JP2009126257A - Vehicle and its control method - Google Patents

Vehicle and its control method Download PDF

Info

Publication number
JP2009126257A
JP2009126257A JP2007301284A JP2007301284A JP2009126257A JP 2009126257 A JP2009126257 A JP 2009126257A JP 2007301284 A JP2007301284 A JP 2007301284A JP 2007301284 A JP2007301284 A JP 2007301284A JP 2009126257 A JP2009126257 A JP 2009126257A
Authority
JP
Japan
Prior art keywords
power
vehicle
storage amount
motor
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007301284A
Other languages
Japanese (ja)
Inventor
秀典 ▲高▼橋
Shusuke Takahashi
Sumikazu Shamoto
純和 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007301284A priority Critical patent/JP2009126257A/en
Priority to PCT/JP2008/066157 priority patent/WO2009066499A1/en
Publication of JP2009126257A publication Critical patent/JP2009126257A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve energy efficiency by managing an electric storage device more appropriately. <P>SOLUTION: In this vehicle, a vehicle weight M is calculated using a previously requested torque (previous Tr*) (S200, S210), in addition a management center SOC* is set on tendency which gets smaller as regenerable energy Pre based on the calculated vehicle weight M and vehicle velocity V gets larger (S220, S230), this storage quantity SOC* is used to set charge/discharge requested power Pb* (S240), and the power Pb* is used to control the engine (22) and motors (MG1, MG2). Thus, the storage quantity SOC of a battery can be more appropriately managed according to the vehicle weight M and vehicle velocity V. As a result, power generated by regenerative drive of the motor (MG2) in braking can be more appropriately charged to a battery, and energy efficiency can be improved. Torque based on the requested torque Tr* can be output to a driving shaft for traveling as a matter of course. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両およびその制御方法に関する。   The present invention relates to a vehicle and a control method thereof.

従来、この種の車両としては、エンジンと、エンジンと車輪側とに接続されたトルク分配機と、トルク分配機に接続された発電機と、車輪側に接続されたモータと、発電機やモータと電力をやりとりする2次電池と、を備えるものが提案されている(例えば、特許文献1参照)。この車両では、2次電池のSOC(State of Charge)が所定の目標SOC付近となるよう2次電池を充放電させている。
特開2002−238106号公報
Conventionally, this type of vehicle includes an engine, a torque distributor connected to the engine and the wheel side, a generator connected to the torque distributor, a motor connected to the wheel side, a generator and a motor. And a secondary battery that exchanges electric power have been proposed (see, for example, Patent Document 1). In this vehicle, the secondary battery is charged and discharged so that the SOC (State of Charge) of the secondary battery is in the vicinity of a predetermined target SOC.
JP 2002-238106 A

一般に、こうした車両では、搭載している2次電池などの小型化が図られることから、2次電池のSOCをより適正に管理することが重要な課題の一つとされる。このため、目標SOCにより適正な値を設定して2次電池を管理することが要求される。   In general, in such a vehicle, since the mounted secondary battery and the like can be reduced in size, it is an important issue to more appropriately manage the SOC of the secondary battery. For this reason, it is required to manage the secondary battery by setting an appropriate value according to the target SOC.

本発明の車両およびその制御方法は、蓄電装置をより適正に管理することを主目的とする。   The vehicle and the control method thereof according to the present invention are mainly intended to manage the power storage device more appropriately.

本発明の車両およびその制御方法は、上述の主目的を達成するために以下の手段を採った。   The vehicle and the control method thereof according to the present invention employ the following means in order to achieve the main object described above.

本発明の車両は、
燃料の供給を受けて発電可能な発電手段と、
走行用の動力を出力可能な電動機と、
前記発電手段および前記電動機と電力のやりとりが可能な蓄電手段と、
車速を検出する車速検出手段と、
車両の加速度を検出する加速度検出手段と、
走行に要求される要求駆動力を設定する要求駆動力設定手段と、
走行用の駆動力と前記検出された加速度とに基づいて車重を演算する車重演算手段と、
前記演算された車重と前記検出された車速とに基づいて前記蓄電手段の蓄電量を管理するための管理用蓄電量範囲の中心蓄電量を設定する中心蓄電量設定手段と、
前記蓄電手段の蓄電量が前記設定された中心蓄電量に基づいて管理されると共に前記設定された要求駆動力に基づく駆動力により走行するよう前記発電手段と前記電動機とを制御する制御手段と、
を備えることを要旨とする。
The vehicle of the present invention
Power generation means capable of generating electricity by receiving fuel supply;
An electric motor capable of outputting driving power;
Power storage means capable of exchanging electric power with the power generation means and the electric motor,
Vehicle speed detection means for detecting the vehicle speed;
Acceleration detecting means for detecting the acceleration of the vehicle;
Required driving force setting means for setting required driving force required for traveling;
Vehicle weight calculation means for calculating the vehicle weight based on the driving force for traveling and the detected acceleration;
Central charge amount setting means for setting a central charge amount of a management charge amount range for managing the charge amount of the power storage means based on the calculated vehicle weight and the detected vehicle speed;
Control means for controlling the power generation means and the electric motor so that the power storage amount of the power storage means is managed based on the set central power storage amount and travels with a driving force based on the set required driving force;
It is a summary to provide.

この本発明の車両では、走行用の駆動力と車両の加速度とに基づいて車重を演算すると共に演算した車重と車速とに基づいて蓄電手段の蓄電量を管理するための管理用蓄電量範囲の中心蓄電量を設定し、蓄電手段の蓄電量が中心蓄電量に基づいて管理されると共に走行に要求される要求駆動力に基づく駆動力により走行するよう発電手段と電動機とを制御する。これにより、中心管理量をより適正に設定することができ、蓄電手段の蓄電量をより適正に管理することができる。また、車重をより適正に演算することもできる。もとより、要求駆動力に基づく駆動力により走行することができる。   In the vehicle according to the present invention, the management power storage amount for calculating the vehicle weight based on the driving force for driving and the acceleration of the vehicle and managing the storage amount of the power storage means based on the calculated vehicle weight and vehicle speed. The central storage amount of the range is set, and the power generation unit and the electric motor are controlled so that the storage unit manages the storage amount of the storage unit based on the central storage amount and travels with the driving force based on the required driving force required for traveling. As a result, the central management amount can be set more appropriately, and the storage amount of the storage means can be managed more appropriately. In addition, the vehicle weight can be calculated more appropriately. Of course, the vehicle can travel with a driving force based on the required driving force.

こうした本発明の車両において、前記中心蓄電量設定手段は、前記演算された車重が大きいほど小さくなる傾向に前記中心蓄電量を設定する手段であるものとすることもできるし、前記検出された車速が大きいほど小さくなる傾向に前記中心蓄電量を設定する手段であるものとすることもできる。これは、車重や車速が大きいほど制動時に電動機の回生駆動により回生可能なエネルギが大きくなることに基づく。このように中心蓄電量を設定することにより、制動時に電動機の回生駆動によって発生する電力をより適正に蓄電手段に充電することができ、エネルギ効率の向上を図ることができる。   In the vehicle according to the present invention, the central storage amount setting means may be a means for setting the central storage amount so that the calculated vehicle weight becomes smaller as the calculated vehicle weight is larger. It may be a means for setting the central storage amount so as to decrease as the vehicle speed increases. This is based on the fact that the higher the vehicle weight and the vehicle speed, the larger the energy that can be regenerated by the regenerative drive of the motor during braking. By setting the central power storage amount in this way, it is possible to more appropriately charge power generated by the regenerative drive of the motor during braking to the power storage means, and to improve energy efficiency.

また、本発明の車両において、前記中心蓄電量設定手段は、前記演算された車重と前記検出された車速とに基づいて制動時に前記電動機の回生駆動により回生可能なエネルギである回生可能エネルギを演算すると共に該演算した回生可能エネルギに基づいて前記中心蓄電量を設定する手段であるものとすることもできる。この場合、前記中心蓄電量設定手段は、前記演算した回生可能エネルギが大きいほど小さくなる傾向に前記中心蓄電量を設定する手段であるものとすることもできる。これにより、制動時に電動機の回生駆動によって発生する電力をより適正に蓄電手段に充電することができ、エネルギ効率の向上を図ることができる。   Further, in the vehicle of the present invention, the central storage amount setting means generates regenerative energy that is energy that can be regenerated by regenerative driving of the electric motor during braking based on the calculated vehicle weight and the detected vehicle speed. It may be a means for calculating and setting the central storage amount based on the calculated regenerative energy. In this case, the central power storage amount setting means may be a means for setting the central power storage amount so as to decrease as the calculated regenerative energy increases. Thereby, the electric power generated by the regenerative driving of the electric motor during braking can be more appropriately charged in the power storage means, and the energy efficiency can be improved.

さらに、本発明の車両において、前記発電手段は、内燃機関と、該内燃機関からの動力の少なくとも一部を用いて発電可能な発電機と、を備える手段であるものとすることもできるし、燃料電池とすることもできる。前者の場合、前記発電手段は、車軸に連結された駆動軸と前記内燃機関の出力軸と前記発電機の回転軸との3軸に接続され、該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段を備える手段であり、前記電動機は、前記駆動軸に動力を入出力可能であるものとすることもできる。   Furthermore, in the vehicle of the present invention, the power generation means may be a means including an internal combustion engine and a generator capable of generating power using at least a part of the power from the internal combustion engine. It can also be a fuel cell. In the former case, the power generation means is connected to three shafts of a drive shaft coupled to an axle, an output shaft of the internal combustion engine, and a rotating shaft of the generator, and enters any two of the three shafts. It is a means provided with a three-axis type power input / output means for inputting / outputting power to / from the remaining shaft based on the output power, and the electric motor can also input / output power to / from the drive shaft. .

本発明の車両の制御方法は、
燃料の供給を受けて発電可能な発電手段と、走行用の動力を出力可能な電動機と、前記発電手段および前記電動機と電力のやりとりが可能な蓄電手段と、を備える車両の制御方法であって、
(a)走行用の駆動力と車両の加速度とに基づいて車重を演算し、
(b)前記演算した車重と車速とに基づいて前記蓄電手段の蓄電量を管理するための管理用蓄電量範囲の中心蓄電量を設定し、
(c)前記蓄電手段の蓄電量が前記設定した中心蓄電量に基づいて管理されると共に走行に要求される要求駆動力に基づく駆動力により走行するよう前記発電手段と前記電動機とを制御する、
ことを特徴とする。
The vehicle control method of the present invention includes:
A vehicle control method comprising: power generation means capable of generating power upon receipt of fuel supply; an electric motor capable of outputting driving power; and an electric storage means capable of exchanging electric power with the electric power generation means and the electric motor. ,
(A) calculating the vehicle weight based on the driving force for traveling and the acceleration of the vehicle;
(B) Based on the calculated vehicle weight and vehicle speed, a central storage amount of a management storage amount range for managing the storage amount of the storage means is set,
(C) controlling the power generation means and the electric motor so that the power storage amount of the power storage means is managed based on the set central power storage amount and is driven by a driving force based on a required driving force required for traveling;
It is characterized by that.

この本発明の車両の制御方法では、走行用の駆動力と車両の加速度とに基づいて車重を演算すると共に演算した車重と車速とに基づいて蓄電手段の蓄電量を管理するための管理用蓄電量範囲の中心蓄電量を設定し、蓄電手段の蓄電量が中心蓄電量に基づいて管理されると共に走行に要求される要求駆動力に基づく駆動力により走行するよう発電手段と電動機とを制御する。これにより、中心管理量をより適正に設定することができ、蓄電手段の蓄電量をより適正に管理することができる。また、車重をより適正に演算することもできる。もとより、要求駆動力に基づく駆動力により走行することができる。   In the vehicle control method of the present invention, the vehicle weight is calculated based on the driving force for driving and the acceleration of the vehicle, and the management for managing the stored amount of the power storage means based on the calculated vehicle weight and vehicle speed. Set the central storage amount of the power storage amount range for the power generation means and the motor so that the storage amount of the storage means is managed based on the central storage amount and driven by the driving force based on the required driving force required for traveling. Control. As a result, the central management amount can be set more appropriately, and the storage amount of the storage means can be managed more appropriately. In addition, the vehicle weight can be calculated more appropriately. Of course, the vehicle can travel with a driving force based on the required driving force.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された駆動軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、車両全体をコントロールするハイブリッド用電子制御ユニット70とを備える。   FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 according to an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution / integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and power distribution / integration. A motor MG1 capable of generating electricity connected to the mechanism 30, a reduction gear 35 attached to a ring gear shaft 32a as a drive shaft connected to the power distribution and integration mechanism 30, a motor MG2 connected to the reduction gear 35, And a hybrid electronic control unit 70 for controlling the entire vehicle.

エンジン22は、例えばガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、エンジンECUという)24により燃料噴射制御や点火制御,吸入空気量調節制御などの運転制御を受けている。エンジンECU24には、エンジン22の運転状態を検出する各種センサからの信号、例えば、エンジン22のクランクシャフト26のクランク角を検出する図示しないクランクポジションセンサからのクランクポジションなどが入力されている。エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、エンジンECU24は、図示しないクランクポジションセンサからのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。   The engine 22 is an internal combustion engine that outputs power using a hydrocarbon-based fuel such as gasoline or light oil. The engine electronic control unit (hereinafter referred to as engine ECU) 24 performs fuel injection control, ignition control, and intake air amount adjustment. Under control of operation such as control. The engine ECU 24 receives signals from various sensors that detect the operating state of the engine 22, for example, a crank position from a crank position sensor (not shown) that detects the crank angle of the crankshaft 26 of the engine 22. The engine ECU 24 is in communication with the hybrid electronic control unit 70, controls the operation of the engine 22 by a control signal from the hybrid electronic control unit 70, and, if necessary, transmits data related to the operating state of the engine 22 to the hybrid electronic control. Output to unit 70. The engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22, based on a crank position from a crank position sensor (not shown).

動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構30は、キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して、最終的には車両の駆動輪63a,63bに出力される。   The power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 arranged concentrically with the sun gear 31, a plurality of pinion gears 33 that mesh with the sun gear 31 and mesh with the ring gear 32, A planetary gear mechanism is provided that includes a carrier 34 that holds a plurality of pinion gears 33 so as to rotate and revolve, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements. In the power distribution and integration mechanism 30, the crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32a. When functioning as a generator, power from the engine 22 input from the carrier 34 is distributed according to the gear ratio between the sun gear 31 side and the ring gear 32 side, and when the motor MG1 functions as an electric motor, the engine input from the carrier 34 The power from 22 and the power from the motor MG1 input from the sun gear 31 are integrated and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 63a and 63b of the vehicle via the gear mechanism 60 and the differential gear 62.

モータMG1およびモータMG2は、いずれも発電機として駆動することができると共に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ41,42を介してバッテリ50と電力のやりとりを行なう。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、モータECU40は、回転位置検出センサ43,44からの信号に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。   The motor MG1 and the motor MG2 are both configured as well-known synchronous generator motors that can be driven as generators and can be driven as motors, and exchange power with the battery 50 via inverters 41 and 42. The power line 54 connecting the inverters 41 and 42 and the battery 50 is configured as a positive electrode bus and a negative electrode bus shared by the inverters 41 and 42, and the electric power generated by one of the motors MG1 and MG2 It can be consumed by a motor. Therefore, battery 50 is charged / discharged by electric power generated from one of motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by the motors MG1 and MG2, the battery 50 is not charged / discharged. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as a motor ECU) 40. The motor ECU 40 detects signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown). The phase current applied to the motors MG1 and MG2 to be applied is input, and a switching control signal to the inverters 41 and 42 is output from the motor ECU 40. The motor ECU 40 is in communication with the hybrid electronic control unit 70, controls the driving of the motors MG1 and MG2 by a control signal from the hybrid electronic control unit 70, and, if necessary, data on the operating state of the motors MG1 and MG2. Output to the hybrid electronic control unit 70. The motor ECU 40 also calculates the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 based on signals from the rotational position detection sensors 43 and 44.

バッテリ50は、リチウムイオン電池として構成されており、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧,バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流,バッテリ50に取り付けられた温度センサ51からの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。また、バッテリECU52は、バッテリ50を管理するために電流センサにより検出された充放電電流の積算値に基づいて蓄電量SOCを演算したり、演算した蓄電量SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の蓄電量SOCに基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。   The battery 50 is configured as a lithium ion battery and is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52. The battery ECU 52 receives signals necessary for managing the battery 50, for example, a voltage between terminals from a voltage sensor (not shown) installed between terminals of the battery 50, and a power line 54 connected to the output terminal of the battery 50. The charging / discharging current from the attached current sensor (not shown), the battery temperature Tb from the temperature sensor 51 attached to the battery 50, and the like are input. Output to the control unit 70. Further, the battery ECU 52 calculates the storage amount SOC based on the integrated value of the charge / discharge current detected by the current sensor in order to manage the battery 50, or the battery ECU 52 based on the calculated storage amount SOC and the battery temperature Tb. The input / output limits Win and Wout, which are the maximum allowable power that may charge / discharge 50, are calculated. The input / output limits Win and Wout of the battery 50 are set to basic values of the input / output limits Win and Wout based on the battery temperature Tb, and the output limit correction coefficient and the input limit are set based on the storage amount SOC of the battery 50. It can be set by setting a correction coefficient and multiplying the basic value of the set input / output limits Win and Wout by the correction coefficient.

ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速V,加減速による重りの変位量を計測して加速度を検出する加速度センサ89からの加速度αなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。   The hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72, and in addition to the CPU 72, a ROM 74 for storing processing programs, a RAM 76 for temporarily storing data, an input / output port and communication not shown. And a port. The hybrid electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position SP from a shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83. Acceleration is detected by measuring the accelerator opening Acc from the vehicle, the brake pedal position BP from the brake pedal position sensor 86 for detecting the depression amount of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, and the displacement of the weight due to acceleration / deceleration. The acceleration α from the acceleration sensor 89 is input via the input port. As described above, the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52. ing.

こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モードなどがある。   The hybrid vehicle 20 of the embodiment thus configured calculates the required torque to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. Then, the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a. As operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that the power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is the power distribution and integration mechanism 30. Torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2 so that the torque is converted by the motor MG1 and the motor MG2 and output to the ring gear shaft 32a, and the required power and the power required for charging and discharging the battery 50. The engine 22 is operated and controlled so that suitable power is output from the engine 22, and all or part of the power output from the engine 22 with charging / discharging of the battery 50 is the power distribution integration mechanism 30, the motor MG1, and the motor. The required power is converted to the ring gear shaft 32 with torque conversion by MG2. Charge / discharge operation mode in which the motor MG1 and the motor MG2 are driven and controlled so as to be output to each other, and a motor operation mode in which the operation of the engine 22 is stopped and the power corresponding to the required power from the motor MG2 is output to the ring gear shaft 32a. and so on.

次に、こうして構成された実施例のハイブリッド自動車20の動作について説明する。図2はハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば数msec毎)に繰り返し実行される。   Next, the operation of the thus configured hybrid vehicle 20 of the embodiment will be described. FIG. 2 is a flowchart showing an example of a drive control routine executed by the hybrid electronic control unit 70. This routine is repeatedly executed every predetermined time (for example, every several msec).

駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accやブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速V,加速度センサ89からの加速度α,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の蓄電量SOC,バッテリ50の入出力制限Win,Woutなど制御に必要なデータを入力する処理を実行する(ステップS100)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されたモータMG1,MG2の回転子の回転位置に基づいて演算されたものをモータECU40から通信により入力するものとした。また、バッテリ50の蓄電量SOCは、図示しない電流センサにより検出された充放電電流の積算値に基づいて演算されたものをバッテリECU52から通信により入力するものとした。さらに、バッテリ50の入出力制限Win,Woutは、バッテリ50の電池温度Tbとバッテリ50の蓄電量SOCとに基づいて設定されたものをバッテリECU52から通信により入力するものとした。   When the drive control routine is executed, the CPU 72 of the hybrid electronic control unit 70 first starts from the accelerator pedal position Acc from the accelerator pedal position sensor 84, the brake pedal position BP from the brake pedal position sensor 86, and the vehicle speed sensor 88. Executes processing to input data necessary for control, such as vehicle speed V, acceleration α from acceleration sensor 89, rotation speeds Nm1, Nm2, motor 50, storage amount SOC of battery 50, input / output limits Win, Wout of battery 50, etc. (Step S100). Here, the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 are input from the motor ECU 40 by communication from those calculated based on the rotational positions of the rotors of the motors MG1 and MG2 detected by the rotational position detection sensors 43 and 44. To do. In addition, as the charged amount SOC of the battery 50, a value calculated based on the integrated value of the charge / discharge current detected by a current sensor (not shown) is input from the battery ECU 52 by communication. Further, the input / output limits Win and Wout of the battery 50 are set based on the battery temperature Tb of the battery 50 and the charged amount SOC of the battery 50 and are input from the battery ECU 52 by communication.

こうしてデータを入力すると、入力したアクセル開度AccとブレーキペダルポジションBPと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*を設定すると共に(ステップS110)、図3に例示する充放電要求パワー設定処理によりバッテリ50を充放電すべき電力としての充放電要求パワーPb*を設定し(ステップS120)、要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものからバッテリ50の充放電要求パワーPb*を減じてロスLossを加えることによりエンジン22に要求される要求パワーPe*を計算する(ステップS130)。要求トルクTr*は、実施例では、アクセル開度AccとブレーキペダルポジションBPと車速Vと要求トルクTr*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度AccとブレーキペダルポジションBPと車速Vとが与えられると記憶したマップから対応する要求トルクTr*を導出して設定するものとした。図4に要求トルク設定用マップの一例を示す。なお、図3の充放電要求パワー設定処理については後述する。また、リングギヤ軸32aの回転数Nrは、車速Vに換算係数kを乗じること(Nr=k・V)によって求めたり、モータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで割ること(Nr=Nm2/Gr)によって求めることができる。   When the data is input in this way, the torque required for the vehicle is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b based on the accelerator opening Acc, the brake pedal position BP, and the vehicle speed V. The power demand torque Tr * is set (step S110), and the charge / discharge required power Pb * as the power to charge / discharge the battery 50 is set by the charge / discharge required power setting process illustrated in FIG. 3 (step S120). The required power Pe * required for the engine 22 is calculated by subtracting the charge / discharge required power Pb * of the battery 50 from the product of the required torque Tr * and the rotational speed Nr of the ring gear shaft 32a and adding a loss Loss (step) S130). In the embodiment, the required torque Tr * is stored in the ROM 74 as a required torque setting map by predetermining the relationship among the accelerator opening Acc, the brake pedal position BP, the vehicle speed V, and the required torque Tr *. When Acc, brake pedal position BP, and vehicle speed V are given, the corresponding required torque Tr * is derived and set from the stored map. FIG. 4 shows an example of the required torque setting map. The charge / discharge required power setting process in FIG. 3 will be described later. Further, the rotational speed Nr of the ring gear shaft 32a is obtained by multiplying the vehicle speed V by a conversion factor k (Nr = k · V), or the rotational speed Nm2 of the motor MG2 is divided by the gear ratio Gr of the reduction gear 35 (Nr = Nm2 / Gr).

続いて、設定した要求パワーPe*に基づいてエンジン22を運転すべき運転ポイントとしての目標回転数Ne*と目標トルクTe*とを設定する(ステップS140)。この設定は、エンジン22を効率よく動作させる動作ラインと要求パワーPe*とに基づいて行なわれる。エンジン22の動作ラインの一例と目標回転数Ne*と目標トルクTe*とを設定する様子を図5に示す。図示するように、目標回転数Ne*と目標トルクTe*は、動作ラインと要求パワーPe*(Ne*×Te*)が一定の曲線との交点により求めることができる。   Subsequently, the target rotational speed Ne * and the target torque Te * are set as operating points at which the engine 22 should be operated based on the set required power Pe * (step S140). This setting is performed based on the operation line for efficiently operating the engine 22 and the required power Pe *. FIG. 5 shows an example of the operation line of the engine 22 and how the target rotational speed Ne * and the target torque Te * are set. As shown in the figure, the target rotational speed Ne * and the target torque Te * can be obtained from the intersection of the operation line and a curve with a constant required power Pe * (Ne * × Te *).

次に、エンジン22の目標回転数Ne*とモータMG2の回転数Nm2と動力分配統合機構30のギヤ比ρと減速ギヤ35のギヤ比Grとを用いて次式(1)によりモータMG1の目標回転数Nm1*を計算すると共に計算した目標回転数Nm1*と入力したモータMG1の回転数Nm1とエンジン22の目標トルクTe*と動力分配統合機構30のギヤ比ρとに基づいて式(2)によりモータMG1から出力すべきトルクとしてのトルク指令Tm1*を計算する(ステップS150)。ここで、式(1)は、動力分配統合機構30の回転要素に対する力学的な関係式である。エンジン22からパワーを出力している状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を図6に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。式(1)は、この共線図を用いれば容易に導くことができる。なお、R軸上の2つの太線矢印は、モータMG1から出力されたトルクTm1がリングギヤ軸32aに作用するトルクと、モータMG2から出力されるトルクTm2が減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す。また、式(2)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(2)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである。   Next, using the target rotational speed Ne * of the engine 22, the rotational speed Nm2 of the motor MG2, the gear ratio ρ of the power distribution and integration mechanism 30, and the gear ratio Gr of the reduction gear 35, the target of the motor MG1 is expressed by the following equation (1). Formula (2) is calculated based on the calculated target rotational speed Nm1 *, the input rotational speed Nm1 of the motor MG1, the target torque Te * of the engine 22, and the gear ratio ρ of the power distribution and integration mechanism 30. To calculate a torque command Tm1 * as a torque to be output from the motor MG1 (step S150). Here, Expression (1) is a dynamic relational expression for the rotating element of the power distribution and integration mechanism 30. FIG. 6 shows an example of a collinear diagram showing a dynamic relationship between the number of rotations and torque in the rotating elements of the power distribution and integration mechanism 30 when traveling with the power output from the engine 22. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nm1 of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotational speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. Equation (1) can be easily derived by using this alignment chart. The two thick arrows on the R axis indicate that the torque Tm1 output from the motor MG1 acts on the ring gear shaft 32a and the torque Tm2 output from the motor MG2 acts on the ring gear shaft 32a via the reduction gear 35. Torque. Expression (2) is a relational expression in feedback control for rotating the motor MG1 at the target rotational speed Nm1 *. In Expression (2), “k1” in the second term on the right side is a gain of a proportional term. “K2” in the third term on the right side is the gain of the integral term.

Nm1*=Ne*・(1+ρ)/ρ-Nm2/(Gr・ρ) (1)
Tm1*=-ρ・Te*/(1+ρ)+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt (2)
Nm1 * = Ne * ・ (1 + ρ) / ρ-Nm2 / (Gr ・ ρ) (1)
Tm1 * =-ρ ・ Te * / (1 + ρ) + k1 (Nm1 * -Nm1) + k2∫ (Nm1 * -Nm1) dt (2)

そして、要求トルクTr*に設定したトルク指令Tm1*を動力分配統合機構30のギヤ比ρで除したものを加えて更に減速ギヤ35のギヤ比Grで除してモータMG2から出力すべきトルクの仮の値である仮トルクTm2tmpを次式(3)により計算すると共に(ステップS160)、バッテリ50の入出力制限Win,Woutと設定したトルク指令Tm1*に現在のモータMG1の回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)との偏差をモータMG2の回転数Nm2で割ることによりモータMG2から出力してもよいトルクの上下限としてのトルク制限Tm2min,Tm2maxを次式(4)および式(5)により計算すると共に(ステップS170)、設定した仮トルクTm2tmpを式(6)によりトルク制限Tm2min,Tm2maxで制限してモータMG2のトルク指令Tm2*を設定する(ステップS180)。ここで、式(3)は、図6の共線図から容易に導くことができる。   Then, the torque command Tm1 * set as the required torque Tr * is divided by the gear ratio ρ of the power distribution and integration mechanism 30 and further divided by the gear ratio Gr of the reduction gear 35 to obtain the torque to be output from the motor MG2. A temporary torque Tm2tmp, which is a temporary value, is calculated by the following equation (3) (step S160), and the input / output limits Win and Wout of the battery 50 and the set torque command Tm1 * are multiplied by the current rotational speed Nm1 of the motor MG1. The torque limits Tm2min and Tm2max as upper and lower limits of the torque that may be output from the motor MG2 by dividing the deviation from the power consumption (generated power) of the motor MG1 obtained by the number of revolutions Nm2 of the motor MG2 ) And formula (5) (step S170), and the set temporary torque Tm2tmp is calculated by formula (6). Click restriction Tm2min, to limit to set a torque command Tm2 * of the motor MG2 by Tm2max (step S180). Here, Expression (3) can be easily derived from the alignment chart of FIG.

Tm2tmp=(Tr*+Tm1*/ρ)/Gr (3)
Tm2min=(Win-Tm1*・Nm1)/Nm2 (4)
Tm2max=(Wout-Tm1*・Nm1)/Nm2 (5)
Tm2*=max(min(Tm2tmp,Tm2max),Tm2min) (6)
Tm2tmp = (Tr * + Tm1 * / ρ) / Gr (3)
Tm2min = (Win-Tm1 * ・ Nm1) / Nm2 (4)
Tm2max = (Wout-Tm1 * ・ Nm1) / Nm2 (5)
Tm2 * = max (min (Tm2tmp, Tm2max), Tm2min) (6)

こうしてエンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定すると、エンジン22の目標回転数Ne*と目標トルクTe*についてはエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*についてはモータECU40にそれぞれ送信し(ステップS190)、駆動制御ルーチンを終了する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における吸入空気量制御や燃料噴射制御,点火制御などの制御を行なう。また、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、バッテリ50の入出力制限Win,Woutの範囲内でエンジン22を効率よく運転して駆動軸としてのリングギヤ軸32aに要求トルクTr*を出力して走行することができる。   Thus, when the target engine speed Ne *, the target torque Te *, and the torque commands Tm1 *, Tm2 * of the motors MG1, MG2 are set, the target engine speed Ne * and the target torque Te * of the engine 22 are set in the engine ECU 24. Torque commands Tm1 * and Tm2 * for motors MG1 and MG2 are transmitted to motor ECU 40 (step S190), and the drive control routine is terminated. The engine ECU 24 that has received the target rotational speed Ne * and the target torque Te * controls the intake air amount in the engine 22 so that the engine 22 is operated at the operating point indicated by the target rotational speed Ne * and the target torque Te *. Controls such as fuel injection control and ignition control. Further, the motor ECU 40 that has received the torque commands Tm1 * and Tm2 * controls the switching elements of the inverters 41 and 42 so that the motor MG1 is driven by the torque command Tm1 * and the motor MG2 is driven by the torque command Tm2 *. To do. By such control, the engine 22 can be efficiently operated within the range of the input / output limits Win and Wout of the battery 50, and the required torque Tr * can be output to the ring gear shaft 32a as a drive shaft to travel.

次に、図3に例示した充放電要求パワー設定処理について説明する。図3の充放電要求パワー設定処理では、まず、前回に図2の駆動制御ルーチンが実行されたときに設定された要求トルク(前回Tr*)に換算係数cを乗じることにより現在の走行用の駆動力である現在駆動力Fを計算すると共に(ステップS200)、計算した現在駆動力Fを加速度αで除することにより車重Mを計算する(ステップS210)。ここで、換算係数cは、リングギヤ軸32aに作用するトルクを現在駆動力Fに換算するための係数である。このように車重Mを計算することにより、乗員の重量や燃料の量などをより適正に反映した車重Mを計算することができる。   Next, the charge / discharge required power setting process illustrated in FIG. 3 will be described. In the charging / discharging required power setting process of FIG. 3, first, the current driving torque is set by multiplying the required torque (previous Tr *) set when the drive control routine of FIG. The current driving force F, which is a driving force, is calculated (step S200), and the vehicle weight M is calculated by dividing the calculated current driving force F by the acceleration α (step S210). Here, the conversion coefficient c is a coefficient for converting the torque acting on the ring gear shaft 32a to the current driving force F. By calculating the vehicle weight M in this way, the vehicle weight M that more appropriately reflects the weight of the occupant, the amount of fuel, and the like can be calculated.

続いて、計算した車重Mと車速Vとを用いて次式(7)により制動時にモータMG2を回生駆動することによって回生可能なエネルギである回生可能エネルギPreを計算すると共に(ステップS220)、計算した回生可能エネルギPreに基づいてバッテリ50の管理中心SOC*を設定する(ステップS230)。ここで、管理中心SOC*は、バッテリ50の蓄電量SOCを管理するための管理用蓄電量範囲の中心蓄電量であり、実施例では、回生可能エネルギPreと管理中心SOC*との関係を予め定めて管理中心設定用マップとしてROM74に記憶しておき、回生可能エネルギPreが与えられると記憶したマップから対応する管理中心SOC*を導出して設定するものとした。管理中心設定用マップの一例を図7に示す。なお、図7中、値Shi,Slowは、管理用蓄電量範囲の上下限であり、値Shiは例えば80%や85%,90%などを用いることができ、値Slowは例えば35%や40%,45%などを用いることができる。管理中心SOC*は、図示するように、回生可能エネルギPreが大きいほど小さくなる傾向に設定するものとした。これは、制動時に回生可能エネルギPreに応じた電力をよりバッテリ50に充電できるようにするためである。   Subsequently, using the calculated vehicle weight M and vehicle speed V, the regenerative energy Pre, which is the energy that can be regenerated by regeneratively driving the motor MG2 during braking, is calculated by the following equation (7) (step S220). Based on the calculated regenerative energy Pre, the management center SOC * of the battery 50 is set (step S230). Here, the management center SOC * is the central storage amount of the management storage amount range for managing the storage amount SOC of the battery 50. In the embodiment, the relationship between the regenerative energy Pre and the management center SOC * is preliminarily determined. It is determined and stored in the ROM 74 as a management center setting map, and when the regenerative energy Pre is given, the corresponding management center SOC * is derived and set from the stored map. An example of the management center setting map is shown in FIG. In FIG. 7, values Shi and Slow are upper and lower limits of the management power storage amount range. For example, 80%, 85%, and 90% can be used as the value Shi, and the value Slow is, for example, 35% and 40%. %, 45%, etc. can be used. As shown in the figure, the management center SOC * is set so as to decrease as the regenerative energy Pre increases. This is to make it possible to charge the battery 50 with more electric power according to the regenerative energy Pre during braking.

Pre=M・V2/2 (7) Pre = M · V 2/2 (7)

こうして管理中心SOC*を設定すると、設定した管理中心SOC*と蓄電量SOCとを用いて充放電要求パワーPb*を設定して(ステップS240)、充放電要求パワー設定処理を終了する。充放電要求パワーPb*は、実施例では、蓄電量SOCから管理中心SOC*を減じた値(SOC−SOC*)と充放電要求パワーPb*との関係を予め定めて充放電要求パワー設定用マップとしてROM74に記憶しておき、値(SOC−SOC*)が与えられると記憶したマップから対応する充放電要求パワーPb*を導出して設定するものとした。充放電要求パワー設定用マップの一例を図8に示す。充放電要求パワーPb*は、図示するように、値(SOC−SOC*)が正のとき即ち蓄電量SOCが管理中心SOC*より大きいときには正(放電側)の値が設定され、値(SOC−SOC*)が負のとき即ち蓄電量SOCが管理中心SOC*より小さいときには負(充電側)の値が設定される。こうして設定した充放電要求パワーPb*を用いてエンジン22とモータMG1,MG2とを制御することにより、バッテリ50の蓄電量SOCを回生可能エネルギPreに基づく管理中心SOC*を用いて管理することができるのである。ここで、前述したように、回生可能エネルギPreが大きいほど小さくなる傾向に管理中心SOC*を設定することにより、制動時に、モータMG2の回生駆動によって発生する電力をより適正にバッテリ50に充電することができる。この結果、エネルギ効率の向上を図ることができる。   When the management center SOC * is set in this manner, the charge / discharge required power Pb * is set using the set management center SOC * and the storage amount SOC (step S240), and the charge / discharge required power setting process is terminated. In the embodiment, the charge / discharge required power Pb * is used for setting the charge / discharge required power by predetermining a relationship between a value obtained by subtracting the management center SOC * from the charged amount SOC (SOC-SOC *) and the charge / discharge required power Pb *. The map is stored in the ROM 74, and when a value (SOC-SOC *) is given, the corresponding charge / discharge required power Pb * is derived and set from the stored map. An example of the charge / discharge required power setting map is shown in FIG. As shown in the figure, the charge / discharge required power Pb * is set to a positive (discharge side) value when the value (SOC-SOC *) is positive, that is, when the charged amount SOC is greater than the management center SOC *. When -SOC *) is negative, that is, when the charged amount SOC is smaller than the management center SOC *, a negative (charge side) value is set. By controlling the engine 22 and the motors MG1, MG2 using the charge / discharge required power Pb * set in this way, the charged amount SOC of the battery 50 can be managed using the management center SOC * based on the regenerative energy Pre. It can be done. Here, as described above, by setting the management center SOC * so as to decrease as the regenerative energy Pre increases, the power generated by the regenerative drive of the motor MG2 is more appropriately charged to the battery 50 during braking. be able to. As a result, energy efficiency can be improved.

以上説明した実施例のハイブリッド自動車20によれば、前回の要求トルク(前回Tr*)と加速度αとに基づいて車重Mを計算すると共に計算した車重Mと車速Vとに基づく回生可能エネルギPreが大きいほど小さくなる傾向に設定した管理中心SOC*を用いて充放電要求パワーPb*を設定し、この充放電要求パワーPb*を用いてエンジン22とモータMG1,MG2とを制御することにより、バッテリ50の蓄電量SOCを車重Mと車速Vとに応じてより適正に管理することができる。この結果、制動時にモータMG2の回生駆動によって発生する電力をより適正にバッテリ50に充電することができ、エネルギ効率の向上を図ることができる。また、車重Mをより適正に計算することもできる。もとより、要求トルクTr*に基づくトルクを駆動軸としてのリングギヤ軸32aに出力して走行することができる。   According to the hybrid vehicle 20 of the embodiment described above, the vehicle weight M is calculated based on the previous required torque (previous Tr *) and the acceleration α, and the regenerative energy based on the calculated vehicle weight M and the vehicle speed V. By setting the charge / discharge required power Pb * using the management center SOC * set so as to decrease as Pre increases, the engine 22 and the motors MG1, MG2 are controlled using the charge / discharge required power Pb *. Thus, the stored amount SOC of the battery 50 can be more appropriately managed according to the vehicle weight M and the vehicle speed V. As a result, the electric power generated by the regenerative driving of the motor MG2 during braking can be more appropriately charged in the battery 50, and the energy efficiency can be improved. Further, the vehicle weight M can be calculated more appropriately. Of course, it is possible to travel by outputting torque based on the required torque Tr * to the ring gear shaft 32a as the drive shaft.

実施例のハイブリッド自動車20では、前回に図2の駆動制御ルーチンが実行されたときに設定された要求トルク(前回Tr*)を用いて現在駆動力Fを計算するものとしたが、前回に図2の駆動制御ルーチンが実行されたときに設定されたモータMG1,MG2のトルク指令Tm1*,Tm2*を用いて式(8)により計算されるリングギヤ軸32aに出力されているトルクTrを用いて現在駆動力Fを計算するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the current driving force F is calculated using the required torque (previous Tr *) set when the drive control routine of FIG. 2 was executed last time. Using the torque Tr output to the ring gear shaft 32a calculated by the equation (8) using the torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 set when the drive control routine 2 is executed. The current driving force F may be calculated.

Tr=-(前回Tm1*)/ρ+(前回Tm2*)・Gr (8)   Tr =-(previous Tm1 *) / ρ + (previous Tm2 *) ・ Gr (8)

実施例のハイブリッド自動車20では、前回に図2の駆動制御ルーチンが実行されたときに設定された要求トルク(前回Tr*)を用いて現在駆動力Fを計算すると共に計算した現在駆動力Fを用いて車重Mを計算するものとしたが、これに代えて、今回に図2の駆動制御ルーチンが実行されたときに設定された要求トルクTr*を用いて走行用の駆動力F2を計算すると共に計算した走行用の駆動力F2を用いて車重Mを計算するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the current driving force F is calculated using the required torque (previous Tr *) set when the driving control routine of FIG. 2 was previously executed, and the calculated current driving force F is calculated. However, instead of this, the driving force F2 for traveling is calculated using the required torque Tr * set when the drive control routine of FIG. 2 is executed this time. In addition, the vehicle weight M may be calculated using the calculated driving force F2 for traveling.

実施例のハイブリッド自動車20では、現在駆動力Fと加速度αとに基づいて車重Mを計算すると共に計算した車重Mと車速Vとに基づいて回生可能エネルギPreを計算し、計算した回生可能エネルギPreを用いて管理中心SOC*を設定するものとしたが、回生可能エネルギPreを計算することなく、車重Mと車速Vとに基づいて直接的に管理中心SOC*を設定するものとしてもよい。この場合、例えば、図9に例示する車重Mと車速Vと管理中心SOC*との関係を用いて管理中心SOC*を設定するものとしてもよい。図9の例では、車重Mが大きいほど管理中心SOC*が小さくなる傾向に、且つ、車速Vが大きいほど管理中心SOC*が小さくなる傾向に設定される。これは、前述したように、車重Mが大きいほど、且つ、車速Vが大きいほど制動時にモータMG2の回生駆動によって回生可能なエネルギが大きくなることに基づく。   In the hybrid vehicle 20 of the embodiment, the vehicle weight M is calculated based on the current driving force F and the acceleration α, and the regenerative energy Pre is calculated based on the calculated vehicle weight M and the vehicle speed V. Although the management center SOC * is set using the energy Pre, the management center SOC * may be set directly based on the vehicle weight M and the vehicle speed V without calculating the regenerative energy Pre. Good. In this case, for example, the management center SOC * may be set using the relationship among the vehicle weight M, the vehicle speed V, and the management center SOC * illustrated in FIG. In the example of FIG. 9, the management center SOC * tends to decrease as the vehicle weight M increases, and the management center SOC * tends to decrease as the vehicle speed V increases. As described above, this is based on the fact that the greater the vehicle weight M and the greater the vehicle speed V, the greater the energy that can be regenerated by regenerative driving of the motor MG2 during braking.

実施例のハイブリッド自動車20では、減速ギヤ35を介して駆動軸としてのリングギヤ軸32aにモータMG2を取り付けるものとしたが、リングギヤ軸32aにモータMG2を直接取り付けるものとしてもよいし、減速ギヤ35に代えて2段変速や3段変速,4段変速などの変速機を介してリングギヤ軸32aにモータMG2を取り付けるものとしても構わない。   In the hybrid vehicle 20 of the embodiment, the motor MG2 is attached to the ring gear shaft 32a as the drive shaft via the reduction gear 35. However, the motor MG2 may be directly attached to the ring gear shaft 32a, or Instead, the motor MG2 may be attached to the ring gear shaft 32a via a transmission such as a 2-speed, 3-speed, or 4-speed.

実施例のハイブリッド自動車20では、モータMG2の動力を減速ギヤ35により変速してリングギヤ軸32aに出力するものとしたが、図10の変形例のハイブリッド自動車120に例示するように、モータMG2の動力をリングギヤ軸32aが接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図10における車輪64a,64bに接続された車軸)に接続するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the motor MG2 is changed by the reduction gear 35 and output to the ring gear shaft 32a. However, as illustrated in the hybrid vehicle 120 of the modification of FIG. May be connected to an axle (an axle connected to the wheels 64a and 64b in FIG. 10) different from an axle to which the ring gear shaft 32a is connected (an axle to which the drive wheels 63a and 63b are connected).

実施例のハイブリッド自動車20では、エンジン22の動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力するものとしたが、図11の変形例のハイブリッド自動車220に例示するように、エンジン22のクランクシャフト26に接続されたインナーロータ232と駆動輪63a,63bに動力を出力する駆動軸に接続されたアウターロータ234とを有し、エンジン22の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, but the modified example of FIG. The hybrid vehicle 220 includes an inner rotor 232 connected to the crankshaft 26 of the engine 22 and an outer rotor 234 connected to a drive shaft that outputs power to the drive wheels 63a and 63b. A counter-rotor motor 230 that transmits a part of the power to the drive shaft and converts the remaining power into electric power may be provided.

実施例のハイブリッド自動車20では、エンジン22の動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力するものとしたが、図12の変形例のハイブリッド自動車320に例示するように、エンジン22に発電用のモータMG1が取り付けられていると共に走行用のモータMG2を備えるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, but the modified example of FIG. As exemplified in the hybrid vehicle 320, a power generation motor MG1 may be attached to the engine 22 and a traveling motor MG2 may be provided.

また、こうしたハイブリッド自動車に限定されるものではなく、図13の変形例の燃料電池自動車420に例示するように、燃料電池430からの発電電力をDC/DCコンバータ440によって昇圧してバッテリ50やモータMGに供給する構成としてもよい。   Further, the present invention is not limited to such a hybrid vehicle. As illustrated in the fuel cell vehicle 420 of the modified example of FIG. 13, the generated power from the fuel cell 430 is boosted by the DC / DC converter 440 to increase the battery 50 and the motor. It is good also as a structure supplied to MG.

また、こうした自動車に適用するものに限定されるものではなく、列車など自動車以外の車両の形態としても構わない。さらに、こうした車両の制御方法の形態としてもよい。   Moreover, it is not limited to what is applied to such a motor vehicle, It is good also as forms of vehicles other than motor vehicles, such as a train. Furthermore, it is good also as a form of the control method of such a vehicle.

実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22とモータMG1と動力分配統合機構30とが「発電手段」に相当し、モータMG2が「電動機」に相当し、リチウムイオン電池として構成されたバッテリ50が「蓄電手段」に相当し、車速センサ88が「車速検出手段」に相当し、加速度センサ89が「加速度検出手段」に相当し、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定する図2の駆動制御ルーチンのステップS110の処理を実行するハイブリッド用電子制御ユニット70が「要求駆動力設定手段」に相当し、前回に図2の駆動制御ルーチンが実行されたときに設定された要求トルク(前回Tr*)と加速度αとに基づいて車重Mを計算する図3の充放電要求パワー設定処理のステップS210の処理を実行するハイブリッド用電子制御ユニット70が「車重演算手段」に相当し、車重Mと車速Vとに基づいて回生可能エネルギPreを計算すると共に計算した回生可能エネルギPreに基づいて管理中心SOC*を設定する図3の充放電要求パワー設定処理のステップS220,S230の処理を実行するハイブリッド用電子制御ユニット70が「中心蓄電量設定手段」に相当し、設定した管理中心SOC*を用いて充放電要求パワーPb*を設定する図3の充放電要求パワー設定処理のステップS240の処理を実行すると共に設定した充放電要求パワーPb*を用いてバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸としてのリングギヤ軸32aに出力されるようエンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定してエンジンECU24やモータECU40に送信する図2の駆動制御ルーチンのステップS130〜S190の処理を実行するハイブリッド用電子制御ユニット70と、目標回転数Ne*や目標トルクTe*を受信してエンジン22を制御するエンジンECU24と、トルク指令Tm1*,Tm2*を受信してモータMG1,MG2を制御するモータECU40と、が「制御手段」に相当する。また、エンジン22が「内燃機関」に相当し、モータMG1や対ロータ電動機230が「発電機」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当する。さらに、燃料電池430も「発電手段」に相当する。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the engine 22, the motor MG1, and the power distribution and integration mechanism 30 correspond to “power generation means”, the motor MG2 corresponds to “electric motor”, and the battery 50 configured as a lithium ion battery serves as “power storage means”. The vehicle speed sensor 88 corresponds to “vehicle speed detection means”, the acceleration sensor 89 corresponds to “acceleration detection means”, and the required torque Tr * is set based on the accelerator opening Acc and the vehicle speed V in FIG. The hybrid electronic control unit 70 that executes the process of step S110 of the drive control routine corresponds to “required drive force setting means”, and the required torque (previous previous time) set when the drive control routine of FIG. Tr *) and hybrid α for executing the process of step S210 of the charge / discharge required power setting process of FIG. 3 for calculating the vehicle weight M based on the acceleration α. The control unit 70 corresponds to “vehicle weight calculation means”, calculates the regenerative energy Pre based on the vehicle weight M and the vehicle speed V, and sets the management center SOC * based on the calculated regenerative energy Pre FIG. The hybrid electronic control unit 70 that executes the processes of steps S220 and S230 of the charge / discharge required power setting process corresponds to the “central charge amount setting means” and uses the set management center SOC * to charge / discharge required power Pb *. 3 is executed, and the required torque Tr * is within the range of the input / output limits Win and Wout of the battery 50 using the set charge / discharge required power Pb *. The target rotational speed Ne * and target torque Te * of the engine 22 and the motor MG1, so as to be output to the ring gear shaft 32a as the drive shaft. The hybrid electronic control unit 70 that executes the processing of steps S130 to S190 of the drive control routine of FIG. 2 that sets the torque commands Tm1 * and Tm2 * of the MG2 and transmits them to the engine ECU 24 and the motor ECU 40, and the target rotational speed Ne *. The engine ECU 24 that receives the target torque Te * and controls the engine 22 and the motor ECU 40 that receives the torque commands Tm1 * and Tm2 * and controls the motors MG1 and MG2 correspond to “control means”. The engine 22 corresponds to an “internal combustion engine”, the motor MG1 and the counter-rotor motor 230 correspond to a “generator”, and the power distribution and integration mechanism 30 corresponds to a “three-axis power input / output unit”. Further, the fuel cell 430 also corresponds to “power generation means”.

ここで、「発電手段」としては、エンジン22とモータMG1と動力分配統合機構30とを組み合わせたものや燃料電池430に限定されるものではなく、燃料の供給を受けて発電可能なものであれば如何なるものとしても構わない。「電動機」としては、同期発電電動機として構成されたモータMG2に限定されるものではなく、誘導電動機など、走行用の動力を出力可能なものであれば如何なるものとしても構わない。「蓄電手段」としては、リチウムイオン電池として構成されたバッテリ50に限定されるものではなく、ニッケル水素電池としたり鉛蓄電池としたりするなど、発電手段や電動機と電力のやりとりが可能なものであれば如何なるものとしても構わない。「要求駆動力設定手段」としては、アクセル開度Accと車速Vとに基づいて要求トルクTr*を設定するものに限定されるものではなく、アクセル開度Accだけに基づいて要求トルクを設定するものや走行経路が予め設定されているものにあっては走行経路における走行位置に基づいて要求トルクを設定するものなど、走行に要求される要求駆動力を設定するものであれば如何なるものとしても構わない。「車重演算手段」としては、前回に図2の駆動制御ルーチンが実行されたときに設定された要求トルク(前回Tr*)と加速度αとに基づいて車重Mを計算するものに限定されるものではなく、走行用の駆動力と加速度とに基づいて車重を演算するものであれば如何なるものとしても構わない。「中心蓄電量設定手段」としては、車重Mと車速Vとに基づいて回生可能エネルギPreを計算すると共に計算した回生可能エネルギPreに基づいて管理中心SOC*を設定するものに限定されるものではなく、回生可能エネルギPreを計算することなく車重Mと車速Vとに基づいて直接的に管理中心SOC*を設定するものなど、車重と車速とに基づいて蓄電手段の蓄電量を管理するための管理用蓄電量範囲の中心蓄電量を設定するものであれば如何なるものとしても構わない。「制御手段」としては、ハイブリッド用電子制御ユニット70とエンジンECU24とモータECU40とからなる組み合わせに限定されるものではなく単一の電子制御ユニットにより構成されるなどとしてもよい。また、「制御手段」としては、設定した管理中心SOC*を用いて充放電要求パワーPb*を設定すると共に設定した充放電要求パワーPb*を用いてバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸としてのリングギヤ軸32aに出力されるようエンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定してエンジン22やモータMG1,MG2を制御するものに限定されるものではなく、蓄電手段の蓄電量が前記設定された中心蓄電量に基づいて管理されると共に要求駆動力に基づく駆動力により走行するよう発電手段と電動機とを制御するものであれば如何なるものとしても構わない。「内燃機関」としては、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関に限定されるものではなく、水素エンジンなど如何なるタイプの内燃機関であっても構わない。「発電機」としては、同期発電電動機として構成されたモータMG1や対ロータ電動機230に限定されるものではなく、誘導電動機など、内燃機関からの動力の少なくとも一部を用いて発電可能なものであれば如何なるものとしても構わない。「3軸式動力入出力手段」としては、上述の動力分配統合機構30に限定されるものではなく、ダブルピニオン式の遊星歯車機構を用いるものや複数の遊星歯車機構を組み合わせて4以上の軸に接続されるものやデファレンシャルギヤのように遊星歯車とは異なる作動作用を有するものなど、駆動軸と内燃機関の出力軸と発電機の回転軸との3軸に接続され3軸のうちのいずれかに軸に入出力される動力に基づいて残余の軸に動力を入出力するものであれば如何なるものとしても構わない。なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   Here, the “power generation means” is not limited to the combination of the engine 22, the motor MG1, and the power distribution and integration mechanism 30 or the fuel cell 430, but can generate power upon receiving fuel supply. It does not matter as long as it is anything. The “motor” is not limited to the motor MG2 configured as a synchronous generator motor, and may be anything as long as it can output traveling power, such as an induction motor. The “storage means” is not limited to the battery 50 configured as a lithium-ion battery, but may be a nickel-metal hydride battery or a lead storage battery that can exchange power with a power generation means or an electric motor. It does not matter as long as it is anything. The “required driving force setting means” is not limited to the one that sets the required torque Tr * based on the accelerator opening Acc and the vehicle speed V, but sets the required torque based only on the accelerator opening Acc. If the required driving force required for traveling is set, such as those for which the required torque is set based on the traveling position on the traveling route, such as those for which the driving route is set in advance I do not care. The “vehicle weight calculation means” is limited to the one that calculates the vehicle weight M based on the required torque (previous Tr *) set when the drive control routine of FIG. 2 was executed last time and the acceleration α. It does not matter as long as the vehicle weight is calculated based on the driving force and acceleration for traveling. The “central storage amount setting means” is limited to one that calculates the regenerative energy Pre based on the vehicle weight M and the vehicle speed V and sets the management center SOC * based on the calculated regenerative energy Pre. Rather than managing the amount of electricity stored in the power storage means based on the vehicle weight and the vehicle speed, such as setting the management center SOC * directly based on the vehicle weight M and the vehicle speed V without calculating the regenerative energy Pre Any value can be used as long as it sets the central storage amount in the management storage amount range. The “control means” is not limited to the combination of the hybrid electronic control unit 70, the engine ECU 24, and the motor ECU 40, and may be configured by a single electronic control unit. Further, as the “control means”, the charge / discharge required power Pb * is set using the set management center SOC *, and the input / output limits Win and Wout of the battery 50 are set using the set charge / discharge required power Pb *. The engine 22 is set with the target rotational speed Ne *, the target torque Te *, and the torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 so that the required torque Tr * is output to the ring gear shaft 32a as the drive shaft. 22 and the motors MG1 and MG2 are not limited to control, and the power storage amount of the power storage means is managed based on the set central power storage amount, and the power generation is performed so that the vehicle travels with the driving force based on the required driving force. Any device that controls the means and the electric motor may be used. The “internal combustion engine” is not limited to an internal combustion engine that outputs power using a hydrocarbon fuel such as gasoline or light oil, and may be any type of internal combustion engine such as a hydrogen engine. The “generator” is not limited to the motor MG1 and the anti-rotor motor 230 configured as a synchronous generator motor, but can generate power using at least part of the power from the internal combustion engine, such as an induction motor. It does not matter as long as there is any. The “three-axis power input / output means” is not limited to the power distribution / integration mechanism 30 described above, but includes four or more shafts using a double pinion type planetary gear mechanism or a combination of a plurality of planetary gear mechanisms. Such as those connected to the motor and those having a different operation action from the planetary gear, such as a differential gear, and any of the three shafts connected to the drive shaft, the output shaft of the internal combustion engine, and the rotating shaft of the generator. As long as the power is input / output to / from the remaining shafts based on the power input / output to / from the crab shaft, it may be anything. The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the column of means for solving the problem. It is an example for specifically explaining the best mode for doing so, and does not limit the elements of the invention described in the column of means for solving the problem. That is, the interpretation of the invention described in the column of means for solving the problems should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problems. It is only a specific example.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、車両の製造産業などに利用可能である。   The present invention can be used in the vehicle manufacturing industry.

本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 according to an embodiment of the present invention. 実施例のハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the drive control routine performed by the electronic control unit for hybrids 70 of an Example. 充放電要求パワー設定処理の一例を示すフローチャートである。It is a flowchart which shows an example of a charge / discharge request | requirement power setting process. 要求トルク設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for request | requirement torque setting. エンジン22の動作ラインの一例と目標回転数Ne*と目標トルクTe*とを設定する様子を示す説明図である。It is explanatory drawing which shows a mode that an example of the operating line of the engine 22, the target rotational speed Ne *, and the target torque Te * are set. エンジン22からパワーを出力している状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a collinear diagram showing a dynamic relationship between the number of rotations and torque in a rotating element of a power distribution and integration mechanism 30 when traveling with power output from an engine 22; 管理中心設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the management center setting map. 充放電要求パワー設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for charging / discharging request | requirement power setting. 変形例の管理中心設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for management center setting of a modification. 変形例のハイブリッド自動車120の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification. 変形例のハイブリッド自動車220の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example. 変形例のハイブリッド自動車320の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 320 of a modified example. 変形例の燃料電池自動車420の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the fuel cell vehicle 420 of a modification.

符号の説明Explanation of symbols

20,120,220,320 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、60 ギヤ機構、62 デファレンシャルギヤ、63a,63b 駆動輪、64a,64b 車輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、89 加速度センサ、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、420 燃料電池自動車、430 燃料電池、440 DC/DCコンバータ、MG1,MG2,MG モータ。   20, 120, 220, 320 Hybrid vehicle, 22 engine, 24 engine electronic control unit (engine ECU), 26 crankshaft, 28 damper, 30 power distribution integration mechanism, 31 sun gear, 32 ring gear, 32a ring gear shaft, 33 pinion gear, 34 carrier, 35 reduction gear, 40 motor electronic control unit (motor ECU), 41, 42 inverter, 43, 44 rotational position detection sensor, 50 battery, 51 temperature sensor, 52 battery electronic control unit (battery ECU), 54 Electric power line, 60 gear mechanism, 62 differential gear, 63a, 63b driving wheel, 64a, 64b wheel, 70 electronic control unit for hybrid, 72 CPU, 74 ROM, 76 RAM, 80 ignition Switch 81 shift lever 82 shift position sensor 83 accelerator pedal 84 accelerator pedal position sensor 85 brake pedal 86 brake pedal position sensor 88 vehicle speed sensor 89 acceleration sensor 230 rotor motor 232 inner rotor 234 outer Rotor, 420 Fuel cell automobile, 430 Fuel cell, 440 DC / DC converter, MG1, MG2, MG motor.

Claims (8)

燃料の供給を受けて発電可能な発電手段と、
走行用の動力を出力可能な電動機と、
前記発電手段および前記電動機と電力のやりとりが可能な蓄電手段と、
車速を検出する車速検出手段と、
車両の加速度を検出する加速度検出手段と、
走行に要求される要求駆動力を設定する要求駆動力設定手段と、
走行用の駆動力と前記検出された加速度とに基づいて車重を演算する車重演算手段と、
前記演算された車重と前記検出された車速とに基づいて前記蓄電手段の蓄電量を管理するための管理用蓄電量範囲の中心蓄電量を設定する中心蓄電量設定手段と、
前記蓄電手段の蓄電量が前記設定された中心蓄電量に基づいて管理されると共に前記設定された要求駆動力に基づく駆動力により走行するよう前記発電手段と前記電動機とを制御する制御手段と、
を備える車両。
Power generation means capable of generating electricity by receiving fuel supply;
An electric motor capable of outputting driving power;
Power storage means capable of exchanging electric power with the power generation means and the electric motor,
Vehicle speed detection means for detecting the vehicle speed;
Acceleration detecting means for detecting the acceleration of the vehicle;
Required driving force setting means for setting required driving force required for traveling;
Vehicle weight calculation means for calculating the vehicle weight based on the driving force for traveling and the detected acceleration;
Central charge amount setting means for setting a central charge amount of a management charge amount range for managing the charge amount of the power storage means based on the calculated vehicle weight and the detected vehicle speed;
Control means for controlling the power generation means and the electric motor so that the power storage amount of the power storage means is managed based on the set central power storage amount and travels with a driving force based on the set required driving force;
A vehicle comprising:
前記中心蓄電量設定手段は、前記演算された車重が大きいほど小さくなる傾向に前記中心蓄電量を設定する手段である請求項1記載の車両。   2. The vehicle according to claim 1, wherein the central storage amount setting unit is a unit that sets the central storage amount in a tendency to decrease as the calculated vehicle weight increases. 前記中心蓄電量設定手段は、前記検出された車速が大きいほど小さくなる傾向に前記中心蓄電量を設定する手段である請求項1または2記載の車両。   3. The vehicle according to claim 1, wherein the central storage amount setting unit is a unit that sets the central storage amount so that the central storage amount tends to decrease as the detected vehicle speed increases. 前記中心蓄電量設定手段は、前記演算された車重と前記検出された車速とに基づいて制動時に前記電動機の回生駆動により回生可能なエネルギである回生可能エネルギを演算すると共に該演算した回生可能エネルギに基づいて前記中心蓄電量を設定する手段である請求項1記載の車両。   The central storage amount setting means calculates regenerative energy, which is energy that can be regenerated by regenerative driving of the motor during braking, based on the calculated vehicle weight and the detected vehicle speed, and the calculated regenerative potential The vehicle according to claim 1, wherein the vehicle is a means for setting the central storage amount based on energy. 前記中心蓄電量設定手段は、前記演算した回生可能エネルギが大きいほど小さくなる傾向に前記中心蓄電量を設定する手段である請求項4記載の車両。   The vehicle according to claim 4, wherein the central storage amount setting means is a means for setting the central storage amount so as to decrease as the calculated regenerative energy increases. 前記発電手段は、内燃機関と、該内燃機関からの動力の少なくとも一部を用いて発電可能な発電機と、を備える手段である請求項1ないし5のいずれか1つの請求項に記載の車両。   The vehicle according to any one of claims 1 to 5, wherein the power generation means includes an internal combustion engine and a generator capable of generating electric power using at least a part of power from the internal combustion engine. . 請求項6記載の車両であって、
前記発電手段は、車軸に連結された駆動軸と前記内燃機関の出力軸と前記発電機の回転軸との3軸に接続され、該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段を備える手段であり、
前記電動機は、前記駆動軸に動力を入出力可能である、
車両。
The vehicle according to claim 6, wherein
The power generation means is connected to three shafts of a drive shaft coupled to an axle, an output shaft of the internal combustion engine, and a rotation shaft of the generator, and power input / output to / from any two of the three shafts A three-axis power input / output means for inputting / outputting power to the remaining shaft based on
The electric motor can input and output power to the drive shaft.
vehicle.
燃料の供給を受けて発電可能な発電手段と、走行用の動力を出力可能な電動機と、前記発電手段および前記電動機と電力のやりとりが可能な蓄電手段と、を備える車両の制御方法であって、
(a)走行用の駆動力と車両の加速度とに基づいて車重を演算し、
(b)前記演算した車重と車速とに基づいて前記蓄電手段の蓄電量を管理するための管理用蓄電量範囲の中心蓄電量を設定し、
(c)前記蓄電手段の蓄電量が前記設定した中心蓄電量に基づいて管理されると共に走行に要求される要求駆動力に基づく駆動力により走行するよう前記発電手段と前記電動機とを制御する、
ことを特徴とする車両の制御方法。
A vehicle control method comprising: power generation means capable of generating power upon receipt of fuel supply; an electric motor capable of outputting driving power; and an electric storage means capable of exchanging electric power with the electric power generation means and the electric motor. ,
(A) calculating the vehicle weight based on the driving force for traveling and the acceleration of the vehicle;
(B) Based on the calculated vehicle weight and vehicle speed, a central storage amount of a management storage amount range for managing the storage amount of the storage means is set,
(C) controlling the power generation means and the electric motor so that the power storage amount of the power storage means is managed based on the set central power storage amount and is driven by a driving force based on a required driving force required for traveling;
A method for controlling a vehicle.
JP2007301284A 2007-11-21 2007-11-21 Vehicle and its control method Pending JP2009126257A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007301284A JP2009126257A (en) 2007-11-21 2007-11-21 Vehicle and its control method
PCT/JP2008/066157 WO2009066499A1 (en) 2007-11-21 2008-09-08 Vehicle and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301284A JP2009126257A (en) 2007-11-21 2007-11-21 Vehicle and its control method

Publications (1)

Publication Number Publication Date
JP2009126257A true JP2009126257A (en) 2009-06-11

Family

ID=40667328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301284A Pending JP2009126257A (en) 2007-11-21 2007-11-21 Vehicle and its control method

Country Status (2)

Country Link
JP (1) JP2009126257A (en)
WO (1) WO2009066499A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018208A1 (en) * 2011-08-03 2013-02-07 トヨタ自動車株式会社 Hybrid vehicle and method for controlling same
US20140005879A1 (en) * 2010-12-17 2014-01-02 Robert Bosch Gmbh Method and device for determining a range of a vehicle
JP2017047820A (en) * 2015-09-03 2017-03-09 トヨタ自動車株式会社 Hybrid automobile

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183021B (en) * 2011-12-30 2016-05-18 上海汽车集团股份有限公司 Be used for the method for the electric discharge moment of torsion of controlling drive motors
JP6686384B2 (en) * 2015-11-20 2020-04-22 いすゞ自動車株式会社 Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle
JP6456809B2 (en) * 2015-11-30 2019-01-23 株式会社Subaru Vehicle power supply
JP6897512B2 (en) * 2017-11-13 2021-06-30 トヨタ自動車株式会社 Hybrid vehicle driving force control device
US11167745B2 (en) * 2018-04-19 2021-11-09 Toyota Jidosha Kabushiki Kaisha Control system of hybrid vehicle
JP7155938B2 (en) * 2018-11-22 2022-10-19 トヨタ自動車株式会社 hybrid car
KR102634360B1 (en) * 2019-03-15 2024-02-08 현대자동차주식회사 Apparatus for controlling towing mode of electric vehicle and method tnereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164402A (en) * 1997-11-28 1999-06-18 Aisin Aw Co Ltd Controller and controlling method for hybrid vehicle
JP3707411B2 (en) * 2001-09-28 2005-10-19 トヨタ自動車株式会社 Power output apparatus and automobile equipped with the same
JP4051911B2 (en) * 2001-10-03 2008-02-27 日産自動車株式会社 Control device for hybrid vehicle
JP4092922B2 (en) * 2002-02-06 2008-05-28 トヨタ自動車株式会社 Vehicle control device
JP4801959B2 (en) * 2005-09-30 2011-10-26 株式会社東芝 Energy control method and apparatus for hybrid train
JP2007245872A (en) * 2006-03-15 2007-09-27 Toyota Motor Corp Vehicle and its control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140005879A1 (en) * 2010-12-17 2014-01-02 Robert Bosch Gmbh Method and device for determining a range of a vehicle
US9785612B2 (en) * 2010-12-17 2017-10-10 Robert Bosch Gmbh Method and device for determining a range of a vehicle
WO2013018208A1 (en) * 2011-08-03 2013-02-07 トヨタ自動車株式会社 Hybrid vehicle and method for controlling same
JPWO2013018208A1 (en) * 2011-08-03 2015-03-02 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
US9248827B2 (en) 2011-08-03 2016-02-02 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
JP2017047820A (en) * 2015-09-03 2017-03-09 トヨタ自動車株式会社 Hybrid automobile
CN106494385A (en) * 2015-09-03 2017-03-15 丰田自动车株式会社 Hybrid vehicle
US10286896B2 (en) 2015-09-03 2019-05-14 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle

Also Published As

Publication number Publication date
WO2009066499A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4407741B2 (en) Vehicle and control method thereof
JP4345824B2 (en) Vehicle and control method thereof
JP4453746B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP4086018B2 (en) HYBRID VEHICLE, ITS CONTROL METHOD, AND POWER OUTPUT DEVICE
JP4513882B2 (en) Hybrid vehicle and control method thereof
JP4229105B2 (en) Hybrid vehicle and control method thereof
JP2009126257A (en) Vehicle and its control method
JP5200924B2 (en) Hybrid vehicle and control method thereof
JP2009248732A (en) Hybrid vehicle and method of controlling the same
JP4365354B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP2010195255A (en) Hybrid vehicle and control method thereof
JP2010064522A (en) Vehicle and method of controlling the same
JP4345765B2 (en) Vehicle and control method thereof
JP5691997B2 (en) Hybrid car
JP4992810B2 (en) Hybrid vehicle and control method thereof
JP2009149154A (en) Vehicle and control method therefor
JP2009227074A (en) Hybrid vehicle and control method thereof
JP2011235694A (en) Hybrid automobile and method of controlling the same
JP5387460B2 (en) Vehicle and control method thereof
JP4977055B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP2009023527A (en) Vehicle and control method thereof
JP2009262866A (en) Hybrid car and control method therefor
JP4258519B2 (en) Vehicle and control method thereof
JP2010023588A (en) Power output device, vehicle mounted thereon, and control method of motive power output device
JP2009184387A (en) Hybrid vehicle and method of controlling the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623