between the probe and the sample is based on the interaction between the probe and the sample. In the scanning probe microscope configured to obtain image information of the sample surface, a plate having at least one hole is provided in the sample chamber so as to bisect the sample chamber vertically, and the plate is provided on the upper surface of the plate. The liquid flows along each of the upper and lower surfaces of the plate on which the sample is placed so as to close the hole, and the flow velocity of the liquid flowing along the lower surface is higher than the flow velocity of the liquid flowing along the upper surface. It is characterized by that.

本発明によれば、液中観察用の走査プローブ顕微鏡で通常使用される液中における試料観察中に、試料が試料保持手段から取れてしまうことがないので、試料の液中観察を支障なく行うことが出来る。   According to the present invention, since the sample is not removed from the sample holding means during the sample observation in the liquid normally used in the scanning probe microscope for in-liquid observation, the sample is observed in the liquid without any trouble. I can do it.

図2は、本発明の走査プローブ顕微鏡の一つである原子間力顕微鏡の一概略例を示している。   FIG. 2 shows a schematic example of an atomic force microscope which is one of the scanning probe microscopes of the present invention.

図2において、図1で使用した記号と同一記号の付したものは同一構成要素を示す。   In FIG. 2, the same reference numerals as those used in FIG. 1 denote the same components.

図中9´は、下蓋体10´、ゲルOリング体から形成される側壁体11´及び上蓋体12から成る試料室である。   Reference numeral 9 'in the figure denotes a sample chamber comprising a lower lid body 10', a side wall body 11 'formed from a gel O-ring body, and an upper lid body 12.

20は、中央部分に複数の孔21A,21B,21C,………が穿たれ、その上面中央部に試料5が載置されるプレートで、前記下蓋体10´との間に空間Saが出来る様に前記側壁体11´に取り付けられている。   Reference numeral 20 denotes a plate in which a plurality of holes 21A, 21B, 21C,... Are formed in the central portion, and the sample 5 is placed in the central portion of the upper surface, and there is a space Sa between the lower lid body 10 ′. It is attached to the said side wall body 11 'so that it can do.

22,23は、前記プレート20上面若しくは試料5上面に沿って水平に液体の流れを作る為の液導入管,液排出管である。   Reference numerals 22 and 23 denote a liquid introduction pipe and a liquid discharge pipe for creating a liquid flow horizontally along the upper surface of the plate 20 or the upper surface of the sample 5.

24,25は、該前記プレート20下面に沿って水平に液体の流れを作る為の液導入管,液排出管である。   24 and 25 are a liquid introduction pipe and a liquid discharge pipe for creating a liquid flow horizontally along the lower surface of the plate 20.

26は前記試料室9´内に供給する液体を一時的に蓄えることが出来る恒温槽、27は前記試料室9´に供給する液体の温度を調整することが出来る温度調整器、28は前記恒温槽26の流出部と前記温度調整器27の流入部の間に設けられた循環ポンプである。   26 is a thermostat capable of temporarily storing the liquid supplied into the sample chamber 9 ', 27 is a temperature regulator capable of adjusting the temperature of the liquid supplied to the sample chamber 9', and 28 is the thermostat. This is a circulation pump provided between the outflow part of the tank 26 and the inflow part of the temperature regulator 27.

該温度調整器27の流出部は前記液導入管22と24とに繋がっており、後者の液導入管24の途中には流量調整器29と開閉弁30が設けられている。   The outflow part of the temperature regulator 27 is connected to the liquid introduction pipes 22 and 24, and a flow rate regulator 29 and an opening / closing valve 30 are provided in the middle of the latter liquid introduction pipe 24.

前記恒温槽26の流入部には前記液排出管23,25とが繋がっており、前者の液排出管23の途中には開閉弁31が設けられている。   The liquid discharge pipes 23 and 25 are connected to the inflow portion of the thermostatic chamber 26, and an opening / closing valve 31 is provided in the middle of the former liquid discharge pipe 23.

この様な構成の原子間力顕微鏡において、試料室9´の上蓋体12を開け、プレート20上面の中央部に(穴21A,21B,21C,………を塞ぐ様に)試料5をセットし、前記上蓋体12を閉める。   In the atomic force microscope having such a configuration, the upper cover 12 of the sample chamber 9 ′ is opened, and the sample 5 is set in the center of the upper surface of the plate 20 (so as to close the holes 21A, 21B, 21C,...). The upper lid body 12 is closed.

この状態において、制御装置(図示せず)からの指令を受けた循環ポンプ28が稼動し始めると、恒温槽26内に蓄えられていた液体は次の様にして温度調整器27,試料室9´,恒温槽26間を循環し始める。   In this state, when the circulation pump 28 in response to a command from a control device (not shown) starts to operate, the liquid stored in the thermostatic chamber 26 is as follows: the temperature regulator 27 and the sample chamber 9. ', It begins to circulate between the thermostats 26.

先ず、前記温度調整器27では前記恒温槽26からの液体が予め設定された温度に調整され、前記液導入管22と前記液導入管24へ流れる。   First, in the temperature regulator 27, the liquid from the thermostatic chamber 26 is adjusted to a preset temperature and flows to the liquid introduction pipe 22 and the liquid introduction pipe 24.

この際、前記液導入管24に設けられた開閉弁30及び液排出管23に設けられた開閉弁31は閉じているので、前記液導入管22に流れた液体だけが前記試料室9´内に入り、該液体が該試料室内に溜まって行く。   At this time, since the on-off valve 30 provided on the liquid introduction pipe 24 and the on-off valve 31 provided on the liquid discharge pipe 23 are closed, only the liquid flowing into the liquid introduction pipe 22 is in the sample chamber 9 ′. And the liquid accumulates in the sample chamber.

所定の時間経過(前記試料5の表面を液体が満たす程度になるまでの時間)すると、前記制御装置(図示せず)から指令を受けて、前記開閉弁30が開き、前記液流入管24からの液体が前記プレート20と下蓋体10´との間の空間Saを介して前記液排出管25に流れ始め、前記恒温槽26,前記温度調整器27,試料室9´の空間Saの順に循環し出す。   When a predetermined time elapses (time until the surface of the sample 5 is filled with liquid), the on-off valve 30 is opened in response to a command from the control device (not shown), and the liquid inflow pipe 24 Of the liquid begins to flow into the liquid discharge pipe 25 through the space Sa between the plate 20 and the lower lid body 10 ', and in the order of the constant temperature bath 26, the temperature regulator 27, and the space Sa of the sample chamber 9'. It begins to circulate.

さて、前記プレート20の上側を流れる液体の流速をV1,圧力をP1、前記プレート20の下側を流れる液体の流速をV2,圧力をV2とすると、ベルヌーイの定理よりV12/2+P1/ρ=V22/2+P2/ρ(ρ:液体の密度)と表すことが出来る。 Now, the flow rate of the liquid flowing through the upper of the plate 20 V1, the pressure P1, the flow rate of the liquid flowing through the lower side of the plate 20 V2, when the pressure and V2, Bernoulli's theorem than V1 2/2 + P1 / ρ = V2 2/2 + P2 / ρ (ρ: density of the liquid) and indicating it is possible.

従って、この時点においては、前記した様に、前記プレート20下の空間Saを流れる液体の流速V2は前記プレート20の表面(前記試料5の表面)に沿って流れる液体の流速V1より速いので、前記圧力P2が前記圧力P1より低くなり、該圧力差(P1−P2)により前記プレート20上側の液体が該プレートに穿たれた孔21A,21B,21C,………を介して前記プレート20下側に移動する。この結果、前記孔21A,21B,21C,………が穿たれたプレート20の中央部において、前記試料6を固定させる力が発生する。   Therefore, at this time, as described above, the flow velocity V2 of the liquid flowing through the space Sa under the plate 20 is faster than the flow velocity V1 of the liquid flowing along the surface of the plate 20 (the surface of the sample 5). The pressure P2 becomes lower than the pressure P1, and the plate 20 is below the plate 20 through holes 21A, 21B, 21C,..., In which the liquid on the plate 20 is pierced by the pressure difference (P1-P2). Move to the side. As a result, a force for fixing the sample 6 is generated at the central portion of the plate 20 in which the holes 21A, 21B, 21C,.

この状態において、所定の時間経過(少なくとも、前記カンチレバー2が最大変位した時に該カンチレバーの反射面を液体が満たす程度になるまでの時間)すると、前記制御装置(図示せず)から指令を受けて、前記開閉弁31が開き、前記試料室9´内に溜まった液体は前記液排出管23にも流れ始め、ここからの液体も前記恒温槽26,前記温度調整器27,試料室9´の順に循環し出す。   In this state, when a predetermined time elapses (at least the time until the liquid fills the reflecting surface of the cantilever when the cantilever 2 is displaced to the maximum), a command is received from the control device (not shown). Then, the on-off valve 31 is opened, and the liquid accumulated in the sample chamber 9 ′ starts to flow into the liquid discharge pipe 23, and the liquid from here also enters the thermostat 26, the temperature regulator 27, and the sample chamber 9 ′. Circulate in order.

この循環において、前記液導入管24の途中に設けられている前記流量調整器29は、前記プレート20下の空間Saを流れる液体の流速が前記プレート20の表面(前記試料5の表面)に沿って流れる液体の流速より速くなる様にコントロールされている。   In this circulation, the flow rate regulator 29 provided in the middle of the liquid introduction pipe 24 has a flow velocity of the liquid flowing in the space Sa below the plate 20 along the surface of the plate 20 (the surface of the sample 5). It is controlled to be faster than the flow velocity of the flowing liquid.

従って、前記ベルヌーイの定理に基づき、前記プレート20上の前記試料5は前記プレート20上にしっかり固定され続ける。   Therefore, based on the Bernoulli theorem, the sample 5 on the plate 20 continues to be firmly fixed on the plate 20.

この様にして前記試料5を前記プレート20にしっかり固定した状態において、スキャンジェネレータ(図示せず)からZ軸方向の高さ調整信号によりスキャナ7のZ軸圧電素子(図示せず)が駆動されて、探針3と前記試料5の間の距離が初期設定距離に設定され、光源1から発せられた光はカンチレバー2の試料側と反対側の面に当たって反射し、その反射光が光検出器4によって検出される。   In a state where the sample 5 is firmly fixed to the plate 20 in this way, a Z-axis piezoelectric element (not shown) of the scanner 7 is driven by a height adjustment signal in the Z-axis direction from a scan generator (not shown). Thus, the distance between the probe 3 and the sample 5 is set to an initial set distance, and the light emitted from the light source 1 strikes the surface opposite to the sample side of the cantilever 2 and is reflected by the photodetector. 4 is detected.

この状態において、前記スキャンジェネレータ(図示せず)からの制御信号により、前記スキャナ7のX軸,Y軸圧電素子(図示せず)がそれぞれ駆動されて、前記試料5がX軸方向及びY軸方向にそれぞれ移動される。   In this state, the X-axis and Y-axis piezoelectric elements (not shown) of the scanner 7 are driven by a control signal from the scan generator (not shown), so that the sample 5 moves in the X-axis direction and the Y-axis. Moved in each direction.

該移動中、前記試料5の観察すべき表面の凹凸に従って前記探針3と前記試料5の観察表面との間の距離が前記初期設定距離からずれるので前記探針3と前記試料5間の原子間力が変位する。   During the movement, the distance between the probe 3 and the observation surface of the sample 5 deviates from the initial set distance in accordance with the unevenness of the surface of the sample 5 to be observed. The interstitial force is displaced.

前記探針3は前記初期設定距離を保持しようとして前記試料5の観察表面の凸凹に応じて上下動し、該上下動に応じて前記カンチレバー2の傾きも変化するので、前記光検出器4に入る反射光の位置も変化する。   The probe 3 moves up and down according to the unevenness of the observation surface of the sample 5 in an attempt to maintain the initial set distance, and the inclination of the cantilever 2 changes according to the up-and-down movement. The position of the incoming reflected light also changes.

この検出した反射光の位置変化はZ軸方向の位置変化に換算され、該換算した信号(画像信号)に基づいて液中にある試料表面の凸凹像が観察される。   The detected position change of the reflected light is converted into a position change in the Z-axis direction, and an uneven image of the sample surface in the liquid is observed based on the converted signal (image signal).

尚、前記試料5を前記プレート20から外す場合には、前記循環ポンプ28と流量調整器29の稼動を停止し、更に、前記恒温槽26と開閉弁31間及び該恒温槽と液排出管25と間にそれぞれ設けられている液排出弁(図示せず)を開けて前記試料室9´内の液体を排出して行う。   When removing the sample 5 from the plate 20, the operation of the circulation pump 28 and the flow rate regulator 29 is stopped, and further, between the constant temperature bath 26 and the on-off valve 31 and between the constant temperature bath and the liquid discharge pipe 25. And a liquid discharge valve (not shown) provided between the two and the sample chamber 9 'is opened to discharge the liquid.

尚、前記例においては、前記液導入管24に設けられた前記流量調整器29により、前記プレート20の上側に流れる液体の流速が該プレートの下側に流れる液体の流速より速くなる様にしたが、前記流量調整器を前記液導入管24に設けずに前記液導入管22に設けるか、或いは、前記両方の液導入管に設けて、同じ様に、前記プレート20の上側に流れる液体の流速が該プレートの下側に流れる液体の流速より速くなる様にしても良い。但し、前記流量調整器29を前記液導入管22に設ける場合、前記プレート20の上側に流れる液体の流速はカンチレバー3が液体の対流の影響を受けないように調整する。   In the above example, the flow rate regulator 29 provided in the liquid introduction pipe 24 makes the flow rate of the liquid flowing above the plate 20 faster than the flow rate of the liquid flowing below the plate. However, the flow regulator may be provided in the liquid introduction pipe 22 without being provided in the liquid introduction pipe 24, or may be provided in both of the liquid introduction pipes in the same manner. The flow rate may be higher than the flow rate of the liquid flowing under the plate. However, when the flow rate regulator 29 is provided in the liquid introduction pipe 22, the flow velocity of the liquid flowing above the plate 20 is adjusted so that the cantilever 3 is not affected by the convection of the liquid.

尚、前記例で使用される液体としては純水、生理食塩水、電解質溶液等があるが、試料に応じて選択される。   The liquid used in the above example includes pure water, physiological saline, electrolyte solution, etc., and is selected according to the sample.

又、前記プレート20の表面に、テフロン(登録商標)等の柔らかい素材で被覆しても良い。   The surface of the plate 20 may be covered with a soft material such as Teflon (registered trademark).

又、実施例に挙げた前記恒温槽26に、液体中に含まれているごみを除去するフィルタを設けても良い。   Moreover, you may provide the filter which removes the dust contained in the liquid in the said thermostat 26 mentioned in the Example.

又、前記恒温槽26に液体のPHを調整するPH調整液を搭載したPH調整器を設けても良い。   Further, a PH adjuster equipped with a PH adjusting liquid for adjusting the pH of the liquid may be provided in the thermostatic chamber 26.

従来の液中の試料を観察するための原子力間顕微鏡の一概略例を示す。An example of a conventional atomic force microscope for observing a sample in a liquid is shown. 本発明の走査プローブ顕微鏡の一つである原子力間顕微鏡の一概略例を示す。An example of an atomic force microscope which is one of the scanning probe microscopes of this invention is shown.

符号の説明Explanation of symbols

1…光源
2…カンチレバー
3…探針
4…光検出器
5…試料
6…試料載置台
7…スキャナ
8…ベース
9,9´…試料室
10,10´…下蓋体
11,11´…側壁体
12…上蓋体
13…透明板
14,22,24…液導入管
15,23,25…液排出管
16…ホルダー
20…プレート
21A,21B,21C…孔
26…恒温槽
27…温度調整器
28…循環ポンプ
29…流量調整器
30,31…開閉弁
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Cantilever 3 ... Probe 4 ... Optical detector 5 ... Sample 6 ... Sample mounting base 7 ... Scanner 8 ... Base 9, 9 '... Sample chamber 10, 10' ... Lower lid 11, 11 '... Side wall Body 12 ... Upper lid body 13 ... Transparent plate 14, 22, 24 ... Liquid introduction pipe 15, 23, 25 ... Liquid discharge pipe 16 ... Holder 20 ... Plate 21A, 21B, 21C ... Hole 26 ... Constant temperature bath 27 ... Temperature controller 28 ... Circulating pump 29 ... Flow rate regulator 30,31 ... Open / close valve

Claims (6)

試料室内の液中で探針と試料を接近させて対向配置し、該探針と試料との相対位置を変化させ、該探針と試料間の相互作用に基づいて該試料表面の像情報を得る様に成した走査プローブ顕微鏡において、前記試料室内を上下に二分する様に、少なくとも1個の孔が穿たれたプレートを該試料室内に設け、該プレート上面に前記孔を塞ぐ様に試料が置かれた該プレートの上面及び下面各々に沿って液が流れる様に成し、該下面に沿って流れる液の流速が上面に沿って流れる液の流速より速くなる様に成した走査プローブ顕微鏡。 The probe and sample are placed close to each other in the liquid in the sample chamber, the relative position between the probe and the sample is changed, and image information on the sample surface is obtained based on the interaction between the probe and the sample. In the scanning probe microscope constructed as described above, a plate having at least one hole is provided in the sample chamber so as to bisect the sample chamber vertically, and the sample is placed so as to block the hole on the upper surface of the plate. A scanning probe microscope configured such that a liquid flows along each of an upper surface and a lower surface of the placed plate, and a flow velocity of the liquid flowing along the lower surface is higher than a flow velocity of the liquid flowing along the upper surface. 前記プレートの上面に沿って液が流れる様に前記試料室の相対向する側壁各々に液導入管,液排出管を取り付け、前記プレートの下面に沿って液が流れる様に前記試料室の相対向する側壁各々に液導入管,液排出管を取り付け、液槽の流入部に前記両液排出管が繋がれ、該液槽の流出部に前記両液導入官が繋がれ、前記プレートの上,下各面に沿って液が循環する様に成した請求項1記載の走査プローブ顕微鏡。 A liquid introduction pipe and a liquid discharge pipe are attached to the opposite side walls of the sample chamber so that the liquid flows along the upper surface of the plate, and the sample chamber faces each other so that the liquid flows along the lower surface of the plate. A liquid introduction pipe and a liquid discharge pipe are attached to each of the side walls, the both liquid discharge pipes are connected to the inflow portion of the liquid tank, the both liquid introduction officers are connected to the outflow portion of the liquid tank, The scanning probe microscope according to claim 1, wherein the liquid circulates along each lower surface. 前記液槽の流出部と試料室側壁とを繋ぐ液導入管の内、前記プレート下面に沿って液を流す液導入管の途中に流量調整手段を設けた請求項2記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 2, wherein a flow rate adjusting means is provided in the middle of the liquid introduction pipe for flowing the liquid along the lower surface of the plate, out of the liquid introduction pipe connecting the outflow portion of the liquid tank and the side wall of the sample chamber. 前記液槽の流出部と試料室側壁とを繋ぐ液導入管の内、前記プレート上面に沿って液を流す液導入管の途中に流量調整手段を設けた請求項2記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 2, wherein a flow rate adjusting means is provided in the middle of the liquid introduction pipe that allows the liquid to flow along the upper surface of the plate in the liquid introduction pipe that connects the outflow portion of the liquid tank and the side wall of the sample chamber. 前記液槽の流出部と試料室側壁とを繋ぐ両液導入管の途中に流量調整手段を設けた請求項2記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 2, wherein a flow rate adjusting means is provided in the middle of both liquid introduction pipes connecting the outflow part of the liquid tank and the side wall of the sample chamber. 前記液槽の流出部と試料室側壁とを繋ぐ液導入管の内、前記プレート下面に沿って液を流す液導入管の途中に流量調整手段と管開閉手段を設け、前記液槽の流入部と試料室側壁とを繋ぐ液排出管の内、前記プレート上面に沿って液を流す液排出管の途中に管開閉手段を設けた請求項2,3,4,5の何れかに記載の走査プローブ顕微鏡。 Among the liquid introduction pipes connecting the outflow part of the liquid tank and the side wall of the sample chamber, a flow rate adjusting means and a pipe opening / closing means are provided in the middle of the liquid introduction pipe for flowing the liquid along the lower surface of the plate, and the inflow part of the liquid tank The scanning according to any one of claims 2, 3, 4, and 5, wherein a tube opening / closing means is provided in the middle of the liquid discharge pipe for flowing the liquid along the upper surface of the liquid in the liquid discharge pipe connecting the side wall and the sample chamber side wall. Probe microscope.
JP2007310108A 2007-11-30 2007-11-30 Scanning probe microscope Withdrawn JP2009133721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007310108A JP2009133721A (en) 2007-11-30 2007-11-30 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007310108A JP2009133721A (en) 2007-11-30 2007-11-30 Scanning probe microscope

Publications (1)

Publication Number Publication Date
JP2009133721A true JP2009133721A (en) 2009-06-18

Family

ID=40865740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007310108A Withdrawn JP2009133721A (en) 2007-11-30 2007-11-30 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP2009133721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115144A1 (en) * 2012-02-03 2013-08-08 日東電工株式会社 Sample fixing member for atomic force microscope
WO2014006734A1 (en) * 2012-07-06 2014-01-09 株式会社日立製作所 Force probe microscope and height distribution measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115144A1 (en) * 2012-02-03 2013-08-08 日東電工株式会社 Sample fixing member for atomic force microscope
JP2013160587A (en) * 2012-02-03 2013-08-19 Nitto Denko Corp Sample fixing member for atomic force microscope
CN104105972A (en) * 2012-02-03 2014-10-15 日东电工株式会社 Sample fixing member for atomic force microscope
US9279828B2 (en) 2012-02-03 2016-03-08 Nitto Denko Corporation Sample fixing member for atomic force microscope
WO2014006734A1 (en) * 2012-07-06 2014-01-09 株式会社日立製作所 Force probe microscope and height distribution measurement method
JPWO2014006734A1 (en) * 2012-07-06 2016-06-02 株式会社日立製作所 Force probe microscope and height distribution measuring method

Similar Documents

Publication Publication Date Title
JP6447653B2 (en) Immersion lithography apparatus and immersion lithography method
EP1777572A1 (en) Observation apparatus having thermoregulation mechanism
US20060274424A1 (en) Immersion objective lens, fluorometric analyzer, and inverted microscope
JPS5919912A (en) Immersion distance holding device
WO2012127523A1 (en) Culture apparatus for microscopic viewing and method of use thereof
US20160109357A1 (en) Device and method for examining samples in a liquid
JP5290333B2 (en) Lithographic apparatus and device manufacturing method
JP4557773B2 (en) Probe microscope and method for measuring physical properties
JP4987284B2 (en) Cantilever holder for liquid and scanning probe microscope
US5838000A (en) Method device and system for optical near-field scanning microscopy of test specimens in liquids
JP2009133721A (en) Scanning probe microscope
JP2019128371A (en) Inverted microscope and sample observation method
JP4329423B2 (en) Microscope equipment
JPH09318506A (en) Petri dish mounting equipment
JP5043699B2 (en) Scanning probe microscope
JP5018822B2 (en) Microscope equipment
JP2008122325A (en) Scanning probe microscope
JP2000221129A (en) Scanning probe microscope
JP2019200179A (en) Sample container attachment member and closing method of sample container
TWI817959B (en) Method of performing atomic force microscopy and atomic force microscopy measuring system
JP2009183193A (en) Laboratory dish for microinjection
US4986125A (en) Ultrasonic microscope
JPH11142418A (en) Scanning probe microscope
JP2005241281A (en) Scanning probe microscope
JPS6042294A (en) Device for measuring position of melt surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201