JP2009127105A - Method for manufacturing electroforming component - Google Patents

Method for manufacturing electroforming component Download PDF

Info

Publication number
JP2009127105A
JP2009127105A JP2007305334A JP2007305334A JP2009127105A JP 2009127105 A JP2009127105 A JP 2009127105A JP 2007305334 A JP2007305334 A JP 2007305334A JP 2007305334 A JP2007305334 A JP 2007305334A JP 2009127105 A JP2009127105 A JP 2009127105A
Authority
JP
Japan
Prior art keywords
substrate
photoresist layer
photoresist
electroformed
electroforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305334A
Other languages
Japanese (ja)
Inventor
Matsuo Kishi
松雄 岸
Takashi Niwa
隆 新輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007305334A priority Critical patent/JP2009127105A/en
Publication of JP2009127105A publication Critical patent/JP2009127105A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing electroforming components by which an electroforming mold is formed on a substrate having projecting and recessed parts on the surface by using photoresist highly precisely without leaving residue on an opening part and the projecting and the recessed parts on the surface of the substrate are faithfully transferred. <P>SOLUTION: The electroforming mold 6 free from the residue in the opening part is formed with high precision by forming a first photoresist layer 2 having large absorption coefficient in a photosensitive wavelength on the surface of the conductive substrate 1 having the projecting and recessed parts on the surface and further forming a second photoresist layer 3 having smaller absorption coefficient is formed thereon and exposing and developing, thereby providing the electroforming component 8 faithfully transferred of the substrate surface shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フォトレジストを用いた電鋳部品の製造方法に係り、特に電鋳体を形成するための基板の表面の凹凸を精密に電鋳部品に転写し、基板を再使用できる電鋳部品の製造方法に関する。   The present invention relates to a method for manufacturing an electroformed part using a photoresist, and in particular, an electroformed part that can accurately transfer the surface irregularities of a substrate for forming an electroformed body to the electroformed part and reuse the substrate. It relates to the manufacturing method.

電鋳法は、電鋳型となる部材に対して非常に良い転写性を有する部品あるいは各種型の製造方法として知られている。電鋳型の精度をより高めるために、基板表面にフォトレジストによるパターニングが広く行われている。また、基板表面に凹凸があり、フォトレジストを用いる場合、その均一な塗布が困難であったが、塗布方法等を改善することによりこれを克服している例がある(例えば、特許文献1参照)。さらに電鋳体の品質向上を目的として、電鋳型としてのフォトレジスト層の構成を基板に近い層から光透過率が高い順に積層した例がある(例えば、特許文献2参照)。
特開2004−263269号公報 特開平4−183892号公報
The electroforming method is known as a method for manufacturing parts or various molds having very good transferability with respect to a member to be an electroforming mold. In order to further increase the accuracy of the electroforming, patterning with a photoresist is widely performed on the substrate surface. In addition, when the substrate surface has irregularities and a photoresist is used, uniform application is difficult. However, there is an example in which this is overcome by improving the application method and the like (for example, see Patent Document 1). ). Furthermore, for the purpose of improving the quality of the electroformed body, there is an example in which the structure of a photoresist layer as an electroforming layer is laminated in order of increasing light transmittance from a layer close to the substrate (for example, see Patent Document 2).
JP 2004-263269 A Japanese Patent Laid-Open No. 4-183892

しかしながら、厚膜フォトレジストを電鋳で使用する場合、露光時に基板からの反射光がその解像度や現像後のレジスト開口部形状に対して影響を及ぼす。特に凹凸がある基板表面に塗布し、露光すると、上記基板表面の凹凸による乱反射により、フォトマスクにより遮光された部分に対して、この反射光が入り込み露光することとなり、所望とするパターンと異なった形状とならなかったり、現像後のフォトレジストの開口部でフォトレジストが基板表面近くで残存し、電鋳が行えない状態となることが生じるという問題があった。   However, when a thick film photoresist is used in electroforming, reflected light from the substrate during exposure affects the resolution and the shape of the resist opening after development. When it is applied to a substrate surface with unevenness and exposed to light, the reflected light enters and exposes the portion shielded by the photomask due to irregular reflection due to the unevenness of the substrate surface, which is different from the desired pattern. There has been a problem that the shape does not become a shape, or the photoresist remains in the vicinity of the substrate surface in the opening of the photoresist after development, and the electroforming cannot be performed.

フォトレジストの感光波長と比べて、基板表面の粗さが十分小さい場合、すなわち、算術表面粗さが0.01μmオーダー以下では、露光に対して影響を与えるような乱反射は起こりにくく、波長より十分表面粗さが大きい10μmオーダー以上では、フォトレジストの塗布自体が難しく、フォトリソグラフィー法を用いることが困難である。このような中、装飾的な要素を持たせるためのスジ目や梨地肌といった表面状態や、微細配線を目的とした電子部品の段差や微細な構造を有する機械部品の多くは、0.01μmから10μmの表面粗さや段差を有しているのが現状であり、フォトリソグラフィー法を用いた電鋳による転写、複製技術が望まれていた。   If the surface roughness of the substrate is sufficiently small compared to the photosensitive wavelength of the photoresist, that is, if the arithmetic surface roughness is on the order of 0.01 μm or less, irregular reflections that affect the exposure are unlikely to occur and are sufficiently larger than the wavelength. When the surface roughness is large, on the order of 10 μm or more, it is difficult to apply the photoresist itself, and it is difficult to use the photolithography method. Under these circumstances, many of the mechanical parts having surface conditions such as streak and pear texture for giving decorative elements, steps of electronic parts for fine wiring and fine structures are from 0.01 μm. At present, it has a surface roughness and a level difference of 10 μm, and transfer and duplication techniques by electroforming using a photolithography method have been desired.

また、フォトレジストの厚み方向における感光については、ランバート・ベールの法則にしたがっているため、その露光、照射量は基板との境界面に対して十分な露光量、照射量が得られるように設定される。フォトレジストの解像は、フォトレジストの厚みと大きな関係があり、薄ければ薄いほど解像度は上がるが、照射された光のうち、基板から反射された反射光も解像度に対して大きな要因となる。表面状態が粗い場合、乱反射が大きくなり、反射によるフォトレジストの解像度が極端に悪くなり、開口部に残渣が残ったり、ひどい場合には解像されなくなる。この様な現象は、電鋳を行う数十から数百μmの厚みのフォトレジストに対して、著しく現れ、非常に大きな問題となっていた。   In addition, the exposure in the thickness direction of the photoresist follows Lambert-Beer's law, so the exposure and dose are set so that a sufficient exposure and dose can be obtained with respect to the boundary surface with the substrate. The The resolution of the photoresist has a large relationship with the thickness of the photoresist. The thinner the thickness, the higher the resolution. Of the irradiated light, the reflected light reflected from the substrate is also a major factor for the resolution. . When the surface state is rough, irregular reflection becomes large, and the resolution of the photoresist due to the reflection becomes extremely poor, and a residue remains in the opening or is not resolved when it is severe. Such a phenomenon appears remarkably with respect to a photoresist having a thickness of several tens to several hundreds of μm in which electroforming is performed, which is a very big problem.

本発明は上記事情に鑑みて成されたものであり、フォトレジストの露光時に生じる基板からの反射光による影響を小さくし、とくに凹凸を有する基板において、形成すべきフォトレジストの開口部の形状を安定化すると同時に開口部におけるレジスト残渣を生じることなくフォトレジストを用いた電鋳型を形成し、これにより基板表面形状の転写性に優れた電鋳部品を提供するための製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and reduces the influence of reflected light from the substrate that occurs during exposure of the photoresist. The shape of the opening of the photoresist to be formed, particularly on a substrate having irregularities, is reduced. To provide a manufacturing method for forming an electroforming part using a photoresist without stabilizing a resist residue in an opening at the same time, and thereby providing an electroformed part having excellent substrate surface shape transferability. Objective.

本発明は、上記課題を解決するため、以下の手段を採用する。   The present invention employs the following means in order to solve the above problems.

本発明に係る電鋳部品の製造方法は、フォトマスクに描かれたパターン形状を有し、基板表面の凹凸を忠実に転写する電鋳部品の製造方法であって、表面に凹凸を有しかつ電気伝導性を有する基板上に、感光波長における光吸収係数が異なる複数のフォトレジスト層を形成する工程と、前記複数のフォトレジスト層を露光、現像することによりパターニングする工程と、パターニングされたフォトレジスト層の開口部に電鋳により金属部を形成する工程と、前記フォトレジスト層を除去する工程と、前記金属部を前記基板から分離する工程と、を含むことを特徴とする。   An electroformed component manufacturing method according to the present invention is a method for manufacturing an electroformed component having a pattern shape drawn on a photomask and faithfully transferring unevenness on a substrate surface, the surface having unevenness and A step of forming a plurality of photoresist layers having different light absorption coefficients at a photosensitive wavelength on a substrate having electrical conductivity; a step of patterning by exposing and developing the plurality of photoresist layers; The method includes a step of forming a metal portion by electroforming in the opening of the resist layer, a step of removing the photoresist layer, and a step of separating the metal portion from the substrate.

この発明は、表面に凹凸を有する基板上に形成された感光波長における光吸収係数が異なる複数のフォトレジスト層に対して露光および現像を行うので、上層にあるフォトレジストに対して、反射光による露光量を下層にあるフォトレジストにより制御することができ、フォトマスクに描かれたパターン形状をより良く反映した形状のフォトレジストパターンを得ることができるので、フォトレジスト開口部に電鋳し、その後、電鋳体を基板と分離することにより、凹凸を有する基板表面を忠実に転写し、かつ、フォトマスクのパターン形状を有する電鋳部品を得ることができる。   In the present invention, exposure and development are performed on a plurality of photoresist layers having different light absorption coefficients at the photosensitive wavelength formed on a substrate having irregularities on the surface, so that the photoresist on the upper layer is reflected by reflected light. The amount of exposure can be controlled by the underlying photoresist, and a photoresist pattern with a shape that better reflects the pattern shape drawn on the photomask can be obtained. By separating the electroformed body from the substrate, an electroformed component having a photomask pattern shape can be obtained that faithfully transfers the surface of the substrate having irregularities.

また、本発明に係る電鋳部品の製造方法は、フォトマスクに描かれたパターン形状を有し、基板表面の凹凸を忠実に転写する電鋳部品の製造方法であって、電鋳部品が電鋳される基板の表面の算術平均粗さが、0.01μm以上10μm以下であることを特徴とする。   An electroformed component manufacturing method according to the present invention is a method for manufacturing an electroformed component having a pattern shape drawn on a photomask and faithfully transferring irregularities on the surface of the substrate. The arithmetic average roughness of the surface of the substrate to be cast is 0.01 μm or more and 10 μm or less.

この発明は、フォトレジストの露光時にフォトレジスト層を通過し、算術平均粗さで0.01μm以上10μm以下の凹凸を有する基板表面で乱反射した光を基板に接する第1のフォトレジスト層が吸収して、その上に形成されている第2層のフォトレジスト層に対して影響を及ぼさないので、現像、電鋳、電鋳体の分離後、フォトマスクパターン形状を有し、かつ、基板の表面粗さである0.01μm以上10μm以下の表面を忠実に転写した電鋳部品を得ることができる。   In the present invention, the first photoresist layer that is in contact with the substrate absorbs the light that has passed through the photoresist layer at the time of exposure of the photoresist and is irregularly reflected by the substrate surface having an irregularity of 0.01 μm or more and 10 μm or less in arithmetic mean roughness. In addition, since it does not affect the second photoresist layer formed thereon, it has a photomask pattern shape after development, electroforming, separation of the electroformed body, and the surface of the substrate. It is possible to obtain an electroformed part that faithfully transfers the surface having a roughness of 0.01 μm or more and 10 μm or less.

また、本発明に係る電鋳部品の製造方法は、フォトマスクに描かれたパターン形状を有し、基板表面の凹凸を忠実に転写する電鋳部品の製造方法であって、複数のフォトレジスト層のうち、基板に接する第1のフォトレジスト層の厚みが、前記基板の表面の算術平均粗さの1倍から1000倍であることを特徴とする。   The method for producing an electroformed component according to the present invention is a method for producing an electroformed component having a pattern shape drawn on a photomask and faithfully transferring irregularities on the surface of the substrate. Among these, the thickness of the first photoresist layer in contact with the substrate is 1 to 1000 times the arithmetic average roughness of the surface of the substrate.

この発明は、表面に凹凸を有する基板の表面に形成された第1のフォトレジスト層の厚みが凹凸の算術平均粗さの1倍から1000倍であるので、基板表面の凹凸を完全に覆い、かつ、第1のフォトレジスト層の表面の平坦化がなされるので、第2のフォトレジスト層を均一に塗布でき、第2のフォトレジスト層の露光安定性を維持でき、現像、電鋳、電鋳体の分離後、フォトマスクのパターン形状を有し、かつ、基板表面の凹凸を忠実に転写した電鋳部品を得ることができる。   Since the thickness of the first photoresist layer formed on the surface of the substrate having irregularities on the surface is 1 to 1000 times the arithmetic average roughness of the irregularities, the present invention completely covers the irregularities on the substrate surface, In addition, since the surface of the first photoresist layer is flattened, the second photoresist layer can be uniformly applied, the exposure stability of the second photoresist layer can be maintained, and development, electroforming, electroforming, After separation of the cast body, an electroformed part having a photomask pattern shape and faithfully transferring the unevenness of the substrate surface can be obtained.

また、本発明に係る電鋳部品の製造方法は、フォトマスクに描かれたパターン形状を有し、基板表面の凹凸を忠実に転写する電鋳部品の製造方法であって、複数のフォトレジスト層のうち、前記基板側に近い層が外側の層と比べ、感光波長における光吸収係数が大きいことを特徴とする。   The method for producing an electroformed component according to the present invention is a method for producing an electroformed component having a pattern shape drawn on a photomask and faithfully transferring irregularities on the surface of the substrate. Among them, the layer close to the substrate side has a larger light absorption coefficient at the photosensitive wavelength than the outer layer.

この発明は、形成されるフォトレジスト層が、感光波長における光吸収係数が大きい順に表面に凹凸を有する基板表面から順次形成されているので、フォトレジストの露光時にフォトレジスト層を透過し、凹凸を有する基板表面で乱反射した光を基板に接する第1のフォトレジスト層が吸収して、その上に形成されている第2層以降のフォトレジスト層に対して影響を及ぼさないので、現像、電鋳、電鋳体の分離後、フォトマスクパターン形状を有し、かつ、基板表面の凹凸を忠実に転写した電鋳部品を得ることができる。   In this invention, since the formed photoresist layer is formed sequentially from the surface of the substrate having irregularities on the surface in order of increasing light absorption coefficient at the photosensitive wavelength, the photoresist layer is transmitted through the photoresist layer during the exposure of the photoresist. The first photoresist layer in contact with the substrate absorbs the light irregularly reflected on the surface of the substrate, and does not affect the second and subsequent photoresist layers formed on the first photoresist layer. After separation of the electroformed body, an electroformed part having a photomask pattern shape and faithfully transferring the unevenness of the substrate surface can be obtained.

また、本発明に係る電鋳部品の製造方法は、フォトマスクに描かれたパターン形状を有し、基板表面の凹凸を忠実に転写する電鋳部品の製造方法であって、複数のフォトレジスト層のうち、前記基板側に近い側に形成された第1のフォトレジスト層の感光波長における吸収係数とこの第1のフォトレジスト層の外側に形成されたフォトレジスト層の感光波長における吸収係数との比が2:1から1000:1であることを特徴とする。   The method for producing an electroformed component according to the present invention is a method for producing an electroformed component having a pattern shape drawn on a photomask and faithfully transferring irregularities on the surface of the substrate. The absorption coefficient at the photosensitive wavelength of the first photoresist layer formed on the side close to the substrate side and the absorption coefficient at the photosensitive wavelength of the photoresist layer formed outside the first photoresist layer. The ratio is 2: 1 to 1000: 1.

この発明は、表面に凹凸を有する基板に塗布された第1のフォトレジスト層の感光波長における吸収係数が第2のフォトレジスト層の吸収係数に対して、2倍から1000倍の大きさであるので、露光時にフォトレジストを透過し、凹凸を有する基板表面で乱反射した光の第1のフォトレジストによる吸収が大きくなり、第1のフォトレジスト層の厚みを薄くできるので、第2のフォトレジスト層に対して、異種のフォトレジスト層である第1のフォトレジスト層の影響を小さくできるので、現像、電鋳、電鋳体の分離後、より精度が高いフォトマスクパターン形状を有し、かつ、基板表面の凹凸を忠実に転写した電鋳部品を得ることができる。   According to the present invention, the absorption coefficient at the photosensitive wavelength of the first photoresist layer applied to the substrate having irregularities on the surface is 2 to 1000 times larger than the absorption coefficient of the second photoresist layer. Therefore, the absorption of light transmitted through the photoresist at the time of exposure and irregularly reflected by the uneven substrate surface by the first photoresist increases, and the thickness of the first photoresist layer can be reduced, so that the second photoresist layer On the other hand, since the influence of the first photoresist layer, which is a different type of photoresist layer, can be reduced, after development, electroforming, separation of the electroformed body, the photomask pattern shape has a higher accuracy, and It is possible to obtain an electroformed component that faithfully transfers the unevenness of the substrate surface.

また、発明に係る電鋳部品の製造方法は、フォトマスクに描かれたパターン形状を有し、基板表面の凹凸を忠実に転写する電鋳部品の製造方法であって、複数のフォトレジスト層のうち、前記基板側に近い側に形成された第1のフォトレジスト層の厚みとこの第1のフォトレジスト層の外側に形成された第2のフォトレジスト層の厚みとの比率が、1:1から1:1000であることを特徴とする。   A method for producing an electroformed component according to the invention is a method for producing an electroformed component having a pattern shape drawn on a photomask and faithfully transferring irregularities on a substrate surface, wherein a plurality of photoresist layers are formed. Of these, the ratio of the thickness of the first photoresist layer formed on the side close to the substrate side to the thickness of the second photoresist layer formed on the outside of the first photoresist layer is 1: 1. To 1: 1000.

この発明は、表面に凹凸を有する基板に塗布された第1のフォトレジスト層の膜厚が電鋳体の実質的な厚みとなる第2のフォトレジスト層に対して薄いので、露光、現像後のフォトレジスト層の開口部において、開口径に対する第1のフォトレジスト層の厚みの比と、開口径に対する第2のフォトレジスト層の厚みの比とを比べると、前者の比は小さくなり、第1のフォトレジスト層の解像度低下がなく、現像後のレジスト残渣が残ることも無くすことができるので、現像、電鋳、電鋳体の分離後、より精度が高いフォトマスクパターン形状を有し、かつ、基板表面の凹凸を忠実に転写した電鋳部品を得ることができる。   In the present invention, the thickness of the first photoresist layer applied to the substrate having irregularities on the surface is thinner than the second photoresist layer, which is the substantial thickness of the electroformed body. When the ratio of the thickness of the first photoresist layer to the opening diameter is compared with the ratio of the thickness of the second photoresist layer to the opening diameter, the former ratio becomes smaller. Since there is no reduction in resolution of the photoresist layer 1 and no resist residue remains after development, it has a photomask pattern shape with higher accuracy after separation of development, electroforming, and electroformed body, In addition, it is possible to obtain an electroformed component in which the unevenness on the substrate surface is faithfully transferred.

本発明によれば、表面に凹凸を有する基板にフォトレジストによる電鋳型を精度良く形成することができると同時に、この型を用いることにより基板表面の凹凸が忠実に転写された精度が良い電鋳部品を作製することができる。   According to the present invention, it is possible to accurately form an electroforming mold using a photoresist on a substrate having an uneven surface, and at the same time, by using this mold, an electroforming with good accuracy in which the uneven surface of the substrate is faithfully transferred. Parts can be made.

本発明に係る実施形態について、図面を参照して説明する。   Embodiments according to the present invention will be described with reference to the drawings.

図1は、本発明の直径200μm公差±5μmの穴が中心間距離400μmで全面に開けられ、一方の面が鏡面、他方の面がスジ目状の模様が施された電鋳部品の製造方法の各工程を断面図により示した図である。   FIG. 1 shows a method of manufacturing an electroformed part according to the present invention, in which holes having a diameter of 200 μm tolerance ± 5 μm are opened on the entire surface with a center-to-center distance of 400 μm, and one surface has a mirror surface and the other surface has a streak pattern It is the figure which showed each process of these by sectional drawing.

図1(a)は、ステンレス鋼上に凹凸として、サンドペーパーにより算術表面粗さRaで約1μmの装飾性を目的としたスジ目仕上げを行った基板1の断面を示した図である。   FIG. 1A is a diagram showing a cross section of a substrate 1 that has been subjected to streak finishing for the purpose of decorativeness having an arithmetic surface roughness Ra of about 1 μm by sandpaper as irregularities on stainless steel.

図1(b)では、凹凸を有する基板1の表面に第1のネガ型フォトレジスト層2を5μm形成した断面図である。塗布は、粘度100cpsのゴム系液状ネガ型フォトレジストを基板上に滴下し、基板を回転することによりフォトレジストを均一に塗布する方法であるスピンコートによりおこない、その後、100°Cに加熱し、溶剤を蒸発することによりレジスト層とする。形成された第1のネガ型フォトレジスト層2の表面は、第1のネガ型フォトレジストの粘度が十分低いため、基板1の表面の凹凸上を均一に覆い、かつ、平坦な状態となる。なお、このフォトレジストの特性は、適切な紫外光による露光に対して、きれいな像を得るためには10mJ/cm2以上の照射量を必要とするが、これが極端に大きい場合には、フォトレジストの厚みと同じ程度の領域まで感光する。すなわち、厚みが5μmであれば、横方向にも5μm程度感光領域が広がり、現像後のレジスト開口部が、片側5μm程度小さくなることが確認できている。 FIG. 1B is a cross-sectional view in which a first negative photoresist layer 2 having a thickness of 5 μm is formed on the surface of a substrate 1 having irregularities. The coating is performed by spin coating, which is a method of uniformly applying a photoresist by dropping a rubber-based liquid negative photoresist having a viscosity of 100 cps on the substrate and rotating the substrate, and then heating to 100 ° C., A resist layer is obtained by evaporating the solvent. Since the viscosity of the first negative photoresist layer 2 is sufficiently low, the surface of the formed first negative photoresist layer 2 uniformly covers the unevenness of the surface of the substrate 1 and is in a flat state. Note that the characteristics of this photoresist require an irradiation dose of 10 mJ / cm 2 or more in order to obtain a clean image with respect to exposure with appropriate ultraviolet light. To the same extent as the thickness of That is, when the thickness is 5 μm, it has been confirmed that the photosensitive region extends in the lateral direction by about 5 μm, and the resist opening after development is reduced by about 5 μm on one side.

次に、第1のネガ型フォトレジスト層2の表面に、粘度100000cpsの化学増幅型エポキシ系液状ネガ型フォトレジストを上記と同様にスピンコートし、その後、100°Cで、溶剤を蒸発することにより第2のネガ型フォトレジスト層3を200μm形成する。なお、このフォトレジストの特性は、適切な紫外光による露光に対して、きれいな像を得るためには、500mJ/cm2以上の照射量を必要とするが、横への広がりは、フォトレジストの厚み100μm当たりに対して、3μmだけ開口部が小さくなることがわかっている。すなわち、200μmのフォトレジストの厚みに対して、現像後のレジスト開口部が片側6μm小さくなることが確認できている。 Next, the surface of the first negative photoresist layer 2 is spin-coated with a chemically amplified epoxy liquid negative photoresist having a viscosity of 100,000 cps in the same manner as described above, and then the solvent is evaporated at 100 ° C. To form a second negative photoresist layer 3 having a thickness of 200 μm. Note that the characteristics of this photoresist require an irradiation dose of 500 mJ / cm 2 or more in order to obtain a clean image with appropriate ultraviolet light exposure. It has been found that the opening is reduced by 3 μm per 100 μm thickness. That is, it has been confirmed that the resist opening after development is reduced by 6 μm on one side with respect to the thickness of the photoresist of 200 μm.

次に、円形の開口部が形成されるべき部分となる白色部の外形寸法を直径206μmの円形とし、各々の円形の中心間距離を400μmとし、これを全面に配置したパターンを有するフォトマスク4を介して、第2のフォトレジスト層3と第1のフォトレジスト層2を超高圧水銀灯より発せられた紫外光5により露光する。超高圧水銀灯から発せられる光は、軌道電子の励起光による輝線スペクトルからなっており、連続線の強度は弱く、フォトレジストの露光に使われるのは、波長の長い順に波長436nmのg線、405nmのh線、365nmのi線、および335nmのj線等であり、その強度比は、h線を100とすると、g:h:i:j=100:90:100:65である。この紫外光5は、超高圧水銀灯より発せられる光のうち、360nm以下の波長をフィルターにより取り除いたものである。また、i線に対する第2のフォトレジスト層3の吸収係数は、0.004μm-1であり、第1のフォトレジスト層2の吸収係数は、0.2μm-1である。 Next, the photomask 4 having a pattern in which the outer dimension of the white portion, which is the portion where the circular opening is to be formed, is a circle having a diameter of 206 μm, the distance between the centers of each circle is 400 μm, and this is arranged on the entire surface. Then, the second photoresist layer 3 and the first photoresist layer 2 are exposed to ultraviolet light 5 emitted from an ultrahigh pressure mercury lamp. The light emitted from the ultra-high pressure mercury lamp is composed of an emission line spectrum by excitation light of orbital electrons, the intensity of the continuous line is weak, and the photoresist is used for exposure of the g-line having a wavelength of 436 nm and 405 nm in the order of wavelength. H line, 365 nm i line, 335 nm j line, and the like, and the intensity ratio thereof is g: h: i: j = 100: 90: 100: 65, where h line is 100. The ultraviolet light 5 is obtained by removing a wavelength of 360 nm or less from light emitted from an ultrahigh pressure mercury lamp with a filter. Further, the absorption coefficient of the second photoresist layer 3 for the i-line is 0.004 m -1, the first absorption coefficient of the photoresist layer 2 is 0.2 [mu] m -1.

露光量は、第2のフォトレジスト層3の表面で1100mJ/cm2とすることにより、基板における反射率40%とし、反射を含め各部の照射量を計算すると、第2のフォトレジスト層3の表面では、1100mJ/cm2、第2のフォトレジスト層3と第1のフォトレジスト層2の境界部では、521mJ/cm2、第1のフォトレジスト層2と基板1との境界部での照射量は255m/cm2となり、各部の照射量は十分となる。このとき、第1のフォトレジスト層2と第2のフォトレジスト層3との境界部には、基板からの反射光による照射が27mJ/cm2あるが、第2のフォトレジスト層3に対しては、ほとんど感光を与えるような影響はなく、基板からの乱反射によるパターンへの影響は皆無である。一方、第1のフォトレジスト層では、本来未露光部となる部分に対して、乱反射による光の照射がおこるが、厚みが寸法公差に対して影響を与えるほどではないので、寸法変化に影響を与えることはない。次に、化学増幅型フォトレジストである第2のフォトレジスト層3の露光部を硬化するために、露光後、60°Cで加熱処理を行う。 The exposure amount is set to 1100 mJ / cm 2 on the surface of the second photoresist layer 3 so that the reflectance of the substrate is 40%, and the irradiation amount of each part including reflection is calculated. the surface, 1100mJ / cm 2, and the second photoresist layer 3 in the first boundary portion of the photoresist layer 2, irradiation at 521mJ / cm 2, the first photoresist layer 2 and the boundary portion between the substrate 1 The amount is 255 m / cm 2 , and the dose of each part is sufficient. At this time, irradiation with the reflected light from the substrate is 27 mJ / cm 2 at the boundary between the first photoresist layer 2 and the second photoresist layer 3, but the second photoresist layer 3 is exposed to the second photoresist layer 3. Has almost no photosensitizing effect, and there is no influence on the pattern due to irregular reflection from the substrate. On the other hand, in the first photoresist layer, the portion that originally becomes the unexposed portion is irradiated with light by irregular reflection. However, since the thickness does not affect the dimensional tolerance, the dimensional change is affected. Never give. Next, in order to cure the exposed portion of the second photoresist layer 3 which is a chemically amplified photoresist, a heat treatment is performed at 60 ° C. after the exposure.

次に、第2のフォトレジスト層3、第1のフォトレジスト層2をそれぞれ現像することにより、図1(e)に示すような電鋳型6を作製する。   Next, by developing each of the second photoresist layer 3 and the first photoresist layer 2, an electroforming mold 6 as shown in FIG. 1E is manufactured.

次に、図1(f)に示すように電鋳型6に図示していない電鋳装置を用いて、湿式めっき法によりニッケル電鋳体7を形成する。   Next, as shown in FIG. 1F, a nickel electroformed body 7 is formed by wet plating using an electroforming apparatus (not shown) in the electroforming mold 6.

次に、図示していない研磨装置により、電鋳型6およびニッケル電鋳体7の表面を平坦に研磨し、さらに、第1のフォトレジスト層2と第2のフォトレジスト層3を剥離し、基板1から機械的に分離することにより、図1(g)に示した電鋳部品8を作製する。   Next, the surfaces of the electroforming mold 6 and the nickel electroformed body 7 are flatly polished by a polishing apparatus (not shown), and the first photoresist layer 2 and the second photoresist layer 3 are peeled off to form a substrate. The electroformed part 8 shown in FIG. 1 (g) is produced by mechanically separating from 1.

この電鋳部品8の寸法を測定したところ、基板面では、基板1のスジ目の形状を非常に良く転写していた。また、基板1に接していた面の開口部の大きさは、フォトマスクのパターンの開口径に対して、10μm小さくなっており、片側5μmの2倍となっており、推定値と一致していた。また、研磨を行った面では、同様に開口径は、6μm小さくなっており、片側3μmの推定値と一致していた。開口部の断面においては、第1のフォトレジスト層2と第2のフォトレジスト層3との境界部には、はっきりとした段差は見られず実用上の問題は生じなかった。これにより、フォトマスクのパターンを予め補正することにより、所望とする公差を有する直径200μmの円形の開口を有する電鋳体を形成することができる。   When the dimensions of the electroformed part 8 were measured, the shape of the streaks of the substrate 1 was transferred very well on the substrate surface. In addition, the size of the opening on the surface in contact with the substrate 1 is 10 μm smaller than the opening diameter of the pattern of the photomask, which is twice as large as 5 μm on one side, and matches the estimated value. It was. Further, on the polished surface, the opening diameter was similarly reduced by 6 μm, which coincided with the estimated value of 3 μm on one side. In the cross section of the opening, no clear step was observed at the boundary between the first photoresist layer 2 and the second photoresist layer 3, and no practical problem occurred. Accordingly, by correcting the photomask pattern in advance, an electroformed body having a circular opening with a diameter of 200 μm having a desired tolerance can be formed.

なお、電鋳体を形成する部材として、ニッケルを用いたが、材質は、電鋳可能な材料であれば、特に指定するものではない。   In addition, although nickel was used as a member for forming the electroformed body, the material is not particularly specified as long as it is a material that can be electroformed.

また、一般に、ステンレス鋼表面には不動態層が形成されるので、電鋳体は機械的に引き剥がすことにより容易に分離することができるので、基板を再度、使用することができる。   In general, since a passive layer is formed on the surface of the stainless steel, the electroformed body can be easily separated by mechanically peeling off, so that the substrate can be used again.

上記実施の形態では、フォトレジストとして、吸収係数が0.2μm-1のものと0.004μm-1のもの、すなわち、比として、50:1のものを用いたが、基板の表面の凹凸の状態、電鋳体の厚みを決める第2のフォトレジストの絶対厚みとこの厚みと乱反射を防ぐ役目を果たす第1のフォトレジスト層の厚み比率、さらに所望とする解像度等によって、この比を変える必要がある。ランバート・ベールの法則からは、この比が大きければ大きいほど良いが、フォトレジストの性能や表面粗さに対する第1のフォトレジストの被覆による平坦化の度合い等により適宜、変えられるべきものであり、2:1から1000:1の範囲が望ましい。 In the above embodiment, as a photoresist, that the absorption coefficient and what the 0.004 m -1 of 0.2 [mu] m -1, i.e., as the ratio, 50: although used was a 1, the surface of the substrate unevenness of It is necessary to change this ratio according to the absolute thickness of the second photoresist that determines the state, the thickness of the electroformed body, the thickness ratio of the first photoresist layer that serves to prevent diffuse reflection, and the desired resolution. There is. From Lambert-Beer's law, this ratio should be as large as possible, but it should be changed as appropriate depending on the performance of the photoresist and the degree of planarization by the coating of the first photoresist with respect to the surface roughness. A range of 2: 1 to 1000: 1 is desirable.

さらに、上記実施の形態では、吸収係数を一定の波長に対して規定したが、吸収係数を大きくする第1のフォトレジスト層2を構成するフォトレジストが、第2のフォトレジスト層3が感光しない波長を有するものでも良い。すなわち、比較する第1のフォトレジスト層2と第2のフォトレジスト層3の吸収係数の比を別の波長により比べ、感度差を利用することもよい。例えば、第2のフォトレジスト層3が、365nmより長い波長では感光しないフォトレジストであり、第2のフォトレジスト層2が、波波長436nmのg線や405nmのh線に感度を有するものを用いることもできる。   Further, in the above embodiment, the absorption coefficient is defined for a certain wavelength. However, the second photoresist layer 3 is not exposed to the photoresist constituting the first photoresist layer 2 that increases the absorption coefficient. It may have a wavelength. That is, the ratio of the absorption coefficients of the first photoresist layer 2 and the second photoresist layer 3 to be compared may be compared by using different wavelengths, and the difference in sensitivity may be used. For example, the second photoresist layer 3 is a photoresist that is not sensitive to wavelengths longer than 365 nm, and the second photoresist layer 2 is sensitive to g-line having a wave wavelength of 436 nm and h-line having a wavelength of 405 nm. You can also.

本発明の実施形態に係る型の主要部を示す上方および断面方向からの図である。It is the figure from the upper direction and sectional direction which shows the principal part of the type | mold which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 基板
2 第1のフォトレジスト層
3 第2のフォトレジスト層
4 フォトマスク
5 紫外光
6 電鋳型
7 電鋳体
8 電鋳部品
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 1st photoresist layer 3 2nd photoresist layer 4 Photomask 5 Ultraviolet light 6 Electromold 7 Electroformed body 8 Electroformed part

Claims (6)

表面に凹凸を有しかつ電気伝導性を有する基板上に、感光波長における光吸収係数が異なる複数のフォトレジスト層を形成する工程と、
前記複数のフォトレジスト層を露光、現像することによりパターニングする工程と、
パターニングされたフォトレジスト層の開口部に電鋳により金属部を形成する工程と、
前記フォトレジスト層を除去する工程と、
前記金属部を前記基板から分離する工程と、を含むことを特徴とする電鋳部品の製造方法。
Forming a plurality of photoresist layers having different light absorption coefficients at a photosensitive wavelength on a substrate having irregularities on the surface and electrical conductivity;
Patterning by exposing and developing the plurality of photoresist layers;
Forming a metal part by electroforming in the opening of the patterned photoresist layer;
Removing the photoresist layer;
And a step of separating the metal part from the substrate.
前記基板の表面の算術平均粗さが、0.01μm以上10μm以下であることを特徴とする請求項1に記載の電鋳部品の製造方法。   2. The method for producing an electroformed component according to claim 1, wherein the arithmetic average roughness of the surface of the substrate is 0.01 μm or more and 10 μm or less. 前記複数のフォトレジスト層のうち、前記基板に接する第1のフォトレジスト層の厚みが、前記基板の表面の算術平均粗さの1倍から1000倍であることを特徴とする請求項1または2に記載の電鋳部品の製造方法。   The thickness of the first photoresist layer in contact with the substrate among the plurality of photoresist layers is 1 to 1000 times the arithmetic average roughness of the surface of the substrate. A method for producing an electroformed part as described in 1. 前記複数のフォトレジスト層のうち、前記基板側に近い層が外側の層と比べ、感光波長における光吸収係数が大きいことを特徴とする請求項1から3のいずれか1項に記載の電鋳部品の製造方法。   4. The electroforming according to claim 1, wherein among the plurality of photoresist layers, a layer close to the substrate side has a larger light absorption coefficient at a photosensitive wavelength than an outer layer. 5. A manufacturing method for parts. 前記複数のフォトレジスト層のうち、前記基板側に近い側に形成された第1のフォトレジスト層の感光波長における吸収係数とこの第1のフォトレジスト層の外側に形成されたフォトレジスト層の感光波長における吸収係数との比が、2:1から1000:1であることを特徴とする請求項4に記載の電鋳部品の製造方法。   Among the plurality of photoresist layers, the absorption coefficient at the photosensitive wavelength of the first photoresist layer formed on the side close to the substrate side and the photosensitivity of the photoresist layer formed on the outside of the first photoresist layer. The method for producing an electroformed part according to claim 4, wherein the ratio of the absorption coefficient at the wavelength is 2: 1 to 1000: 1. 前記複数のフォトレジスト層のうち、前記基板側に近い側に形成された第1のフォトレジスト層の厚みとこの第1のフォトレジスト層の外側に形成された第2のフォトレジスト層の厚みとの比率が、1:1から1:1000であることを特徴とする請求項1から5のいずれか1項に記載の電鋳部品の製造方法。   Of the plurality of photoresist layers, the thickness of the first photoresist layer formed on the side close to the substrate side and the thickness of the second photoresist layer formed outside the first photoresist layer, The method of manufacturing an electroformed part according to claim 1, wherein the ratio is from 1: 1 to 1: 1000.
JP2007305334A 2007-11-27 2007-11-27 Method for manufacturing electroforming component Pending JP2009127105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305334A JP2009127105A (en) 2007-11-27 2007-11-27 Method for manufacturing electroforming component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305334A JP2009127105A (en) 2007-11-27 2007-11-27 Method for manufacturing electroforming component

Publications (1)

Publication Number Publication Date
JP2009127105A true JP2009127105A (en) 2009-06-11

Family

ID=40818337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305334A Pending JP2009127105A (en) 2007-11-27 2007-11-27 Method for manufacturing electroforming component

Country Status (1)

Country Link
JP (1) JP2009127105A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529377A (en) * 2009-06-12 2012-11-22 ニヴァロックス−ファー ソシエテ アノニム Method for manufacturing metal small structure, and small structure manufactured by the method
JP2015040840A (en) * 2013-08-23 2015-03-02 オムロン株式会社 Douser for optical encoder, manufacturing method of the same, and optical encoder using the same
WO2017014172A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
JP6120038B1 (en) * 2015-07-17 2017-04-26 凸版印刷株式会社 Method for producing metal mask substrate for vapor deposition
US10273569B2 (en) 2015-07-17 2019-04-30 Toppan Printing Co., Ltd. Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
US10903426B2 (en) 2015-07-17 2021-01-26 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
US11111585B2 (en) 2015-07-17 2021-09-07 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529377A (en) * 2009-06-12 2012-11-22 ニヴァロックス−ファー ソシエテ アノニム Method for manufacturing metal small structure, and small structure manufactured by the method
JP2015040840A (en) * 2013-08-23 2015-03-02 オムロン株式会社 Douser for optical encoder, manufacturing method of the same, and optical encoder using the same
WO2017014172A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
JP6120038B1 (en) * 2015-07-17 2017-04-26 凸版印刷株式会社 Method for producing metal mask substrate for vapor deposition
JP2017193775A (en) * 2015-07-17 2017-10-26 凸版印刷株式会社 Method of producing metal mask substrate for vapor deposition
JPWO2017014172A1 (en) * 2015-07-17 2018-04-26 凸版印刷株式会社 Metal mask base material for vapor deposition, metal mask for vapor deposition, method for producing metal mask base material for vapor deposition, and method for producing metal mask for vapor deposition
KR20180049159A (en) * 2015-07-17 2018-05-10 도판 인사츠 가부시키가이샤 Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
CN109440060A (en) * 2015-07-17 2019-03-08 凸版印刷株式会社 Vapor deposition metal mask substrate and its manufacturing method, vapor deposition metal mask and its manufacturing method
US10273569B2 (en) 2015-07-17 2019-04-30 Toppan Printing Co., Ltd. Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
US10876215B2 (en) 2015-07-17 2020-12-29 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US10903426B2 (en) 2015-07-17 2021-01-26 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
CN109440060B (en) * 2015-07-17 2021-06-29 凸版印刷株式会社 Metal mask base material for vapor deposition and method for producing same, metal mask for vapor deposition and method for producing same
US11111585B2 (en) 2015-07-17 2021-09-07 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
KR102341452B1 (en) 2015-07-17 2021-12-21 도판 인사츠 가부시키가이샤 Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US11453940B2 (en) 2015-07-17 2022-09-27 Toppan Printing Co., Ltd. Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
US11706968B2 (en) 2015-07-17 2023-07-18 Toppan Printing Co., Ltd. Metal mask base, metal mask and method for producing metal mask
US11746423B2 (en) 2015-07-17 2023-09-05 Toppan Printing Co., Ltd. Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition

Similar Documents

Publication Publication Date Title
JP3821069B2 (en) Method for forming structure by transfer pattern
JP2009127105A (en) Method for manufacturing electroforming component
KR100675782B1 (en) Non absorbing reticle and method of making same
JPH0689848A (en) X-ray mask structure, method of forming x-ray mask structure, and device having x-ray mask structure
JP2000199968A (en) Multilayered resist structure and manufacture of three- dimensional fine structure using the same
JPS62202518A (en) Mask for x-ray exposure
KR100432794B1 (en) Process for the formation of wiring pattern
JP2002268200A (en) Photomask for gray tone exposure and method for applying photosensitive resin
JP2002116315A (en) Manufacturing method for micro optical element
JP3215542B2 (en) Method of manufacturing multilayer thin film wiring board
JP3091886B2 (en) Method of forming resist pattern
JPH09211842A (en) Light reflection preventive method in formation of electronic circuit by using optical means and apparatus therefor as well as its product
JP5485754B2 (en) Electroforming mold and manufacturing method thereof
TWI626516B (en) Manufacturing method of micron-sized imprinting mold and imprinting mold
JPH0431858A (en) Manufacture of mask
JP2001350269A (en) Method for producing mask for solder printing
JPH0737782A (en) Manufacture of organic thin film
JPH11204414A (en) Pattern formation method
US20080305412A1 (en) Near-field exposure mask and near-field exposure method
JPS6156349A (en) Manufacture of photomask
KR100250265B1 (en) Method of manufacturing micropattern
JPS62165651A (en) Formation of resist pattern
KR100399889B1 (en) Method for forming photoresist pattern of semiconductor device
JP2010262959A (en) Forming method of wiring pattern
KR20230140975A (en) Mask for deposition and method for manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20091105

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Effective date: 20091113

Free format text: JAPANESE INTERMEDIATE CODE: A7421