JP2009126764A - MANUFACTURING METHOD OF gamma-Ga2O3 AND gamma-Ga2O3 - Google Patents

MANUFACTURING METHOD OF gamma-Ga2O3 AND gamma-Ga2O3 Download PDF

Info

Publication number
JP2009126764A
JP2009126764A JP2007305856A JP2007305856A JP2009126764A JP 2009126764 A JP2009126764 A JP 2009126764A JP 2007305856 A JP2007305856 A JP 2007305856A JP 2007305856 A JP2007305856 A JP 2007305856A JP 2009126764 A JP2009126764 A JP 2009126764A
Authority
JP
Japan
Prior art keywords
single crystal
aqueous solution
sintered body
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007305856A
Other languages
Japanese (ja)
Inventor
Shigeo Ohira
重男 大平
Noriyoshi Shishido
統悦 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Light Metal Co Ltd
Original Assignee
Tohoku University NUC
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Light Metal Co Ltd filed Critical Tohoku University NUC
Priority to JP2007305856A priority Critical patent/JP2009126764A/en
Publication of JP2009126764A publication Critical patent/JP2009126764A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of γ-Ga<SB>2</SB>O<SB>3</SB>wherein it is converted from β-Ga<SB>2</SB>O<SB>3</SB>of a stable structure and the γ-Ga<SB>2</SB>O<SB>3</SB>prepared by converting β-Ga<SB>2</SB>O<SB>3</SB>of a stable structure. <P>SOLUTION: The manufacturing method of γ-Ga<SB>2</SB>O<SB>3</SB>is converting by keeping β-Ga<SB>2</SB>O<SB>3</SB>under a high temperature/high pressure condition of not lower than 200°C temperature and not lower than 10 MPa pressure in the presence of an alkaline aqueous solution to γ-Ga<SB>2</SB>O<SB>3</SB>, and the γ-Ga<SB>2</SB>O<SB>3</SB>is prepared by keeping β-Ga<SB>2</SB>O<SB>3</SB>under a high temperature/high pressure condition of a temperature not lower than 200°C and a pressure of not lower than 10 MPa. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ガンマ型構造を有する酸化ガリウム(γ-Ga2O3)の製造方法、及びγ-Ga23に関する。 The present invention relates to a method for producing gallium oxide (γ-Ga 2 O 3 ) having a gamma-type structure, and γ-Ga 2 O 3 .

酸化ガリウム(Ga2O3)は、酸化アルミニウム(Al2O3)と同様に結晶多形が存在し、結晶構造の異なるα、β、γ、δ、εの5つが知られている(非特許文献1参照)。このうち、安定構造であるベータ型の酸化ガリウム(β-Ga2O3)は単斜晶系に属し、β-gallia構造と呼ばれる結晶構造をとる。一方、β-Ga23以外は低温で準安定であり、アルファ型の酸化ガリウム(α-Ga2O3)は三方晶系に属してサファイアと同じcorundum構造をとる。また、ガンマ型の酸化ガリウム(γ-Ga2O3)はγ-Al23と同様にspinel構造をとる。 Gallium oxide (Ga 2 O 3 ) has crystal polymorphism similar to aluminum oxide (Al 2 O 3 ), and five of α, β, γ, δ, and ε having different crystal structures are known (non-non-crystalline). Patent Document 1). Among these, beta-type gallium oxide (β-Ga 2 O 3 ), which is a stable structure, belongs to the monoclinic system and has a crystal structure called a β-gallia structure. On the other hand, except β-Ga 2 O 3 , it is metastable at low temperatures, and alpha-type gallium oxide (α-Ga 2 O 3 ) belongs to the trigonal system and has the same corundum structure as sapphire. In addition, gamma-type gallium oxide (γ-Ga 2 O 3 ) has a spinel structure like γ-Al 2 O 3 .

安定構造であるβ-Ga23については、既に酸素センサー、電界効果型トランジスター(FET)、深紫外受光素子、透明導電膜、GaN系FETのゲート材料、GaN薄膜成長用基板等の各種応用が検討されている。また、α-Ga23については蛍光体への応用が研究されている。 For β-Ga 2 O 3 , which is a stable structure, various applications such as oxygen sensors, field effect transistors (FETs), deep ultraviolet light receiving elements, transparent conductive films, gate materials for GaN-based FETs, substrates for GaN thin film growth, etc. Is being considered. Further, application of α-Ga 2 O 3 to phosphors has been studied.

これに対し、γ-Ga23は、ガスセンサー、触媒、Mn添加による強磁性体膜への応用等が知られており、近時では、量子ドットの作製により青色−緑色発光を肉眼で観察した結果が報告されているものの、β-Ga23やα-Ga23に比べるとγ-Ga23に関する研究は決して多いとは言えない。また、γ-Ga23の製造方法として従来知られているのは、Ga酸化物のゲルを400〜500℃で加熱することにより得る方法(非特許文献1参照)、GaNやGaNの水和物を200℃で加熱して得たアモルファスGa23を更に400℃及び600℃で加熱する方法(非特許文献3参照)、GaNから得られたgalliaゲルを500℃で加熱する方法(非特許文献4参照)、ジメチルホルムアミド(DMF)中でGaCl3のsolvolysis(加溶媒分解)により、210〜240℃、8〜12時間の比較的簡便な条件でγ-Ga23が得られること(非特許文献5参照)等がある。 On the other hand, γ-Ga 2 O 3 is known to be applied to a ferromagnetic film by adding a gas sensor, a catalyst, Mn, etc. Recently, blue-green light emission can be visually observed by producing quantum dots. Although the observation results have been reported, it cannot be said that there are many studies on γ-Ga 2 O 3 compared to β-Ga 2 O 3 and α-Ga 2 O 3 . Further, conventionally known methods for producing γ-Ga 2 O 3 include a method obtained by heating a Ga oxide gel at 400 to 500 ° C. (see Non-Patent Document 1), GaN and GaN water. A method in which amorphous Ga 2 O 3 obtained by heating a Japanese product at 200 ° C. is further heated at 400 ° C. and 600 ° C. (see Non-Patent Document 3), and a method in which a gallia gel obtained from GaN is heated at 500 ° C. Γ-Ga 2 O 3 can be obtained under relatively simple conditions of 210 to 240 ° C. and 8 to 12 hours by solvolysis of GaCl 3 in dimethylformamide (DMF). (See Non-Patent Document 5).

ところで、他の結晶相の酸化ガリウム(またはその水和物)を加熱することにより、β-Ga23が得られることは知られており(例えば非特許文献1のFig.1参照)、非特許文献2ではこの点に関し詳しく報告している。出発原料としてアモルファスの水酸化ガリウム(amorphous Ga(OH)3)を加熱処理した場合、110℃までの加熱では吸熱反応によってγ-Ga23が形成され、その後680℃までの加熱によって、発熱反応によりβ-Ga23が形成される。また、出発原料として結晶性の水酸化ガリウム(α-GaOOH)を加熱処理した場合、420℃までの加熱では吸熱反応によってγ-Ga23が形成され、その後670℃までの加熱によって、発熱反応によりβ-Ga23が形成される。すなわち、最も安定なβ-Ga23は、準安定なγ-Ga23を加熱することによっても得られる。 By the way, it is known that β-Ga 2 O 3 can be obtained by heating gallium oxide (or a hydrate thereof) of another crystal phase (see, for example, FIG. 1 of Non-Patent Document 1). Non-Patent Document 2 reports in detail on this point. When amorphous gallium hydroxide (amorphous Ga (OH) 3 ) is heat-treated as a starting material, γ-Ga 2 O 3 is formed by an endothermic reaction when heated to 110 ° C., and then heated to 680 ° C. to generate heat. Β-Ga 2 O 3 is formed by the reaction. In addition, when crystalline gallium hydroxide (α-GaOOH) is heat-treated as a starting material, γ-Ga 2 O 3 is formed by an endothermic reaction when heated to 420 ° C., and then heat is generated by heating to 670 ° C. Β-Ga 2 O 3 is formed by the reaction. That is, the most stable β-Ga 2 O 3 can be obtained by heating metastable γ-Ga 2 O 3 .

一方、その例外として、フラックスにNaOHを用い、β-Ga23粉末をNaOHに対するモル比で2:5として(5β-Ga2O3:2NaOH)、1000℃、44kbarsの圧力で1時間保持した結果、α-Ga23単結晶が成長した例(非特許文献6参照)や、30kbars、850℃の条件でβ−LiGaO2からα−LiGaO2へ転移した例(非特許文献7参照)が報告されているが、いずれも非常に高圧で、かつ、温度もかなり高い条件である。
R. Roy, V. G. Hill and E. F. Osborn, J. Am. Chem., Soc., 74(1952) 719-722 TAICHI SATO and TAKATO NAKAMURA, Thermochimica Acta, 53(1982) 281-288 D.Kisailus, J.H.Choi, J.C.Weaver, W.Yang, D.E. Morse, Adv. Mater., 2005, 17, 314. C.Otero Arean, A.Lopez Bellan, M.Penarroya Mentruit, M.Rodriguez Delgado, G. Turnes Palomino, Microporous Mesoporous Mater, 2000, 40, 35. T.Chen and K.Tang, Appl. Phys. Lett., 2007, 90, 053104. J. P. Remeika, A. A. Ballman, Appl. Phys. Lett., 1966, 8, 87. M. Marezio, J. P. Remeika, J.Phys.Chem.Solids., 1965, 26, 1277.
On the other hand, as an exception, NaOH is used for the flux, and β-Ga 2 O 3 powder is used at a molar ratio to NaOH of 2: 5 (5β-Ga 2 O 3 : 2NaOH) and held at 1000 ° C. and 44 kbars for 1 hour As a result, α-Ga 2 O 3 example single crystal is grown (see non-Patent Document 6) and, 30kbars, metastatic example (non-Patent Document 7 referenced in the conditions of 850 ° C. from beta-LiGaO 2 to alpha-LiGaO 2 ) Have been reported, all of which are under very high pressure and considerably high temperature.
R. Roy, VG Hill and EF Osborn, J. Am. Chem., Soc., 74 (1952) 719-722 TAICHI SATO and TAKATO NAKAMURA, Thermochimica Acta, 53 (1982) 281-288 D. Kisailus, JHChoi, JCWeaver, W. Yang, DE Morse, Adv. Mater., 2005, 17, 314. C. Otero Arean, A. Lopez Bellan, M. Penarroya Mentruit, M. Rodriguez Delgado, G. Turnes Palomino, Microporous Mesoporous Mater, 2000, 40, 35. T. Chen and K. Tang, Appl. Phys. Lett., 2007, 90, 053104. JP Remeika, AA Ballman, Appl. Phys. Lett., 1966, 8, 87. M. Marezio, JP Remeika, J.Phys.Chem.Solids., 1965, 26, 1277.

上述したように、準安定なγ-Ga23を加熱して最も安定なβ-Ga23が得られることはあっても、その逆については、通常、なかなか考えられない。特に、最も安定なβ-Ga23から準安定のγ-Ga23を得たという報告は、本発明者等が知る限りにおいては例がない。ところが、今般、驚くべきことに、β-Ga23をアルカリ水溶液の存在下で、所定の高温高圧条件で保持することで、β-Ga23がγ-Ga23に変化することを見出し、本発明を完成するに至った。 As described above, although the most stable β-Ga 2 O 3 can be obtained by heating metastable γ-Ga 2 O 3 , the reverse is usually difficult to consider. In particular, reports that the most stable β-Ga 2 O 3 to obtain a metastable γ-Ga 2 O 3 is not an example as far as the present inventors know. However, surprisingly, β-Ga 2 O 3 is changed to γ-Ga 2 O 3 by maintaining β-Ga 2 O 3 in the presence of an alkaline aqueous solution under a predetermined high temperature and high pressure condition. As a result, the present invention has been completed.

従って、本発明の目的は、安定構造のβ-Ga23を変化させてγ-Ga23を得る、γ-Ga23の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing γ-Ga 2 O 3 which obtains γ-Ga 2 O 3 by changing β-Ga 2 O 3 having a stable structure.

また、本発明の別の目的は、安定構造のβ-Ga23を変化させて得たγ-Ga23を提供することにある。 Another object of the present invention is to provide γ-Ga 2 O 3 obtained by changing β-Ga 2 O 3 having a stable structure.

すなわち、本発明は、アルカリ水溶液の存在下、β-Ga23を温度200℃以上及び圧力10MPa以上の高温高圧条件で保持することで、γ-Ga23に変化させることを特徴とするγ-Ga23の製造方法である。 That is, the present invention is characterized in that β-Ga 2 O 3 is changed to γ-Ga 2 O 3 by maintaining β-Ga 2 O 3 at a temperature of 200 ° C. or higher and a pressure of 10 MPa or higher in the presence of an aqueous alkali solution. This is a method for producing γ-Ga 2 O 3 .

また、本発明は、アルカリ水溶液の存在下、β-Ga23を温度200℃以上及び圧力10MPa以上の高温高圧条件で保持して得たことを特徴とするγ-Ga23である。 Further, the present invention is γ-Ga 2 O 3 obtained by maintaining β-Ga 2 O 3 at a temperature of 200 ° C. or higher and a pressure of 10 MPa or higher in the presence of an alkaline aqueous solution. .

本発明では、アルカリ水溶液の存在下、温度200℃以上、好ましくは200〜450℃、より好ましくは375〜400℃、及び圧力10MPa以上、好ましくは10〜150MPa、より好ましくは25〜100MPaの高温高圧条件でβ-Ga23を保持することにより、β-Ga23の結晶構造をベータ型からガンマ型に変化させてγ−Ga23を得る。高温高圧条件について、圧力が10MPaより低く温度が200℃より低いと臨界温度を下回り、臨界状態又は亜臨界状態を作り出すのが困難となって反応は生起してもその反応速度は低下する。後述するように、本発明でのγ-Ga23への変化が水熱条件又はそれに類似した条件によるβ-Ga23からγ-Ga23への相転移と考えると、臨界状態又は超臨界状態を作り出す観点から、温度375〜400℃及び圧力25〜100MPaの高温高圧条件が好適である。なお、温度の上限値(450℃)及び圧力の上限値(150MPa)は、高温高圧条件を設定する上で、一般的に使用されるオートクレーブ等の耐熱耐圧容器の耐熱性、耐圧性の面で望ましい値であり、これらを超える場合を排除するものではない。また、結晶構造がベータ型からガンマ型に変化したかどうかの判断については、後述の実施例でも説明するように、例えばX線回折による同定法を利用することができる。 In the present invention, in the presence of an aqueous alkaline solution, the temperature is 200 ° C. or higher, preferably 200 to 450 ° C., more preferably 375 to 400 ° C., and the pressure is 10 MPa or higher, preferably 10 to 150 MPa, more preferably 25 to 100 MPa. By holding β-Ga 2 O 3 under the conditions, the crystal structure of β-Ga 2 O 3 is changed from the beta type to the gamma type to obtain γ-Ga 2 O 3 . Regarding high temperature and high pressure conditions, when the pressure is lower than 10 MPa and the temperature is lower than 200 ° C., the critical temperature is lowered, and it becomes difficult to create a critical state or a subcritical state. As will be described later, when the change to γ-Ga 2 O 3 in the present invention is considered to be a phase transition from β-Ga 2 O 3 to γ-Ga 2 O 3 under hydrothermal conditions or similar conditions, it is critical. From the viewpoint of creating a state or a supercritical state, high temperature and high pressure conditions of a temperature of 375 to 400 ° C. and a pressure of 25 to 100 MPa are preferable. The upper limit of temperature (450 ° C) and the upper limit of pressure (150 MPa) are set in terms of heat resistance and pressure resistance of heat-resistant pressure-resistant containers such as autoclaves that are generally used in setting high-temperature and high-pressure conditions. It is a desirable value and does not exclude the case where these values are exceeded. In addition, for determining whether or not the crystal structure has changed from the beta type to the gamma type, for example, an identification method based on X-ray diffraction can be used as will be described in the following examples.

β-Ga23を高温高圧条件下で保持する具体的な手段については特に制限されないが、例えば酸化亜鉛(ZnO)、人工水晶等を水熱法(水熱合成法)により合成する際に使用するようなオートクレーブ等の耐熱耐圧容器を利用することができる。すなわち、耐熱耐圧容器にアルカリ水溶液及びβ-Ga23を入れ、ヒーター等の加熱手段により耐熱耐圧容器内が所定の温度になるように加熱すると共に、耐熱耐圧容器内を所定の圧力で保持することができるようにすればよい。この際、一般的な水熱法と同様に、白金製坩堝等の反応容器にβ-Ga23及びアルカリ水溶液を入れ、反応容器ごと耐熱耐圧容器に収容するようにしてもよい。一般に、オートクレーブ等の耐熱耐圧容器内に一定量の水を満たし、密閉した後に加熱すると内圧が上がり高圧が実現する。本発明では、アルカリを溶かした水(望ましくは純水)を溶媒として用いるため、耐熱耐圧容器の内容積と充填するアルカリ水溶液の濃度及び液量とから、β-Ga23に付与できる温度と発生する圧力の関係が求まる。白金製坩堝等の反応容器を耐熱耐圧容器内に収容する場合には、反応容器内の空間容積を予め求めておけば、上記と同様にして温度と発生する圧力との関係を知ることができる。このようにして、温度と圧力の条件を任意に設定することが可能となる。そして、このような状態で10日以上β-Ga23を保持するとβ-Ga23からγ-Ga23への変化が確認できるが、残留するβ相を少なくして、γ相の形成をより多くさせる観点から、好ましくは20日〜40日を保持時間の目安とするのがよい。 Specific means for holding β-Ga 2 O 3 under high-temperature and high-pressure conditions is not particularly limited. For example, when synthesizing zinc oxide (ZnO), artificial quartz, etc. by a hydrothermal method (hydrothermal synthesis method). A heat-resistant and pressure-resistant container such as an autoclave to be used can be used. That is, an alkaline aqueous solution and β-Ga 2 O 3 are placed in a heat-resistant pressure-resistant container, and the inside of the heat-resistant pressure-resistant container is heated to a predetermined temperature by heating means such as a heater, and the inside of the heat-resistant pressure resistant container is held at a predetermined pressure. You can do that. At this time, similarly to a general hydrothermal method, β-Ga 2 O 3 and an aqueous alkali solution may be placed in a reaction vessel such as a platinum crucible, and the whole reaction vessel may be accommodated in a heat and pressure resistant vessel. In general, when a certain amount of water is filled in a heat and pressure resistant container such as an autoclave and sealed and heated, the internal pressure increases and a high pressure is realized. In the present invention, since water in which alkali is dissolved (preferably pure water) is used as a solvent, the temperature that can be imparted to β-Ga 2 O 3 from the internal volume of the heat and pressure resistant container and the concentration and amount of the alkaline aqueous solution to be filled And the relationship between the generated pressures. When a reaction vessel such as a platinum crucible is housed in a heat-resistant pressure-resistant vessel, if the space volume in the reaction vessel is obtained in advance, the relationship between temperature and generated pressure can be known in the same manner as described above. . In this way, it is possible to arbitrarily set the temperature and pressure conditions. If β-Ga 2 O 3 is held for 10 days or longer in such a state, a change from β-Ga 2 O 3 to γ-Ga 2 O 3 can be confirmed, but the remaining β phase is reduced, and γ From the viewpoint of increasing the number of phases formed, the retention time is preferably set to 20 to 40 days.

原料に用いるβ-Ga23については、β-Ga23単結晶又は酸化ガリウム粉末を焼結させたβ-Ga23焼結体のいずれでもよいが、好ましくは酸化亜鉛(ZnO)や人工水晶等の合成に利用される水熱法の構成に準じて、β-Ga23単結晶及びβ-Ga23焼結体を同時に用いるようにするのがよい。すなわち、例えば耐熱耐圧容器の上部側(開口部側)にβ-Ga23単結晶を吊り下げ、下部側(底部側)にはアルカリ水溶液に浸漬させたβ-Ga23焼結体を配置した状態で、所定の高温高圧条件で保持することで、β-Ga23単結晶及びβ-Ga23焼結体をそれぞれγ-Ga23に変化させることができる。この際、β-Ga23単結晶の方が低い温度となるように、β-Ga23単結晶とβ-Ga23焼結体とに8〜10℃の温度差を設けて高温高圧条件にするのがよい。 The β-Ga 2 O 3 used as a raw material may be either a β-Ga 2 O 3 single crystal or a β-Ga 2 O 3 sintered body obtained by sintering a gallium oxide powder, preferably zinc oxide (ZnO And β-Ga 2 O 3 single crystal and β-Ga 2 O 3 sintered body are preferably used at the same time according to the structure of the hydrothermal method used for the synthesis of synthetic quartz and the like. That is, for example heat upper side of the pressure vessel (the opening side) suspended β-Ga 2 O 3 single crystal, the lower side (bottom side) to the β-Ga 2 O 3 sintered body is immersed in an alkaline aqueous solution In a state where is placed, the β-Ga 2 O 3 single crystal and the β-Ga 2 O 3 sintered body can be changed to γ-Ga 2 O 3 by holding them under predetermined high-temperature and high-pressure conditions. At this time, β-Ga 2 O 3 as towards the single crystal becomes low temperatures, provided the temperature difference 8 to 10 ° C. in a β-Ga 2 O 3 single crystal and β-Ga 2 O 3 sintered body High temperature and high pressure conditions are recommended.

β-Ga23単結晶を原料にする場合、β-Ga23単結晶を得る手段としては、浮遊帯域溶融法(フローティングゾーン法;FZ法)、EFG法、ベルヌーイ法、チョクラルスキー(CZ)法などが挙げられるが、本発明において、好ましくはFZ法により得られた酸化ガリウム単結晶を用いるのがよい。FZ法は、容器を使わずに原料を融解させて単結晶を育成するため、得られたβ-Ga23単結晶への不純物混入が可及的に防止でき、かつ、直径1インチ程度の結晶性に優れたものを簡便に得ることができるため好都合である。また、β-Ga23焼結体を原料にする場合には、例えば酸化ガリウム粉末を予め円柱状に成型した後、1400〜1600℃の温度で5〜20時間程度焼結することで得ることができる。 When β-Ga 2 O 3 single crystal is used as a raw material, the means for obtaining β-Ga 2 O 3 single crystal are the floating zone melting method (floating zone method; FZ method), EFG method, Bernoulli method, Czochralski. (CZ) method and the like can be mentioned. In the present invention, it is preferable to use a gallium oxide single crystal obtained by the FZ method. In the FZ method, the raw material is melted without using a container to grow a single crystal, so that contamination of the obtained β-Ga 2 O 3 single crystal can be prevented as much as possible, and the diameter is about 1 inch. This is advantageous because a crystal having excellent crystallinity can be easily obtained. Further, when a β-Ga 2 O 3 sintered body is used as a raw material, for example, a gallium oxide powder is formed in a cylindrical shape in advance and then sintered at a temperature of 1400 to 1600 ° C. for about 5 to 20 hours. be able to.

本発明で使用するアルカリ水溶液については、好ましくは水酸化リチウム(LiOH)水溶液、又は水酸化リチウムと水酸化カリウム(KOH)との混合水溶液であるのがよく、より好ましくは水酸化リチウムと水酸化カリウムとの混合水溶液であるのがよい。水酸化リチウムと水酸化カリウムとの混合水溶液を用いると、下記の実施例でも説明するように、原料に用いたβ-Ga23が検出されずにγ-Ga23を得ることができる。特に、β-Ga23単結晶を原料にした場合にはγ相の単相、すなわちγ-Ga23単相を得ることができる。また、この場合に得られたγ-Ga23については、カソードルミネッセンス(CL)測定等のような電子線励起により波長410〜480nmの範囲に発光ピークを有し、更には、実質的にγ-Ga23単結晶であることが確認できる。ここで、γ-Ga23が実質的に単結晶であるとは、例えば電子回折の結果がスポット状のパターンであるような場合を言うものとする。 The alkaline aqueous solution used in the present invention is preferably a lithium hydroxide (LiOH) aqueous solution or a mixed aqueous solution of lithium hydroxide and potassium hydroxide (KOH), more preferably lithium hydroxide and hydroxide. It may be a mixed aqueous solution with potassium. When a mixed aqueous solution of lithium hydroxide and potassium hydroxide is used, γ-Ga 2 O 3 can be obtained without detecting β-Ga 2 O 3 used as a raw material, as described in the following examples. it can. In particular, when a β-Ga 2 O 3 single crystal is used as a raw material, a γ-phase single phase, that is, a γ-Ga 2 O 3 single phase can be obtained. The γ-Ga 2 O 3 obtained in this case has a light emission peak in the wavelength range of 410 to 480 nm by electron beam excitation such as cathodoluminescence (CL) measurement, and further substantially It can be confirmed that it is a γ-Ga 2 O 3 single crystal. Here, the fact that γ-Ga 2 O 3 is substantially a single crystal means, for example, a case where the result of electron diffraction is a spot-like pattern.

また、アルカリ水溶液の濃度の面に関して言えば、水酸化リチウム水溶液の単独使用にあたっては1〜3mol/lが好ましい。これより低い濃度では目的とする変化の速度が著しく低下し、これより濃度が高過ぎると例えば耐熱耐圧容器内の圧力の低下が生じ、また、白金製坩堝等を使用する場合に化学腐食が著しく進展する。水酸化リチウムと水酸化カリウムとを複合させる場合、好ましくは水酸化リチウム水溶液の濃度が1〜3mol/lであり、水酸化カリウム水溶液の濃度が1〜3mol/lであるのがよい。また、アルカリ水溶液の溶媒については、不純物の混入を防ぐ観点から、好ましくは純水を用いるようにするのがよい。   In terms of the concentration of the aqueous alkali solution, 1 to 3 mol / l is preferable when the aqueous lithium hydroxide solution is used alone. If the concentration is lower than this, the target change rate is remarkably reduced. If the concentration is too high, for example, the pressure in the heat-resistant pressure-resistant vessel is lowered, and chemical corrosion is remarkably generated when using a platinum crucible or the like. Progress. When lithium hydroxide and potassium hydroxide are combined, the concentration of the lithium hydroxide aqueous solution is preferably 1 to 3 mol / l, and the concentration of the potassium hydroxide aqueous solution is preferably 1 to 3 mol / l. As the solvent of the alkaline aqueous solution, pure water is preferably used from the viewpoint of preventing impurities from being mixed.

本発明において、安定構造のβ-Ga23から準安定のγ-Ga23が得られた理由は解明段階であるが、以下のように推測することができる。すなわち、アルカリ水溶液の存在下、所定の温度及び圧力からなる高温高圧条件でβ-Ga23を保持することで、水熱条件又はそれに類似した条件が生まれ、β-Ga23が超臨界状態下に置かれ、β-Ga23からγ-Ga23に相転移(多形転移)したものと考えられる。この変化については、超臨界状態の雰囲気と共にアルカリ水溶液の存在が関与しているものと思われる。なかでも、混合水溶液にした場合には、異なるアルカリドーパント(例えばLiOH、KOHなど)の共存がγ-Ga23への変化を助長するものと推察される。 In the present invention, the reason why metastable γ-Ga 2 O 3 was obtained from β-Ga 2 O 3 having a stable structure is an elucidation stage, but can be presumed as follows. That is, by maintaining β-Ga 2 O 3 under a high temperature and high pressure condition consisting of a predetermined temperature and pressure in the presence of an aqueous alkali solution, a hydrothermal condition or a similar condition is born, and β-Ga 2 O 3 exceeds It is considered that the phase transition (polymorphic transition) from β-Ga 2 O 3 to γ-Ga 2 O 3 was performed under a critical state. This change seems to involve the presence of an aqueous alkali solution together with the supercritical atmosphere. In particular, in the case of a mixed aqueous solution, the coexistence of different alkali dopants (for example, LiOH, KOH, etc.) is presumed to promote the change to γ-Ga 2 O 3 .

従来、最も安定なβ-Ga23から準安定のγ-Ga23を得ることはできないと考えられていたが、本発明によれば、比較的簡便な条件でβ-Ga23からγ-Ga23を得ることが可能になる。また、特定の条件下で得られるγ-Ga23は、電子線励起により青色に発光すると共に、単結晶からなることも確認できる。 Conventionally, it was thought that metastable γ-Ga 2 O 3 could not be obtained from the most stable β-Ga 2 O 3 , but according to the present invention, β-Ga 2 O can be obtained under relatively simple conditions. it is possible to from 3 to obtain the γ-Ga 2 O 3. It can also be confirmed that γ-Ga 2 O 3 obtained under specific conditions emits blue light by electron beam excitation and is composed of a single crystal.

以下、実施例に基づいて、本発明をより具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated more concretely.

図1は、γ-Ga23を得るのに用いたγ-Ga23製造装置Xの断面説明図である。この製造装置Xは、内部にφ21mm×長さ165mmの白金製坩堝2を収容して密閉することができるオートクレーブ1と、オートクレーブ1の外周を囲むように配置されてオートクレーブ1内を加熱することができる加熱手段3とを備える。そして、この加熱手段3は、坩堝2の中央から開口部までのおよそ半分の領域を少なくとも取り囲むように配置されて、後に坩堝2の開口部側に配置するβ-Ga23単結晶5を加熱することができる開口部側ヒーター3bと、坩堝2の中央から底部までのおよそ半分の領域を少なくとも取り囲むように配置されて、後に坩堝2の底部側にアルカリ混合水溶液8と共に入れるβ-Ga23焼結体4を加熱することができる底部側ヒーター3bとからなる。また、このγ-Ga23製造装置Xには、図示外のモニター用熱電対が取り付けられており、坩堝2内に入れられたβ-Ga23単結晶5の温度とβ-Ga23焼結体4の温度とがそれぞれ制御される。更に、上記オートクレーブ1には圧力計6が取り付けられており、オートクレーブ1内の圧力が制御可能になっている。 Figure 1 is a cross sectional view showing a γ-Ga 2 O 3 production apparatus X used to obtain the γ-Ga 2 O 3. The manufacturing apparatus X includes an autoclave 1 that can accommodate and seal a platinum crucible 2 having a diameter of 21 mm and a length of 165 mm, and is disposed so as to surround the outer periphery of the autoclave 1 to heat the inside of the autoclave 1. The heating means 3 which can be provided. The heating means 3 is disposed so as to surround at least a half region from the center of the crucible 2 to the opening, and a β-Ga 2 O 3 single crystal 5 to be disposed on the opening side of the crucible 2 later. An opening side heater 3b that can be heated, and β-Ga 2 that is disposed so as to surround at least a half region from the center to the bottom of the crucible 2 and that is subsequently put together with the alkaline mixed aqueous solution 8 into the bottom of the crucible 2 It comprises a bottom side heater 3b capable of heating the O 3 sintered body 4. The γ-Ga 2 O 3 production apparatus X is provided with a monitor thermocouple (not shown), and the temperature of the β-Ga 2 O 3 single crystal 5 placed in the crucible 2 and the β-Ga The temperature of the 2 O 3 sintered body 4 is controlled. Further, a pressure gauge 6 is attached to the autoclave 1 so that the pressure in the autoclave 1 can be controlled.

坩堝2内に入れる2種類のβ-Ga23は次のようにして用意した。先ず、β-Ga23焼結体4については、純度99.99%のβ-Ga23粉末(株式会社高純度化学研究所製)を直径10mm×長さ約80mmのラバーチューブに入れ、プレス機を用いて静水圧60MPaで3分間プレス成形して円柱状に固めた後、この円柱状に固めた酸化ガリウム冷間成型体をラバーチューブから取り出し、電気炉に入れて大気中1500℃で10時間焼結して得た。得られたβ-Ga23焼結体の密度をアルキメデス法で測定した結果、〜5.8157g/cm3であった。 Two types of β-Ga 2 O 3 to be put in the crucible 2 were prepared as follows. First, for the β-Ga 2 O 3 sintered body 4, β-Ga 2 O 3 powder having a purity of 99.99% (manufactured by Kojundo Chemical Laboratory Co., Ltd.) is formed into a rubber tube having a diameter of 10 mm and a length of about 80 mm. And then press-molded at a hydrostatic pressure of 60 MPa for 3 minutes using a press machine and solidified into a cylindrical shape. After that, the cold-molded gallium oxide compact formed into a cylindrical shape is taken out of the rubber tube, put into an electric furnace and 1500 in the atmosphere. Sintered at 10 ° C. for 10 hours. As a result of measuring the density of the obtained β-Ga 2 O 3 sintered body by the Archimedes method, it was ˜5.8157 g / cm 3 .

また、β-Ga23単結晶5については以下のようにして光FZ法により作製した。先ず、上記と同様にしてβ-Ga23焼結体を得た後、このβ-Ga23焼結体を原料棒にして双楕円の赤外線集光加熱炉の上軸に設置し、下軸にはFZ法用種結晶として酸化ガリウム単結晶の<001>方向が軸方向に垂直に向くように設置した。そして、結晶育成雰囲気が窒素と酸素との混合ガス(N2:79vol%、O2:21vol%)となるようにして、赤外線集光加熱炉の透明石英管内にこの混合ガスを500ml/minで供給した。次いで、赤外線集光加熱炉のハロゲンランプ(1.5kW)の光が原料棒と種結晶との先端に集光するようにそれぞれ炉中心に移動させて溶解接触させ、原料棒と種結晶とをそれぞれ20rpmの回転速度で互いに逆向きに回転させながら、<001>方向に結晶成長速度が5mm/hとなるように上下軸を移動させて1気圧下でβ-Ga23単結晶の育成を行った。このようにして直径約9mm×長さ約50mmのβ-Ga23単結晶を得た。得られたβ-Ga23単結晶の密度をアルキメデス法で測定した結果、〜5.9910g/cm3であった。尚、FZ法用種結晶には、予め酸化ガリウム焼結体を用いて光FZ法によって得た単結晶から切出したものを使用した。 The β-Ga 2 O 3 single crystal 5 was produced by the optical FZ method as follows. First, after obtaining a β-Ga 2 O 3 sintered body in the same manner as described above, this β-Ga 2 O 3 sintered body was used as a raw material rod and placed on the upper shaft of a double elliptical infrared condensing heating furnace. The lower shaft was placed so that the <001> direction of the gallium oxide single crystal as the seed crystal for the FZ method was perpendicular to the axial direction. Then, the crystal growth atmosphere is a mixed gas of nitrogen and oxygen (N 2 : 79 vol%, O 2 : 21 vol%), and this mixed gas is placed at 500 ml / min in the transparent quartz tube of the infrared condensing heating furnace. Supplied. Next, the light from the halogen lamp (1.5 kW) of the infrared condensing heating furnace is moved to the furnace center so that the light is condensed at the tips of the raw material rod and the seed crystal, and the raw material rod and the seed crystal are brought into contact with each other. While rotating in the opposite directions at a rotation speed of 20 rpm, the vertical axis is moved in the <001> direction so that the crystal growth speed is 5 mm / h, and β-Ga 2 O 3 single crystal is grown under 1 atm. went. In this way, a β-Ga 2 O 3 single crystal having a diameter of about 9 mm × length of about 50 mm was obtained. As a result of measuring the density of the obtained β-Ga 2 O 3 single crystal by the Archimedes method, it was ˜5.9910 g / cm 3 . In addition, what was cut out from the single crystal obtained by the optical FZ method previously using the gallium oxide sintered compact was used for the seed crystal for FZ methods.

そして、上記で得られたβ-Ga23焼結体及びβ-Ga23単結晶を、X線回折によりそれぞれベータ型の単相であることを確認した上で、γ-Ga23製造装置Xを用いて、以下のようにアルカリ水溶液8の存在下で、所定の温度及び圧力条件で保持した。先ず、図2に示すように、白金製坩堝2の底部側に水酸化リチウム水溶液3mol/lと水酸化カリウム水溶液1.5mol/lとを混合した50mlのアルカリ水溶液8を入れ、上記で得られた酸化ガリウム焼結体4(19.73g)をアルカリ水溶液8に浸漬させた。また、上記で得られた酸化ガリウム単結晶を直径8mm×長さ30mmのサイズに切り出したβ-Ga23単結晶5を、坩堝2の開口部側に白金製のワイヤーで吊るすようにして配置した。更にこのβ-Ga23単結晶5の下方側には、白金製のバッフル板7(気孔率10%)を配置した。尚、β-Ga23単結晶5は、FZ法でc軸方向に成長させたas-grownの状態のものを用いた。また、アルカリ水溶液を調製する際には溶媒として純水を用いた。 Then, after confirming that the β-Ga 2 O 3 sintered body and β-Ga 2 O 3 single crystal obtained above are beta-type single phases by X-ray diffraction, γ-Ga 2 Using the O 3 production apparatus X, it was held at a predetermined temperature and pressure condition in the presence of the alkaline aqueous solution 8 as follows. First, as shown in FIG. 2, 50 ml of an alkaline aqueous solution 8 in which 3 mol / l of a lithium hydroxide aqueous solution and 1.5 mol / l of a potassium hydroxide aqueous solution are mixed is put on the bottom side of the platinum crucible 2 and obtained above. The sintered gallium oxide 4 (19.73 g) was immersed in the alkaline aqueous solution 8. Further, the β-Ga 2 O 3 single crystal 5 obtained by cutting the gallium oxide single crystal obtained above into a size of 8 mm in diameter and 30 mm in length is hung with a platinum wire on the opening side of the crucible 2. Arranged. Further, a platinum baffle plate 7 (porosity 10%) was disposed below the β-Ga 2 O 3 single crystal 5. Note that the β-Ga 2 O 3 single crystal 5 was used in an as-grown state grown in the c-axis direction by the FZ method. Moreover, when preparing the aqueous alkali solution, pure water was used as a solvent.

次いで、上記坩堝2を溶融密閉した後にオートクレーブ1に入れて圧力を100MPaにして、また、それぞれの加熱手段3により、β-Ga23単結晶5の温度が390℃、及びβ-Ga23焼結体4の温度が400℃となるように両者に10℃の温度差を設け、この条件のもとで30日間保持した。保持期間経過後、坩堝2をオートクレーブ1から取り出したところ、保持開始前(反応前)には透明であったβ-Ga23単結晶5は透明性を失い白く変色し、手で押し付けただけで粉砕してしまう程度に変質していた。また、特に結晶成長した様子はうかがえなかった。一方、β-Ga23焼結体4については、外観上、色の変化は特に見られなかった。図3は、上記条件で保持する前後のβ-Ga23単結晶の変化の様子を示す写真である。図3(a)は坩堝2に取り付ける前のβ-Ga23単結晶であり、図3(b)は保持期間経過後に坩堝2から取り出したβ-Ga23単結晶である。 Next, after melting and sealing the crucible 2, the crucible 2 is put in the autoclave 1 to a pressure of 100 MPa, and the temperature of the β-Ga 2 O 3 single crystal 5 is 390 ° C. and β-Ga 2 by each heating means 3. A temperature difference of 10 ° C. was provided for both so that the temperature of the O 3 sintered body 4 was 400 ° C., and the temperature was maintained for 30 days under these conditions. After the holding period, the crucible 2 was taken out from the autoclave 1, and the β-Ga 2 O 3 single crystal 5 which was transparent before holding (before the reaction) lost transparency and turned white and pressed by hand. It was altered to the extent that it would just be crushed. In particular, no crystal growth was observed. On the other hand, with respect to the β-Ga 2 O 3 sintered body 4, no particular color change was observed in appearance. FIG. 3 is a photograph showing changes in the β-Ga 2 O 3 single crystal before and after being held under the above conditions. 3A shows a β-Ga 2 O 3 single crystal before being attached to the crucible 2, and FIG. 3B shows a β-Ga 2 O 3 single crystal taken out from the crucible 2 after the holding period has elapsed.

また、保持時間経過後に坩堝2から取り出したβ-Ga23単結晶5及びβ-Ga23焼結体4をそれぞれ乳鉢で粉砕し、CuKαをX線源とした粉末X線回折(XRD)により結晶構造の決定を行った。結果を図4に示す。図4(a)のX線回折パターンは、保持時間経過後に坩堝2から取り出したβ-Ga23単結晶5から得られたものであり、γ型のGa23(γ-Ga23)と同定された。特に、出発原料であるβ-Ga23は検出されていないことから、γ-Ga23単相に変化したことが確認された。また、回折ピークがシャープであることから、得られたγ-Ga23の結晶性は良いことが示唆される。一方、図4中(b)のX線回折パターンは保持時間経過後のβ-Ga23焼結体4から得られたものであり、γ-Ga23の回折ピークのほか、LiGaO2及びLiGa58のピークが確認された。図4(b)からもβ-Ga23のピークは検出されなかった。 Further, the β-Ga 2 O 3 single crystal 5 and the β-Ga 2 O 3 sintered body 4 taken out from the crucible 2 after the lapse of the holding time were each pulverized in a mortar, and powder X-ray diffraction using CuKα as an X-ray source ( The crystal structure was determined by XRD). The results are shown in FIG. The X-ray diffraction pattern of FIG. 4A is obtained from the β-Ga 2 O 3 single crystal 5 taken out from the crucible 2 after the holding time has elapsed, and is a γ-type Ga 2 O 3 (γ-Ga 2 O 3 ). In particular, since β-Ga 2 O 3 as a starting material was not detected, it was confirmed that the starting material was changed to a γ-Ga 2 O 3 single phase. Further, since the diffraction peak is sharp, it is suggested that the obtained γ-Ga 2 O 3 has good crystallinity. On the other hand, the X-ray diffraction pattern of (b) in FIG. 4 is obtained from the β-Ga 2 O 3 sintered body 4 after the holding time has elapsed, and in addition to the diffraction peak of γ-Ga 2 O 3 , LiGaO 2 and LiGa 5 O 8 peaks were confirmed. Also from FIG. 4B, the β-Ga 2 O 3 peak was not detected.

また、保持時間経過後のβ-Ga23単結晶5及びβ-Ga23焼結体4を、それぞれ走査型電子顕微鏡(SEM:Hitachi製S4500)により形状観察した結果を図5に示す。図5(a)は保持時間経過後のβ-Ga23単結晶5、すなわちγ相単相に変化したγ-Ga23のSEM像であり、数μmの棒状のものから数10μmの塊状のものまで多岐にわたりサイズは大きな分布を有し、また、形状は不規則であることが確認された。一方、図5(b)は保持時間経過後のβ-Ga23焼結体4、すなわちγ-Ga23、LiGaO2及びLiGa58の混合相のSEM像であり、一部は板状に重なり、規則性のある構造を呈していることが確認された。 Further, FIG. 5 shows the results of shape observation of the β-Ga 2 O 3 single crystal 5 and the β-Ga 2 O 3 sintered body 4 after the holding time elapses with a scanning electron microscope (SEM: S4500 manufactured by Hitachi). Show. FIG. 5A is an SEM image of β-Ga 2 O 3 single crystal 5 after holding time, that is, γ-Ga 2 O 3 changed to a γ-phase single phase, from a rod-like material of several μm to several tens of μm. It has been confirmed that the size has a wide distribution and the shape is irregular. On the other hand, FIG. 5B is an SEM image of the β-Ga 2 O 3 sintered body 4 after the holding time has elapsed, that is, a mixed phase of γ-Ga 2 O 3 , LiGaO 2 and LiGa 5 O 8 , and partly Were confirmed to have a regular structure with overlapping plates.

また、KBr錠剤法によるフーリエ変換型赤外分光(FTIR:JEOL製Diamond-20)により、上記で得られたγ-Ga23単相(保持時間経過後のβ-Ga23単結晶5)と、γ-Ga23、LiGaO2及びLiGa58の混合相(保持時間経過後のβ-Ga23焼結体4)について、それぞれアルカリ混合水溶液8中のH2Oに由来するOH基成分の混入の有無について分析した。結果を図6に示す。図6(a)はγ-Ga23単相のFTIRスペクトルであり、図6(c)はγ-Ga23、LiGaO2及びLiGa58の混合相のFTIRスペクトルである。また、比較として、図6(b)に先のFZ法で単結晶を育成する際に用いたβ-Ga23粉末(純度4N)のFTIRスペクトルを示す。 In addition, the γ-Ga 2 O 3 single phase (β-Ga 2 O 3 single crystal after elapse of holding time) was obtained by Fourier transform infrared spectroscopy (FTIR: Diamond-20 manufactured by JEOL) using the KBr tablet method. 5) and a mixed phase of γ-Ga 2 O 3 , LiGaO 2 and LiGa 5 O 8 (β-Ga 2 O 3 sintered body 4 after the holding time has elapsed), respectively, H 2 O in the alkali mixed aqueous solution 8 The presence or absence of the OH group component derived from was analyzed. The results are shown in FIG. 6A is a FTIR spectrum of a γ-Ga 2 O 3 single phase, and FIG. 6C is a FTIR spectrum of a mixed phase of γ-Ga 2 O 3 , LiGaO 2 and LiGa 5 O 8 . For comparison, FIG. 6B shows an FTIR spectrum of β-Ga 2 O 3 powder (purity 4N) used when growing a single crystal by the previous FZ method.

上記で得られたγ-Ga23単相のFTIRスペクトル(a)をβ-Ga23粉末のFTIRスペクトル(b)と比べると、スペクトル形状は異なるものの、吸収ピークの位置はほぼ対応している。両者ともに、低波数側の400cm-1〜800cm-1付近に深いピークが観察され、これはGa−Oの吸収に起因すると考えられる。これと同様の吸収は、γ-Ga23、LiGaO2及びLiGa58の混合相のFTIRスペクトル(c)でも観察されることから、保持時間経過後のβ-Ga23単結晶5とβ-Ga23焼結体4は、いずれも酸化ガリウム系化合物が形成されていると考えられる。また、γ-Ga23単相のスペクトル(a)では、1010cm-1及び1650cm-1付近に吸収ピークが観察されることから、Ga−OHとOHのbending bandの存在が示唆される(非特許文献2参考)。同様の吸収ピークはβ-Ga23粉末のスペクトル(b)でも検出されているが、γ-Ga23単相ほど吸収は強くない。これに対し、γ-Ga23、LiGaO2及びLiGa58の混合相にはこの位置に対応した吸収はほとんどみられない。以上の結果から上記で得られたγ-Ga23単相にはOH基の存在が示唆されるが、γ-Ga23、LiGaO2及びLiGa58の混合相にはOHの混入はないと考えられる。 When the FTIR spectrum (a) of the γ-Ga 2 O 3 single phase obtained above is compared with the FTIR spectrum (b) of the β-Ga 2 O 3 powder, although the spectrum shape is different, the position of the absorption peak corresponds approximately is doing. Both deep peak at 400cm -1 ~800cm -1 of lower wavenumber side is observed, which is believed to be due to the absorption of Ga-O. Since absorption similar to this is also observed in the FTIR spectrum (c) of the mixed phase of γ-Ga 2 O 3 , LiGaO 2 and LiGa 5 O 8 , the β-Ga 2 O 3 single crystal after the retention time has elapsed 5 and the β-Ga 2 O 3 sintered body 4 are considered to be formed with a gallium oxide compound. In addition, in the spectrum (a) of the γ-Ga 2 O 3 single phase, absorption peaks are observed in the vicinity of 1010 cm −1 and 1650 cm −1 , suggesting the presence of a Ga—OH and OH bending band ( Non-patent document 2 reference). A similar absorption peak is also detected in the spectrum (b) of the β-Ga 2 O 3 powder, but the absorption is not as strong as the γ-Ga 2 O 3 single phase. In contrast, almost no absorption corresponding to this position is observed in the mixed phase of γ-Ga 2 O 3 , LiGaO 2 and LiGa 5 O 8 . The above results suggest the presence of OH groups in the γ-Ga 2 O 3 single phase obtained above, but in the mixed phase of γ-Ga 2 O 3 , LiGaO 2 and LiGa 5 O 8 OH No contamination is expected.

更に、本実施例においてβ-Ga23単結晶5を変化させて得た単相のγ-Ga23について、電子回折を行なった。先ず、集束イオンビーム(FIB)を用いて、γ-Ga23の1粒子を摘出してその断面を切断し、その表面にカーボン保護膜を付けてγ-Ga23のTEM観察用サンプルとした。次いで、銅メッシュに固定させた観察部位を厚さ100nmに薄膜加工して観察用試料とした。観察および電子回折にはFEI社製Tecnai G2 F20 S-TWIN透過顕微鏡を用い、加速電圧200kVの条件で行なった。結果は図7に示すように、撮影した範囲内でスポット状のパターンが得られていることが分り、得られたγ相は実質的に単結晶であると考えられる。 Furthermore, electron diffraction was performed on single-phase γ-Ga 2 O 3 obtained by changing the β-Ga 2 O 3 single crystal 5 in this example. First, using a focused ion beam (FIB), one particle of γ-Ga 2 O 3 is extracted, its cross section is cut, a carbon protective film is attached to the surface, and γ-Ga 2 O 3 is used for TEM observation A sample was used. Next, the observation site fixed to the copper mesh was thin-film processed to a thickness of 100 nm to obtain an observation sample. Observation and electron diffraction were performed using a Tecnai G2 F20 S-TWIN transmission microscope manufactured by FEI under the condition of an acceleration voltage of 200 kV. As a result, as shown in FIG. 7, it can be seen that a spot-like pattern is obtained within the photographed range, and it is considered that the obtained γ phase is substantially a single crystal.

更にまた、本実施例においてβ-Ga23単結晶5を変化させて得た単相のγ-Ga23を電子線で励起(加速電圧15kV)してカソードルミネッセンス(CL: Shimadzu製CL-900)測定を行った。また、参考として、FZ法で単結晶を育成する際に用いたβ-Ga23粉末のCL測定も併せて行った。結果を図8に示す。得られたCLスペクトル(a)から明らかなように、本実施例で得られたγ-Ga23は波長410〜480nmの範囲にピークを有し、波長410nm及び460nm付近に比較的シャープな発光を有していることが確認された。γ-Ga23の発光は比較的強いものであり、室温での電子線による励起の環境下で目視にて青色の発光が十分に確認できた。また、β-Ga23粉末のスペクトル(b)とγ-Ga23のスペクトル(a)とを比べると、CL発光波長の位置及びスペクトルの形状が異なることが分る。β-Ga23粉末は400nm付近で発光しているのに対し、γ-Ga23のスペクトル形状はそれよりブロードであり、半値幅も広く、発光位置は長波長側にシフトしている。 Furthermore, in this example, single-phase γ-Ga 2 O 3 obtained by changing the β-Ga 2 O 3 single crystal 5 was excited with an electron beam (acceleration voltage 15 kV), and cathode luminescence (CL: manufactured by Shimadzu) CL-900) measurement. As a reference, CL measurement of β-Ga 2 O 3 powder used for growing a single crystal by the FZ method was also performed. The results are shown in FIG. As is clear from the obtained CL spectrum (a), γ-Ga 2 O 3 obtained in this example has a peak in the wavelength range of 410 to 480 nm and is relatively sharp in the vicinity of wavelengths of 410 nm and 460 nm. It was confirmed to have luminescence. The emission of γ-Ga 2 O 3 was relatively strong, and blue emission was sufficiently confirmed visually under the environment of excitation by an electron beam at room temperature. Further, comparing the spectrum (b) of the β-Ga 2 O 3 powder with the spectrum (a) of γ-Ga 2 O 3 , it can be seen that the position of the CL emission wavelength and the spectrum shape are different. The β-Ga 2 O 3 powder emits light near 400 nm, whereas the spectrum shape of γ-Ga 2 O 3 is broader than that, the half-value width is wide, and the emission position shifts to the longer wavelength side. Yes.

1mol/lの水酸化リチウム水溶液50ml(溶媒は純水)をアルカリ水溶液8として用いた以外は実施例1と同様にして、所定の条件下でβ-Ga23単結晶5及びβ-Ga23焼結体4を保持する処理を行った。保持期間経過後に坩堝2から取り出したβ-Ga23単結晶5は、図3(c)に示すように、透明性を失い白く変色していたが、水酸化リチウムと水酸化カリウムとの混合水溶液を用いた実施例1の場合のように手で粉砕できるということはなく、保持時間経過後のβ-Ga23単結晶5はある程度の硬さを維持していた。一方、保持時間経過後のβ-Ga23焼結体4は外観上、色の変化は特に見られなかった。 The β-Ga 2 O 3 single crystal 5 and β-Ga were used under the same conditions as in Example 1 except that 50 ml of a 1 mol / l lithium hydroxide aqueous solution (the solvent was pure water) was used as the alkaline aqueous solution 8. The 2 O 3 sintered body 4 was retained. The β-Ga 2 O 3 single crystal 5 taken out from the crucible 2 after the holding period passed, as shown in FIG. 3 (c), had lost transparency and turned white, but there was no lithium hydroxide and potassium hydroxide. Unlike the case of Example 1 using a mixed aqueous solution, it could not be pulverized by hand, and the β-Ga 2 O 3 single crystal 5 after the retention time had maintained a certain degree of hardness. On the other hand, the β-Ga 2 O 3 sintered body 4 after the elapse of the holding time did not change in color in appearance.

また、保持時間経過後に坩堝2から取り出したβ-Ga23単結晶5及びβ-Ga23焼結体4について、それぞれ実施例1と同様に、粉末X線回折(XRD)による結晶構造の決定を行った。図4(c)は処理後のβ-Ga23単結晶5のX線回折パターンであり、γ-Ga23及びβ-Ga23の回折ピークが検出された。一方、図4(d)は処理後のβ-Ga23焼結体4のX線回折パターンであり、γ-Ga23の回折ピークが検出されたほか、β-Ga23及びLiGa58が検出された。 Further, each of the β-Ga 2 O 3 single crystal 5 and the β-Ga 2 O 3 sintered body 4 taken out from the crucible 2 after the holding time elapses, respectively, as in Example 1, was crystallized by powder X-ray diffraction (XRD). The structure was determined. FIG. 4C is an X-ray diffraction pattern of the β-Ga 2 O 3 single crystal 5 after treatment, and diffraction peaks of γ-Ga 2 O 3 and β-Ga 2 O 3 were detected. On the other hand, FIG. 4D is an X-ray diffraction pattern of the β-Ga 2 O 3 sintered body 4 after the treatment, in which a diffraction peak of γ-Ga 2 O 3 was detected, and β-Ga 2 O 3 And LiGa 5 O 8 were detected.

[比較例1]
アルカリ水溶液8のかわりに50mlのH2O(純水)を用いた以外は実施例1と同様にして、所定の条件下でβ-Ga23単結晶5及びβ-Ga23焼結体4を保持する処理を行った。保持時間経過後のβ-Ga23単結晶5の外観は何ら変化なかった。一方、保持時間経過後のβ-Ga23焼結体4についても外観上の変化は認められなかった。また、保持時間経過後のβ-Ga23単結晶5及びβ-Ga23焼結体4のXRDスペクトルは、両者共に処理前のものから変化は認められなかった。
[Comparative Example 1]
The β-Ga 2 O 3 single crystal 5 and β-Ga 2 O 3 baked under the same conditions as in Example 1 except that 50 ml of H 2 O (pure water) was used instead of the alkaline aqueous solution 8. The process which hold | maintains the ligature 4 was performed. The appearance of the β-Ga 2 O 3 single crystal 5 after the holding time had not changed. On the other hand, no change in appearance was observed for the β-Ga 2 O 3 sintered body 4 after the holding time had elapsed. Further, the XRD spectra of the β-Ga 2 O 3 single crystal 5 and the β-Ga 2 O 3 sintered body 4 after the holding time had not changed from those before treatment.

上記のような実施例及び比較例の結果から、水酸化リチウムや水酸化カリウム等のアルカリ水溶液の存在下、所定の温度及び圧力からなる高温高圧条件で保持することで、安定構造のβ-Ga23から準安定なγ-Ga23を作製することができることが分かった。なかでも、アルカリ水溶液として水酸化リチウム水溶液を単独で用いた場合には、原料に用いたβ相が残留するが、水酸化リチウム水溶液と水酸化カリウム水溶液の混合水溶液を用いた場合には、β相はγ相に完全に相転移又は化学変化し、特にβ-Ga23単結晶はγ-Ga23単相に変化することが確認された。本発明によれば、酸化ガリウムの結晶構造は、β相の単斜晶系からγ相の立方晶に変化したことになる。また、本発明により得られたγ-Ga23は、XRDの回折ピークの半値幅が小さく、電子回折の結果も単結晶の生成を示唆していることから、結晶性の面においても優れたものである。 From the results of the examples and comparative examples as described above, β-Ga having a stable structure can be obtained by maintaining it in a high temperature and high pressure condition having a predetermined temperature and pressure in the presence of an alkaline aqueous solution such as lithium hydroxide or potassium hydroxide. it was found that the 2 O 3 can be manufactured metastable gamma-Ga 2 O 3. In particular, when a lithium hydroxide aqueous solution is used alone as an alkaline aqueous solution, the β phase used as a raw material remains, but when a mixed aqueous solution of a lithium hydroxide aqueous solution and a potassium hydroxide aqueous solution is used, β It was confirmed that the phase completely changed or chemically changed to the γ phase, and in particular, the β-Ga 2 O 3 single crystal changed to the γ-Ga 2 O 3 single phase. According to the present invention, the crystal structure of gallium oxide has changed from a β-phase monoclinic system to a γ-phase cubic crystal. In addition, γ-Ga 2 O 3 obtained by the present invention is excellent in crystallinity because the half width of the XRD diffraction peak is small and the result of electron diffraction suggests the formation of a single crystal. It is a thing.

本発明におけるγ-Ga23の製造方法は、400℃程度の比較的緩やかな条件下での反応によりγ-Ga23を得ることができ、従来のようにGaOOH、Ga(OH)3等の水酸化物を出発原料として使用する必要がなく、β相とγ相を可逆的に変化させる方法としても利用可能である。また、本発明によって得られるγ-Ga23は、NOx除去等に用いられる光触媒をはじめ、ガスセンサー、強磁性体膜、発光材料等としての利用可能性がある。 Method for producing a γ-Ga 2 O 3 in the present invention can be obtained γ-Ga 2 O 3 by reaction with a relatively mild conditions of about 400 ° C., as in the conventional GaOOH, Ga (OH) It is not necessary to use a hydroxide such as 3 as a starting material, and it can be used as a method for reversibly changing the β phase and the γ phase. Further, γ-Ga 2 O 3 obtained by the present invention can be used as a gas catalyst, a ferromagnetic film, a light emitting material, etc. as well as a photocatalyst used for NOx removal and the like.

図1は、本発明の実施例に係るγ-Ga23の製造に用いたγ-Ga23製造装置の断面説明図である。FIG. 1 is a cross-sectional explanatory view of a γ-Ga 2 O 3 manufacturing apparatus used for manufacturing γ-Ga 2 O 3 according to an embodiment of the present invention. 図2は、γ-Ga23製造装置に収容した坩堝内の様子を表す断面説明図である。FIG. 2 is a cross-sectional explanatory view showing the inside of the crucible housed in the γ-Ga 2 O 3 manufacturing apparatus. 図3は、本発明の実施例に係るγ-Ga23の製造において、所定の条件下で保持した前後のβ-Ga23単結晶の変化の様子を表す写真である。(a)は処理前(反応前)のβ-Ga23単結晶である。(b)は実施例1で保持期間経過後に坩堝から取り出したβ-Ga23単結晶である。(c)は実施例2で保持時間経過後に坩堝から取り出したβ-Ga23単結晶である。FIG. 3 is a photograph showing changes in the β-Ga 2 O 3 single crystal before and after being held under predetermined conditions in the manufacture of γ-Ga 2 O 3 according to the example of the present invention. (A) is a β-Ga 2 O 3 single crystal before treatment (before reaction). (B) is the β-Ga 2 O 3 single crystal taken out from the crucible after the holding period had elapsed in Example 1. (C) is the β-Ga 2 O 3 single crystal taken out from the crucible after the elapse of the holding time in Example 2. 図4は、本発明の実施例に係るγ-Ga23の製造において、所定の条件下で保持した後のβ-Ga23の粉末X線回折結果である。(a)はアルカリ混合水溶液(LiOH+KOH)の存在下で保持した後のβ-Ga23単結晶の回折ピーク、(b)は同じくアルカリ混合水溶液の存在下で保持した後のβ-Ga23焼結体の回折ピーク、(c)は水酸化リチウム水溶液の存在下で保持した後のβ-Ga23単結晶の回折ピーク、(d)は水酸化リチウム水溶液の存在下で保持した後のβ-Ga23焼結体の回折ピークを示す。FIG. 4 is a powder X-ray diffraction result of β-Ga 2 O 3 after being held under predetermined conditions in the manufacture of γ-Ga 2 O 3 according to the example of the present invention. (A) is a diffraction peak of β-Ga 2 O 3 single crystal after being held in the presence of an alkali mixed aqueous solution (LiOH + KOH), and (b) is β- The diffraction peak of the Ga 2 O 3 sintered body, (c) is the diffraction peak of the β-Ga 2 O 3 single crystal after being held in the presence of the lithium hydroxide aqueous solution, and (d) is the presence of the lithium hydroxide aqueous solution. The diffraction peak of the β-Ga 2 O 3 sintered body after being held in FIG. 図5は、本発明の実施例に係るγ-Ga23の製造において、所定の条件下で保持した後のβ-Ga23単結晶及びβ-Ga23焼結体のSEM写真である。(a)は保持時間経過後のβ-Ga23単結晶(γ-Ga2O3単相に変化)の形状、(b)は保持時間経過後のβ-Ga23焼結体(γ-Ga2O3、LiGaO2及びLiGa5O8の混合相に変化)の形状を表す。FIG. 5 is a SEM of a β-Ga 2 O 3 single crystal and a β-Ga 2 O 3 sintered body after being held under predetermined conditions in the manufacture of γ-Ga 2 O 3 according to an embodiment of the present invention. It is a photograph. (A) is the shape of the β-Ga 2 O 3 single crystal (changed to γ-Ga 2 O 3 single phase) after the retention time has elapsed, and (b) is the β-Ga 2 O 3 sintered body after the retention time has elapsed. This represents the shape of (change to a mixed phase of γ-Ga 2 O 3 , LiGaO 2 and LiGa 5 O 8 ). 図6は、フーリエ変換型赤外分光の結果であり、(a)は保持時間経過後のβ-Ga23単結晶のFTIRスペクトル、(b)は比較としてβ-Ga23粉末のFTIRスペクトル、(c)は保持時間経過後のβ-Ga23焼結体のFTIRスペクトルである。FIG. 6 shows the results of Fourier transform infrared spectroscopy, where (a) is the FTIR spectrum of the β-Ga 2 O 3 single crystal after the retention time has elapsed, and (b) is the β-Ga 2 O 3 powder as a comparison. FTIR spectrum, (c) is the FTIR spectrum of the β-Ga 2 O 3 sintered body after the retention time has elapsed. 図7は、本発明の実施例で得られたγ-Ga23単相の電子回折パターンを示す。FIG. 7 shows the electron diffraction pattern of the γ-Ga 2 O 3 single phase obtained in the example of the present invention. 図8は、本発明の実施例で得られたγ-Ga23単相のCLスペクトルである。FIG. 8 is a CL spectrum of the γ-Ga 2 O 3 single phase obtained in the example of the present invention.

符号の説明Explanation of symbols

X γ-Ga23製造装置
1 オートクレーブ
2 坩堝
3 加熱手段
3a 底部側ヒーター
3b 開口部側ヒーター
4 β-Ga23焼結体
5 β-Ga23単結晶
6 圧力計
7 バッフル板
8 アルカリ水溶液
X γ-Ga 2 O 3 production equipment 1 autoclave 2 crucible 3 heating means
3a Bottom heater
3b Opening side heater 4 β-Ga 2 O 3 sintered body 5 β-Ga 2 O 3 single crystal 6 Pressure gauge 7 Baffle plate 8 Alkaline aqueous solution

Claims (10)

アルカリ水溶液の存在下、β-Ga23を温度200℃以上及び圧力10MPa以上の高温高圧条件で保持することで、γ-Ga23に変化させることを特徴とするγ-Ga23の製造方法。 The presence of an alkaline aqueous solution, β-Ga 2 O 3 to be to hold at elevated temperature and pressure conditions above the temperature 200 ° C. or higher and the pressure 10 MPa, and wherein the changing the γ-Ga 2 O 3 γ- Ga 2 O 3. Manufacturing method. アルカリ水溶液が、水酸化リチウム水溶液、又は水酸化リチウムと水酸化カリウムとの混合水溶液である請求項1に記載のγ-Ga23製造方法。 The method for producing γ-Ga 2 O 3 according to claim 1, wherein the alkaline aqueous solution is a lithium hydroxide aqueous solution or a mixed aqueous solution of lithium hydroxide and potassium hydroxide. β-Ga23が、β-Ga23単結晶及び/又はβ-Ga23焼結体である請求項1又は2に記載のγ-Ga23の製造方法。 The method for producing γ-Ga 2 O 3 according to claim 1 or 2, wherein β-Ga 2 O 3 is a β-Ga 2 O 3 single crystal and / or a β-Ga 2 O 3 sintered body. 耐熱耐圧容器内に、β-Ga23単結晶とアルカリ水溶液に浸漬させたβ-Ga23焼結体とを入れ、β-Ga23単結晶の方が低い温度となるように、β-Ga23単結晶とβ-Ga23焼結体とに8〜10℃の温度差を設けて高温高圧条件で保持することで、上記β-Ga23単結晶及びβ-Ga23焼結体をそれぞれγ-Ga23に変化させる請求項1又は2に記載のγ-Ga23の製造方法。 Put a β-Ga 2 O 3 single crystal and a β-Ga 2 O 3 sintered body immersed in an alkaline aqueous solution in a heat-resistant pressure-resistant container so that the β-Ga 2 O 3 single crystal has a lower temperature. The β-Ga 2 O 3 single crystal and the β-Ga 2 O 3 sintered body are provided with a temperature difference of 8 to 10 ° C. and maintained under high temperature and high pressure conditions, thereby the β-Ga 2 O 3 single crystal. And the β-Ga 2 O 3 sintered body are each changed to γ-Ga 2 O 3. The method for producing γ-Ga 2 O 3 according to claim 1 or 2. アルカリ水溶液が水酸化リチウムと水酸化カリウムとの混合水溶液の場合、β-Ga23単結晶がγ-Ga23単相に変化する請求項4に記載のγ-Ga23の製造方法。 If the alkaline aqueous solution of a mixed aqueous solution of potassium hydroxide and lithium hydroxide, β-Ga 2 O 3 single crystal of γ-Ga 2 O 3 according to claim 4 which changes the γ-Ga 2 O 3 single phase Production method. 得られたγ-Ga23が、電子線励起により波長410〜480nmの範囲に発光ピークを有して発光する請求項5に記載のγ-Ga23の製造方法。 The method for producing γ-Ga 2 O 3 according to claim 5, wherein the obtained γ-Ga 2 O 3 emits light with an emission peak in a wavelength range of 410 to 480 nm by electron beam excitation. 得られたγ-Ga23が、実質的にγ-Ga23単結晶である請求項5又は6に記載のγ-Ga23の製造方法。 The method for producing γ-Ga 2 O 3 according to claim 5 or 6, wherein the obtained γ-Ga 2 O 3 is substantially a γ-Ga 2 O 3 single crystal. アルカリ水溶液の存在下、β-Ga23を温度200℃以上及び圧力10MPa以上の高温高圧条件で保持して得たことを特徴とするγ-Ga23Γ-Ga 2 O 3 obtained by maintaining β-Ga 2 O 3 at a temperature of 200 ° C. or higher and a pressure of 10 MPa or higher in the presence of an aqueous alkali solution. 電子線励起により波長410〜480nmの範囲に発光ピークを有して発光する請求項8に記載のγ-Ga23The γ-Ga 2 O 3 according to claim 8, which emits light having an emission peak in a wavelength range of 410 to 480 nm by electron beam excitation. 実質的に単結晶である請求項8又は9に記載のγ-Ga23
The γ-Ga 2 O 3 according to claim 8 or 9, which is substantially a single crystal.
JP2007305856A 2007-11-27 2007-11-27 MANUFACTURING METHOD OF gamma-Ga2O3 AND gamma-Ga2O3 Withdrawn JP2009126764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305856A JP2009126764A (en) 2007-11-27 2007-11-27 MANUFACTURING METHOD OF gamma-Ga2O3 AND gamma-Ga2O3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305856A JP2009126764A (en) 2007-11-27 2007-11-27 MANUFACTURING METHOD OF gamma-Ga2O3 AND gamma-Ga2O3

Publications (1)

Publication Number Publication Date
JP2009126764A true JP2009126764A (en) 2009-06-11

Family

ID=40818052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305856A Withdrawn JP2009126764A (en) 2007-11-27 2007-11-27 MANUFACTURING METHOD OF gamma-Ga2O3 AND gamma-Ga2O3

Country Status (1)

Country Link
JP (1) JP2009126764A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162432A (en) * 2011-02-09 2012-08-30 Jx Nippon Mining & Metals Corp Gallium oxide powder, method for producing the same, oxide sintered compact sputtering target, and method for producing the same
CN104372408A (en) * 2014-12-15 2015-02-25 山东大学 Large size gallium oxide single crystal Czochralski growing method under normal pressure
JPWO2013035845A1 (en) * 2011-09-08 2015-03-23 株式会社タムラ製作所 Ga2O3 semiconductor device
US9437689B2 (en) 2011-09-08 2016-09-06 Tamura Corporation Ga2O3 semiconductor element
WO2022021518A1 (en) * 2020-07-29 2022-02-03 宁波工程学院 Method for preparing γ-ga 2o 3 nanomaterial
CN114585776A (en) * 2019-11-05 2022-06-03 日本碍子株式会社 Process for producing gallium oxide crystal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162432A (en) * 2011-02-09 2012-08-30 Jx Nippon Mining & Metals Corp Gallium oxide powder, method for producing the same, oxide sintered compact sputtering target, and method for producing the same
US10249767B2 (en) 2011-09-08 2019-04-02 Tamura Corporation Ga2O3-based semiconductor element
JPWO2013035845A1 (en) * 2011-09-08 2015-03-23 株式会社タムラ製作所 Ga2O3 semiconductor device
JP2016015503A (en) * 2011-09-08 2016-01-28 株式会社タムラ製作所 Ga2O3 SEMICONDUCTOR ELEMENT
US9437689B2 (en) 2011-09-08 2016-09-06 Tamura Corporation Ga2O3 semiconductor element
US9461124B2 (en) 2011-09-08 2016-10-04 Tamura Corporation Ga2O3 semiconductor element
CN104372408A (en) * 2014-12-15 2015-02-25 山东大学 Large size gallium oxide single crystal Czochralski growing method under normal pressure
CN114585776A (en) * 2019-11-05 2022-06-03 日本碍子株式会社 Process for producing gallium oxide crystal
WO2022021518A1 (en) * 2020-07-29 2022-02-03 宁波工程学院 Method for preparing γ-ga 2o 3 nanomaterial
DE112020004928T5 (en) 2020-07-29 2022-07-07 Ningbo University Of Technology Process for preparing a γ-Ga2O3 nanomaterial
CN114787084A (en) * 2020-07-29 2022-07-22 宁波工程学院 Gamma-Ga2O3Preparation method of nano material
JP2023500977A (en) * 2020-07-29 2023-01-11 ▲寧▼波工程学院 Method for producing γ-Ga2O3 nanomaterial
JP7371988B2 (en) 2020-07-29 2023-10-31 ▲寧▼波工程学院 Method for producing γ-Ga2O3 nanomaterial
CN114787084B (en) * 2020-07-29 2023-11-07 宁波工程学院 Gamma-Ga 2 O 3 Method for preparing nano material

Similar Documents

Publication Publication Date Title
Galazka β-Ga2O3 for wide-bandgap electronics and optoelectronics
JP5553273B2 (en) Nitride semiconductor manufacturing method, crystal growth rate increasing agent, nitride single crystal, wafer and device
Dem’yanets et al. Status of hydrothermal growth of bulk ZnO: Latest issues and advantages
JP5296023B2 (en) High pressure vessel for growing group III nitride crystals, and method for growing group III nitride crystals using high pressure vessels and group III nitride crystals
Xu et al. High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties
KR100898478B1 (en) Improved systems and methods for synthesis of gallium nitride powders
JP2009126764A (en) MANUFACTURING METHOD OF gamma-Ga2O3 AND gamma-Ga2O3
JP5066639B2 (en) Nitride semiconductor manufacturing method, nitride single crystal, wafer and device
Schwenzer et al. Preparation of indium nitride micro-and nanostructures by ammonolysis of indium oxide
Pei et al. Growth of calcium vanadate nanorods
EP1772540B1 (en) Method for preparing crystal of nitride of metal belonging to 13 group of periodic table and method for manufacturing semiconductor device using the same
JP6143148B2 (en) Group III nitride crystal manufacturing method and semiconductor device manufacturing method
CN1772972A (en) Process for growing gallium nitride single crystal utilizing new flux molten-salt growth method
Zhang et al. ZnO microrod arrays grown on a curved sphere surface and their optical properties
El-Sayed et al. Synthesis of ultrafine β-Ga2O3 nanopowder via hydrothermal approach: A strong UV “excimer-like” emission
JP2010155751A (en) Method for producing group 13 element nitrogen compound crystal
JP2009013028A (en) Aluminum oxide-gallium oxide solid solution and method for producing the same
Garcıa et al. A novel method for the synthesis of sub-microcrystalline wurtzite-type InxGa1− xN powders
Lee et al. Growth of well-developed sodium tantalate crystals from a sodium chloride flux
JP2008174439A (en) Method for producing powder containing nitrogen and gallium elements and method for producing gallium nitride single crystal using the powder
JP4609207B2 (en) Periodic table group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method using the same
JP5142211B2 (en) Method for producing silicon crystal and method for producing solar cell film
Masubuchi Synthesis, structure and properties of new functional oxynitride ceramics
Zheng et al. Growth of Bulk ZnO Single Crystals via a Novel Hydrothermal Oxidative Pressure‐Relief Route
TW201226642A (en) Seed materials for single crystal silicon carbide liquid phase epitaxial growth and method for liquid phase epitaxial growth of single crystal silicon carbide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201