JP2009129745A - Manufacturing method of field emission cold cathode - Google Patents

Manufacturing method of field emission cold cathode Download PDF

Info

Publication number
JP2009129745A
JP2009129745A JP2007304301A JP2007304301A JP2009129745A JP 2009129745 A JP2009129745 A JP 2009129745A JP 2007304301 A JP2007304301 A JP 2007304301A JP 2007304301 A JP2007304301 A JP 2007304301A JP 2009129745 A JP2009129745 A JP 2009129745A
Authority
JP
Japan
Prior art keywords
cathode
cell
field emission
plating solution
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007304301A
Other languages
Japanese (ja)
Inventor
Akira Toda
顯 戸田
Naoto Hashimoto
直人 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meltex Inc
Original Assignee
Meltex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meltex Inc filed Critical Meltex Inc
Priority to JP2007304301A priority Critical patent/JP2009129745A/en
Publication of JP2009129745A publication Critical patent/JP2009129745A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for easily forming a field emission cold cathode high and uniform in field emission efficiency. <P>SOLUTION: A cell where a negative electrode plate and a positive electrode plate are faced to each other, and a filter is arranged on the positive electrode plate side nearest to the negative electrode plate is manufactured; chargeable minute rod-like bodies having diameters of 1-200 nm and a plating liquid are filled in the cell; the negative electrode plate is connected to the negative electrode of a D.C. power source, and the positive electrode plate is connected to the positive electrode of the D.C. power source to apply a voltage to the plating liquid in the cell; and a magnetic field is applied in the cell to set the lines of magnetic force orthogonal to the negative electrode plate; thereby a metal layer is formed on the negative electrode plate; and the chargeable minute rod-like bodies are erected to be set their axial directions at 90°±10° with respect to the negative electrode plate to embed a part of the rod-like bodies therein. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電界放出型冷陰極、特に電界放出効率が高く均一である電界放出型冷陰極の製造方法に関する。   The present invention relates to a field emission cold cathode, and more particularly to a method of manufacturing a field emission cold cathode having high field emission efficiency and uniformity.

従来から、カーボンナノチューブやカーボンナノファイバーと呼ばれる微細炭素繊維を金属芯線上に複合めっきとして析出させて電界放出素子とすることが知られている(特許文献1)。
また、フラーレンまたはカーボンナノチューブを含有するめっき液を用いてめっき処理を施すことにより、めっき層中に一部分が埋設されたフラーレンまたはカーボンナノチューブによる突出部をエミッタとした電界放出型冷陰極が知られている(特許文献2)。
さらに、電子放出素子として、カーボンナノチューブを金属中に分散させて電極を作製する方法が知られている(特許文献3)。
特開2006−265667号公報 特開2005−26236号公報 特開2006−156111号公報
Conventionally, it is known that fine carbon fibers called carbon nanotubes or carbon nanofibers are deposited on a metal core wire as composite plating to form a field emission device (Patent Document 1).
In addition, a field emission cold cathode is known in which a projection is formed by a fullerene or carbon nanotube partially embedded in a plating layer by performing plating using a plating solution containing fullerene or carbon nanotube. (Patent Document 2).
Furthermore, as an electron-emitting device, a method of manufacturing an electrode by dispersing carbon nanotubes in a metal is known (Patent Document 3).
JP 2006-265667 A JP 2005-26236 A JP 2006-156111 A

上述のような電界放出型冷陰極は、フラーレンまたはカーボンナノチューブの先端曲率半径(約1〜30nm)が、従来の蒸着法等により形成した金属エミッタの先端曲率半径(約70〜300nm)に比べて小さいため、駆動電圧の低減、電界放出効率の均一性向上が期待されている。
しかしながら、フラーレンまたはカーボンナノチューブがランダムに複合されためっき層において、電子放出素子として機能する有効面に対してフラーレンまたはカーボンナノチューブを垂直に立設することは難しく、駆動電圧の低減、電界放出効率の均一性向上が十分に達成されないという問題があった。
本発明は、上述のような実情に鑑みてなされたものであり、電界放出効率が高く均一である電界放出型冷陰極を簡便に製造するための製造方法を提供することを目的とする。
The field emission type cold cathode as described above has a fullerene or carbon nanotube tip radius of curvature (about 1 to 30 nm) compared to a tip radius of curvature (about 70 to 300 nm) of a metal emitter formed by a conventional vapor deposition method or the like. Since it is small, it is expected to reduce the driving voltage and improve the uniformity of the field emission efficiency.
However, in a plating layer in which fullerenes or carbon nanotubes are randomly combined, it is difficult to stand fullerenes or carbon nanotubes vertically with respect to an effective surface that functions as an electron-emitting device, reducing drive voltage and reducing field emission efficiency. There was a problem that uniformity was not sufficiently improved.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a manufacturing method for easily manufacturing a field emission cold cathode having high field emission efficiency and uniformity.

このような目的を達成するために、本発明は、陰極板上に金属層を有し、該金属層に一部を埋めるように帯電性の微細棒状体が立設されている電界放出型冷陰極の製造方法において、陰極板と陽極板とを対向させ、前記陰極板直近の陽極板側にフィルターを配設したセルを作製し、直径が1〜200nmの範囲である帯電性の微細棒状体とめっき液を前記セル内に充填し、前記陰極板を直流電源の陰極に接続し、陽極板を直流電源の陽極に接続してセル内の前記めっき液に電圧を印加するとともに、磁力線が陰極板に対して垂直となるようにセル内に磁場をかけるような構成とした。   In order to achieve such an object, the present invention provides a field emission type cooling device in which a metal layer is provided on a cathode plate, and a charging fine rod-like body is erected so as to be partially embedded in the metal layer. In a method for producing a cathode, a chargeable fine rod-like body having a diameter in the range of 1 to 200 nm is prepared by making a cell in which a cathode plate and an anode plate are opposed to each other and a filter is disposed on the anode plate side closest to the cathode plate. And the plating solution is filled in the cell, the cathode plate is connected to the cathode of the DC power source, the anode plate is connected to the anode of the DC power source, and a voltage is applied to the plating solution in the cell, and the magnetic lines of force are applied to the cathode. It was set as the structure which applies a magnetic field in a cell so that it may become perpendicular | vertical with respect to a board.

本発明の好ましい態様として、前記微細棒状体は、カーボン、白金、パラジウム、金、銀、ニッケル、銅からなる群から選択される1種または2種以上の材料からなるような構成とした。
本発明の好ましい態様として、前記フィルターは、平均細孔径が5〜500nmの範囲にあるガラスフィルターであるような構成とした。
本発明の好ましい態様として、前記めっき液は、粘度が0.89〜100000cPの範囲にあるような構成とした。
本発明の好ましい態様として、前記めっき液は、泳動補助剤として糖類、ゼラチン、セルロース、ペクチン、ポリビニルアルコール、シリコーン、酸化第二セリウム、デキストラン、でんぷんからなる群から選択される1種または2種以上を含有するような構成とした。
As a preferred embodiment of the present invention, the fine rod-shaped body is configured to be composed of one or more materials selected from the group consisting of carbon, platinum, palladium, gold, silver, nickel, and copper.
As a preferred embodiment of the present invention, the filter is configured to be a glass filter having an average pore diameter in the range of 5 to 500 nm.
As a preferred embodiment of the present invention, the plating solution has a viscosity in the range of 0.89 to 100,000 cP.
In a preferred embodiment of the present invention, the plating solution is one or more selected from the group consisting of sugar, gelatin, cellulose, pectin, polyvinyl alcohol, silicone, ceric oxide, dextran, and starch as a migration aid. It was set as the structure which contains.

また、本発明は、陰極板上に金属層を有し、該金属層に一部を埋めるように帯電性の微細棒状体が立設されている電界放出型冷陰極の製造方法において、陰極板と陽極板とを対向させてセルを作製し、直径が1〜200nmの範囲である帯電性の微細棒状体を含有するゲル状めっき液を前記セル内に充填し、前記陰極板を直流電源の陰極に接続し、陽極板を直流電源の陽極に接続してセル内の前記めっき液に電圧を印加するとともに、磁力線が陰極板に対して垂直となるようにセル内に磁場をかけるような構成とした。
本発明の好ましい態様として、前記微細棒状体は、カーボン、白金、パラジウム、金、銀、ニッケル、銅からなる群から選択される1種または2種以上の材料からなるような構成とした。
The present invention also relates to a method of manufacturing a field emission cold cathode having a metal layer on a cathode plate, and a charged fine rod-like body standing up so as to partially fill the metal layer. The anode plate and the anode plate are made to face each other, a gel-like plating solution containing a chargeable fine rod-shaped body having a diameter in the range of 1 to 200 nm is filled in the cell, and the cathode plate is connected to a DC power source. Connect to the cathode, connect the anode plate to the anode of the DC power supply, apply voltage to the plating solution in the cell, and apply a magnetic field in the cell so that the lines of magnetic force are perpendicular to the cathode plate It was.
As a preferred embodiment of the present invention, the fine rod-shaped body is configured to be composed of one or more materials selected from the group consisting of carbon, platinum, palladium, gold, silver, nickel, and copper.

本発明によれば、セル内に充填された微細棒状体は、磁力線に沿って、すなわち陰極板に対して軸方向が垂直となるようにめっき液中を泳動し、かつ、陰極板に対して軸方向が斜めであるような微細棒状体は陰極板の直近に配設されたフィルターによって陰極板方向への泳動が阻害されるので、陰極板上には金属層が形成されると同時に、この金属層に一部を埋めるように帯電性の微細棒状体がその軸方向を陰極板に対して90°±10°の範囲となるように立設され、これにより、電界放出効率が高く均一である電界放出型冷陰極の製造が可能となる。   According to the present invention, the fine rod-shaped body filled in the cell migrates in the plating solution along the lines of magnetic force, that is, so that the axial direction is perpendicular to the cathode plate, and to the cathode plate. The fine rod-shaped body having an oblique axial direction is inhibited from moving in the direction of the cathode plate by the filter disposed in the immediate vicinity of the cathode plate, and at the same time, a metal layer is formed on the cathode plate. The chargeable fine rod-like body is erected so that the metal layer is partially buried so that the axial direction thereof is within a range of 90 ° ± 10 ° with respect to the cathode plate, so that the field emission efficiency is high and uniform. A certain field emission type cold cathode can be manufactured.

また、本発明によれば、セル内に充填された微細棒状体は、磁力線に沿って、すなわち陰極板に対して軸方向が垂直となるようにゲル状めっき液中を泳動し、かつ、ゲルが有する網目構造によってフィルター機能が作用し、陰極板に対して軸方向が斜めであるような微細棒状体は陰極板方向への泳動が阻害されるので、陰極板上には金属層が形成されると同時に、この金属層に一部を埋めるように帯電性の微細棒状体がその軸方向を陰極板に対して90°±10°の範囲となるように立設され、これにより、電界放出効率が高く均一である電界放出型冷陰極の製造が可能となる。   Further, according to the present invention, the fine rod-shaped body filled in the cell migrates in the gel-like plating solution along the magnetic field lines, that is, the axial direction is perpendicular to the cathode plate, and the gel As the fine rod-shaped body whose axial direction is oblique to the cathode plate is inhibited from moving in the cathode plate direction, a metal layer is formed on the cathode plate. At the same time, the chargeable fine rod-like body is erected so that the metal layer is partially buried so that the axial direction thereof is within a range of 90 ° ± 10 ° with respect to the cathode plate. A field emission cold cathode having high efficiency and uniformity can be manufactured.

次に、本発明の最適な実施形態について説明する。
図1は本発明の電界放出型冷陰極の製造方法の一実施形態に使用する装置の一例を示す図である。図1において、一対の極板押さえ2A,2Bにより、陽極板3と陰極板4は側壁部材5を介して対向して配置され、陰極板4の直近の陽極板3側にはフィルター6が配設されてセル1が構成されている。また、陽極板3は直流電源10の陽極に接続され、陰極板4は直流電源10の陰極に接続されている。さらに、このセル1の外側にはコイル11が配設されており、このコイル11は磁力線が陰極板4に対して垂直となるようにセル内に磁場をかけるものである。
Next, an optimal embodiment of the present invention will be described.
FIG. 1 is a view showing an example of an apparatus used in an embodiment of a method for producing a field emission cold cathode according to the present invention. In FIG. 1, the anode plate 3 and the cathode plate 4 are disposed to face each other via the side wall member 5 by a pair of electrode plate holders 2 </ b> A and 2 </ b> B, and a filter 6 is disposed on the anode plate 3 side closest to the cathode plate 4. The cell 1 is configured. The anode plate 3 is connected to the anode of the DC power source 10, and the cathode plate 4 is connected to the cathode of the DC power source 10. Further, a coil 11 is disposed outside the cell 1, and this coil 11 applies a magnetic field in the cell so that the lines of magnetic force are perpendicular to the cathode plate 4.

このようなセル1には帯電性の微細棒状体8(図1には図示せず)とめっき液20が充填されている。このめっき液20は、公知の電気めっき用のめっき液を使用することができる。また、微細棒状体8は、図2(A)に示すような棒状体であってよく、また、図2(B)に示すような中空管状体であってもよい。さらに、微細棒状体8は、図2(C)に示されるように、螺旋形状のファイバーであって、外形が鎖線で示すように棒状体をなすものであってもよい。そして、これらの微細棒状体8は、その直径Dが1〜200nm、好ましくは1〜150nmの範囲である。直径が1nm未満の微細棒状体は、現在の技術では未だ得られておらず、一方、直径が200nmを超えると、電解放出素子としての性能が劣化して好ましくない。尚、本発明では、上記の微細棒状体8の直径は、FE−SEMによって測定した平均値である。   Such a cell 1 is filled with a chargeable fine rod 8 (not shown in FIG. 1) and a plating solution 20. As the plating solution 20, a known plating solution for electroplating can be used. Moreover, the fine rod-shaped body 8 may be a rod-shaped body as shown in FIG. 2 (A) or a hollow tubular body as shown in FIG. 2 (B). Furthermore, as shown in FIG. 2C, the fine rod-shaped body 8 may be a spiral fiber, and may be a rod-shaped body whose outer shape is indicated by a chain line. These fine rods 8 have a diameter D in the range of 1 to 200 nm, preferably 1 to 150 nm. A fine rod-like body having a diameter of less than 1 nm has not yet been obtained with the current technology. On the other hand, if the diameter exceeds 200 nm, the performance as a field emission device is not preferable. In the present invention, the diameter of the fine rod-shaped body 8 is an average value measured by FE-SEM.

このような微細棒状体8は、カーボン、白金、パラジウム、金、銀、ニッケル、銅からなる群から選択される1種または2種以上の材料からなるものであってよい。そして、微細棒状体8は、予め、めっき液20に分散含有させておき、これをセル1内に充填してもよく、また、微細棒状体8の分散液をフィルター6上に塗布し、あるいは、フィルター6に含浸させており、めっき液20をセル1内に充填してもよい。微細棒状体8をめっき液20に分散含有させる場合、微細棒状体8の含有量は、例えば、0.2〜20g/L程度とすることができる。   Such a fine rod-shaped body 8 may be made of one or more materials selected from the group consisting of carbon, platinum, palladium, gold, silver, nickel, and copper. Then, the fine rod-shaped body 8 may be preliminarily dispersed in the plating solution 20 and filled in the cell 1, or the fine rod-shaped body 8 may be applied on the filter 6. The filter 6 may be impregnated and the plating solution 20 may be filled in the cell 1. When the fine rod-shaped body 8 is dispersed and contained in the plating solution 20, the content of the fine rod-shaped body 8 can be set to, for example, about 0.2 to 20 g / L.

上記の陽極板3は特に制限はなく、例えば、ニッケル、チタン、白金、金、パラジウム、カーボン等を使用することができる。
また、陰極板4は、例えば、鉄、ニッケル、ニッケルーリン、銅、真鍮等を使用することができる。
また、フィルター6は、陰極板4に対して軸方向が斜めであるような微細棒状体8が陰極板4方向へ泳動するのを阻害するためのものであり、平均細孔径が5〜500nm、好ましくは5〜200nmの範囲にあるガラスフィルターを使用することができ、さらに、ポリプロピレン、紙、綿等のフィルターも使用することができる。
The anode plate 3 is not particularly limited, and for example, nickel, titanium, platinum, gold, palladium, carbon or the like can be used.
Moreover, the cathode plate 4 can use iron, nickel, nickel-phosphorus, copper, brass, etc., for example.
The filter 6 is for preventing the fine rod-like body 8 whose axis direction is oblique with respect to the cathode plate 4 from migrating in the direction of the cathode plate 4, and has an average pore diameter of 5 to 500 nm, Preferably, a glass filter in the range of 5 to 200 nm can be used, and filters such as polypropylene, paper, and cotton can also be used.

本発明では、上述のような装置を用いて、セル1内のめっき液20に電圧を印加するとともに、磁力線が陰極板4に対して垂直となるようにセル1内に磁場をかける。これにより、セル1内に充填されためっき液20中の微細棒状体8は、磁力線に沿って、すなわち、陰極板4に対して軸方向(図2に矢印aで示した方向)が垂直となるように泳動し陰極板4に接近する。そして、陰極板4に対して軸方向が斜めであるような微細棒状体8は、陰極板4の直近に配設されたフィルター5によって陰極板方向への泳動が阻害される。したがって、図3に示すように、陰極板4上には金属層7が形成されると同時に、この金属層7に一部を埋めるように帯電性の微細棒状体8が立設される。そして、本発明では、立設された微細棒状体8の軸方向が陰極板4に対してなす角度θを90°±10°の範囲とすることができる。
尚、微細棒状体8の軸方向が陰極板4に対してなす角度θは、FE−SEMにより測定する。
In the present invention, using the apparatus as described above, a voltage is applied to the plating solution 20 in the cell 1 and a magnetic field is applied to the cell 1 so that the magnetic lines of force are perpendicular to the cathode plate 4. Thereby, the fine rod-like body 8 in the plating solution 20 filled in the cell 1 is perpendicular to the magnetic field lines, that is, the axial direction (the direction indicated by the arrow a in FIG. 2) is perpendicular to the cathode plate 4. It moves so that the cathode plate 4 is approached. The fine rod-like body 8 whose axial direction is oblique with respect to the cathode plate 4 is inhibited from moving in the cathode plate direction by the filter 5 disposed in the immediate vicinity of the cathode plate 4. Therefore, as shown in FIG. 3, the metal layer 7 is formed on the cathode plate 4, and at the same time, the chargeable fine rod-like body 8 is erected so as to be partially buried in the metal layer 7. And in this invention, angle (theta) which the axial direction of the standing fine rod-shaped body 8 makes with respect to the cathode plate 4 can be made into the range of 90 degrees +/- 10 degrees.
The angle θ formed by the axial direction of the fine rod 8 with respect to the cathode plate 4 is measured by FE-SEM.

また、本発明では、泳動中の微細棒状体8の軸方向が陰極板4に対して垂直となることを補助するために、めっき液の粘度を高くすることが好ましい。このために、泳動補助剤として糖類、ゼラチン、セルロース、ペクチン、ポリビニルアルコール、シリコーン、酸化第二セリウム、デキストラン、でんぷんからなる群から選択される1種または2種以上をめっき液に含有させることができる。このような泳動補助剤の含有量は、例えば、1〜20g/L程度とすることができる。また、めっき液の粘度は、0.89〜100000cP、好ましくは10〜100000cPの範囲とすることができる。このようにめっき液の粘度を高くすると、泳動中の微細棒状体8は粘性抵抗を低くするために、自身の軸方向を泳動方向に一致させるような姿勢をとることとなり、微細棒状体8の軸方向が陰極板4に対して垂直となる。尚、本発明において、めっき液の粘度の測定は、回転粘度計により行う。   In the present invention, it is preferable to increase the viscosity of the plating solution in order to assist the axial direction of the fine rod-shaped body 8 during migration to be perpendicular to the cathode plate 4. For this purpose, the plating solution may contain one or more selected from the group consisting of saccharides, gelatin, cellulose, pectin, polyvinyl alcohol, silicone, ceric oxide, dextran, and starch as migration aids. it can. The content of such a migration aid can be, for example, about 1 to 20 g / L. The viscosity of the plating solution can be in the range of 0.89 to 100,000 cP, preferably 10 to 100,000 cP. When the viscosity of the plating solution is increased in this way, the fine rod-shaped body 8 during migration takes a posture such that its own axial direction coincides with the migration direction in order to reduce the viscous resistance. The axial direction is perpendicular to the cathode plate 4. In the present invention, the viscosity of the plating solution is measured with a rotational viscometer.

図4は本発明の電界放出型冷陰極の製造方法の他の実施形態に使用する装置の一例を示す図である。図4において、一対の極板押さえ2A,2Bにより、陽極板3と陰極板4は側壁部材5を介して対向して配置されてセル1′が構成されている。また、陽極板3は直流電源10の陽極に接続され、陰極板4は直流電源10の陰極に接続されている。さらに、このセル1の外側にはコイル11が配設されており、このコイル11は磁力線が陰極板4に対して垂直となるようにセル1′内に磁場をかけるものである。   FIG. 4 is a view showing an example of an apparatus used in another embodiment of the method for producing a field emission cold cathode of the present invention. In FIG. 4, the anode plate 3 and the cathode plate 4 are arranged to face each other via the side wall member 5 by a pair of electrode plate holders 2A and 2B to constitute a cell 1 '. The anode plate 3 is connected to the anode of the DC power source 10, and the cathode plate 4 is connected to the cathode of the DC power source 10. Further, a coil 11 is disposed outside the cell 1, and this coil 11 applies a magnetic field in the cell 1 ′ so that the lines of magnetic force are perpendicular to the cathode plate 4.

このようなセル1′にはゲル状めっき液30が充填されており、ゲル状めっき液30は帯電性の微細棒状体8(図4には図示せず)を含有している。このゲル状めっき液30は、例えば、加熱されたゲルにめっき液と微細棒状体8を添加して、その後、冷却することにより調製することができる。使用するゲルとしては、例えば、ゼラチン、寒天、ポリビニルアルコール、デキストランを挙げることができる。また、使用するめっき液は、公知の電気めっき用のめっき液を使用することができ、ゲル状めっき液30におけるめっき液の含有量は、ゲル状めっき液30においてめっき液成分が析出しない範囲で適宜設定することができる。さらに、含有する微細棒状体8は、上述の実施形態と同様のものを使用することができ、ゲル状めっき液30における微細棒状体8の含有量は、例えば、0.2〜20g/L程度とすることができる。
セル1′を構成する陽極板3、陰極板4は、上述の実施形態の陽極板3、陰極板4と同様とすることができる。
Such a cell 1 ′ is filled with a gel-like plating solution 30, and the gel-like plating solution 30 contains a chargeable fine rod-like body 8 (not shown in FIG. 4). The gel-like plating solution 30 can be prepared, for example, by adding the plating solution and the fine rod-like body 8 to a heated gel and then cooling. Examples of the gel used include gelatin, agar, polyvinyl alcohol, and dextran. Moreover, the plating solution to be used can use the plating solution for well-known electroplating, The content of the plating solution in the gel-like plating solution 30 is in the range in which the plating solution component does not precipitate in the gel-like plating solution 30. It can be set appropriately. Furthermore, the fine rod-shaped body 8 to be contained can be the same as that of the above-described embodiment, and the content of the fine rod-shaped body 8 in the gel-like plating solution 30 is, for example, about 0.2 to 20 g / L. It can be.
The anode plate 3 and the cathode plate 4 constituting the cell 1 ′ can be the same as the anode plate 3 and the cathode plate 4 of the above-described embodiment.

本発明では、上述のような装置を用いて、セル1′内のゲル状めっき液30に電圧を印加するとともに、磁力線が陰極板4に対して垂直となるようにセル1′内に磁場をかける。これにより、セル1′内に充填されたゲル状めっき液30中の微細棒状体8は、磁力線に沿って、すなわち、陰極板4に対して軸方向(図2に矢印aで示した方向)が垂直となるように泳動する。また、同時に、ゲル状めっき液30が有する網目構造によってフィルター機能が作用し、陰極板4に対して軸方向が斜めであるような微細棒状体8は陰極板4方向への泳動が阻害される。したがって、図3に示すように、陰極板4上には金属層7が形成されると同時に、この金属層7に一部を埋めるように帯電性の微細棒状体8が立設される。そして、本発明では、立設された微細棒状体8の軸方向が陰極板4に対してなす角度θを90°±10°の範囲とすることができる。   In the present invention, a voltage is applied to the gel-like plating solution 30 in the cell 1 ′ using the apparatus as described above, and a magnetic field is applied in the cell 1 ′ so that the magnetic lines of force are perpendicular to the cathode plate 4. Call. Thereby, the fine rod-shaped body 8 in the gel-like plating solution 30 filled in the cell 1 ′ is aligned along the magnetic field lines, that is, in the axial direction with respect to the cathode plate 4 (the direction indicated by the arrow a in FIG. 2). Run so that is vertical. At the same time, the filter function is acted by the network structure of the gel-like plating solution 30, and migration of the fine rod-like body 8 whose axial direction is oblique with respect to the cathode plate 4 in the direction of the cathode plate 4 is hindered. . Therefore, as shown in FIG. 3, the metal layer 7 is formed on the cathode plate 4, and at the same time, the chargeable fine rod-like body 8 is erected so as to be partially buried in the metal layer 7. And in this invention, angle (theta) which the axial direction of the standing fine rod-shaped body 8 makes with respect to the cathode plate 4 can be made into the range of 90 degrees +/- 10 degrees.

本発明の製造方法において、陽極板、陰極板間に印加する電圧は適宜設定することができ、例えば、0.2〜10V程度の範囲で設定することができる。また、セル内にかける磁場は、微細棒状体8が磁力線の影響を受けて姿勢を変化させるような強度であればよく、例えば、1Wb/m2以下の範囲で適宜設定することができる。
上述の実施形態は例示であり、本発明はこれらの実施形態に限定されるものではない。例えば、ゲル状めっき液を用いて製造を行う場合に、フィルターを併用してもよい。
In the production method of the present invention, the voltage applied between the anode plate and the cathode plate can be set as appropriate, and can be set, for example, in the range of about 0.2 to 10V. Further, the magnetic field applied to the cell may be any strength as long as the fine rod-like body 8 changes its posture under the influence of the magnetic lines of force, and can be appropriately set within a range of 1 Wb / m 2 or less, for example.
The above-described embodiments are examples, and the present invention is not limited to these embodiments. For example, when manufacturing using a gel-like plating solution, you may use a filter together.

次に、実施例を示して本発明を更に詳細に説明する。
[実施例1]
グリシン系の両性界面活性剤としての日本油脂(株)製ニッサンアノンLGと、ベンジルアンモニウム・クロライド系のカチオン界面活性剤としての日本油脂(株)製カチオンF2−50Eとを、3:5となるように混合して微粒子分散剤を調製した。
次に、この微粒子分散剤を濃度が0.2g/Lとなるように水に添加して得た水溶液に、カーボンナノチューブ(本庄ケミカル(株)製 マルチオールカーボンナノチューブ)を投入して分散させ分散液を調製した。このカーボンナノチューブの直径は10nmであった。尚、直径は、FE−SEMによって測定した平均値である。
次いで、上記の分散液をガラスフィルター(アドバンテック東洋(株)製 ガラスろ紙GA、厚み2mm)に含浸させた。
Next, an Example is shown and this invention is demonstrated further in detail.
[Example 1]
Nippon Oil & Fats Nissan Anon LG as a glycine-based amphoteric surfactant and Nippon Oil & Fats Cationic F2-50E as a benzylammonium chloride-based cationic surfactant become 3: 5. In this way, a fine particle dispersant was prepared.
Next, carbon nanotubes (multi-ol carbon nanotubes manufactured by Honjo Chemical Co., Ltd.) are introduced into an aqueous solution obtained by adding this fine particle dispersant to water so that the concentration becomes 0.2 g / L, and dispersed and dispersed. A liquid was prepared. The diameter of the carbon nanotube was 10 nm. In addition, a diameter is an average value measured by FE-SEM.
Subsequently, the above dispersion was impregnated into a glass filter (Advantech Toyo Co., Ltd. glass filter paper GA, thickness 2 mm).

一方、陽極板として10mm×10mm、厚み0.1mmのニッケル箔を準備し、また、陰極板として10mm×10mm、厚み0.3mmのチタンー白金メッシュを準備した。これらの陽極板と陰極板、および分散液を含浸させたガラスフィルターを用いて、図1に示されるようなセルを作製し、セル内に下記組成のめっき液を充填した。尚、セルを構成する陽極板と陰極板の距離は20mmとした。
(めっき液組成)
・スルファミン酸ニッケル … 600g/L
・塩化ニッケル … 5g/L
・ホウ酸 … 40g/L
On the other hand, a 10 mm × 10 mm nickel foil having a thickness of 0.1 mm was prepared as an anode plate, and a titanium-platinum mesh having a thickness of 10 mm × 10 mm and a thickness of 0.3 mm was prepared as a cathode plate. A cell as shown in FIG. 1 was prepared using these anode and cathode plates and a glass filter impregnated with a dispersion, and a plating solution having the following composition was filled in the cell. The distance between the anode plate and the cathode plate constituting the cell was 20 mm.
(Plating solution composition)
・ Nickel sulfamate ... 600g / L
・ Nickel chloride: 5g / L
・ Boric acid: 40 g / L

次いで、陽極板、陰極板間に電圧(2V)を印加するとともに、コイルを用いて磁力線が陰極板に対して垂直となるようにセル内に磁場(0.1Wb/m2)をかけた。このようなめっき処理を60秒間行った後、陰極板を取り出し、表面状態を観察した。その結果、厚み約600nmのニッケルめっき層が形成され、このニッケルめっき層に一部を埋めるようにカーボンナノチューブが立設されていることが確認できた。また、カーボンナノチューブの軸方向が陰極板に対してなす角度をFE−SEMにより測定した結果、90°±10°の範囲にあることが確認された。 Next, a voltage (2 V) was applied between the anode plate and the cathode plate, and a magnetic field (0.1 Wb / m 2 ) was applied in the cell so that the lines of magnetic force were perpendicular to the cathode plate using a coil. After performing such plating for 60 seconds, the cathode plate was taken out and the surface state was observed. As a result, a nickel plating layer having a thickness of about 600 nm was formed, and it was confirmed that the carbon nanotubes were erected so as to partially fill the nickel plating layer. Moreover, as a result of measuring the angle which the axial direction of a carbon nanotube makes with respect to a cathode plate by FE-SEM, it was confirmed that it exists in the range of 90 degrees +/- 10 degrees.

[実施例2]
実施例1と同様にして、カーボンナノチューブ分散させた分散液を調製した。次いで、ゲルとしてゼラチンを準備し、80℃に加熱したゼラチン1gに上記の分散液5mL、実施例1と同じめっき液100mLを添加し攪拌した後、室温まで冷却して、ゲル状めっき液を調製した。このゲル状めっき液中のカーボンナノチューブの含有量は5g/Lであった。
また、ガラスフィルターを配設しない他は実施例1と同様にして、図4に示されるようなセルを作製し、セル内に上記のゲル状めっき液を充填した。
[Example 2]
In the same manner as in Example 1, a dispersion liquid in which carbon nanotubes were dispersed was prepared. Next, gelatin was prepared as a gel, 5 mL of the above dispersion and 100 mL of the same plating solution as in Example 1 were added to 1 g of gelatin heated to 80 ° C. and stirred, and then cooled to room temperature to prepare a gel-like plating solution did. The content of carbon nanotubes in this gel plating solution was 5 g / L.
Further, a cell as shown in FIG. 4 was prepared in the same manner as in Example 1 except that a glass filter was not provided, and the gel-like plating solution was filled in the cell.

次いで、陽極板、陰極板間に電圧(2V)を印加するとともに、コイルを用いて磁力線が陰極板に対して垂直となるようにセル内に磁場(0.1Wb/m2)をかけた。このようなめっき処理を60秒間行った後、陰極板を取り出し、表面状態を観察した。その結果、厚み約600nmのニッケルめっき層が形成され、このニッケルめっき層に一部を埋めるようにカーボンナノチューブが立設されていることが確認できた。また、カーボンナノチューブの軸方向が陰極板に対してなす角度を実施例1と同様にして測定した結果、90°±10°の範囲にあることが確認された。 Next, a voltage (2 V) was applied between the anode plate and the cathode plate, and a magnetic field (0.1 Wb / m 2 ) was applied in the cell so that the lines of magnetic force were perpendicular to the cathode plate using a coil. After performing such plating for 60 seconds, the cathode plate was taken out and the surface state was observed. As a result, a nickel plating layer having a thickness of about 600 nm was formed, and it was confirmed that the carbon nanotubes were erected so as to partially fill the nickel plating layer. Further, the angle formed by the axial direction of the carbon nanotube with respect to the cathode plate was measured in the same manner as in Example 1. As a result, it was confirmed that it was in the range of 90 ° ± 10 °.

[比較例]
実施例1と同様にして、カーボンナノチューブ分散させた分散液を調製し、この分散液を実施例1と同様のめっき液に添加した。めっき液中のカーボンナノチューブの含有量は5g/Lであった。
また、ガラスフィルターを配設しない他は実施例1と同様にしてセルを作製し、セル内に実施例1と同様のめっき液を充填した。
[Comparative example]
In the same manner as in Example 1, a dispersion in which carbon nanotubes were dispersed was prepared, and this dispersion was added to the same plating solution as in Example 1. The content of carbon nanotubes in the plating solution was 5 g / L.
A cell was prepared in the same manner as in Example 1 except that no glass filter was provided, and the same plating solution as in Example 1 was filled in the cell.

次いで、陽極板、陰極板間に電圧(2V)を印加して、めっき処理を60秒間行った後、陰極板を取り出し、表面状態を観察した。その結果、厚み約600nmのニッケルめっき層が形成され、このニッケルめっき層に一部を埋めるようにカーボンナノチューブが立設されていることが確認できた。しかし、カーボンナノチューブの軸方向が陰極板に対してなす角度を実施例1と同様にして測定した結果、90°±10°の範囲であり、実施例1、実施例2に比べてカーボンナノチューブの配設角度のバラツキが大きいことが確認された。   Next, a voltage (2 V) was applied between the anode plate and the cathode plate, plating was performed for 60 seconds, the cathode plate was taken out, and the surface state was observed. As a result, a nickel plating layer having a thickness of about 600 nm was formed, and it was confirmed that the carbon nanotubes were erected so as to partially fill the nickel plating layer. However, the angle formed by the axial direction of the carbon nanotubes with respect to the cathode plate was measured in the same manner as in Example 1. As a result, it was in the range of 90 ° ± 10 °, and the carbon nanotubes were compared with those in Examples 1 and 2. It was confirmed that the variation in the arrangement angle was large.

種々の電界放出型冷陰極の製造に有用である。   It is useful for the production of various field emission cold cathodes.

本発明の電界放出型冷陰極の製造方法の一実施形態に使用する装置の一例を示す図である。It is a figure which shows an example of the apparatus used for one Embodiment of the manufacturing method of the field emission type cold cathode of this invention. 微細棒状体を説明するための図である。It is a figure for demonstrating a fine rod-shaped body. 本発明により製造された電界放出型冷陰極を説明するための図である。It is a figure for demonstrating the field emission type cold cathode manufactured by this invention. 本発明の電界放出型冷陰極の製造方法の他の実施形態に使用する装置の一例を示す図である。It is a figure which shows an example of the apparatus used for other embodiment of the manufacturing method of the field emission type cold cathode of this invention.

符号の説明Explanation of symbols

1…セル
3…陽極板
4…陰極板
6…フィルター
7…金属層
8…微細棒状体
10…電源
11…コイル
20…めっき液
30…ゲル状めっき液
DESCRIPTION OF SYMBOLS 1 ... Cell 3 ... Anode plate 4 ... Cathode plate 6 ... Filter 7 ... Metal layer 8 ... Fine rod-shaped body 10 ... Power supply 11 ... Coil 20 ... Plating solution 30 ... Gel-like plating solution

Claims (7)

陰極板上に金属層を有し、該金属層に一部を埋めるように帯電性の微細棒状体が立設されている電界放出型冷陰極の製造方法において、
陰極板と陽極板とを対向させ、前記陰極板直近の陽極板側にフィルターを配設したセルを作製し、直径が1〜200nmの範囲である帯電性の微細棒状体とめっき液を前記セル内に充填し、
前記陰極板を直流電源の陰極に接続し、陽極板を直流電源の陽極に接続してセル内の前記めっき液に電圧を印加するとともに、磁力線が陰極板に対して垂直となるようにセル内に磁場をかけることを特徴とする電界放出型冷陰極の製造方法。
In a method for manufacturing a field emission cold cathode, which has a metal layer on a cathode plate, and a chargeable fine rod-like body is erected so as to be partially embedded in the metal layer,
A cell having a cathode plate and an anode plate facing each other and having a filter disposed on the anode plate side closest to the cathode plate is prepared, and a charged fine rod-shaped body having a diameter in the range of 1 to 200 nm and a plating solution are added to the cell. Filling in,
The cathode plate is connected to the cathode of the DC power source, the anode plate is connected to the anode of the DC power source, a voltage is applied to the plating solution in the cell, and the magnetic field lines are perpendicular to the cathode plate. A method for producing a field emission cold cathode, wherein a magnetic field is applied to the substrate.
前記微細棒状体は、カーボン、白金、パラジウム、金、銀、ニッケル、銅からなる群から選択される1種または2種以上の材料からなることを特徴とする請求項1に記載の電界放出型冷陰極の製造方法。   The field emission type according to claim 1, wherein the fine rod-shaped body is made of one or more materials selected from the group consisting of carbon, platinum, palladium, gold, silver, nickel, and copper. A method for producing a cold cathode. 前記フィルターは、平均細孔径が5〜500nmの範囲にあるガラスフィルターであることを特徴とする請求項1または請求項2に記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to claim 1 or 2, wherein the filter is a glass filter having an average pore diameter in the range of 5 to 500 nm. 前記めっき液は、粘度が0.89〜100000cPの範囲にあることを特徴とする請求項1乃至請求項3のいずれかに記載の電界放出型冷陰極の製造方法。   The method of manufacturing a field emission cold cathode according to any one of claims 1 to 3, wherein the plating solution has a viscosity in a range of 0.89 to 100,000 cP. 前記めっき液は、泳動補助剤として糖類、ゼラチン、セルロース、ペクチン、ポリビニルアルコール、シリコーン、酸化第二セリウム、デキストラン、でんぷんからなる群から選択される1種または2種以上を含有することを特徴とする請求項1乃至請求項4のいずれかに記載の電界放出型冷陰極の製造方法。   The plating solution contains one or more selected from the group consisting of sugar, gelatin, cellulose, pectin, polyvinyl alcohol, silicone, ceric oxide, dextran, and starch as a migration aid. The method of manufacturing a field emission cold cathode according to any one of claims 1 to 4. 陰極板上に金属層を有し、該金属層に一部を埋めるように帯電性の微細棒状体が立設されている電界放出型冷陰極の製造方法において、
陰極板と陽極板とを対向させてセルを作製し、直径が1〜200nmの範囲である帯電性の微細棒状体を含有するゲル状めっき液を前記セル内に充填し、
前記陰極板を直流電源の陰極に接続し、陽極板を直流電源の陽極に接続してセル内の前記めっき液に電圧を印加するとともに、磁力線が陰極板に対して垂直となるようにセル内に磁場をかけることを特徴とする電界放出型冷陰極の製造方法。
In a method for manufacturing a field emission cold cathode, which has a metal layer on a cathode plate, and a chargeable fine rod-like body is erected so as to be partially embedded in the metal layer,
A cathode plate and an anode plate are made to face each other to prepare a cell, and the cell is filled with a gelled plating solution containing a charged fine rod-shaped body having a diameter in the range of 1 to 200 nm,
The cathode plate is connected to the cathode of the DC power source, the anode plate is connected to the anode of the DC power source, a voltage is applied to the plating solution in the cell, and the magnetic field lines are perpendicular to the cathode plate. A method for producing a field emission cold cathode, wherein a magnetic field is applied to the substrate.
前記微細棒状体は、カーボン、白金、パラジウム、金、銀、ニッケル、銅からなる群から選択される1種または2種以上の材料からなることを特徴とする請求項6に記載の電界放出型冷陰極の製造方法。   The field emission type according to claim 6, wherein the fine rod-shaped body is made of one or more materials selected from the group consisting of carbon, platinum, palladium, gold, silver, nickel, and copper. A method for producing a cold cathode.
JP2007304301A 2007-11-26 2007-11-26 Manufacturing method of field emission cold cathode Pending JP2009129745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304301A JP2009129745A (en) 2007-11-26 2007-11-26 Manufacturing method of field emission cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304301A JP2009129745A (en) 2007-11-26 2007-11-26 Manufacturing method of field emission cold cathode

Publications (1)

Publication Number Publication Date
JP2009129745A true JP2009129745A (en) 2009-06-11

Family

ID=40820463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304301A Pending JP2009129745A (en) 2007-11-26 2007-11-26 Manufacturing method of field emission cold cathode

Country Status (1)

Country Link
JP (1) JP2009129745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
JP2015201434A (en) * 2009-07-06 2015-11-12 ゼプター コーポレイションZeptor Corporation Carbon nanotube composite material structure and method of manufacturing the same
US9257704B2 (en) 2009-07-06 2016-02-09 Zeptor Corporation Carbon nanotube composite structures and methods of manufacturing the same
JP2016026375A (en) * 2009-07-06 2016-02-12 ゼプター コーポレイションZeptor Corporation Carbon nanotube composite material structure and method of manufacturing the same
KR101746551B1 (en) 2009-07-06 2017-06-13 젭터 코포레이션 Carbon nanotube composite structures and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
Yu et al. A high performance stretchable asymmetric fiber‐shaped supercapacitor with a core‐sheath helical structure
TWI277376B (en) Methods for assembly and sorting of nanostructure-containing materials and related articles
Hu et al. Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading
Che et al. Carbon nanotubule membranes for electrochemical energy storage and production
Luo et al. Highly Conductive, Light Weight, Robust, Corrosion‐Resistant, Scalable, All‐Fiber Based Current Collectors for Aqueous Acidic Batteries
JP4242832B2 (en) Fabrication method and activation treatment of nanostructured composite field emission cathode
US7828619B1 (en) Method for preparing a nanostructured composite electrode through electrophoretic deposition and a product prepared thereby
Kim et al. Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size
Wen et al. Novel high-performance asymmetric supercapacitors based on nickel-cobalt composite and PPy for flexible and wearable energy storage
US7470353B2 (en) Method of manufacturing field emitter electrode using self-assembling carbon nanotubes and field emitter electrode manufactured thereby
US20080010796A1 (en) High power density supercapacitors with carbon nanotube electrodes
KR20040098623A (en) Deposition method for nanostructure materials
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
JP2009523905A (en) Ionic polymer device and method of manufacturing the same
Liu et al. Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy
WO2008070926A1 (en) Nanotube and carbon layer nanostructured composites
Ho et al. Manganese oxide nanowires grown on ordered macroporous conductive nickel scaffold for high-performance supercapacitors
CN112680966B (en) Composite fiber and preparation method and application thereof
TW201135769A (en) High performance carbon nanotube energy storage device
JP2009158961A (en) Super capacitor
JP5595515B2 (en) Fabrication of nano-structured electrodes on porous substrates
Iro et al. MnO2 nanorods/SiO2 sphere coated on single-wall carbon nanotubes as supercapacitor electrode for high energy storage applications
Liu et al. High‐performance textile electrode enhanced by surface modifications of fiberglass cloth with polypyrrole tentacles for flexible supercapacitors
CN109369974B (en) Preparation method of reduced graphene oxide-ferrocene-chitosan composite material
JP2009129745A (en) Manufacturing method of field emission cold cathode