JP2009132796A - Resin fine particle and method for producing the same - Google Patents

Resin fine particle and method for producing the same Download PDF

Info

Publication number
JP2009132796A
JP2009132796A JP2007309802A JP2007309802A JP2009132796A JP 2009132796 A JP2009132796 A JP 2009132796A JP 2007309802 A JP2007309802 A JP 2007309802A JP 2007309802 A JP2007309802 A JP 2007309802A JP 2009132796 A JP2009132796 A JP 2009132796A
Authority
JP
Japan
Prior art keywords
fine particles
resin fine
monomer
chain transfer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007309802A
Other languages
Japanese (ja)
Inventor
Masa Mamino
雅 間簑
Kazuya Isobe
和也 磯部
Yasuharu Saida
靖治 齊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2007309802A priority Critical patent/JP2009132796A/en
Publication of JP2009132796A publication Critical patent/JP2009132796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide resin fine particles having a <1 μm average particle diameter and a uniform particle diameter distribution (having ≤15% CV value) by an emulsion polymerization method. <P>SOLUTION: The method for producing the resin fine particles having the <1 μm volume-average particle diameter by emulsifying and dispersing a composition containing at least a monomer (a polymerizable monomer) in an aqueous medium, and emulsion-polymerizing the emulsified and dispersed monomer includes dividedly adding a chain-transferring agent divided to two or more portions after the whole amount of the monomer has been added under polymerization reaction, and the whole amount of the chain-transferring agent is dividedly added until the monomer conversion in the polymerization reaches 10-80%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、体積平均粒径1μm未満で、且つ粒径分布が揃っている、好ましくは体積基準におけるメディアン径(D50)10nm以上300nm以下の範囲にあり、且つ体積基準の粒度分布における変動係数(CV値)が15%以下である樹脂微粒子及びその製造方法に関する。 The present invention has a volume average particle size of less than 1 μm and a uniform particle size distribution, preferably a median diameter (D 50 ) on a volume basis of 10 nm to 300 nm and a coefficient of variation in a volume basis particle size distribution. The present invention relates to resin fine particles having a (CV value) of 15% or less and a method for producing the same.

樹脂微粒子の製造方法として、一般的に用いられる手法として乳化重合法、懸濁重合法、分散重合法などがある。これらの重合方法及びこの生成樹脂微粒子にはそれぞれ特徴があり、例えば、乳化重合法により生成される樹脂微粒子は、その平均粒径(体積平均粒径。以下同じ。)が通常1μm未満で、またその粒度分布は比較的揃ったものとなる。懸濁重合法により生成される樹脂微粒子は、その平均粒径が通常では数μm以上となり、またその粒度分布は非常にブロードなものとなる。更に、分散重合により生成される樹脂微粒子は、用いられる溶媒を選択することにより比較的任意に平均粒径を選択でき、且つその粒度分布は均一なものとなるが、溶媒系であるために後処理に大きな問題を残す。   As a method for producing resin fine particles, there are an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method and the like as methods generally used. Each of these polymerization methods and the resulting resin fine particles have their respective characteristics. For example, the resin fine particles produced by the emulsion polymerization method have an average particle size (volume average particle size; hereinafter the same) generally less than 1 μm, The particle size distribution is relatively uniform. The resin fine particles produced by the suspension polymerization method usually have an average particle size of several μm or more, and the particle size distribution is very broad. Furthermore, the resin fine particles produced by the dispersion polymerization can be selected relatively arbitrarily in average particle size by selecting the solvent to be used, and the particle size distribution becomes uniform, but since it is a solvent system, Leave a big problem in processing.

このような背景で、平均粒径が通常1μm未満の粒度分布の揃った樹脂微粒子の製造方法は、主に乳化重合法により行われているのが現状である。しかしながら、近年、平均粒径が1μm未満で、且つより粒度分布が揃った、例えば体積基準の粒度分布における変動係数(CV値)が15%以下の樹脂微粒子を作製することが望まれている。   Against this background, the current method for producing resin fine particles having a uniform particle size distribution with an average particle size of usually less than 1 μm is mainly carried out by emulsion polymerization. However, in recent years, it has been desired to produce resin fine particles having an average particle size of less than 1 μm and a more uniform particle size distribution, for example, a coefficient of variation (CV value) in a volume-based particle size distribution of 15% or less.

平均粒径が1μm未満でより粒度分布が揃った(CV値が15%以下)樹脂微粒子は、電子写真用トナー(コア・シェル構造トナーを含む。)、液晶表示板のギャップ調節剤、医学診断用担体、粒径測定用の標準粒子、クロマトグラフィ用充填剤、化粧品用填剤、合成皮革の風合い改善剤等、その用途は広い。例えば、特許文献1には、トナーの形状係数SF−1の標準偏差と形状係数SF−2の標準偏差がそれぞれ特定範囲内にあり、且つシェルの最大厚と最小厚との比が特定範囲内にあるコア・シェル構造のトナーが開示されており、この発明は、樹脂微粒子分散液に重合開始剤を添加した後に、連鎖移動剤を含む、モノマー混合液を、1時間ないし3時間かけて滴下する技術であるため、平均粒径1μm未満でより粒度分布が揃った(CV値が15%以下)トナー用樹脂微粒子を得ることはできなかった。
そこで、本発明の目的は、乳化重合法により平均粒径が1μm未満でより粒度分布が揃った(CV値が15%以下)樹脂微粒子を提供することにある。
特開2007−57575号公報
Resin fine particles having an average particle size of less than 1 μm and a more uniform particle size distribution (CV value of 15% or less) are electrophotographic toners (including core / shell structure toners), liquid crystal display gap control agents, medical diagnosis. It has a wide range of uses, such as carrier for carrier, standard particle for particle size measurement, filler for chromatography, filler for cosmetics, texture improver for synthetic leather. For example, Patent Document 1 discloses that the standard deviation of the toner shape factor SF-1 and the standard deviation of the shape factor SF-2 are within a specific range, and the ratio between the maximum thickness and the minimum thickness of the shell is within the specific range. In this invention, after adding a polymerization initiator to a resin fine particle dispersion, a monomer mixture containing a chain transfer agent is dropped over 1 to 3 hours. Therefore, it was impossible to obtain resin fine particles for toner having an average particle size of less than 1 μm and a more uniform particle size distribution (CV value of 15% or less).
Accordingly, an object of the present invention is to provide resin fine particles having an average particle size of less than 1 μm and a more uniform particle size distribution (CV value of 15% or less) by an emulsion polymerization method.
JP 2007-57575 A

前述したように、平均粒径が1μm未満でより粒度分布が揃った(CV値が15%以下)樹脂微粒子は幅広い分野で望まれているが、その製造方法は難しい。そこで、本発明は、平均粒径が1μm未満でより粒度分布が揃った(CV値が15%以下)樹脂微粒子及びその製造方法の提供を目的とする。   As described above, resin fine particles having an average particle size of less than 1 μm and a more uniform particle size distribution (CV value of 15% or less) are desired in a wide range of fields, but their production method is difficult. Accordingly, an object of the present invention is to provide resin fine particles having an average particle size of less than 1 μm and a more uniform particle size distribution (CV value of 15% or less) and a method for producing the same.

上記課題を解決する本発明は、下記構成を有する。
1.少なくともモノマー(重合性単量体)を含有する組成物を水系媒体中に乳化分散し、乳化分散したモノマーを乳化重合せしめて体積平均粒径1μm未満の樹脂微粒子を製造する方法において、重合反応中、前記モノマーを全量添加以後に、連鎖移動剤が2回以上分
割添加され、且つ前記連鎖移動剤が、モノマー重合転化率が10〜80%に到達するまでにその全量が分割添加されることを特徴とする樹脂微粒子の製造方法。
The present invention for solving the above problems has the following configuration.
1. In a method in which a composition containing at least a monomer (polymerizable monomer) is emulsified and dispersed in an aqueous medium, and the emulsified and dispersed monomer is subjected to emulsion polymerization to produce resin fine particles having a volume average particle size of less than 1 μm. After the total amount of the monomer is added, the chain transfer agent is added in two or more portions, and the chain transfer agent is added in portions until the monomer polymerization conversion reaches 10 to 80%. A method for producing fine resin particles.

2.連鎖移動剤が、一定時間間隔で分割添加されることを特徴とする前記1に記載の樹脂微粒子の製造方法。
3.連鎖移動剤が、等分量で分割添加されることを特徴とする前記1又は2に記載の樹脂微粒子の製造方法。
4.樹脂粒子が、体積基準におけるメディアン径(D50)が10nm以上300nm以下であり、且つ体積基準の粒度分布における変動係数(CV値)が15%以下であることを特徴とする前記1〜3のいずれかに記載の樹脂微粒子の製造方法。
2. 2. The method for producing resin fine particles according to 1 above, wherein the chain transfer agent is added in portions at regular time intervals.
3. 3. The method for producing resin fine particles as described in 1 or 2 above, wherein the chain transfer agent is dividedly added in equal amounts.
4). The above-mentioned 1-3, wherein the resin particles have a volume-based median diameter (D 50 ) of 10 nm to 300 nm and a coefficient of variation (CV value) in a volume-based particle size distribution of 15% or less. The manufacturing method of the resin fine particle in any one.

5.連鎖移動剤が、分配係数(logP)が1以上10以下であり、且つ連鎖移動定数(Cx)が2以上30以下であることを特徴とする前記1〜4のいずれかに記載の樹脂微粒子の製造方法。
6.前記1〜5のいずれかに記載の製造方法によって得られた樹脂微粒子。
5). 5. The resin fine particle as described in any one of 1 to 4 above, wherein the chain transfer agent has a distribution coefficient (logP) of 1 or more and 10 or less and a chain transfer constant (C x ) of 2 or more and 30 or less. Manufacturing method.
6). Resin fine particles obtained by the production method according to any one of 1 to 5 above.

前記1及び6に記載の発明によれば、従来は製造が困難視されていた樹脂微粒子、例えば、平均粒径が1μm未満でより粒度分布が揃った(CV値が15%以下)樹脂微粒子であっても、これを作製することができる。   According to the inventions described in 1 and 6 above, resin fine particles that have been conventionally considered difficult to manufacture, for example, resin fine particles having an average particle size of less than 1 μm and a more uniform particle size distribution (CV value of 15% or less) Even if it exists, this can be produced.

前記2及び3に記載の発明によれば、より微粒子でありながら粒径の揃った樹脂微粒子を作製することができる。
前記4に記載の発明によれば、樹脂粒子が、体積基準におけるメディアン径(D50)が10nm以上300nm以下であり、且つ体積基準の粒度分布における変動係数(CV値)が15%以下である前記1に記載の樹脂微粒子であっても、これを作製することができる。
前記5に記載の発明によれば、より効率的に前記1〜4に記載の樹脂微粒子を作製することができる。
According to the inventions described in the above 2 and 3, it is possible to produce fine resin particles having a uniform particle diameter while being finer particles.
According to the invention described in item 4, the resin particles have a volume-based median diameter (D 50 ) of 10 nm or more and 300 nm or less, and a coefficient of variation (CV value) in a volume-based particle size distribution of 15% or less. Even the resin fine particles described in 1 above can be produced.
According to the invention described in 5 above, the resin fine particles described in 1 to 4 can be produced more efficiently.

本発明者らは、いわゆる連鎖移動剤が、乳化重合法において重合禁止剤の役割を担うことに着目した。即ち、従来の乳化重合法では、重合開始剤を添加し重合反応を開始させたとき、重合開始剤が重合後期まで働くために、重合初期に生成した粒子と、重合後期に生成した粒子が混在しており、重合初期と後期では粒子の成長時間が異なるため、重合完了時の樹脂微粒子の粒径が揃ったものにならないものと考えられる。   The present inventors have focused on the fact that so-called chain transfer agents play a role of polymerization inhibitors in the emulsion polymerization method. That is, in the conventional emulsion polymerization method, when a polymerization initiator is added and the polymerization reaction is started, the polymerization initiator works until the late stage of polymerization, so that particles produced in the early stage of polymerization and particles produced in the late stage of polymerization are mixed. Since the particle growth time is different between the early stage and the late stage of polymerization, it is considered that the particle diameters of the resin fine particles at the completion of the polymerization are not uniform.

そこで、重合後期における新たな粒子生成を防ぐ為に、重合反応中、前記モノマーを全量添加以後に、連鎖移動剤を2回以上分割添加することによって、連鎖移動剤が重合後期の重合開始剤の働きを阻害し、新たな粒子生成を防ぎ、重合完了時にCV値が15%以下の樹脂微粒子を得ることができることを、本発明者らは見出した。
重合開始剤を添加した後で、連鎖移動剤を全量一括添加した場合は、重合完了時にCV値が15%以下の樹脂微粒子を得ることはできない。なぜならば、新たな粒子生成を生じさせる重合開始剤は、乳化重合法による場合、水溶性であるのに対し、連鎖移動剤は油溶性であるので、連鎖移動剤は重合後期まで水相側に留まることができずに重合開始剤の働きを阻害することができないからである。
Therefore, in order to prevent the formation of new particles in the late polymerization stage, the chain transfer agent is added to the polymerization initiator in the late polymerization stage by adding the chain transfer agent in two or more portions during the polymerization reaction after the total addition of the monomer. The present inventors have found that resin fine particles having a CV value of 15% or less can be obtained at the completion of polymerization by inhibiting the action and preventing the formation of new particles.
When the chain transfer agent is added all at once after the polymerization initiator is added, resin fine particles having a CV value of 15% or less cannot be obtained upon completion of the polymerization. This is because the polymerization initiator that generates new particles is water-soluble in the emulsion polymerization method, whereas the chain transfer agent is oil-soluble. This is because the function of the polymerization initiator cannot be inhibited without being able to stay.

以下、本発明について詳細に説明する。
本発明に係る樹脂微粒子は、粒度分布が揃ったものであり、好ましくは体積基準の粒度分布における変動係数(CV値)が15%以下のものである。尚、本発明では「樹脂微粒
子」という用語を用いているが、これは、重合により生成される樹脂粒子が平均粒径1μm未満の大きさのものであることを意味する。より好ましくは、後述する体積基準におけるメディアン径(D50)10nm以上300nm以下を大きさを有することを意味する。体積基準メディアン径(D50)の測定方法については後述する。
Hereinafter, the present invention will be described in detail.
The resin fine particles according to the present invention have a uniform particle size distribution, and preferably have a coefficient of variation (CV value) of 15% or less in the volume-based particle size distribution. In the present invention, the term “resin fine particles” is used, which means that the resin particles produced by polymerization have an average particle size of less than 1 μm. More preferably, it means having a median diameter (D 50 ) of 10 nm or more and 300 nm or less on a volume basis to be described later. A method for measuring the volume-based median diameter (D 50 ) will be described later.

本発明に係る樹脂微粒子は、例えば、以下に示す手順で作製することが可能である。
(1)先ず、臨界ミセル濃度(CMC)以下の界面活性剤を含有した水系媒体中にモノマーを添加する。このとき、分子量調整のための連鎖移動剤はモノマーと共に添加してもよい。
(2)次に、機械的エネルギーを加えてモノマー溶液又はその液滴を形成する。尚、上記モノマー溶液の液滴を形成するための機械的エネルギー付与手段としては、ホモミキサー、クレアミクス、マントンゴーリン、超音波振動装置などが挙げられる。
The resin fine particles according to the present invention can be produced, for example, by the following procedure.
(1) First, a monomer is added to an aqueous medium containing a surfactant having a critical micelle concentration (CMC) or less. At this time, the chain transfer agent for adjusting the molecular weight may be added together with the monomer.
(2) Next, mechanical energy is applied to form a monomer solution or droplets thereof. Examples of the mechanical energy imparting means for forming droplets of the monomer solution include a homomixer, cleamics, Manton gorin, and an ultrasonic vibration device.

(3)形成したモノマー溶液の液滴に対して所定量の水溶性のラジカル重合開始剤を添加後、加熱等により重合を開始させた後、連鎖移動剤を下記(a)〜(c)の条件で添加することにより、樹脂微粒子が形成される。尚、本発明における連鎖移動剤の1回目の添加は、重合開始剤の添加と同時であっても構わない。
(a)モノマー重合転化率が10〜80%、好ましくは20〜60%に到達するまでに全量を分割添加する。
(b)上記(a)の分割添加は、2回以上の回数(連続滴下を含む。)で分割添加する。
(c)上記(a)のモノマー重合転化率の間に、一定時間間隔・等分量で分割添加することが好ましい。
重合転化率の測定は、重合反応中の反応液をサンプリングし、残存するモノマー量をガスクロマトグラフィーにより定量することにより算出することが可能である。ガスクロマトグラフィーの測定条件を下記に挙げる。
測定装置 :Agilent 6890 Series GC System
キャリア :N2,1.5ml/min
Split比:1/20
カラム :DB−624 30m×0.25mm,1.4μm
(3) After adding a predetermined amount of a water-soluble radical polymerization initiator to the droplets of the monomer solution formed, the polymerization is started by heating or the like, and then the chain transfer agent is added to the following (a) to (c) By adding under conditions, resin fine particles are formed. In the present invention, the first addition of the chain transfer agent may be performed simultaneously with the addition of the polymerization initiator.
(A) The whole amount is dividedly added until the monomer polymerization conversion reaches 10 to 80%, preferably 20 to 60%.
(B) The above-mentioned divided addition (a) is divided and added two or more times (including continuous dripping).
(C) It is preferable to divide and add at regular time intervals and in equal amounts during the monomer polymerization conversion rate in (a) above.
The polymerization conversion rate can be calculated by sampling the reaction solution during the polymerization reaction and quantifying the amount of remaining monomer by gas chromatography. The measurement conditions for gas chromatography are listed below.
Measuring device: Agilent 6890 Series GC System
Carrier: N 2 , 1.5 ml / min
Split ratio: 1/20
Column: DB-624 30 m × 0.25 mm, 1.4 μm

本発明における分割添加は、一定時間間隔であることが好ましいが、例えば、添加間隔が最も短い時間を基準として1.1〜5倍の添加時間間隔であっても構わない。
また、本発明における分割添加は、等分量であることが好ましいが、例えば、添加量が最も少ない量を基準として1.1〜5倍の添加量であっても構わない。具体的には、例えば奇数回の添加量を1質量部で行い、偶数回の添加量を1.5質量部で行っても構わない。
分割添加する方法は、添加毎に一括注入ないし投下してもよいし、いわゆる滴下であってもよい。
The divided addition in the present invention is preferably performed at a constant time interval. However, for example, the addition time interval may be 1.1 to 5 times based on the shortest addition interval.
In addition, the divided addition in the present invention is preferably an equal amount, but for example, it may be an addition amount 1.1 to 5 times based on the amount with the smallest addition amount. Specifically, for example, an odd number of additions may be performed at 1 part by mass, and an even number of additions may be performed at 1.5 parts by mass.
The method of divided addition may be batch injection or dropping at every addition, or so-called dropping.

本発明に好ましく用いられる連鎖移動剤は、分配係数が1以上10以下であり、且つ50℃における連鎖移動定数が2以上30以下のものである。
本発明によって得られる好ましい樹脂微粒子は、体積基準におけるメディアン径(D50)10nm以上300nm以下、より好ましくは30nm以上200nm以下である。
樹脂微粒子の体積基準におけるメディアン径(D50)は、公知の「マイクロトラックUPA−150(日機装社製)」を用いて動的光散乱法で測定して求めた値である。
The chain transfer agent preferably used in the present invention has a partition coefficient of 1 to 10 and a chain transfer constant at 50 ° C. of 2 to 30.
Preferred resin fine particles obtained by the present invention have a median diameter (D 50 ) of 10 nm to 300 nm, more preferably 30 nm to 200 nm, on a volume basis.
The median diameter (D 50 ) on the volume basis of the resin fine particles is a value obtained by measurement by a dynamic light scattering method using a known “Microtrack UPA-150 (manufactured by Nikkiso Co., Ltd.)”.

具体的には、以下の手順で行われる。
先ず、50mlのメスシリンダーに測定用樹脂微粒子を数滴滴下し、純水を25ml加え、超音波洗浄機「US−1(as one社製)」を用いて3分間分散させ測定用試料
を作成する。次いで、測定用試料3mlを「マイクロトラックUPA−150」のセル内に投入し、Sample Loadingの値が0.1〜100の範囲にあることを確認する。そして、下記測定条件にて測定する。
Specifically, the following procedure is performed.
First, a few drops of measurement resin fine particles are dropped into a 50 ml graduated cylinder, 25 ml of pure water is added, and dispersed for 3 minutes using an ultrasonic cleaner “US-1 (manufactured by asone)” to prepare a measurement sample. To do. Next, 3 ml of the measurement sample is put into the cell of “Microtrack UPA-150”, and it is confirmed that the value of Sample Loading is in the range of 0.1-100. And it measures on the following measurement conditions.

測定条件
Transparency(透明度):Yes
Refractive Index(屈折率):1.59
Particle Density(粒子比重):1.05gm/cm3
Spherical Particles(球形粒子):Yes
溶媒条件
Refractive Index(屈折率):1.33
Viscosity(粘度):High(temp)0.797×10-3Pa・S
Low(Temp) 1.002×10-3Pa・S
Measurement conditions Transparency (transparency): Yes
Refractive Index (refractive index): 1.59
Particle Density (particle specific gravity): 1.05 gm / cm 3
Spherical Particles (Spherical Particles): Yes
Solvent conditions Refractive Index (refractive index): 1.33
Viscosity (Viscosity): High (temp) 0.797 × 10 −3 Pa · S
Low (Temp) 1.002 × 10 −3 Pa · S

樹脂微粒子の体積基準の粒度分布における変動係数は、以下の式より算出される。
変動係数(CV値)(%)=(S2/Dn)×100
式中、S2は体積基準の粒度分布における標準偏差を示し、Dnは体積基準におけるメディアン径(D50)を示す。
The coefficient of variation in the volume-based particle size distribution of the resin fine particles is calculated from the following equation.
Coefficient of variation (CV value) (%) = (S2 / Dn) × 100
In the formula, S2 represents the standard deviation in the volume-based particle size distribution, and Dn represents the median diameter (D 50 ) based on the volume.

モノマー溶液を水系に分散させる乳化剤は、公知のカオチン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤を特別の制限なく用いることができ、これらを単独又は2種以上併用することが可能である。
カオチン系界面活性剤としては、例えばドデシルアンモニウムクロライド、ドデシルアンモニウムブロマイド、ドデシルトリメチルアンモニウムブロマイド、ドデシルピリジニウムクロライド、ドデシルピリジニウムブロマイド、ヘキサデシルトリメチルアンモニウムブロマイド等が挙げられる。
As the emulsifier for dispersing the monomer solution in an aqueous system, known chaotic surfactants, anionic surfactants, and nonionic surfactants can be used without particular limitation, and these may be used alone or in combination of two or more. Is possible.
Examples of the chaotic surfactant include dodecyl ammonium chloride, dodecyl ammonium bromide, dodecyl trimethyl ammonium bromide, dodecyl pyridinium chloride, dodecyl pyridinium bromide, hexadecyl trimethyl ammonium bromide and the like.

アニオン系界面活性剤としては、例えばステアリン酸ナトリウム、ドデカン酸ナトリウム等の脂肪族石鹸や、硫酸ドデシルナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリル酸ナトリウム等が挙げられる。
ノニオン系界面活性剤としては、例えばドデシルポリオキシエチレンエーテル、ヘキサデシルポリオキシエチレンエーテル、ノニルフェニルポリオキシエチレンエーテル、ラウリルポリオキシエチレンエーテル、ソルビタンモノオレアートポリオキシエチレンエーテル、モノデカノイルショ糖等が挙げられる。
Examples of the anionic surfactant include aliphatic soaps such as sodium stearate and sodium dodecanoate, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium laurate.
Examples of nonionic surfactants include dodecyl polyoxyethylene ether, hexadecyl polyoxyethylene ether, nonylphenyl polyoxyethylene ether, lauryl polyoxyethylene ether, sorbitan monooleate polyoxyethylene ether, monodecanoyl sucrose, etc. Is mentioned.

本発明で用いられるモノマーは、公知のモノマーを特別の制限なく用いることができ、モノマーは単独又は2種以上併用することが可能である。
酸性の極性基を有するモノマーとしては、例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、ケイ皮酸等のカルボキシル基を有するモノマーや、スルホン化スチレン等のスルホン酸基を有するモノマー等が挙げられる。
As the monomer used in the present invention, a known monomer can be used without any particular limitation, and the monomers can be used alone or in combination of two or more.
Examples of the monomer having an acidic polar group include monomers having a carboxyl group such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and cinnamic acid, and monomers having a sulfonic acid group such as sulfonated styrene. .

塩基性の極性基を有するモノマーとしては、例えばアミノスチレン及びその4級塩、ビニルピリジン、ビニルピロリドン等の窒素含有複素環を含有するモノマーや、ジメチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を有する(メタ)アクリル酸エステルモノマー、及びこれらのアミノ基を4級化したアンモニウム塩を有する(メタ)アクリル酸エステルモノマー、アクリルアミド、N−プロピルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジプロピルアクリルアミド、N,N−ジブチルアクリルアミド、アクリル酸アミド等が挙げられる。   Examples of the monomer having a basic polar group include monomers containing nitrogen-containing heterocycles such as aminostyrene and quaternary salts thereof, vinylpyridine and vinylpyrrolidone, and amino groups such as dimethylaminoethyl acrylate and diethylaminoethyl methacrylate. (Meth) acrylic acid ester monomer having, and (meth) acrylic acid ester monomer having quaternized ammonium salt of these amino groups, acrylamide, N-propylacrylamide, N, N-dimethylacrylamide, N, N-di Examples include propyl acrylamide, N, N-dibutyl acrylamide, and acrylic acid amide.

その他のモノマーとしては、スチレン、メチルスチレン、クロロスチレン、ジクロロス
チレン、p−tert−ブチルスチレン、p−n−ブチルスチレン、p−n−ノニルスチレン等のスチレン類、アクリル酸メチル、アクリル酸エチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸ヒドロキシエチル、メタクリル酸エチルヘキシル等の(メタ)アクリル酸エステル等が挙げられる。
Examples of other monomers include styrenes such as styrene, methylstyrene, chlorostyrene, dichlorostyrene, p-tert-butylstyrene, pn-butylstyrene, and pn-nonylstyrene, methyl acrylate, ethyl acrylate, Examples include (meth) acrylic acid esters such as ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl methacrylate, hydroxyethyl methacrylate, and ethylhexyl methacrylate.

本発明では、極性基を有するモノマーとしてメタクリル酸が、また、その他のモノマーとしてスチレン、アクリル酸エステル、及びメタクリル酸エステルが好適に用いられる。これらのモノマーは、単独又は2種以上併用して用いることが可能である。   In the present invention, methacrylic acid is suitably used as the monomer having a polar group, and styrene, acrylic acid ester, and methacrylic acid ester are suitably used as other monomers. These monomers can be used alone or in combination of two or more.

本発明に用いられる重合開始剤は、公知の重合開始剤を特別の制限なく用いることができ、重合開始剤は単独又は2種以上併用することが可能である。
好ましく用いられる重合開始剤としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩や、これらの過硫酸塩を一成分として酸性亜硫酸ナトリウム等の還元剤を組み合わせたレドックス開始剤、過酸化水素、4,4’−アゾビスシアノ吉草酸、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の水溶性重合開始剤、及びこれらの水溶性重合開始剤を一成分として第一鉄塩等の還元剤を組み合わせたレドックス系開始剤、過酸化ベンゾイル、2,2’−アゾビスイソビチロニトリル等が挙げられる。
As the polymerization initiator used in the present invention, a known polymerization initiator can be used without any particular limitation, and the polymerization initiators can be used alone or in combination of two or more.
Preferred polymerization initiators include persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate, redox initiators composed of these persulfates as a component and a reducing agent such as acidic sodium sulfite, Water-soluble polymerization initiators such as hydrogen oxide, 4,4′-azobiscyanovaleric acid, t-butyl hydroperoxide, cumene hydroperoxide, etc., and reduction of ferrous salts etc. using these water-soluble polymerization initiators as one component Redox initiators combined with an agent, benzoyl peroxide, 2,2′-azobisisobityronitrile, and the like.

本発明に用いられる連鎖移動剤は、乳化重合法において重合禁止剤の役割を担うことができるものであれば、公知のいずれのものであってもよい。連鎖移動剤としては、分配係数(logP)が1以上10以下であり、且つ連鎖移動定数が2以上30以下のものであることが好ましく、例えば、t−ドデシルメルカプタン、n−オクチルメルカプタン、2−メルカプトエタノール、ジイソプロピルキサントゲン、n−ブチルメルカプタン、n−アミルメルカプタン、n−ヘキシルメルカプタン、n−ヘプチルメルカプタン、n−ノリルメルカプタン、n−デシルメルカプタン、n−ドデシルメルカプタン等が挙げられる。例えば、n−オクチルメルカプタンのスチレン(50℃)に対する連鎖移動定数は19、logPは4であり、n−ドデシルメルカプタンのスチレンに対する連鎖移動定数は13、logPは6である。連鎖移動剤は、単独又は2種以上併用することが可能である。また、連鎖移動剤の添加量は、全モノマー量に対して0.1質量%以上15質量%以下が好ましい。
本発明に用いられる連鎖移動剤は、モノマーに分子量調整のため混合して用いられる連鎖移動剤と同一種であってもよいし、異なってもよい。
The chain transfer agent used in the present invention may be any known one as long as it can play the role of a polymerization inhibitor in the emulsion polymerization method. The chain transfer agent preferably has a distribution coefficient (log P) of 1 or more and 10 or less and a chain transfer constant of 2 or more and 30 or less. For example, t-dodecyl mercaptan, n-octyl mercaptan, 2- Examples include mercaptoethanol, diisopropylxanthogen, n-butyl mercaptan, n-amyl mercaptan, n-hexyl mercaptan, n-heptyl mercaptan, n-noryl mercaptan, n-decyl mercaptan, n-dodecyl mercaptan and the like. For example, the chain transfer constant of n-octyl mercaptan for styrene (50 ° C.) is 19, log P is 4, and the chain transfer constant of n-dodecyl mercaptan for styrene is 13, and log P is 6. Chain transfer agents can be used alone or in combination of two or more. The addition amount of the chain transfer agent is preferably 0.1% by mass or more and 15% by mass or less with respect to the total monomer amount.
The chain transfer agent used in the present invention may be the same as or different from the chain transfer agent used by mixing with the monomer for molecular weight adjustment.

以下、実施例を挙げて本発明を例証する。
・実施例1
アニオン系界面活性剤(ドデシル硫酸ナトリウム)0.766gをイオン交換水597gに溶解させた溶液に、スチレン113.6g、アクリル酸ブチル32.8g、メタクリル酸(20%含水)17.0gからなるモノマーを加え、機械式分散機「クレアミクス(エム・テクニック社製)」を用い、3500rpmの処理条件で1分間分散を行いモノマー液滴の分散液を調整した。この分散液を「分散液A1」とする。
The following examples illustrate the invention.
Example 1
A monomer comprising 113.6 g of styrene, 32.8 g of butyl acrylate, and 17.0 g of methacrylic acid (containing 20% water) in a solution obtained by dissolving 0.766 g of an anionic surfactant (sodium dodecyl sulfate) in 597 g of ion-exchanged water. Then, using a mechanical disperser “Creamix (M Technique Co., Ltd.)”, dispersion was performed for 1 minute under a processing condition of 3500 rpm to prepare a dispersion of monomer droplets. This dispersion is referred to as “dispersion A1”.

また、アニオン系界面活性剤(ドデシル硫酸ナトリウム)0.12gをイオン交換水89.7gに溶解させた溶液に連鎖移動剤(n−オクチルメルカプタン)9.0gを加え、機械式分散機「クレアミクス(エム・テクニック社製)」を用い、3500rpmの処理条件で1分間分散を行い乳化粒子の分散液を調整した。この分散液を「分散液B1」とする。   In addition, 9.0 g of a chain transfer agent (n-octyl mercaptan) was added to a solution obtained by dissolving 0.12 g of an anionic surfactant (sodium dodecyl sulfate) in 89.7 g of ion-exchanged water. M Technic Co., Ltd.) ”was used for dispersion for 1 minute under a processing condition of 3500 rpm to prepare a dispersion of emulsified particles. This dispersion is referred to as “Dispersion B1”.

次いで、「分散液A1」を予め攪拌装置、温度計、冷却管、窒素導入装置を付けた1Lの丸底フラスコに窒素気流下230rpmの攪拌速度で攪拌しつつ、内温を80℃に昇温させた。次いで、重合開始剤(過硫酸カリウム)2.03gをイオン交換水38.64gに溶解させた溶液を添加し、その後、「分散液B1」を重合転化率80%に到達するまでに全量を添加できるように、全量の1/2ずつを一定のタイミング(1回目の添加を重合開始剤の添加と同時に行い、2回目の添加は、重合転化率が80%となる時間(重合開始剤添加後30分後)に添加するものとする。尚、重合転化率の測定はあらかじめ同処方の重合実験により測定し、重合時間に対する重合転化率を測定しておくものとする。)で添加する。最終の連鎖移動剤添加後、80℃で2時間加熱攪拌することにより重合を行い、樹脂微粒子を作製した。この樹脂微粒子について、体積基準におけるメディアン径(D50)を前記の方法で測定し、その結果を表2に示す。また、重量平均分子量及び体積基準の粒度分布における変動係数(CV値)についても表2に示す。 Next, the internal temperature was raised to 80 ° C. while stirring “Dispersion A1” in a 1 L round-bottom flask equipped with a stirrer, a thermometer, a condenser tube, and a nitrogen introducing device at a stirring speed of 230 rpm under a nitrogen stream. I let you. Next, a solution in which 2.03 g of a polymerization initiator (potassium persulfate) is dissolved in 38.64 g of ion-exchanged water is added, and then the total amount of “dispersion B1” is added until the polymerization conversion rate reaches 80%. As much as possible, 1/2 of the total amount is fixed at a certain timing (the first addition is performed at the same time as the addition of the polymerization initiator, and the second addition is performed for a time during which the polymerization conversion is 80% (after the polymerization initiator is added). 30 minutes later) The polymerization conversion rate is measured in advance by a polymerization experiment of the same formulation, and the polymerization conversion rate with respect to the polymerization time is measured. After the final chain transfer agent was added, polymerization was carried out by heating and stirring at 80 ° C. for 2 hours to produce resin fine particles. With respect to the resin fine particles, the median diameter (D 50 ) on a volume basis was measured by the above method, and the results are shown in Table 2. Table 2 also shows the coefficient of variation (CV value) in the weight average molecular weight and volume-based particle size distribution.

・実施例2〜8
実施例2は、実施例1において、連鎖移動剤種、添加終了時の重合転化率を表1に示すように変更する他は同様にして樹脂微粒子を作製した。
実施例3〜4は、実施例1において、添加終了時の重合転化率を表1に示すように変更する他は同様にして樹脂微粒子を作製した。
実施例5〜8は、実施例1において、連鎖移動剤の添加のタイミングを重合転化率60%となる重合時間20分までに、一定時間間隔で表1に記載の添加回数に分割して添加した。
これらの樹脂微粒子について、体積基準におけるメディアン径(D50)を前記の方法で測定し、その結果を表2に示す。また、重量平均分子量及び体積基準の粒度分布における変動係数(CV値)についても表2に示す。
-Examples 2-8
In Example 2, resin fine particles were prepared in the same manner as in Example 1, except that the chain transfer agent species and the polymerization conversion rate at the end of addition were changed as shown in Table 1.
In Examples 3 to 4, resin fine particles were prepared in the same manner as in Example 1 except that the polymerization conversion rate at the end of addition was changed as shown in Table 1.
In Examples 1 to 8, the timing of addition of the chain transfer agent in Example 1 was divided into the number of additions shown in Table 1 at regular time intervals until the polymerization time of 20 minutes at which the polymerization conversion was 60%, and added. did.
These resin fine particles was measured volume-based median diameter of (D 50) in the manner described, and the results are shown in Table 2. Table 2 also shows the coefficient of variation (CV value) in the weight average molecular weight and volume-based particle size distribution.

・比較例1
アニオン系界面活性剤(ドデシル硫酸ナトリウム)0.766gをイオン交換水597gに溶解させた溶液に、連鎖移動剤(n−オクチルメルカプタン)9.0gとスチレン113.6g、アクリル酸ブチル32.8g、メタクリル酸(20%含水)17.0gからなるモノマーを加え、機械式分散機「クレアミクス(エム・テクニック社製)」を用い、3500rpmの処理条件で1分間分散を行いモノマー液滴の分散液を調整した。この分散液を「分散液A2」とする。
Comparative example 1
In a solution obtained by dissolving 0.766 g of an anionic surfactant (sodium dodecyl sulfate) in 597 g of ion-exchanged water, 9.0 g of a chain transfer agent (n-octyl mercaptan), 113.6 g of styrene, 32.8 g of butyl acrylate, A monomer consisting of 17.0 g of methacrylic acid (containing 20% water) is added, and a dispersion of monomer droplets is made by dispersing for 1 minute under a processing condition of 3500 rpm using a mechanical disperser “Creamix (M Technique)”. It was adjusted. This dispersion is referred to as “dispersion A2”.

次いで、「分散液A2」を予め攪拌装置、温度計、冷却管、窒素導入装置を付けた1Lの丸底フラスコに窒素気流下230rpmの攪拌速度で攪拌しつつ、内温を80℃に昇温させた。次いで、重合開始剤(過硫酸カリウム)2.03gをイオン交換水38.64gに溶解させた溶液を添加し、80℃で2時間加熱攪拌することにより重合を行い、樹脂微粒子を作製した。この樹脂微粒子について、体積基準におけるメディアン径(D50)を前記の方法で測定し、その結果を表2に示す。また、重量平均分子量及び体積基準の粒度分布における変動係数(CV値)についても表2に示す。 Next, the internal temperature was raised to 80 ° C. while stirring the “dispersion A2” in a 1 L round bottom flask equipped with a stirrer, a thermometer, a condenser tube, and a nitrogen introduction device at a stirring speed of 230 rpm under a nitrogen stream. I let you. Next, a solution in which 2.03 g of a polymerization initiator (potassium persulfate) was dissolved in 38.64 g of ion-exchanged water was added, and polymerization was performed by heating and stirring at 80 ° C. for 2 hours to prepare resin fine particles. With respect to the resin fine particles, the median diameter (D 50 ) on a volume basis was measured by the above method, and the results are shown in Table 2. Table 2 also shows the coefficient of variation (CV value) in the weight average molecular weight and volume-based particle size distribution.

・比較例2
比較例1において、連鎖移動剤9.0gを重合転化率が20%になる時点で添加することに変更する他は同様にして、樹脂微粒子を作製した。この樹脂微粒子について、体積基準におけるメディアン径(D50)を前記の方法で測定し、その結果を表2に示す。また、重量平均分子量及び体積基準の粒度分布における変動係数(CV値)についても表2に示す。
Comparative example 2
Resin fine particles were prepared in the same manner as in Comparative Example 1, except that 9.0 g of the chain transfer agent was added when the polymerization conversion rate reached 20%. With respect to the resin fine particles, the median diameter (D 50 ) on a volume basis was measured by the above method, and the results are shown in Table 2. Table 2 also shows the coefficient of variation (CV value) in the weight average molecular weight and volume-based particle size distribution.

・比較例3〜4
実施例1において、添加回数及び添加終了時の重合転化率を表1に示すように変化させ
たことのみ異ならせて、樹脂微粒子を作製した。これらの樹脂微粒子について、体積基準におけるメディアン径(D50)を前記の方法で測定し、その結果を表2に示す。また、重量平均分子量及び体積基準の粒度分布における変動係数(CV値)についても表2に示す。
・ Comparative Examples 3-4
In Example 1, resin fine particles were prepared by changing only the number of additions and the polymerization conversion rate at the end of addition as shown in Table 1. These resin fine particles was measured volume-based median diameter of (D 50) in the manner described, and the results are shown in Table 2. Table 2 also shows the coefficient of variation (CV value) in the weight average molecular weight and volume-based particle size distribution.

Figure 2009132796
Figure 2009132796
Figure 2009132796
Figure 2009132796

・実施例9
実施例6において、添加時間を重合開始後、0分、5分、20分に変更する他は同様に、樹脂微粒子を作製した。この樹脂微粒子について、体積基準におけるメディアン径(D50)を前記の方法で測定し、その結果を表3に示す。また、重量平均分子量及び体積基準の粒度分布における変動係数(CV値)についても表3に示す。
Example 9
In Example 6, resin fine particles were prepared in the same manner except that the addition time was changed to 0 minutes, 5 minutes, and 20 minutes after the start of polymerization. With respect to the resin fine particles, the median diameter (D 50 ) on a volume basis was measured by the above method, and the results are shown in Table 3. Table 3 also shows the coefficient of variation (CV value) in the weight average molecular weight and volume-based particle size distribution.

・実施例10
実施例6において、添加分量を5g、3g、1gに変更する他は同様にして、樹脂微粒子を作製した。この樹脂微粒子について、体積基準におけるメディアン径(D50)を前記の方法で測定し、その結果を表3に示す。また、重量平均分子量及び体積基準の粒度分布
における変動係数(CV値)についても表3に示す。
Example 10
In Example 6, resin fine particles were produced in the same manner except that the amount added was changed to 5 g, 3 g, and 1 g. With respect to the resin fine particles, the median diameter (D 50 ) on a volume basis was measured by the above method, and the results are shown in Table 3. Table 3 also shows the coefficient of variation (CV value) in the weight average molecular weight and volume-based particle size distribution.

・実施例11
実施例1において、分散液A1に分子量調整のための連鎖移動剤(n−オクチルメルカプタン)1.5gを添加したことのみ異ならせて、樹脂微粒子を作製した。この樹脂微粒子について、体積基準におけるメディアン径(D50)を前記の方法で測定し、その結果を表3に示す。また、重量平均分子量及び体積基準の粒度分布における変動係数(CV値)についても表3に示す。
・実施例12
実施例1において、連鎖移動剤を重合転化率が80%となる30分まで連続滴下する他は同様にして、樹脂微粒子を作製した。
Example 11
In Example 1, resin fine particles were produced by changing the dispersion A1 only by adding 1.5 g of a chain transfer agent (n-octyl mercaptan) for molecular weight adjustment. With respect to the resin fine particles, the median diameter (D 50 ) on a volume basis was measured by the above method, and the results are shown in Table 3. Table 3 also shows the coefficient of variation (CV value) in the weight average molecular weight and volume-based particle size distribution.
Example 12
In Example 1, resin fine particles were prepared in the same manner except that the chain transfer agent was continuously dropped until 30 minutes when the polymerization conversion was 80%.

Figure 2009132796
Figure 2009132796

本発明に係る樹脂微粒子は、電子写真用トナー(コア・シェル構造トナーを含む。)、液晶表示板のギャップ調節剤、医学診断用担体、粒径測定用の標準粒子、クロマトグラフィ用充填剤、化粧品用填剤、合成皮革の風合い改善剤等、その用途は広い。
The resin fine particles according to the present invention include an electrophotographic toner (including a core / shell structure toner), a liquid crystal display panel gap regulator, a medical diagnostic carrier, a standard particle for particle size measurement, a chromatographic filler, and a cosmetic. It has a wide range of uses such as fillers and synthetic leather texture improvers.

Claims (6)

少なくともモノマー(重合性単量体)を含有する組成物を水系媒体中に乳化分散し、乳化分散したモノマーを乳化重合せしめて体積平均粒径1μm未満の樹脂微粒子を製造する方法において、重合反応中、前記モノマーを全量添加以後に、連鎖移動剤が2回以上分割添加され、且つ前記連鎖移動剤が、モノマー重合転化率が10〜80%に到達するまでにその全量が分割添加されることを特徴とする樹脂微粒子の製造方法。 In a method in which a composition containing at least a monomer (polymerizable monomer) is emulsified and dispersed in an aqueous medium, and the emulsified and dispersed monomer is subjected to emulsion polymerization to produce resin fine particles having a volume average particle size of less than 1 μm. After the total amount of the monomer is added, the chain transfer agent is added in two or more portions, and the chain transfer agent is added in portions until the monomer polymerization conversion reaches 10 to 80%. A method for producing fine resin particles. 連鎖移動剤が、一定時間間隔で分割添加されることを特徴とする請求項1に記載の樹脂微粒子の製造方法。 The method for producing resin fine particles according to claim 1, wherein the chain transfer agent is dividedly added at regular time intervals. 連鎖移動剤が、等分量で分割添加されることを特徴とする請求項1又は2に記載の樹脂微粒子の製造方法。 The method for producing resin fine particles according to claim 1 or 2, wherein the chain transfer agent is divided and added in an equal amount. 樹脂粒子が、体積基準におけるメディアン径(D50)が10nm以上300nm以下であり、且つ体積基準の粒度分布における変動係数(CV値)が15%以下であることを特徴とする請求項1〜3のいずれかに記載の樹脂微粒子の製造方法。 The resin particles have a volume-based median diameter (D 50 ) of 10 nm or more and 300 nm or less, and a coefficient of variation (CV value) in a volume-based particle size distribution of 15% or less. A method for producing resin fine particles according to any one of the above. 連鎖移動剤が、分配係数(logP)が1以上10以下であり、且つ連鎖移動定数(Cx)が2以上30以下であることを特徴とする請求項1〜4のいずれかに記載の樹脂微粒子の製造方法。 The resin according to any one of claims 1 to 4, wherein the chain transfer agent has a distribution coefficient (logP) of 1 or more and 10 or less, and a chain transfer constant ( Cx ) of 2 or more and 30 or less. A method for producing fine particles. 請求項1〜5のいずれかに記載の製造方法によって得られた樹脂微粒子。
Resin fine particles obtained by the production method according to claim 1.
JP2007309802A 2007-11-30 2007-11-30 Resin fine particle and method for producing the same Pending JP2009132796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309802A JP2009132796A (en) 2007-11-30 2007-11-30 Resin fine particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309802A JP2009132796A (en) 2007-11-30 2007-11-30 Resin fine particle and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009132796A true JP2009132796A (en) 2009-06-18

Family

ID=40864999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309802A Pending JP2009132796A (en) 2007-11-30 2007-11-30 Resin fine particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009132796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246515A1 (en) * 2020-06-05 2021-12-09 日本ゼオン株式会社 Acrylic rubber bale excellent in terms of roll processability and banbury processability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246515A1 (en) * 2020-06-05 2021-12-09 日本ゼオン株式会社 Acrylic rubber bale excellent in terms of roll processability and banbury processability
CN116057081A (en) * 2020-06-05 2023-05-02 日本瑞翁株式会社 Acrylic rubber bag excellent in roll processability and banbury processability

Similar Documents

Publication Publication Date Title
RU2524943C2 (en) Polymerised toner and method for production thereof
Schneider et al. High solids content emulsions. II. Preparation of seed latices
Liu et al. Synthesis of large-scale, monodisperse latex particles via one-step emulsion polymerization through in situ charge neutralization
KR100960621B1 (en) Process for Preparing Monodisperse Polymer Particles
JP2009132796A (en) Resin fine particle and method for producing the same
JP5281938B2 (en) Method for producing monodisperse polymer particles
JP5325719B2 (en) External additive for electrophotographic toner and method for producing the same
JP2011137096A (en) Resin particle for light-diffusing film, method for producing the same, and light-diffusing film
JP2006316239A (en) Polymer fine particle, polymer fine particle dispersion and method for producing the same
Sirirat et al. Kinetic study of styrene and methyl methacrylate emulsion polymerization induced by cumene hydroperoxide/tetraethylenepentamine
JP4852327B2 (en) Method for producing polymer particles having pores inside and polymer particles having pores inside
JP2011153217A (en) Crosslinked (meth)acrylate resin particle
CN107778403B (en) Styrene-acrylic latex and preparation method and application thereof
JP5330023B2 (en) Method for producing aqueous dispersion of polymer particles
JP2022042732A (en) Concave resin fine particle production method
JP4977327B2 (en) Method for producing hollow particles
JP2018031017A (en) Network polymers useful for suspending particles
JP2014231576A (en) Method for producing latex
Chern et al. Miniemulsion copolymerizations of styrene and methyl methacrylate in the presence of reactive costabilizer
JP5325720B2 (en) External additive for electrophotographic toner and method for producing the same
JP2018048298A (en) Method for producing gel fine particle
JP2018168260A (en) Manufacturing method of seed fine particle, seed fine particle dispersion and manufacturing method of polymer
JP2010242054A (en) Process for producing cationic acrylic polymer particles and cationic acrylic polymer particles prepared by the production process
JP5368229B2 (en) External additive for electrophotographic toner and method for producing the same
JP2007197496A (en) Emulsifier for emulsion polymerization