JP2009128055A - Abnormal satellite detector and positioning apparatus - Google Patents

Abnormal satellite detector and positioning apparatus Download PDF

Info

Publication number
JP2009128055A
JP2009128055A JP2007300577A JP2007300577A JP2009128055A JP 2009128055 A JP2009128055 A JP 2009128055A JP 2007300577 A JP2007300577 A JP 2007300577A JP 2007300577 A JP2007300577 A JP 2007300577A JP 2009128055 A JP2009128055 A JP 2009128055A
Authority
JP
Japan
Prior art keywords
satellite
positioning
pseudo
error
doppler shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007300577A
Other languages
Japanese (ja)
Other versions
JP5094344B2 (en
Inventor
Akiko Ishimaru
明子 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2007300577A priority Critical patent/JP5094344B2/en
Publication of JP2009128055A publication Critical patent/JP2009128055A/en
Application granted granted Critical
Publication of JP5094344B2 publication Critical patent/JP5094344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormal satellite detector and a positioning apparatus which appropriately detects an abnormal satellite and has improved positioning accuracy. <P>SOLUTION: A radio wave transmitted from each positioning satellite is received, and the pseudo-distance from each positioning satellite to a receiving point is determined. The Doppler shift component of the carrier frequency of the radio wave is determined. A change in the pseudo-distance per unit time and a velocity integrated value per unit time of relative velocity by the Doppler shift component are determined, and when the difference between the two exceeds a predetermined threshold value, the satellite is detected to be an abnormal satellite. Positioning calculations are performed with the pseudo-distance weighted in accordance with error distribution, thereby improving positioning accuracy. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は測位装置衛星からの信号を受信して異常な衛星を検知する異常衛星検知装置および測位装置に関するものである。   The present invention relates to an abnormal satellite detection device and a positioning device that receive a signal from a positioning device satellite and detect an abnormal satellite.

従来、単独の受信機で測位用衛星からの信号を受信して測位等を行う受信機においてインテグリティ確保の技術として受信機自立型完全モニタ(RAIM:Receiver Autonomous Integrity Monitoring)がある。   Conventionally, there is a receiver independent complete monitoring (RAIM: Receiver Autonomous Integrity Monitoring) as a technology for ensuring integrity in a receiver that performs positioning and the like by receiving a signal from a positioning satellite with a single receiver.

図1はそのRAIM処理を図示したものである。この処理では、GPSメッセージを編集してエフェメリスを読み取り、測位演算によってRAIM用のパラメータを作成し上記エフェメリスとRAIM用パラメータとによって衛星の故障検知および故障衛星を排除する処理を行う。またRAIMの結果を出力する。   FIG. 1 illustrates the RAIM process. In this process, the GPS message is edited, the ephemeris is read, a parameter for RAIM is created by positioning calculation, and a failure detection of the satellite and a failure satellite are eliminated by using the ephemeris and the RAIM parameter. Also, the RAIM result is output.

測位演算ではRAIM処理によって検出された異常衛星を排除した演算を行うことによって測位精度を高める。   In the positioning calculation, the positioning accuracy is improved by performing the calculation excluding the abnormal satellite detected by the RAIM process.

衛星の故障検出アルゴリズム(FD:Fault Detection)は次のとおりである。
まず異常を検出するアルゴリズムとしてLSR(Least SquaredResidual)法を用いる。すなわち最小二乗測位演算後に算出された残差を用いて異常検出を行う。
The satellite fault detection algorithm (FD: Fault Detection) is as follows.
First, an LSR (Least Squared Residual) method is used as an algorithm for detecting an abnormality. That is, abnormality detection is performed using the residual calculated after the least square positioning calculation.

5衛星以上で測位演算を行う場合、5式以上の方程式を使用し、3次元位置(x,y,z)と時刻tの4つの未知数を求めるため、解に残差が残る。衛星に異常がなければ残差は小さいが、衛星に異常が発生すると大きな残差が生じる。   When positioning calculation is performed with five or more satellites, four or more equations are used and four unknowns of the three-dimensional position (x, y, z) and time t are obtained, so that a residual remains in the solution. If the satellite is normal, the residual is small, but if the satellite is abnormal, a large residual is generated.

RAIM処理では、算出された残差を二乗して各衛星分加算して検出統計量とし、この検出統計量が予め定めた閾値を超えた場合に,衛星に異常があるものと見なす。   In the RAIM process, the calculated residual is squared and added to each satellite to obtain a detection statistic. When this detection statistic exceeds a predetermined threshold, it is considered that the satellite is abnormal.

また故障衛星排除アルゴリズム(FDE:Fault Detection andExclusion)は次のとおりである。   In addition, the fault satellite exclusion algorithm (FDE: Fault Detection and Exclusion) is as follows.

このアルゴリズムは、異常衛星が存在することがわかっている場合にその衛星を特定するアルゴリズムである。使用する衛星数は6衛星以上必要である。FDEでは衛星を1衛星ずつ除いて上記衛星の故障検出アルゴリズムで検出統計量を算出する。除いた衛星が異常衛星ではない場合、残りの衛星に異常衛星が含まれるため、検出統計量が予め定めた閾値を超える。しかし、除いた衛星が異常衛星であり、残りの衛星に異常が無い場合は、検出統計量は閾値を超えない。そのため検出統計量が閾値を超えない場合に、除いた衛星が異常衛星と特定できる。   This algorithm is an algorithm for specifying a satellite when it is known that an abnormal satellite exists. The number of satellites to be used must be 6 or more. In FDE, satellites are removed one by one, and detection statistics are calculated using the satellite failure detection algorithm. If the excluded satellite is not an abnormal satellite, the remaining statistics include abnormal satellites, and thus the detection statistics exceed a predetermined threshold. However, when the excluded satellite is an abnormal satellite and the remaining satellites are not abnormal, the detection statistic does not exceed the threshold value. Therefore, when the detected statistic does not exceed the threshold, the excluded satellite can be identified as an abnormal satellite.

このFDEでは上記衛星の故障検出アルゴリズムを利用するため、異常衛星の検出数に限度がある。例えば6衛星の場合1衛星のみ異常検出可能であり、7衛星の場合は2衛星のみ異常検出可能である。
Hung-Kyu Lee、Impact of Dynamic Information on GNSS ReceiverIntegrity Monitoring、The 2004 International Symposium on GNSS/GPS、Sydney, Australia、6-8 December 2004、Presented at GNSS 2004
Since the FDE uses the satellite failure detection algorithm, the number of abnormal satellites detected is limited. For example, in the case of six satellites, only one satellite can detect an abnormality, and in the case of seven satellites, only two satellites can be detected.
Hung-Kyu Lee, Impact of Dynamic Information on GNSS Receiver Integrity Monitoring, The 2004 International Symposium on GNSS / GPS, Sydney, Australia, 6-8 December 2004, Presented at GNSS 2004

ところがこのような従来のRAIMでは、衛星の故障検出を行う際に、使用する衛星が5衛星以上必要である。しかし、5衛星ではその内のいずれかの衛星に異常があるか否かは分かるが異常衛星の特定ができない。また、6衛星以上では異常衛星の特定ができるようになるが、それでも特定できる衛星数には限りがある。   However, such a conventional RAIM requires five or more satellites to be used when detecting a satellite failure. However, with 5 satellites, it can be known whether or not any of the satellites is abnormal, but the abnormal satellite cannot be identified. In addition, although abnormal satellites can be identified with six or more satellites, the number of satellites that can be identified is still limited.

そこで、この発明の目的は上述のRAIMによる問題を解消して異常衛星を的確に検知し、またそのことによって測位精度を高めた異常衛星検知装置および測位装置を提供することにある。   Accordingly, an object of the present invention is to provide an abnormal satellite detection device and a positioning device that solve the above-mentioned problems caused by RAIM, accurately detect abnormal satellites, and thereby improve positioning accuracy.

この発明の異常衛星検知装置は、測位用衛星から送信される電波を受信して、前記測位用衛星から受信点までの擬似距離を求める手段と、前記電波の搬送波周波数のドップラシフト成分を求める手段と、単位時間あたりの前記擬似距離の変化量と、前記ドップラシフト成分による相対速度の前記単位時間で積分した速度積分値とを求めるとともに、前記擬似距離の変化量と前記速度積分値との誤差の統計値を計算し、その誤差の統計値から測位用衛星の擬似距離に対する重みに反映させる手段と、前記誤差の統計値に応じて当該衛星を測位に使用しない衛星として判定する判定手段と、を備えたことを特徴としている。   An abnormal satellite detection device according to the present invention receives a radio wave transmitted from a positioning satellite and obtains a pseudo distance from the positioning satellite to a reception point, and a means for obtaining a Doppler shift component of the carrier frequency of the radio wave And the amount of change in the pseudo distance per unit time and the speed integral value integrated in the unit time of the relative speed by the Doppler shift component, and the error between the amount of change in the pseudo distance and the speed integral value A means for calculating the statistical value of the error, and reflecting the weight of the positioning satellite from the error statistical value to the pseudorange of the positioning satellite; It is characterized by having.

上記誤差計算方法は次の式で表すことができる。   The error calculation method can be expressed by the following equation.

Figure 2009128055
Figure 2009128055

(1)式においてドップラシフト周波数の平均値にその平均した時間τを掛けたものが速度積分値である、また、PR(t)−PR(t−τ)が擬似距離の変化量である。   In equation (1), the average value of the Doppler shift frequency multiplied by the averaged time τ is the velocity integral value, and PR (t) −PR (t−τ) is the change amount of the pseudorange.

この両者の差が閾値Y以上である場合、その衛星に異常が在るものとし、測位に使用しない。 If the difference between the two is greater than or equal to the threshold Y, it is assumed that the satellite is abnormal and is not used for positioning.

閾値Yは、擬似距離、ドップラシフト周波数の誤差の確率分布から考えて、観測量が誤っていると検出した場合の誤検出確率を所定の確率(例えば0.1%)以下にするように決定される。   The threshold value Y is determined so that the false detection probability when the observed amount is detected to be a predetermined probability (for example, 0.1%) or less is considered from the probability distribution of the error of the pseudorange and the Doppler shift frequency. Is done.

この発明の測位装置は、測位用衛星から送信される、測位系時刻に同期した信号で変調された電波を受信して、前記測位用衛星から受信点までの擬似距離を求める手段と、前記電波の搬送波周波数のドップラシフト成分を求める手段と、単位時間あたりの前記擬似距離の変化量と、前記ドップラシフト成分による相対速度の前記単位時間で積分した速度積分値とを求めるとともに、前記擬似距離の変化量と前記速度積分値との誤差が所定のしきい値を超えるか否かを判定する誤差判定手段と、前記誤差の分散を求める手段と、該誤差の分散が大きいほど小さくなる関係で定めた重みで測位用衛星の擬似距離を重み付けして測位演算を行う手段と、当該衛星を測位に使用しない衛星として判定する判定手段と、を備えたことを特徴としている。   The positioning device according to the present invention includes means for receiving a radio wave transmitted from a positioning satellite and modulated by a signal synchronized with a positioning system time, and obtaining a pseudo distance from the positioning satellite to the receiving point; A means for obtaining a Doppler shift component of the carrier frequency, a change amount of the pseudo distance per unit time, and a speed integral value obtained by integrating the relative speed by the Doppler shift component in the unit time, and the pseudo distance An error determination means for determining whether or not an error between a change amount and the speed integral value exceeds a predetermined threshold value, a means for obtaining a variance of the error, and a relationship that decreases as the variance of the error increases. It is characterized by comprising means for performing positioning calculation by weighting the pseudo distance of the positioning satellite with the weight, and determining means for determining that the satellite is not used for positioning.

例えば次の式で表される重み係数を用いる。   For example, a weighting coefficient represented by the following expression is used.

Figure 2009128055
Figure 2009128055

各変数は上述したとおりである。   Each variable is as described above.

この発明の異常衛星検知装置では、各測位用衛星から受信点までの擬似距離が求められ、測位用衛星からの電波の搬送波周波数のドップラシフト成分が求められ、単位時間当たりの擬似距離の変化量とドップラシフト成分による相対速度の単位時間での積分による速度積分値とが求められ、両者の誤差が所定のしきい値を超える時にその衛星を異常衛星として検知するので、個々の衛星からの信号のみによって異常有無を検知できる。そのため、従来のRAIMだけによる異常衛星検知では不可能であった異常衛星の特定が可能となる。   In the abnormal satellite detection device of the present invention, the pseudo distance from each positioning satellite to the receiving point is obtained, the Doppler shift component of the carrier frequency of the radio wave from the positioning satellite is obtained, and the amount of change in the pseudo distance per unit time And the velocity integral value obtained by integrating the relative velocity by the Doppler shift component in the unit time, and when the error of both exceeds a predetermined threshold, the satellite is detected as an abnormal satellite. The presence or absence of abnormality can be detected only by For this reason, it is possible to identify an abnormal satellite that has been impossible with conventional abnormal satellite detection using only RAIM.

またこの発明の測位装置では、前記擬似距離の変化量と速度積分値との差(誤差)の分散を求め、その誤差の分散が大きいほど、測位演算に用いる擬似距離の重み付けを大きくすることによって誤差成分が大きい観測量の測位に用いる使用率が低下し、誤差成分が小さい観測量の測位に用いる使用量が増大するため、結果として測位精度が向上する。   Further, in the positioning device of the present invention, the variance of the difference (error) between the variation amount of the pseudo distance and the speed integral value is obtained, and the greater the variance of the error, the greater the weight of the pseudo distance used for the positioning calculation. Since the usage rate used for positioning an observation amount with a large error component is reduced and the usage amount used for positioning an observation amount with a small error component is increased, positioning accuracy is improved as a result.

図2はこの発明の実施形態に係る異常衛星検知装置および測位装置のブロック図である。図2において、受信回路11はGPSアンテナ10からの受信信号を増幅するとともに中間周波信号に変換する。ADコンバータ12は、その受信信号をディジタル信号のデータ列に変換してディジタル信号処理回路へ与える。このディジタル信号処理回路13は、複数の衛星からの電波を個別に受信処理するために複数チャンネル分備えていて、各受信チャンネルは、入力したディジタルデータ列に対して演算処理を行い、C/Aコード位相とキャリア位相を求める。   FIG. 2 is a block diagram of the abnormal satellite detection device and the positioning device according to the embodiment of the present invention. In FIG. 2, the receiving circuit 11 amplifies the received signal from the GPS antenna 10 and converts it into an intermediate frequency signal. The AD converter 12 converts the received signal into a data string of a digital signal and supplies it to the digital signal processing circuit. This digital signal processing circuit 13 is provided with a plurality of channels for individually receiving and processing radio waves from a plurality of satellites, and each receiving channel performs arithmetic processing on the input digital data string, and C / A Find the code phase and carrier phase.

具体的には、ディジタル信号処理回路13内の各受信チャンネルは、C/Aコード発生器、そのコード位相を数値制御するコードNCO、所定のコード位相のずれを有する3つのC/Aコードと入力信号とを乗算し、それらの値をそれぞれ積分することによって相関を求める相関器を備えている。また、上記各受信チャンネルは、位相が0°と90°のキャリア信号を発生するキャリアNCO、およびこのキャリア信号と入力信号との乗算を行い、それぞれの結果を積分することによって相関を求める相関器を備えている。また、ディジタル信号処理回路13は、入力信号のキャリア位相の修正量を積算カウントする位相カウンタを備えている。   Specifically, each reception channel in the digital signal processing circuit 13 has a C / A code generator, a code NCO for numerically controlling the code phase, and three C / A codes having a predetermined code phase shift and an input. There is provided a correlator that multiplies the signal and integrates the values to obtain the correlation. Each of the reception channels has a carrier NCO that generates a carrier signal having a phase of 0 ° and 90 °, and a correlator that multiplies the carrier signal and the input signal and integrates each result to obtain a correlation. It has. In addition, the digital signal processing circuit 13 includes a phase counter that counts the amount of correction of the carrier phase of the input signal.

プロセッサ14はディジタル信号処理回路13で求められたコード位相に関する相関値からコードNCOの位相を制御し、キャリア位相に関する相関値からキャリアNCOの周波数を制御することによって、コード位相およびキャリア位相の追尾を行う。また、上記位相カウンタのカウント値を読み取ることによってキャリア位相を求める。   The processor 14 controls the phase of the code NCO from the correlation value related to the code phase obtained by the digital signal processing circuit 13, and controls the frequency of the carrier NCO from the correlation value related to the carrier phase, thereby tracking the code phase and the carrier phase. Do. Further, the carrier phase is obtained by reading the count value of the phase counter.

図3〜図5は、図2に示したプロセッサ14の処理内容を示すフローチャートである。   3 to 5 are flowcharts showing the processing contents of the processor 14 shown in FIG.

全体の流れは図3に示すように、まずRAIM処理を行い異常衛星の有無を検出する(S1)。異常衛星が存在すれば異常衛星検知処理を行う(S2→S3)。   As shown in FIG. 3, the overall flow first performs RAIM processing to detect the presence of an abnormal satellite (S1). If there is an abnormal satellite, an abnormal satellite detection process is performed (S2 → S3).

図4は上記異常衛星検知処理の内容を示すフローチャートである。この異常衛星検知処理は各衛星についてそれぞれ行う。まず前回求めた擬似距離に対する擬似距離の変化量ΔPRを求める(S11)。この図4に示す異常衛星検知処理をたとえば毎秒行う場合は、1秒前の擬似距離との差がΔPRとなる。   FIG. 4 is a flowchart showing the contents of the abnormal satellite detection process. This abnormal satellite detection process is performed for each satellite. First, a change ΔPR of the pseudo distance with respect to the pseudo distance obtained last time is obtained (S11). When the abnormal satellite detection process shown in FIG. 4 is performed every second, for example, the difference from the pseudo distance one second before becomes ΔPR.

続いてドップラシフトデータから速度積分値IRを求める。例えば前回のタイミングでのドップラシフト周波数に対応する速度がFd0、今回のドップラシフト周波数に対応する速度がFd1であれば、
τ・(Fd0+Fd1)/2の演算によってドップラシフト周波数の平均値と観測周期τとの積を速度積分値ΔRとして求める(S12)。
Subsequently, the speed integral value IR is obtained from the Doppler shift data. For example, if the speed corresponding to the Doppler shift frequency at the previous timing is Fd0 and the speed corresponding to the current Doppler shift frequency is Fd1,
By calculating τ · (Fd0 + Fd1) / 2, the product of the average value of the Doppler shift frequency and the observation period τ is obtained as the speed integral value ΔR (S12).

その後、上記擬似距離の変化量ΔPRと速度積分値ΔRとの差Eを求めるとともに誤差分散を求める(S13)。この誤差Eが予め定めたしきい値Yを超えていれば、その衛星を異常衛星として設定する(S14→S15)。
以上の処理を捕捉している全ての衛星について行う。
Thereafter, a difference E between the pseudo distance change ΔPR and the speed integral value ΔR is obtained and an error variance is obtained (S13). If the error E exceeds a predetermined threshold Y, the satellite is set as an abnormal satellite (S14 → S15).
The above processing is performed for all the satellites that have been captured.

図5は測位演算の処理について示すフローチャートである。測位演算を行う際、まず前記誤差Eの分散から重み係数Wを求める。その後、正常な衛星の擬似距離ΔPR1,ΔPR2,・・・、方向余弦行列Hおよび上記誤差分散Wから測位誤差行列δXを求める(S21→S22)。この演算を式で表すと次のようになる。   FIG. 5 is a flowchart showing the positioning calculation process. When performing the positioning calculation, first, the weight coefficient W is obtained from the variance of the error E. Thereafter, a positioning error matrix δX is obtained from the pseudoranges ΔPR1, ΔPR2,... Of the normal satellite, the direction cosine matrix H, and the error variance W (S21 → S22). This calculation is expressed as follows.

x個の衛星からの信号を捕捉している場合、まず、次の関係により受信点の位置(x,y,z)と時刻tが求められる。添え字の1,2,・・・xは各衛星を区別するものである。   When signals from x satellites are captured, first, the position (x, y, z) of the reception point and the time t are obtained according to the following relationship. The subscripts 1, 2,... X distinguish each satellite.

Figure 2009128055
Figure 2009128055

ここでδXは測位誤差行列、δRは擬似距離誤差行列、Hは方向余弦行列である。   Here, δX is a positioning error matrix, δR is a pseudorange error matrix, and H is a direction cosine matrix.

衛星ごとの重み付けは次の関係となる。   The weighting for each satellite has the following relationship.

Figure 2009128055
Figure 2009128055

ここで(5)式は重み係数の行列である。σ2は誤差分散であり、添え字の1,2,・・・xは該当の衛星についての誤差分散であることを表している。このように誤差分散の逆数を重み係数Wとしている。 Here, equation (5) is a matrix of weighting factors. σ 2 is the error variance, and the subscripts 1, 2,..., x represent the error variance for the corresponding satellite. In this way, the inverse of the error variance is used as the weighting factor W.

このように重み付けを行うことにより,使用する観測量の比重を決めることができ、精度の良い測位結果を得られるようになる。   By performing weighting in this way, the specific gravity of the observation amount to be used can be determined, and a highly accurate positioning result can be obtained.

そして、上記測位誤差行列δXが収束するまで受信点の真値(仮定値)を修正し、この演算を繰り返す(S23→S24→S22)。   Then, the true value (assumed value) of the reception point is corrected until the positioning error matrix δX converges, and this calculation is repeated (S23 → S24 → S22).

このようにして各衛星の誤差の分散に応じた重み付けを行って測位演算することによって測位精度を高める。   In this way, the positioning accuracy is improved by performing the positioning calculation by weighting according to the variance of the error of each satellite.

なお、以上に示した実施形態では、ドップラシフト周波数が求まる周期で前回のドップラシフト周波数と今回のドップラシフト周波数との平均値(Fd0+Fd1)/2にその周期τを掛けることによって速度積分値ΔRを求めたが、順次求まる2回以上のドップラシフト周波数に対応する値を加算することによって(すなわち積分することによって)、速度積分値ΔRを求めるようにしてもよい。   In the embodiment described above, the speed integral value ΔR is obtained by multiplying the average value (Fd0 + Fd1) / 2 of the previous Doppler shift frequency and the current Doppler shift frequency by the period τ in the period in which the Doppler shift frequency is obtained. The speed integral value ΔR may be obtained by adding (ie, integrating) values corresponding to two or more Doppler shift frequencies obtained sequentially.

従来のRAIM処理の例を示す図である。It is a figure which shows the example of the conventional RAIM process. この発明の実施形態に係る異常衛星検知装置および測位装置の構成を示すブロック図である。It is a block diagram which shows the structure of the abnormal satellite detection apparatus and positioning device which concern on embodiment of this invention. 同装置の全体の異常衛星検知に関する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence regarding the abnormal satellite detection of the whole apparatus. 異常衛星検知の処理内容を示すフローチャートである。It is a flowchart which shows the processing content of an abnormal satellite detection. 測位演算に関する処理内容を示すフローチャートである。It is a flowchart which shows the processing content regarding a positioning calculation.

符号の説明Explanation of symbols

10−GPSアンテナ   10-GPS antenna

Claims (2)

測位用衛星から送信される電波を受信して、前記測位用衛星から受信点までの擬似距離を求める手段と、前記電波の搬送波周波数のドップラシフト成分を求める手段と、単位時間あたりの前記擬似距離の変化量と、前記ドップラシフト成分による相対速度の前記単位時間で積分した速度積分値とを求めるとともに、前記擬似距離の変化量と前記速度積分値との誤差の統計値を計算し、その誤差の統計値から測位用衛星の擬似距離に対する重みに反映させる手段と、前記誤差の統計値に応じて当該衛星を測位に使用しない衛星として判定する判定手段と、を備えたことを特徴とする異常衛星検知装置。   Means for receiving a radio wave transmitted from a positioning satellite and obtaining a pseudo distance from the positioning satellite to a reception point; means for obtaining a Doppler shift component of a carrier frequency of the radio wave; and the pseudo distance per unit time And a speed integral value obtained by integrating the relative speed by the Doppler shift component in the unit time, and calculating a statistical value of an error between the pseudo distance change amount and the speed integral value. An abnormality characterized by comprising means for reflecting a weight for a pseudo-range of a positioning satellite from the statistic value and a determination means for determining that the satellite is not used for positioning according to the statistical value of the error. Satellite detector. 測位用衛星から送信される、測位系時刻に同期した信号で変調された電波を受信して、前記測位用衛星から受信点までの擬似距離を求める手段と、前記電波の搬送波周波数のドップラシフト成分を求める手段と、単位時間あたりの前記擬似距離の変化量と、前記ドップラシフト成分による相対速度の前記単位時間で積分した速度積分値とを求めるとともに、前記擬似距離の変化量と前記速度積分値との誤差の分散を求める手段と、該誤差の分散が大きいほど小さくなる関係で定めた重みで測位用衛星の擬似距離を重み付けして測位演算を行う手段と、当該衛星を測位に使用しない衛星として判定する判定手段と、を備えたことを特徴とする測位装置。   Means for receiving a radio wave modulated by a signal synchronized with a positioning system time, transmitted from a positioning satellite, and determining a pseudo distance from the positioning satellite to the reception point; and a Doppler shift component of the carrier frequency of the radio wave A pseudo-distance change amount per unit time, and a speed integral value integrated in the unit time of the relative speed by the Doppler shift component, and the pseudo-distance change amount and the speed integral value Means for calculating the variance of the error, means for performing a positioning calculation by weighting the pseudorange of the positioning satellite with a weight determined so as to decrease as the error variance increases, and a satellite that does not use the satellite for positioning And a determining means for determining as a positioning device.
JP2007300577A 2007-11-20 2007-11-20 Abnormal satellite detection device and positioning device Expired - Fee Related JP5094344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007300577A JP5094344B2 (en) 2007-11-20 2007-11-20 Abnormal satellite detection device and positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300577A JP5094344B2 (en) 2007-11-20 2007-11-20 Abnormal satellite detection device and positioning device

Publications (2)

Publication Number Publication Date
JP2009128055A true JP2009128055A (en) 2009-06-11
JP5094344B2 JP5094344B2 (en) 2012-12-12

Family

ID=40819154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300577A Expired - Fee Related JP5094344B2 (en) 2007-11-20 2007-11-20 Abnormal satellite detection device and positioning device

Country Status (1)

Country Link
JP (1) JP5094344B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175134A (en) * 2007-12-07 2009-08-06 Honeywell Internatl Inc Navigation system with apparatus for detecting accuracy failure
JP2009198492A (en) * 2007-12-07 2009-09-03 Honeywell Internatl Inc Navigation system with apparatus for detecting accuracy failures
JP2011196738A (en) * 2010-03-18 2011-10-06 Nec Corp Apparatus, method and program for detection of abnormal value in satellite positioning system
JP2011242296A (en) * 2010-05-19 2011-12-01 Nec Corp Ground supplementary satellite navigation system, abnormality detection method and abnormality detection program used therefor
JP2013108960A (en) * 2011-11-24 2013-06-06 Toyota Central R&D Labs Inc Positioning device and program
JP2013178206A (en) * 2012-02-29 2013-09-09 Tokyo Keiki Inc Target motion prediction apparatus and target motion prediction method
JP2014153084A (en) * 2013-02-05 2014-08-25 Railway Technical Research Institute Vehicle position measuring method and vehicle position measuring system
JP2019168257A (en) * 2018-03-22 2019-10-03 株式会社豊田中央研究所 Moving body information estimation device and program
CN114280632A (en) * 2021-12-15 2022-04-05 北京华龙通科技有限公司 GNSS system fault star detection and rejection method, device, platform and readable storage medium
CN117092664A (en) * 2023-10-17 2023-11-21 青岛杰瑞自动化有限公司 Positioning anti-interference method and system based on time service system and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285752B (en) * 2018-10-08 2023-12-15 闽江学院 Single-point positioning method and device with high positioning precision

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763838A (en) * 1993-08-26 1995-03-10 Japan Radio Co Ltd Gps receiver
JPH07198821A (en) * 1994-01-06 1995-08-01 Japan Radio Co Ltd Gps receivr and its positoning method
JPH08297158A (en) * 1995-04-26 1996-11-12 Furuno Electric Co Ltd Position measuring device and abnormality detecting method for position measuring satellite
JPH10153652A (en) * 1996-11-25 1998-06-09 Matsushita Electric Ind Co Ltd Gps receiver
JPH10160815A (en) * 1996-11-27 1998-06-19 Matsushita Electric Ind Co Ltd Position-measuring device
JPH11118903A (en) * 1997-10-16 1999-04-30 Matsushita Electric Ind Co Ltd Position detecting device
JP2001116569A (en) * 1999-10-18 2001-04-27 Matsushita Electric Ind Co Ltd Distance coefficient calculating method and moved distance calculating device
JP2001124840A (en) * 1999-10-28 2001-05-11 Matsushita Electric Ind Co Ltd Gps receiver and positioning method
JP2001305210A (en) * 2000-04-25 2001-10-31 Matsushita Electric Works Ltd Position detection device
JP2003021672A (en) * 2001-07-06 2003-01-24 Matsushita Electric Ind Co Ltd Navigation satellite system receiver
JP2004045126A (en) * 2002-07-10 2004-02-12 Matsushita Electric Ind Co Ltd Satellite signal receiver
JP2004069536A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Data calibration device and method
JP2005501219A (en) * 2000-10-27 2005-01-13 クゥアルコム・インコーポレイテッド Method and apparatus for estimating terminal speed in a wireless communication system
JP2007010554A (en) * 2005-07-01 2007-01-18 Japan Radio Co Ltd Positioning device
JP2007248271A (en) * 2006-03-16 2007-09-27 Seiko Epson Corp Positioning device and positioning method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763838A (en) * 1993-08-26 1995-03-10 Japan Radio Co Ltd Gps receiver
JPH07198821A (en) * 1994-01-06 1995-08-01 Japan Radio Co Ltd Gps receivr and its positoning method
JPH08297158A (en) * 1995-04-26 1996-11-12 Furuno Electric Co Ltd Position measuring device and abnormality detecting method for position measuring satellite
JPH10153652A (en) * 1996-11-25 1998-06-09 Matsushita Electric Ind Co Ltd Gps receiver
JPH10160815A (en) * 1996-11-27 1998-06-19 Matsushita Electric Ind Co Ltd Position-measuring device
JPH11118903A (en) * 1997-10-16 1999-04-30 Matsushita Electric Ind Co Ltd Position detecting device
JP2001116569A (en) * 1999-10-18 2001-04-27 Matsushita Electric Ind Co Ltd Distance coefficient calculating method and moved distance calculating device
JP2001124840A (en) * 1999-10-28 2001-05-11 Matsushita Electric Ind Co Ltd Gps receiver and positioning method
JP2001305210A (en) * 2000-04-25 2001-10-31 Matsushita Electric Works Ltd Position detection device
JP2005501219A (en) * 2000-10-27 2005-01-13 クゥアルコム・インコーポレイテッド Method and apparatus for estimating terminal speed in a wireless communication system
JP2003021672A (en) * 2001-07-06 2003-01-24 Matsushita Electric Ind Co Ltd Navigation satellite system receiver
JP2004045126A (en) * 2002-07-10 2004-02-12 Matsushita Electric Ind Co Ltd Satellite signal receiver
JP2004069536A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Data calibration device and method
JP2007010554A (en) * 2005-07-01 2007-01-18 Japan Radio Co Ltd Positioning device
JP2007248271A (en) * 2006-03-16 2007-09-27 Seiko Epson Corp Positioning device and positioning method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198492A (en) * 2007-12-07 2009-09-03 Honeywell Internatl Inc Navigation system with apparatus for detecting accuracy failures
JP2009175134A (en) * 2007-12-07 2009-08-06 Honeywell Internatl Inc Navigation system with apparatus for detecting accuracy failure
JP2011196738A (en) * 2010-03-18 2011-10-06 Nec Corp Apparatus, method and program for detection of abnormal value in satellite positioning system
JP2011242296A (en) * 2010-05-19 2011-12-01 Nec Corp Ground supplementary satellite navigation system, abnormality detection method and abnormality detection program used therefor
US9223029B2 (en) 2011-11-24 2015-12-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Positioning device and storage medium
JP2013108960A (en) * 2011-11-24 2013-06-06 Toyota Central R&D Labs Inc Positioning device and program
JP2013178206A (en) * 2012-02-29 2013-09-09 Tokyo Keiki Inc Target motion prediction apparatus and target motion prediction method
JP2014153084A (en) * 2013-02-05 2014-08-25 Railway Technical Research Institute Vehicle position measuring method and vehicle position measuring system
JP2019168257A (en) * 2018-03-22 2019-10-03 株式会社豊田中央研究所 Moving body information estimation device and program
JP7148039B2 (en) 2018-03-22 2022-10-05 株式会社豊田中央研究所 Mobile object information estimation device and program
CN114280632A (en) * 2021-12-15 2022-04-05 北京华龙通科技有限公司 GNSS system fault star detection and rejection method, device, platform and readable storage medium
CN117092664A (en) * 2023-10-17 2023-11-21 青岛杰瑞自动化有限公司 Positioning anti-interference method and system based on time service system and electronic equipment
CN117092664B (en) * 2023-10-17 2024-01-09 青岛杰瑞自动化有限公司 Positioning anti-interference method and system based on time service system and electronic equipment

Also Published As

Publication number Publication date
JP5094344B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5094344B2 (en) Abnormal satellite detection device and positioning device
CN106291591B (en) Global Navigation Satellite System (GNSS) spoofing detection with carrier phase and inertial sensors
CN110376621B (en) Satellite positioning method and device based on Beidou No. three B2B signal
US20110181466A1 (en) Receiver and method for authenticating satellite signals
US8395543B2 (en) Method and apparatus for mitigating multipath effects at a satellite signal receiver using a sequential estimation filter
EP1891458B1 (en) Method and apparatus for validating a position in a satellite positioning system using range-rate measurements
CN112147645B (en) Navigation spoofing signal detection method and device and navigation receiver
TW200925632A (en) GNSS satellite signal handling method and correlator implementing the same
US20120314733A1 (en) Method of estimating pseudorange, gnss receiving apparatus, and mobile terminal
US11391847B2 (en) GNSS correlation distortion detection and mitigation
JP2010078382A (en) Position measuring device and position measuring method by gps
JP2009229065A (en) Positioning apparatus for moving body
JP2011179894A (en) Positioning method, positioning program, gnss receiver, and mobile terminal
US8736489B2 (en) GNSS receiver
JP5050584B2 (en) POSITIONING METHOD, POSITIONING DEVICE, AND POSITIONING PROGRAM
JP2009103509A (en) Gnss receiving device and positioning method
US9236903B2 (en) Multi-path detection
JP2010243211A (en) Receiving apparatus
JP4364131B2 (en) Cycle slip detection device and cycle slip detection method
JP7287128B2 (en) POSITIONING DEVICE, POSITIONING METHOD AND POSITIONING SYSTEM
JP4844189B2 (en) POSITIONING DEVICE, POSITIONING DEVICE CONTROL METHOD, POSITIONING DEVICE CONTROL PROGRAM, COMPUTER-READABLE RECORDING MEDIUM CONTAINING POSITIONING DEVICE CONTROL PROGRAM
JP2005345190A (en) Gps receiver
JP2006242706A (en) Positioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees