JP2009124905A - Charging method for storage battery, and charger - Google Patents

Charging method for storage battery, and charger Download PDF

Info

Publication number
JP2009124905A
JP2009124905A JP2007298406A JP2007298406A JP2009124905A JP 2009124905 A JP2009124905 A JP 2009124905A JP 2007298406 A JP2007298406 A JP 2007298406A JP 2007298406 A JP2007298406 A JP 2007298406A JP 2009124905 A JP2009124905 A JP 2009124905A
Authority
JP
Japan
Prior art keywords
charging
voltage
current
transformer
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007298406A
Other languages
Japanese (ja)
Inventor
Katsumi Tanigawa
勝美 谷川
Masahiro Hirahara
正宏 平原
Masahiko Watanabe
政彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2007298406A priority Critical patent/JP2009124905A/en
Publication of JP2009124905A publication Critical patent/JP2009124905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging method by which charging can be carried out in a stable state within a relatively short time even in a case of connection to a power supply generating an unstable output voltage. <P>SOLUTION: The charging method for a storage battery is carried out by using a power supply device 2. The power supply device 2 comprises a primary-side circuit 2a which contains a primary coil 31 of a transformer 30 and is connected to an AC power supply, a secondary-side circuit 2b which contains a secondary coil 32 of the transformer 30 and is connected to the storage battery that is charged up, and a rectifying means 35 disposed in the secondary-side circuit 2b. The power supply device 2 transforms AC power from the AC power supply and rectifies AC current of the AC power into DC current to output the DC current. According to the charging method, the turn ratio of the transformer 30 is changed so that the interior of the secondary-side circuit 2b takes a predetermined charging current value (20 to 25 A in the embodiment) while maintaining a voltage value smaller than a predetermined charging voltage value (28 V in the embodiment) during charging of the storage battery. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は蓄電池の充電方法及び前記方法を実現する充電器に関し,より詳細には交流電源からの電力をトランスにより変圧すると共に直流に整流して出力する電源装置を使用して行う,鉛蓄電池の充電に適した蓄電池の充電方法及び充電器に関する。   The present invention relates to a method for charging a storage battery and a charger that implements the method, and more specifically, a lead storage battery that uses a power supply device that transforms electric power from an AC power source with a transformer and rectifies the power into DC and outputs the same. The present invention relates to a charging method and a charger for a storage battery suitable for charging.

充電器の電源装置
充電により繰り返し使用できる蓄電池は,電力によって駆動される各種機器の電源として広く使用されており,このような蓄電池の一種である鉛蓄電池は,自動車のバッテリーとして広く利用されている他,商用電源の供給停止時に使用されるバックアップ電源,フォークリフトやゴルフカート,昇降可能な作業台を搭載した高所作業車等,各種の電動車用の電源としても広く用いられている。
Charger power supply storage batteries that can be used repeatedly by charging are widely used as power sources for various devices driven by electric power. Lead storage batteries, a type of such storage batteries, are widely used as automobile batteries. In addition, it is widely used as a power source for various electric vehicles such as a backup power source used when the supply of commercial power is stopped, a forklift, a golf cart, an aerial work vehicle equipped with a work table that can be raised and lowered.

このような鉛蓄電池において,自動車に搭載された鉛蓄電池ではエンジンに設けたオルタネータによって充電が行われるが,フォークリフトやゴルフカート,高所作業車等の電動車の電源として使用されている鉛蓄電池では,電動車の使用後,搭載されている蓄電池を充電器を介して電源に接続し,走行等によって放電した電力を充電によって補う必要がある。   In such a lead storage battery, a lead storage battery mounted on an automobile is charged by an alternator provided in the engine. In a lead storage battery used as a power source for an electric vehicle such as a forklift, a golf cart, or an aerial work vehicle, After use of the electric vehicle, it is necessary to connect the mounted storage battery to a power source through a charger and supplement the electric power discharged by running or the like by charging.

この鉛蓄電池に対する充電は,一般に商用電源からのAC100Vを変圧,整流して入力することにより行われ,このような充電に使用される充電器には,商用交流電源からの電圧を蓄電池に対応した電圧に変圧すると共に,直流に整流する電源装置が設けられている。   Charging of this lead storage battery is generally performed by transforming, rectifying, and inputting AC 100V from a commercial power supply, and for the charger used for such charging, the voltage from the commercial AC power supply corresponds to the storage battery. A power supply device that transforms the voltage into a voltage and rectifies the voltage into a direct current is provided.

このような電源装置2の一例として,高周波トランス30’の一次側と交流電源間に整流ブリッジ71を設けると共に,整流された信号を半導体スイッチング素子72の高速ON,OFFにより高周波信号を発生する高周波発振回路7を設け,半導体スイッチング素子72のON/OFFタイミングを制御して高周波トランス30’の二次側で一定の電圧を取り出すと共に整流して所望の直流電流を得ることができるように構成したものがある(図3参照)。   As an example of such a power supply device 2, a rectifier bridge 71 is provided between the primary side of the high-frequency transformer 30 ′ and the AC power supply, and the rectified signal is a high-frequency signal that generates a high-frequency signal by turning on and off the semiconductor switching element 72 at high speed. An oscillation circuit 7 is provided, and the ON / OFF timing of the semiconductor switching element 72 is controlled to take out a constant voltage on the secondary side of the high-frequency transformer 30 ′ and rectify it to obtain a desired DC current. There is something (see Fig. 3).

また,充電式電気かみそりの充電等に使用する充電器に関し,トランスの一次巻線に中間タップを設け,一次側に接続される商用交流電源の電圧を検出し,検出された電圧に応じて前記一次巻線の使用巻回数を自動で切り換え可能としたものも提案されており(特許文献1の請求項1),具体的には,一次巻線の両端にタップを設けると共に,中間に中間タップを設け,トランスの一次巻線と商用交流電源間に,所定の閾値を越える電圧でONとなる半導体スイッチング素子を備えたスイッチング回路を設け,商用交流電源からの電圧が前記閾値以下である場合に,前記トランスの一端と中間タップとを前記商用交流電源に接続すると共に,商用交流電源からの電圧が前記閾値を越えると,トランスの一次巻線の両端に商用交流電源を接続して,トランスの二次側電圧で一定の電圧を取り出すことができるように構成したものも提案されている(特許文献1の第1図,第2図参照)。   In addition, regarding a charger used for charging a rechargeable electric shaver, etc., an intermediate tap is provided in the primary winding of the transformer, the voltage of the commercial AC power source connected to the primary side is detected, and the above-described voltage is detected according to the detected voltage. There has also been proposed one in which the number of turns of the primary winding can be automatically switched (Claim 1 of Patent Document 1). Specifically, a tap is provided at both ends of the primary winding and an intermediate tap is provided in the middle. A switching circuit including a semiconductor switching element that is turned on at a voltage exceeding a predetermined threshold is provided between the transformer primary winding and the commercial AC power supply, and the voltage from the commercial AC power supply is equal to or lower than the threshold value. , One end of the transformer and an intermediate tap are connected to the commercial AC power source, and when the voltage from the commercial AC power source exceeds the threshold, the commercial AC power source is connected to both ends of the primary winding of the transformer. , The secondary side voltage which is configured to be able to take out a constant voltage has been proposed transformer (FIG. 1 of Patent Document 1, reference Figure 2).

鉛蓄電池に対する充電方法一般
なお,鉛蓄電池の充電方法としては,一般に定電流充電法,段別充電法,定電圧充電法,準定電圧充電法等が知られている(非特許文献1参照)。
Charging method for lead storage battery In general, as a charging method for the lead storage battery, a constant current charging method, a stepwise charging method, a constant voltage charging method, a semi-constant voltage charging method, etc. are generally known (see Non-Patent Document 1). .

(1)定電流充電法
このうちの定電流充電法は,終始一定の電流で充電を行う方法である。回路の内部抵抗を無視して,電源装置より供給される電圧をVout,蓄電池の電圧をV,蓄電池の内部抵抗をr,充電電流をIとすると,充電電流Iは,
I=(Vout−V)/r
によって表すことができ,充電電流Iは充電に伴う蓄電池の電圧Vの上昇につれて減少する。従って,この定電流充電法では充電の進行と共に回路内に設けた抵抗の抵抗値を減少させて充電電流Iを一定値に保ちながら行われる充電法である。
(1) Constant current charging method The constant current charging method is a method of charging with a constant current from start to finish. If the internal resistance of the circuit is ignored, the voltage supplied from the power supply device is Vout, the voltage of the storage battery is V B , the internal resistance of the storage battery is r, and the charging current is I, the charging current I is
I = (Vout−V B ) / r
The charging current I decreases as the storage battery voltage V B increases with charging. Therefore, this constant current charging method is a charging method performed while maintaining the charging current I at a constant value by decreasing the resistance value of the resistor provided in the circuit as the charging progresses.

この定電流充電法では,充電の終期に電流のほとんどが電解液の分解又は熱の発生に消費されるという不利がある。   This constant current charging method has the disadvantage that most of the current is consumed for the decomposition of the electrolyte or the generation of heat at the end of charging.

(2)段別充電法
段別充電法は,前述した定電流充電法の一種であるが,この方法では充電中の電流を2又は3段に逓減する。初期には3〜5時間率電流を用い,電圧がガスの発生する電圧に達すると電流を下げ,再度この電圧に達すると電流をさらに下げ,最終的には10〜20時間率の電流まで低下させる。
(2) Step-by-step charging method The step-by-step charging method is a kind of the constant current charging method described above. In this method, the current being charged is gradually reduced to two or three steps. Initially, a current of 3 to 5 hours is used. When the voltage reaches the voltage at which gas is generated, the current is decreased. When the voltage reaches this voltage again, the current is further decreased and finally decreased to a current of 10 to 20 hours. Let

この方法では,ガスの発生電圧に達すると電流を下げることから,前掲の定電流充電法で生じていたガスの発生という問題を解消することができるものとなっているが,充電の進行と共に電流値を低下させるため,初期充電の時間率で終始充電を行う場合に比較して充電完了時間が遅れる。   In this method, since the current is reduced when the gas generation voltage is reached, the problem of gas generation that has occurred in the constant current charging method described above can be solved. In order to reduce the value, the charging completion time is delayed as compared with the case where charging is performed all the time at the initial charging time rate.

(3)定電圧充電法
定電圧充電法は,終始一定の電圧を加えながら充電を行う方法である。前掲の定電流充電法の説明中に示した式からも明らかなように,電源装置より供給される電圧をVoutを一定にして充電を行う場合,充電電流Iは蓄電池の電圧Vが低い充電の開始時には非常に大きいが,電池電圧Vの上昇につれて減少し,この充電電流Iの減少によって充電の終期で生じやすいガスの発生を減少させることができるものとなっている。
(3) Constant voltage charging method The constant voltage charging method is a method of charging while applying a constant voltage throughout. As is apparent from the equation shown in the description of the appended constant current charging method, when the charging by the voltage supplied from the power supply to Vout constant, the charging current I charge is low voltage V B of the battery Although it is very large at the start of the battery, it decreases as the battery voltage V B increases, and the decrease in the charging current I can reduce the generation of gas that is likely to occur at the end of charging.

しかし,この方法による場合には電源電圧が比較的低く設定されるために完全に充電を行えないという問題があり,充電の終期に電圧を上げて20時間率程度の電流で充電を完了させる等の措置を講じる必要がある。   However, when this method is used, there is a problem that the power supply voltage is set to be relatively low so that it cannot be completely charged. At the end of charging, the voltage is increased and charging is completed with a current of about 20 hours. It is necessary to take measures.

(4)準定電圧充電法
準定電圧充電法は,前述した定電圧充電法の欠点を解消するために回路に抵抗を入れて電源電圧を高く設定しつつ初期の充電電流に制限を加えるものであり,これにより,前記定電圧充電法における充電不足発生の解消が図られている。
(4) Quasi-constant voltage charging method The quasi-constant voltage charging method limits the initial charging current while setting the power supply voltage high by adding resistance to the circuit in order to eliminate the disadvantages of the constant voltage charging method described above. Thus, the occurrence of insufficient charging in the constant voltage charging method is solved.

この発明の先行技術文献情報としては次のものがある。
特開昭58−3539号公報 株式会社電気書院発行「電池ハンドブック」(3-61頁〜3-62頁)
Prior art document information of the present invention includes the following.
Japanese Patent Laid-Open No. 58-3539 “Battery Handbook” published by Denki Shoin Co., Ltd. (pages 3-61 to 3-62)

電源電圧の変化に伴う課題
ところで,フォークリフト,高所作業車等の電動車は,商用交流電源を確保できない工事現場等において使用される場合も多い。
Problems associated with changes in power supply voltage By the way, electric vehicles such as forklifts and aerial work platforms are often used in construction sites where commercial AC power cannot be secured.

このような商用交流電源が確保されていない工事現場等では,仮設電源,例えばエンジン駆動発電機等を交流電源として蓄電池に対する充電が行われる場合も多く,この場合,充電器に入力される交流電圧は商用交流電源に比べて不安定である。   In such construction sites where commercial AC power is not secured, the storage battery is often charged using a temporary power source such as an engine-driven generator as an AC power source. In this case, the AC voltage input to the charger is used. Is unstable compared to commercial AC power supplies.

しかも,このような工事現場等では,共通の電源から複数の機器に対する電力の供給が同時に行われる場合も多く,例えば電源である発電機に,複数のコンセントを備えたコードリールを接続して,このコードリールのコンセントに他の機器と共に充電器を接続したり,また,このコードリールのコンセントにさらにコードリールを接続して延長し,延長された末端のコードリールのコンセントに他の機器等と共に充電器を接続することもしばしば行われる(図4参照)。   Moreover, in such construction sites, power is often supplied from a common power source to multiple devices at the same time. For example, by connecting a cord reel equipped with a plurality of outlets to a power generator, Connect the charger with other equipment to the outlet of the cord reel, or connect the cord reel to the outlet of the cord reel and extend it, and connect it with the other equipment to the outlet of the extended cord reel. Connecting the charger is often performed (see FIG. 4).

そのため,このようにコードリールを直列につないで電源から離れたところまで電線を延長すると,電源から離れるに従って電線の抵抗による電圧降下が生じ,末端の充電器に供給される電圧が低くなるという現象が生じる。   Therefore, when the cord reels are connected in series in this way and the wire is extended away from the power source, a voltage drop due to the resistance of the wire occurs as the distance from the power source increases, and the voltage supplied to the terminal charger decreases. Occurs.

その結果,電源である発電機の出力電圧がAC100Vに維持されていたとしても,末端の機器に印加される電圧は,これに満たない電圧(例えばAC90V)となってしまう。   As a result, even if the output voltage of the generator as the power source is maintained at 100 VAC, the voltage applied to the terminal device is less than this (for example, 90 VAC).

さらに,発電機等の電源に消費電力の比較的大きい機器,例えばモータ駆動型の空気圧縮機を接続して使用すると,空気圧縮機の運転や停止,運転状態の変化に伴って末端に接続された充電器に入力される電圧が大きく変化する。   In addition, when a device with relatively large power consumption, such as a motor-driven air compressor, is connected to the power source such as a generator, it is connected to the end as the air compressor is operated or stopped, and the operating state changes. The voltage input to the charger changes greatly.

そのために,このような不安定な電源からの電力供給を受けて使用される充電器では,安定した電圧の直流電流を蓄電池に入力することができない。   For this reason, in a charger used by receiving power supply from such an unstable power source, it is impossible to input a stable direct current to the storage battery.

このように,不安定な電圧を出力する交流電源からの電力が入力される場合,図3を参照して説明した電源装置を備えた充電器では,高周波信号発振回路7に設けた半導体スイッチング素子72は,一般に大きな電圧変動に弱く,入力電圧に対して±15%程度しか対応できない。   In this way, when power from an AC power source that outputs an unstable voltage is input, in the charger having the power supply device described with reference to FIG. 3, the semiconductor switching element provided in the high-frequency signal oscillation circuit 7 72 is generally vulnerable to large voltage fluctuations, and can handle only about ± 15% of the input voltage.

しかも,入力電圧が下がった場合には半導体スイッチング素子のON時間を長くとると共に,OFF時間を短くして出力電圧や電流を制御するが,ON時間がOFF時間を越えるような制御を行うと,半導体スイッチング素子が発熱し破損してしまう。   Moreover, when the input voltage drops, the semiconductor switching element is turned on for a longer time and the OFF time is shortened to control the output voltage and current. However, if control is performed so that the ON time exceeds the OFF time, The semiconductor switching element generates heat and is damaged.

そのため,発電機が単相AC100Vの交流を出力するものであったとしても,実際の出力がAC85Vを下回ったり,AC115Vを越えてしまう等,±15%を越える場合がある以上,このような半導体スイッチング素子を使用した電源装置を備えた充電器を使用することができない。   For this reason, even if the generator outputs a single-phase AC100V alternating current, the actual output may be less than AC85V or exceed AC115V. A charger equipped with a power supply device using a switching element cannot be used.

一方,前述した特許文献1に記載の発明も,充電式電気かみそり等の充電に使用する充電器のように,商用交流電源(例えば単相AC100V,又は単相AC200V)からの電力供給を前提とするものであり,実施例においても商用交流電源としてV1,V2の2種類間での切り換えを前提とする(特許文献1の実施例及び第2図参照)。   On the other hand, the above-described invention described in Patent Document 1 is also based on the assumption that power is supplied from a commercial AC power source (for example, single-phase AC100V or single-phase AC200V), such as a charger used for charging a rechargeable electric shaver. In the embodiment, it is premised on switching between two types of commercial AC power sources V1 and V2 (see the embodiment of Patent Document 1 and FIG. 2).

そのため,例えば設定電圧V1,V2をAC100V,AC200Vの商用交流電源に対応して設定して,AC100V電源に接続して使用した場合,電源電圧がAC100Vを下回る場合にはトランスの二次側では予定した電圧より低い電圧しか取り出すことができず,また,AC200V電源に接続して使用した場合,電源電圧がAC200Vを越える場合にはトランスの二次側電圧では予定した電圧より高い電圧が出力されることとなり,電源電圧の変化によってトランスの二次側で取り出される電圧も不安定となる。   Therefore, for example, when setting voltage V1, V2 is set corresponding to AC 100V, AC200V commercial AC power supply and connected to AC100V power supply, when the power supply voltage is lower than AC100V, the secondary side of the transformer is scheduled. When the power supply voltage exceeds 200V AC, a voltage higher than the expected voltage is output as the secondary voltage of the transformer. As a result, the voltage taken out on the secondary side of the transformer becomes unstable due to the change of the power supply voltage.

充電方式に伴う課題
さらに特許文献1の充電器では,電源電圧を検出して一次巻線の巻数を切り替えることでトランスの二次電圧を一定にしようというものであるから,これを前述した鉛蓄電池の一般的な充電方法に照らした場合,定電圧充電法に対応した充電が行われることとなる。
Problems associated with the charging method Further, in the charger disclosed in Patent Document 1, the secondary voltage of the transformer is made constant by detecting the power supply voltage and switching the number of turns of the primary winding. In light of this general charging method, charging corresponding to the constant voltage charging method is performed.

その結果,充電が進むにつれて鉛蓄電池の電圧Vが上昇すると充電電流Iが減少する。この充電電流Iの減少は,充電終期における水素ガスの発生防止に役立つものではあるが,充電電流Iの減少により充電時間が長くなり,また,充電電圧を低く設定する必要があり鉛蓄電池の充電を完全に行うことができないという,定電圧充電法の持つ欠点をそのまま受け継ぐものとなる。 As a result, the voltage V B of the lead-acid battery as charging proceeds charging current I decreases to rise. Although this reduction in charging current I is useful for preventing the generation of hydrogen gas at the end of charging, the charging time becomes longer due to the reduction in charging current I, and it is necessary to set the charging voltage low, so that charging of lead-acid batteries is required. It inherits the shortcoming of the constant voltage charging method that it cannot be performed completely.

しかも,特許文献1に記載の充電器にあっては,商用交流電源の電圧を検出してその変化に対処しようという発想はあるが,トランスの二次側における充電電圧や充電電流に対応して蓄電池に対する充電状況を変化させようとする発想はない。   Moreover, in the charger described in Patent Document 1, there is an idea to detect the voltage of the commercial AC power supply and cope with the change, but in response to the charging voltage and charging current on the secondary side of the transformer. There is no idea to change the charging status of the storage battery.

そのため,トランスの二次側における充電電圧Vが高すぎると充電電流Iが多くなり蓄電池が発熱したり,蓄電池の電解液が電気分解されて電解液の比重不足,液減りが生じ,短期間でメンテナンスが必要となると共に,電気分解によって生じる水素ガスは非常に引火しやすく,爆発等の危険性がある。   Therefore, if the charging voltage V on the secondary side of the transformer is too high, the charging current I increases and the storage battery generates heat, or the electrolytic solution of the storage battery is electrolyzed, resulting in insufficient specific gravity of the electrolytic solution and a decrease in liquid. Maintenance is required, and hydrogen gas generated by electrolysis is very flammable, and there is a risk of explosion.

そこで,本発明は上記従来技術における欠点を解消するためになされたものであり,工事現場の仮設電源等,出力電圧が不安定な電源に接続した場合であっても故障,破損等を生じることなく,また,このような電圧変化によっても蓄電池の過充電や充電不足が生じることなく,しかも,過充電,及びこの過充電に伴う水素ガスの発生を防止して安全かつ確実な充電を行うことのできると共に,比較的短時間で充電を完了することのできる蓄電池の充電方法及び充電器を提供することを目的とする。   Therefore, the present invention has been made to solve the above-mentioned disadvantages of the prior art, and even if it is connected to a power source whose output voltage is unstable, such as a temporary power source at a construction site, failure, damage, etc. occur. In addition, the battery should not be overcharged or insufficiently charged due to such a voltage change, and the overcharge and the generation of hydrogen gas associated with this overcharge can be prevented for safe and reliable charging. An object of the present invention is to provide a storage battery charging method and a charger that can complete charging in a relatively short time.

上記目的を達成するために,本発明の蓄電池の充電方法は,トランス30の一次巻線31を含み,交流電源に接続される一次側回路2aと,トランス30の二次巻線32を含み,充電を行う蓄電池に接続される二次側回路2bと,前記二次側回路2b内に設けられた整流手段35を備え,交流電源からの電力を変圧すると共に直流に整流して出力する電源装置2を用いて行う蓄電池の充電方法において,
前記蓄電池に対する充電中,前記トランス30の巻数比を変更して前記二次側回路2b内を所定の充電電圧値未満(充電電圧値が28〜29Vである実施形態において下限の28V未満)に維持しつつ,所定の充電電流値(実施形態において20〜25A)となるよう制御することを特徴とする(請求項1)。
In order to achieve the above object, a method for charging a storage battery according to the present invention includes a primary winding 31 of a transformer 30, a primary side circuit 2 a connected to an AC power source, and a secondary winding 32 of the transformer 30. A power supply device comprising a secondary side circuit 2b connected to a storage battery for charging, and a rectifying means 35 provided in the secondary side circuit 2b, which transforms power from an AC power source and rectifies and outputs to DC In the method of charging a storage battery using
During charging of the storage battery, the turn ratio of the transformer 30 is changed to maintain the inside of the secondary side circuit 2b below a predetermined charging voltage value (less than the lower limit of 28V in the embodiment where the charging voltage value is 28 to 29V). However, it is controlled so as to be a predetermined charging current value (20 to 25 A in the embodiment) (Claim 1).

前述の充電方法において,前記トランス30の巻数比を変更しても前記二次側回路2b内の電圧値を前記充電電圧値未満(実施形態において28V未満)に維持することができず,前記二次側回路2b内の電圧値が前記充電電圧値以上(実施形態において28V以上)になったら,前記トランス30の巻数比を変更して前記二次側回路2b内を前記充電電圧値(実施形態において28〜29V)に維持するよう制御するように構成することができる(請求項2)。   In the above charging method, even if the turns ratio of the transformer 30 is changed, the voltage value in the secondary circuit 2b cannot be maintained below the charging voltage value (less than 28V in the embodiment), When the voltage value in the secondary side circuit 2b becomes equal to or higher than the charging voltage value (28V or higher in the embodiment), the turn ratio of the transformer 30 is changed to change the charging voltage value (second embodiment) in the secondary side circuit 2b. (28 to 29 V) at the time of control (Claim 2).

また,前記充電方法において,前記二次側回路2b内を前記充電電圧値(実施形態において28〜29V)に維持する制御により前記二次側回路2b内の電流値が,前記充電電流値に対して低い値に設定された所定の充電完了電流値(実施形態において3A)未満となったときに,前記蓄電池に対する充電を完了するように構成しても良い(請求項3)。   Further, in the charging method, the current value in the secondary side circuit 2b is controlled with respect to the charging current value by controlling to maintain the secondary side circuit 2b at the charging voltage value (28 to 29V in the embodiment). The charging of the storage battery may be completed when it becomes less than a predetermined charging completion current value (3A in the embodiment) set to a low value (Claim 3).

さらに,前記充電の終了は,充電開始から所定時間が経過した時,前記二次側回路内の電流が前記充電完了電流値(実施形態において3A)以上であっても充電を完了するようにしても良い(請求項4)。   Further, the end of the charging is such that when a predetermined time has elapsed from the start of charging, the charging is completed even if the current in the secondary circuit is equal to or greater than the charging completion current value (3A in the embodiment). (Claim 4).

なお,前記蓄電池が鉛蓄電池である場合,前記充電電圧値を2.33〜2.42V/セルとすることが好ましい(請求項5)。   In addition, when the said storage battery is a lead storage battery, it is preferable that the said charge voltage value shall be 2.33-2.42V / cell (Claim 5).

また,本発明の充電器は,トランス30の一次巻線31を含み,交流電源に接続される一次側回路2aと,トランス30の二次巻線32を含み,充電を行う蓄電池に接続される二次側回路2bと,前記二次側回路2b内に設けられた整流手段35を備え,交流電源からの電力を変圧すると共に直流に整流して出力する電源装置2を備えた充電器1において,
前記トランス30を巻数比可変型のものとし,前記トランス30の巻数比を変更する巻数比変更手段(実施形態においてスイッチング回路40)を設けると共に,
前記二次側回路2b内の電圧を検出する電圧検出手段51と,前記二次側回路2b内の電流を検出する電流検出手段52と,前記電圧検出手段が検出する電圧を所定の充電電圧値(実施形態において28V)未満に維持しつつ,前記電流検出手段が検出する電流が所定の充電電流値(実施形態において20〜25A)の範囲となるように,前記巻数比変更手段を制御する制御回路54を備えた制御装置5を有することを特徴とする(請求項6)。
The charger of the present invention includes a primary winding 31 of the transformer 30, includes a primary circuit 2a connected to an AC power source, and a secondary winding 32 of the transformer 30, and is connected to a storage battery that performs charging. In a charger 1 including a secondary side circuit 2b and a rectifying means 35 provided in the secondary side circuit 2b, and having a power supply device 2 that transforms power from an AC power source and rectifies and outputs it to DC. ,
The transformer 30 is of a variable turns ratio, provided with turns ratio changing means (switching circuit 40 in the embodiment) for changing the turns ratio of the transformer 30,
Voltage detection means 51 for detecting the voltage in the secondary side circuit 2b, current detection means 52 for detecting the current in the secondary side circuit 2b, and the voltage detected by the voltage detection means are set to a predetermined charging voltage value. Control for controlling the turn ratio changing means so that the current detected by the current detecting means falls within a predetermined charging current value (in the embodiment, 20 to 25 A) while being maintained at less than (28 V in the embodiment). It has the control apparatus 5 provided with the circuit 54 (Claim 6).

前記構成の充電器において,前記トランス30の一次巻線31に複数のタップT0〜T5を設けると共に,前記トランス30の巻数比を変更可能に前記交流電源と前記タップT0〜T5間の接続パターンを切り換えるスイッチング回路40を前記巻数比変更手段として前記電源装置2の前記一次側回路2aに設けたものとしても良い(請求項7)。   In the charger having the above-described configuration, a plurality of taps T0 to T5 are provided in the primary winding 31 of the transformer 30, and a connection pattern between the AC power source and the taps T0 to T5 can be changed so that the turns ratio of the transformer 30 can be changed. A switching circuit 40 for switching may be provided in the primary side circuit 2a of the power supply device 2 as the turns ratio changing means (claim 7).

また,前記制御回路54には,前記電圧検出手段51が検出する二次側回路2b内の電圧値が前記巻数比変更手段(実施形態においてスイッチング回路40)の制御による前記トランス30の巻数比の変更によっても前記充電電圧値未満(実施形態において28V未満)に維持することができず,前記電圧検出手段が検出する電圧値が前記充電電圧値以上(実施形態において29V以上)になったら,前記電圧検出手段51が検出する電圧を所定の充電電圧値(実施形態において28〜29Vの範囲)に維持するように,前記巻数比変更手段を制御するようにしても良い(請求項8)。   Further, the control circuit 54 has a voltage value in the secondary side circuit 2b detected by the voltage detection means 51 to indicate the turn ratio of the transformer 30 controlled by the turn ratio changing means (the switching circuit 40 in the embodiment). Even if it is changed, it cannot be kept below the charging voltage value (less than 28 V in the embodiment), and the voltage value detected by the voltage detecting means becomes equal to or higher than the charging voltage value (29 V or more in the embodiment). The turn ratio changing means may be controlled so that the voltage detected by the voltage detecting means 51 is maintained at a predetermined charging voltage value (in the embodiment, in the range of 28 to 29 V) (Claim 8).

更に,前記二次側回路2bの前記二次巻線32と前記蓄電池間に開閉器RY2を設けると共に,
前記制御回路54に,前記二次側回路内を前記充電電圧値の範囲に維持する制御後,前記電流検出手段52が前記充電電流値に対して低い値に設定された所定の充電完了電流値(実施形態において3A)未満となったことを検出したときに,前記開閉器RY2を開く充電自動終了手段542を設けるものとしても良い(請求項9)。
Further, a switch RY2 is provided between the secondary winding 32 of the secondary side circuit 2b and the storage battery,
After controlling the control circuit 54 to maintain the inside of the secondary side circuit in the range of the charging voltage value, the current detecting means 52 has a predetermined charging completion current value set to a value lower than the charging current value. (Automatic charging end means 542 that opens the switch RY2 when it is detected that it is less than (3A in the embodiment) may be provided.

この場合,前記充電自動終了手段542に,前記制御回路54に設けたタイマにより充電開始から所定時間の経過がカウントされた時,前記二次側回路2b内の電流が前記充電完了電流値(実施形態において3A)以上であっても前記開閉器RY2を開く充電強制終了手段543を備えるものとしても良い(請求項10)。   In this case, when the elapse of a predetermined time from the start of charging is counted by the timer provided in the control circuit 54 in the automatic charging end means 542, the current in the secondary side circuit 2b becomes the charge completion current value (implementation). Even if it is 3A) or more in the form, it may be provided with the charge forced termination means 543 for opening the switch RY2.

さらに,前記制御回路54は,前記電圧検出手段51が検出した電圧が前記充電電圧値(実施形態において29V)を越えるとき,及び前記電流検出手段52が検出する電流が所定の充電電流値(実施形態において25A)を超えるとき,前記トランス30の巻数比が増加するように前記巻数比変更手段を制御し,
前記電流検出手段52が検出する電流が所定の充電電流値(実施形態において20A)未満となったとき,前記トランス30の巻数比が減少するように前記巻数比変更手段を制御するように構成する(請求項11)。
Further, the control circuit 54 determines that when the voltage detected by the voltage detecting means 51 exceeds the charging voltage value (29 V in the embodiment) and the current detected by the current detecting means 52 is a predetermined charging current value (implemented). When the configuration exceeds 25A), the turns ratio changing means is controlled so that the turns ratio of the transformer 30 increases,
When the current detected by the current detection means 52 becomes less than a predetermined charging current value (20 A in the embodiment), the turn ratio changing means is controlled so that the turn ratio of the transformer 30 is decreased. (Claim 11).

さらに,前記交流電源の電圧を検出する入力電圧検出手段53を設け,前記入力電圧検出手段53が検出した電圧が,所定の始動許可電圧(実施形態において80〜130V)の範囲内であるとき,前記開閉器RY2を閉じる充電開始手段544を前記制御回路54に設けるものとしても良い(請求項12)。   Furthermore, an input voltage detection means 53 for detecting the voltage of the AC power supply is provided, and when the voltage detected by the input voltage detection means 53 is within a predetermined start permission voltage (80 to 130 V in the embodiment), Charge starting means 544 for closing the switch RY2 may be provided in the control circuit 54 (claim 12).

以上説明した本発明の構成により,本発明の充電方法及びこの充電方法を実施する充電器によれば,以下の顕著な効果を得ることができた。   With the configuration of the present invention described above, according to the charging method of the present invention and the charger that implements the charging method, the following remarkable effects can be obtained.

二次側回路2b内の電圧を,所定の充電電圧値未満に維持しつつ,電流を所定の充電電流値としたことにより,交流電源からの入力電圧の変化によっても二次回路2b内の充電電圧V及び充電電流Iを安定させることができた。   By maintaining the voltage in the secondary circuit 2b below a predetermined charging voltage value and setting the current to a predetermined charging current value, the charging in the secondary circuit 2b can be performed even when the input voltage from the AC power source changes. The voltage V and the charging current I could be stabilized.

その結果,蓄電池の充電不足や過充電,過充電による電解液の電気分解によって生じる液減り,比重不足,危険な水素ガスの発生等を好適に防止できた。   As a result, it was possible to suitably prevent the storage battery from being insufficiently charged, overcharged, liquid loss caused by electrolysis of the electrolyte due to overcharge, insufficient specific gravity, generation of dangerous hydrogen gas, and the like.

また,既知の定電圧法による充電では,蓄電池の電圧Vの上昇に伴って二次回路2b内の電流である充電電流Iが減少するものとなっていたが,本発明の方法では充電の進展と共に低下しようとする充電電流Iを所定の充電電流値に維持する制御が行われるために,充電完了までの時間を短縮することができた。 In the charging by the known constant voltage method, the charging current I, which is the current in the secondary circuit 2b, decreases as the storage battery voltage V B increases. Since control is performed to maintain the charging current I, which is about to decrease with progress, at a predetermined charging current value, the time until charging is completed can be shortened.

しかも充電電圧Vを,電解液の過剰な電気分解が生じない範囲に制御しておくことにより,液減り,比重不足,危険な水素ガスの発生等を防止することができた。   In addition, by controlling the charging voltage V within a range in which excessive electrolysis of the electrolytic solution does not occur, liquid reduction, insufficient specific gravity, generation of dangerous hydrogen gas, and the like can be prevented.

さらに,このような二次側回路2b内の電圧V,電流Iの制御をトランス30の巻数比を変化させることにより行うものであることから,図3を参照して説明した半導体スイッチング素子72を含む高周波信号発振回路7を備えた電源装置2に比較して,変動幅の大きな電源電圧の変動にも対処し得ると共に,発熱等による破損等も生じ難いものとすることができた。   Further, since the voltage V and current I in the secondary circuit 2b are controlled by changing the turns ratio of the transformer 30, the semiconductor switching element 72 described with reference to FIG. Compared with the power supply device 2 including the high-frequency signal oscillation circuit 7 included, it is possible to cope with fluctuations in the power supply voltage having a large fluctuation range, and it is difficult to cause damage due to heat generation or the like.

二次側回路2b内の電圧Vが上昇して,トランス30の巻数比の変更によっても所定の充電電圧値未満に維持することができず,充電電圧値以上になったとき,充電電圧Vが所定の充電電圧値となるように制御したことにより,充電電流Iを蓄電池の電圧Vの上昇に伴い低下させることができ,これにより,水素ガスの発生が最も生じやすい充電終期における充電電流Iを低く設定することができ,これにより危険な水素ガスの発生を可及的に減少させることができた。 When the voltage V in the secondary side circuit 2b rises and cannot be maintained below a predetermined charging voltage value even by changing the turns ratio of the transformer 30, the charging voltage V becomes higher than the charging voltage value. Since the charging current I is controlled so as to be a predetermined charging voltage value, the charging current I can be reduced as the storage battery voltage V B increases, whereby the charging current I at the end of charging, where hydrogen gas is most likely to be generated. Was able to be set low, thereby reducing the generation of dangerous hydrogen gas as much as possible.

また,前記構成に加え,蓄電池の電圧Vの上昇に伴い低下した充電電流Iが,所定の充電完了電流値となったときに充電を終了するようにしたため,電源電圧の変動によっても蓄電池に対する十分な充電を行うことができた。 In addition to the above configuration, charging is terminated when the charging current I, which has decreased as the storage battery voltage V B increases, reaches a predetermined charging completion current value. Sufficient charging was possible.

さらに,二次側回路内の電流が前記充電終了電流値未満となる前であっても,タイマによる所定時間のカウントによって充電を強制終了させることとしたことにより,例えば放電状態にばらつきがある直列に接続された複数の蓄電池を同時に充電する場合においても過充電となることを防止できた。   Furthermore, even before the current in the secondary side circuit becomes less than the charging end current value, the charging is forcibly terminated by counting for a predetermined time by a timer. Even when charging a plurality of storage batteries connected to the battery at the same time, it was possible to prevent overcharging.

すなわち,直列接続の蓄電池に対して同時に充電を行う場合,一方の蓄電池が満充電となっても他方の蓄電池が満充電とならない場合には,充電電流Iが減少しない場合が生じ,この状態で充電を継続すると満充電となっている蓄電池に対しては過充電となり,そのため前述のようにタイマによる設定時間で充電を強制的に終了することで,このような過充電を防止することができる。   That is, when simultaneously charging a series-connected storage battery, if one storage battery is fully charged and the other storage battery is not fully charged, the charging current I may not decrease. If the battery is fully charged when it continues to be charged, it will be overcharged. For this reason, it is possible to prevent such overcharge by forcibly terminating the charge at the set time by the timer as described above. .

充電対象とする蓄電池が鉛蓄電池である場合,各セル当たりの充電電圧値を2.42Vとすることで,電解液の電気分解を好適に抑制することができ,液減り,比重の低下,水素ガスの発生を好適に防止できた。   When the storage battery to be charged is a lead storage battery, by setting the charging voltage value per cell to 2.42 V, it is possible to suitably suppress the electrolysis of the electrolyte, reducing the liquid, reducing the specific gravity, hydrogen The generation of gas could be suitably prevented.

次に本発明の実施形態を,添付図面を参照しながら以下に説明する。   Next, embodiments of the present invention will be described below with reference to the accompanying drawings.

〔充電器〕
図1中の符号1は,本発明の充電器であり,この充電器1は,図示せざる発電機等の交流電源に接続するための入力端子21(21a,21b),充電を行う蓄電池を接続する出力端子22を備え,前記入,出力端子21,22間に,交流電源からの出力を変圧するトランス30,変圧されたトランス30からの出力を直流に整流する整流手段35を備えた電源装置2を有する点では,既知の充電器1と同様の構成である。
[Charger]
Reference numeral 1 in FIG. 1 denotes a charger according to the present invention. The charger 1 includes an input terminal 21 (21a, 21b) for connecting to an AC power source such as a generator (not shown), and a storage battery for charging. A power supply comprising an output terminal 22 to be connected, a transformer 30 for transforming the output from the AC power source between the input and output terminals 21 and 22, and a rectifying means 35 for rectifying the output from the transformed transformer 30 into a direct current In the point which has the apparatus 2, it is the structure similar to the known charger 1. FIG.

なお,本明細書において,前記入力端子21(21a,21b)からトランス30の一次巻線31迄の回路(一次巻線31を含む)を電源装置2の一次側回路2aとして説明し,前記トランス3の二次巻線32から出力端子22までの回路(二次巻線32を含む)を電源装置2の二次側回路2bとして説明する。   In the present specification, a circuit (including the primary winding 31) from the input terminal 21 (21a, 21b) to the primary winding 31 of the transformer 30 will be described as the primary circuit 2a of the power supply device 2, and the transformer A circuit from the secondary winding 32 to the output terminal 22 (including the secondary winding 32) will be described as a secondary circuit 2b of the power supply device 2.

この電源装置2の一次側回路2a内に設けられた一次巻線31には,複数のタップ,図示の実施形態にあってはT0〜T5の6つのタップが設けられている。   The primary winding 31 provided in the primary side circuit 2a of the power supply device 2 is provided with a plurality of taps, and in the illustrated embodiment, six taps T0 to T5.

そして,入力端子21の一方21aを一次巻線31の一端に設けたタップT0に接続すると共に,他方の端子21bに対してタップT1〜T5を並列に接続する分岐回路R1〜R5を設け,各分岐回路R1〜R5のそれぞれに,該分岐回路R1〜R5を開閉する,本実施例ではトライアックであるスイッチング素子TR1〜TR5を設け,分岐回路R1〜R5とスイッチング素子TR1〜TR5によって,トランス30の巻数比を変更する巻数比変更手段であるスイッチング回路40が構成されている。   And one side 21a of the input terminal 21 is connected to a tap T0 provided at one end of the primary winding 31, and branch circuits R1 to R5 are provided to connect the taps T1 to T5 in parallel to the other terminal 21b. Each of the branch circuits R1 to R5 is provided with switching elements TR1 to TR5, which are triacs in this embodiment, which open and close the branch circuits R1 to R5, and the branch circuit R1 to R5 and the switching elements TR1 to TR5 A switching circuit 40 which is a turn ratio changing means for changing the turn ratio is configured.

このスイッチング回路40によって入力端子21の他方21bといずれかのタップT1〜T5が選択的に接続され,接続されるタップがT1,T2,・・・T5と番号が多くなるに従い一次巻線の巻数が増加するように構成されている。   The switching circuit 40 selectively connects the other 21b of the input terminal 21 to one of the taps T1 to T5, and the number of turns of the primary winding increases as the number of connected taps increases to T1, T2,. Is configured to increase.

なお,図示の実施形態では上述のようにトランス30の一次巻線31に複数のタップT0〜T5を設けて巻数比を可変と成すと共に,巻数比変更手段としてスイッチング回路40を設ける例を説明したが,例えばトランス30の巻線上を摺動する摺動接点を設け,この摺動接点の摺動によって巻数比を可変としたトランス30を採用しても良く,この場合には前記スイッチング回路40に代えて,後述する制御回路54からの制御信号によって前記摺動接点を所定の位置に移動する,例えばサーボモータ等を前記巻数比変更手段として設けても良い。   In the illustrated embodiment, as described above, an example has been described in which a plurality of taps T0 to T5 are provided in the primary winding 31 of the transformer 30 to make the turn ratio variable and the switching circuit 40 is provided as a turn ratio changing means. However, for example, the transformer 30 may be employed in which a sliding contact sliding on the winding of the transformer 30 is provided and the turns ratio is variable by sliding of the sliding contact. Instead, for example, a servo motor or the like that moves the sliding contact to a predetermined position by a control signal from the control circuit 54 described later may be provided as the turn ratio changing means.

前記トランス30の二次巻線32を含む前記電源装置2の二次側回路2bには,ダイオードによって構成された整流ブリッジが整流手段35として設けられており,この整流手段35によってトランス30の二次側で得られた交流出力を,直流に整流して出力端子22より出力することができるように構成されている。   The secondary side circuit 2b of the power supply device 2 including the secondary winding 32 of the transformer 30 is provided with a rectifying bridge formed of a diode as the rectifying means 35. The AC output obtained on the secondary side can be rectified to DC and output from the output terminal 22.

この整流手段35と出力端子22間には,両者間を開閉する開閉器RY2が設けられており,この開閉器RY2の開閉によって出力端子22に対する出力を開始/停止することができるように構成されている。   A switch RY2 for switching between the rectifying means 35 and the output terminal 22 is provided, and the output to the output terminal 22 can be started / stopped by opening / closing the switch RY2. ing.

前述のスイッチング回路40及び開閉器RY2を制御するために,本発明の充電器にあっては前記電源装置2の他にこれを制御するための制御装置5を備えている。   In order to control the switching circuit 40 and the switch RY2, the charger according to the present invention is provided with a control device 5 for controlling the power supply device 2 in addition to the power supply device 2.

この制御装置5は,前記電源装置2の二次側回路2b内の電圧を検出する電圧検出手段51,同じく電源装置2の二次側回路2b内の電流を検出する電流検出手段52,及び交流電源からの入力電圧を検出する入力電圧検出手段53を備え,各検出手段51〜53の検出信号に基づいて,前述のスイッチング回路40に設けたスイッチング素子TR1〜TR5及び開閉器RY2を制御する制御回路54が設けられている。   The control device 5 includes a voltage detection means 51 for detecting a voltage in the secondary circuit 2b of the power supply device 2, a current detection means 52 for detecting a current in the secondary circuit 2b of the power supply device 2, and an alternating current. A control is provided that includes an input voltage detection means 53 for detecting an input voltage from the power supply, and controls the switching elements TR1 to TR5 and the switch RY2 provided in the switching circuit 40 based on detection signals of the detection means 51 to 53. A circuit 54 is provided.

この制御回路54は,予めROM等に記憶されたプログラムに従い,前記各検出手段51〜53の検出信号に基づいてスイッチング回路40,開閉器RY2の動作を制御する制御信号を出力するマイクロコンピュータ等の電子制御装置によって構成されており,前記プログラムの実行により前述のスイッチング回路40を制御する充電電圧・充電電流制御手段541,開閉器RY2を制御して充電を自動で終了させる充電自動終了手段542,タイマのカウント終了により前記開閉器RY2を制御して充電を強制終了させる充電強制終了手段543,及び充電開始時に前記開閉器RY2を閉じる充電開始手段544が実現されている。   The control circuit 54 is a microcomputer that outputs a control signal for controlling the operation of the switching circuit 40 and the switch RY2 based on the detection signals of the detection means 51 to 53 in accordance with a program stored in advance in a ROM or the like. The automatic control unit 542 is configured by an electronic control unit and controls the charging voltage / charging current control unit 541 for controlling the switching circuit 40 according to the execution of the program and automatically ends the charging by controlling the switch RY2. A charge forced termination means 543 for controlling the switch RY2 to forcibly terminate charging when the timer count ends and a charge start means 544 for closing the switch RY2 at the start of charging are realized.

図示の実施形態にあっては,交流電源と接続される入力端子21に接続された,前記電源装置2と並列の回路を設け,この回路内に変圧器55と整流ブリッジ56を設けて前記制御回路54の電源回路57としている。   In the illustrated embodiment, a circuit parallel to the power supply device 2 connected to an input terminal 21 connected to an AC power supply is provided, and a transformer 55 and a rectifier bridge 56 are provided in the circuit to control the control. The power supply circuit 57 of the circuit 54 is used.

なお,図示の実施形態にあっては,交流電源の電圧を検出する入力電圧検出手段53を,変圧器55の二次側における制御装置5の電源回路57内に設けているが,交流電源の電圧を検出可能であればいずれの位置に設けても良い。   In the illustrated embodiment, the input voltage detection means 53 for detecting the voltage of the AC power supply is provided in the power supply circuit 57 of the control device 5 on the secondary side of the transformer 55. It may be provided at any position as long as the voltage can be detected.

〔動作〕
以上で説明した本発明の充電器1によって実行される充電方法を,前述の制御回路54による制御動作と共に図2のフローチャートに従い説明する。
[Operation]
The charging method executed by the charger 1 of the present invention described above will be described with reference to the flowchart of FIG. 2 together with the control operation by the control circuit 54 described above.

充電器1の出力端子22に蓄電池を接続すると共に,入力端子21を発電機等の交流電源の出力端子(図示せず)に接続して,制御回路54に対する電力の供給が行われると(フロー中の「開始」),制御回路54は入力電圧検出手段53が検出した入力電圧が設定された始動許可電圧の範囲内にあるか否かを判定する(S1)。   When a storage battery is connected to the output terminal 22 of the charger 1 and the input terminal 21 is connected to an output terminal (not shown) of an AC power source such as a generator, power is supplied to the control circuit 54 (flow) The control circuit 54 determines whether or not the input voltage detected by the input voltage detection means 53 is within the set start permission voltage range (S1).

本実施形態にあっては,AC100Vの交流電源電圧の設定に対し,制御回路が検出した電源電圧が始動許可電圧であるAC80〜130Vの範囲内にあるか否かを判定し,判定の結果,電源電圧が80V未満,又は130Vを越える場合には,例えば警告灯の点灯,警告音の発生等,図示せざる警告表示装置にエラー出力を行い,以後の動作を行わない(S2)。   In this embodiment, it is determined whether or not the power supply voltage detected by the control circuit is within the range of AC80 to 130V that is the start permission voltage with respect to the setting of the AC power supply voltage of AC100V. When the power supply voltage is less than 80V or exceeds 130V, for example, an error is output to a warning display device (not shown) such as lighting of a warning light or generation of a warning sound, and the subsequent operation is not performed (S2).

一方,検出された入力電圧が80〜130Vの範囲内である場合,制御回路54において実現される充電開始手段544が開閉器RY2を閉じる制御信号を出力して,蓄電池が接続された出力端子22がトランス30の二次側に接続される(S3)。   On the other hand, when the detected input voltage is in the range of 80 to 130 V, the charging start means 544 realized in the control circuit 54 outputs a control signal for closing the switch RY2, and the output terminal 22 to which the storage battery is connected. Is connected to the secondary side of the transformer 30 (S3).

また,制御回路54は,スイッチング回路40の分岐回路R5に設けたスイッチング素子TR5をONと成す制御信号,例えばトライアックであるスイッチング素子TR5のゲートトリガーにトリガ電圧を印加する制御信号を出力して,トランス30の一次巻線31の巻数を最大と成すタップT5を介して交流電源との接続を行う(S4)。   Further, the control circuit 54 outputs a control signal for applying a trigger voltage to a gate trigger of the switching element TR5 which is a triac, for example, a control signal for turning on the switching element TR5 provided in the branch circuit R5 of the switching circuit 40, Connection to an AC power source is performed via a tap T5 that maximizes the number of turns of the primary winding 31 of the transformer 30 (S4).

前記トランス30の一次巻線31に対する交流電源の接続は,最大の巻数であるタップT0−T5間において行われ,この一次巻数Ninと二次巻線の巻数Nout間の巻数比(Nout/Nin)に対応して交流電源の電圧Vinが変圧されてトランス30の二次側には電圧Vout〔Vout=Vin(Nout/Nin)〕が出力される。   The connection of the AC power source to the primary winding 31 of the transformer 30 is performed between taps T0 to T5 which is the maximum number of turns, and the turn ratio (Nout / Nin) between the primary turn Nin and the turn Nout of the secondary winding. In response to this, the voltage Vin of the AC power supply is transformed and the voltage Vout [Vout = Vin (Nout / Nin)] is output to the secondary side of the transformer 30.

このように,充電の開始時において一次巻線31の巻数Ninを最大とすることで,交流電源から最大値(本実施形態において130V)の電圧が入力された場合であっても,トランスの二次側電圧が過大に上昇して蓄電池に高電圧が入力されることを防止している。   In this way, by increasing the number of turns Nin of the primary winding 31 at the start of charging, even when a maximum voltage (130 V in the present embodiment) is input from the AC power source, The secondary voltage is prevented from excessively rising and a high voltage being input to the storage battery.

このようにして,電源装置2の二次側回路2bに対し,トランスより出力された電圧Voutが印加されると,電源装置2の二次側回路2b内の電流(充電電流)をI,二次側回路2b内の抵抗をRとすると,この二次側回路2b内には充電電圧V(V=Vout−IR)が生じる。   In this way, when the voltage Vout output from the transformer is applied to the secondary side circuit 2b of the power supply device 2, the current (charging current) in the secondary side circuit 2b of the power supply device 2 is changed to I, 2 When the resistance in the secondary circuit 2b is R, a charging voltage V (V = Vout−IR) is generated in the secondary circuit 2b.

また,充電電流Iは,蓄電池の電圧をV,蓄電池の抵抗をrとすると,
I=(Vout−V)/(R+r)
となり,この充電電流Iが電流検出手段52によって検出される。
The charging current I is expressed as follows: V B is the voltage of the storage battery and r is the resistance of the storage battery.
I = (Vout−V B ) / (R + r)
The charging current I is detected by the current detection means 52.

充電電流Iを検出した電流検出手段52からの検出信号を受信した制御回路54は,制御回路54において実現される充電電圧・充電電流制御手段541によってこの充電電流Iが予め設定した充電電流値の範囲内にあるか否かを判定し(S5),所定の充電電流値の範囲内にない場合,これを所定の充電電流値の範囲内とするように,スイッチング回路40を制御して,一次巻線31の巻数を対応する巻数と成すタップT1〜T5に接続された分岐回路R1〜R5のスイッチング素子TR1〜TR5のいずれかをONと成す。   The control circuit 54 that has received the detection signal from the current detection means 52 that has detected the charging current I has the charging current I set in advance by the charging voltage / charging current control means 541 realized in the control circuit 54. It is determined whether or not it is within the range (S5), and if it is not within the range of the predetermined charging current value, the switching circuit 40 is controlled so that it is within the range of the predetermined charging current value. One of the switching elements TR1 to TR5 of the branch circuits R1 to R5 connected to the taps T1 to T5 that forms the corresponding number of turns of the winding 31 is turned ON.

それぞれが出力電圧12V,時間率100Ah(5時間率容量)である鉛蓄電池を直列に接続した1組の鉛蓄電池を2組並列に接続して24V,200Ahとした状態で充電を行う本実施形態にあっては,この充電電流値を5時間率容量の1/10となる20〜25Aの範囲と設定し,電流検出手段52が検出した充電電流Iが20A未満である場合にはタップT1〜T5を巻数を減少させる側に切り換える操作を行い(S6),25Aを越える場合にはタップを巻数を増加させる側に切り換える操作を行って(S7),電流検出手段によって検出される電流が,20〜25Aの範囲となるように制御する。   In this embodiment, charging is performed in a state in which two sets of lead storage batteries each having an output voltage of 12 V and a time rate of 100 Ah (5-hour rate capacity) connected in series are connected in parallel to be 24 V and 200 Ah. In this case, this charging current value is set to a range of 20 to 25 A that becomes 1/10 of the 5-hour rate capacity, and when the charging current I detected by the current detecting means 52 is less than 20 A, the taps T1 to T1 are set. An operation of switching T5 to the side of decreasing the number of turns is performed (S6), and if 25A is exceeded, an operation of switching the tap to the side of increasing the number of turns is performed (S7), and the current detected by the current detecting means is 20 Control to be in a range of ˜25A.

電流検出手段が検出する充電電流値が,20〜25Aの範囲となると,このときのタップを維持する(S8)。   When the charging current value detected by the current detection means falls within the range of 20 to 25A, the tap at this time is maintained (S8).

この電源装置2の二次側回路2bには,該回路2b内の電圧(充電電圧V)を検出する電圧検出手段51も設けられており,制御回路54はさらにこの電圧検出手段51からの検出信号に基づいて充電電圧Vが予め設定した充電電圧値の範囲内にあるか否かを判定し(S9),この判定に基づいてスイッチング回路40を制御する。   The secondary circuit 2b of the power supply device 2 is also provided with voltage detection means 51 for detecting the voltage (charging voltage V) in the circuit 2b. The control circuit 54 further detects the voltage from the voltage detection means 51. Based on the signal, it is determined whether or not the charging voltage V is within a preset charging voltage value range (S9), and the switching circuit 40 is controlled based on this determination.

本実施形態にあっては,各蓄電池のセル当たりの充電電圧値を2.33〜2.42Vと設定し,前述のように直列に接続した1組の鉛蓄電池を2組並列に接続した状態で充電を行うことから,制御回路54は電源装置2の二次側回路2b内の電圧である前記充電電圧Vが28〜29V(2.33〜2.42Vに直列分の12セルを掛けた値)未満であるか否かを判定し(S9),充電電圧が28V未満であるとき,前記充電電流を20〜25Aの範囲に維持する動作を繰り返し,これにより,充電電圧を,蓄電池の電解液が過剰に電気分解されることを抑制できる29V以下に維持した状態で,充電電流を20〜25Aの範囲として充電が行われるように構成されている。   In this embodiment, the charging voltage value per cell of each storage battery is set to 2.33 to 2.42 V, and two sets of lead storage batteries connected in series as described above are connected in parallel. Therefore, the control circuit 54 sets the charging voltage V, which is the voltage in the secondary side circuit 2b of the power supply device 2, to 28 to 29 V (2.33 to 2.42 V multiplied by 12 cells in series). (S9), and when the charging voltage is less than 28V, the operation of maintaining the charging current in the range of 20 to 25A is repeated, whereby the charging voltage is changed to electrolysis of the storage battery. Charging is performed with a charging current in the range of 20 to 25 A in a state where the liquid is maintained at 29 V or less, which can suppress excessive electrolysis.

このような操作を繰り返しながら充電を行うと,充電の進展に伴って蓄電池の電圧Vが上昇し,電圧検出手段が検出する充電電圧値が,28〜29Vの範囲となると,このときのタップを維持し(S10),充電電圧が29Vを超えると前記制御回路54がスイッチング回路40を制御して巻数を増加する方向にタップを切り換える(S11)。前掲の式:I=(Vout−V)/(R+r)より,トランスより出力された電圧Voutが低下し,蓄電池の電圧Vが上昇すると充電電流Iは低下する。 When charged while repeating such an operation, the voltage V B of the battery is increased with the progress of charging, the charging voltage value the voltage detecting means for detecting, when the range of 28~29V, tap at this time (S10), and when the charging voltage exceeds 29V, the control circuit 54 controls the switching circuit 40 to switch the tap in the direction of increasing the number of turns (S11). To equation: I = from (Vout-V B) / ( R + r), reduces the voltage Vout output from the transformer, the charging current I and the voltage V B of the battery rises is reduced.

このようにして充電電流Iが減少すると,制御回路54は充電電流Iが所定の充電完了電流値(本実施形態では3A)未満か否かを判定し(S12),充電完了電流値以上であると,再び充電電圧Vが28〜29Vであるかを判定(S9)し,一方,充電電流Iが充電完了電流値未満になると,制御回路54において実現される充電自動終了手段542は開閉器RY2を開き(S13),トランス30の二次側と出力端子22間の接続を切断して充電を終了させる(フロー中の「停止」)。   When the charging current I decreases in this way, the control circuit 54 determines whether or not the charging current I is less than a predetermined charging completion current value (3A in the present embodiment) (S12) and is equal to or greater than the charging completion current value. Then, it is determined again whether the charging voltage V is 28 to 29 V (S9). On the other hand, when the charging current I becomes less than the charging completion current value, the automatic charging end means 542 realized in the control circuit 54 is switched to the switch RY2. Is opened (S13), and the connection between the secondary side of the transformer 30 and the output terminal 22 is disconnected to end the charging (“stop” in the flow).

なお,図2のフロー中への記載は省略しているが,各タップの切り換え動作(S6,S7,S11)後にタイマによる設定時間のカウントを行い,このカウントが終了する迄タップの切り換えを行わないようにしてタップが頻繁に切り替わることを防止しても良い。   Although description in the flow of FIG. 2 is omitted, the set time is counted by a timer after each tap switching operation (S6, S7, S11), and the tap is switched until this count is completed. It may be possible to prevent the taps from switching frequently.

また,上記の実施形態にあっては,充電の終了を,充電電流Iが充電完了電流値である3A未満となったときに行うものとしたが,例えば充電の開始から所定時間の経過をタイマによりカウントし,前記タイマによるカウントが完了したとき,制御回路54において実現する充電強制終了手段543によって充電電流Iが所定の充電完了電流値未満であるか否かに拘わらず,充電を終了させるように構成しても良い。   Further, in the above embodiment, the charging is terminated when the charging current I becomes less than 3 A, which is the charging completion current value. When the counting by the timer is completed, the charging is forcibly terminated by the charging forced termination means 543 realized in the control circuit 54 regardless of whether or not the charging current I is less than a predetermined charging completion current value. You may comprise.

更に,充電開始から充電電圧Vを充電電圧値28〜29Vの下限である28V未満に維持して行う充電を初期充電とし,この初期充電を充電電圧が前述のようにタップの切り換えによっても28V未満に維持できなくなった時点,又は,タイマによる所定時間(一例として7時間)のカウントのいずれかの条件が満たされたときに打ち切るものとしても良く,また,充電電圧を28〜29Vの定電圧に維持して行う充電を終期充電とし,この終期充電を,前記充電電流Iが充電終了電流値である3A未満,又は,終期充電開始後,タイマによる所定の充電時間のカウント(一例として3.5時間)完了のいずれかの条件が満たされたときに終了するように構成しても良い。   Furthermore, charging performed by maintaining the charging voltage V below 28V, which is the lower limit of the charging voltage value 28 to 29V from the start of charging, is set as initial charging, and this initial charging is also less than 28V even when the charging voltage is switched as described above. Or when the condition of counting for a predetermined time (for example, 7 hours) by a timer is satisfied, the charging voltage may be set to a constant voltage of 28 to 29V. The charge that is maintained and maintained is the final charge, and this final charge is less than 3A, which is the charge end current value, or a predetermined charge time is counted by a timer after the start of the final charge (as an example, 3.5 It may be configured to end when one of the conditions of (time) completion is satisfied.

以上のように,本発明の充電器1にあっては,電源装置2の二次側回路2b内の電圧である充電電圧Vを,所定値(実施形態において28V)未満に維持しつつ,電流(充電電流I)が所定の数値範囲(実施形態において20〜25A)となるように継続的にタップT1〜T5の切り換え制御を行うものとしたことから,発電機等の交流電源の出力電圧が安定しない場合においても過充電や充電不足を生じさせることなく,しかも,電解液の電気分解に基づく水素ガスの発生を防止しながら充電を比較的早期に完了させることができるものとなっている。   As described above, in the charger 1 of the present invention, the charging voltage V, which is the voltage in the secondary side circuit 2b of the power supply device 2, is maintained at a current lower than a predetermined value (28 V in the embodiment). Since the switching control of the taps T1 to T5 is continuously performed so that (charging current I) falls within a predetermined numerical range (20 to 25A in the embodiment), the output voltage of the AC power source such as the generator is Even if it is not stable, charging can be completed relatively early without causing overcharging or insufficient charging and preventing generation of hydrogen gas based on electrolysis of the electrolyte.

すなわち,タップT1〜T5の切り換えが行われていない状態において充電電圧Vが変化する要因としては,図示せざる発電機等の交流電源が出力する電圧の変化に対応した変化と,充電の進行に伴い蓄電池の電圧Vが上昇することにより生じる低下が考えられる。 That is, the factors that change the charging voltage V in the state where the taps T1 to T5 are not switched are the change corresponding to the change in the voltage output from an AC power source such as a generator (not shown) and the progress of charging. drop caused by the voltage V B of the battery is raised with are considered.

また,前掲の式:I=(Vout−V)/(R+r)より,充電電流Iは,前記充電電圧Vの変化に対応して増減する。 Further, from the above formula: I = (Vout−V B ) / (R + r), the charging current I increases or decreases in accordance with the change in the charging voltage V.

従って,タップT1〜T5の切り換えによって充電電圧Vを所定の電圧値未満となるように制御することで,交流電源の出力電圧の上昇に伴う過充電が防止される。その結果,電解液の過剰な電気分解によって生じる液減り,比重の低下,危険な水素ガスの発生を確実に防止することができる。   Therefore, by controlling the charging voltage V to be less than a predetermined voltage value by switching the taps T1 to T5, overcharging accompanying an increase in the output voltage of the AC power supply is prevented. As a result, it is possible to reliably prevent the liquid from being reduced due to excessive electrolysis of the electrolytic solution, the decrease in specific gravity, and the generation of dangerous hydrogen gas.

また,充電電流Iを所定の充電電流値の範囲内とするようにタップT1〜T5の切り換えを制御することで,前述の電圧制御と共に過充電の発生を防止することができるだけでなく,充電の進行に伴って蓄電池の電圧Vが上昇して低下しようとする充電電流Iを所定の範囲内に維持することが行われるために,交流電源の出力電圧が低いことによって生じる充電不足を解消でき,かつ,充電を効率的に短時間で行うことができるものとなっている。 Further, by controlling the switching of the taps T1 to T5 so that the charging current I is within a predetermined charging current value range, not only the above-described voltage control but also the occurrence of overcharging can be prevented, Since the charging current I, which is going to increase and decrease as the voltage V B of the storage battery progresses, is maintained within a predetermined range, charging shortage caused by the low output voltage of the AC power supply can be resolved. In addition, charging can be performed efficiently in a short time.

しかも,このような制御を,トランスのタップ切り換えによって行うものであることから,図3を参照して従来技術として説明した高周波発振回路に設けた半導体スイッチング素子に比較して,大きな電圧変化に対しても対応することができるものであると共に,故障等が生じにくい。   In addition, since such control is performed by switching the tap of the transformer, compared to the semiconductor switching element provided in the high-frequency oscillation circuit described as the prior art with reference to FIG. However, it is difficult to cause a failure or the like.

本発明の充電器の一実施形態を示す構成図。The block diagram which shows one Embodiment of the charger of this invention. 本発明の充電方法の一実施形態を示すフロー図。The flowchart which shows one Embodiment of the charging method of this invention. 充電器に設けられる電源装置の構成図(従来)。The block diagram of the power supply device provided in a charger (conventional). 工事現場における充電器の配線状態を示す説明図。Explanatory drawing which shows the wiring state of the charger in a construction site.

符号の説明Explanation of symbols

1 充電器
2 電源装置
2a 一次側回路(電源装置の)
2b 二次側回路(電源装置の)
21 入力端子
22 出力端子
30 トランス
30’ 高周波トランス
31 一次巻線
32 二次巻線
35 整流手段(整流ブリッジ)
40 スイッチング回路
5 制御装置
51 電圧検出手段
52 電流検出手段
53 入力電圧検出手段
54 制御回路
541 充電電圧・充電電流制御手段
542 充電自動終了手段
543 充電強制終了手段
544 充電開始手段
55 変圧器
56 整流ブリッジ
57 制御回路の電源回路
7 高周波信号発振回路
71 整流ブリッジ
72 半導体スイッチング素子
T0〜T5 タップ
R1〜R5 分岐回路
TR1〜TR5 スイッチング素子(トライアック)
RY2 開閉器
DESCRIPTION OF SYMBOLS 1 Charger 2 Power supply device 2a Primary side circuit (of power supply device)
2b Secondary circuit (for power supply)
21 Input Terminal 22 Output Terminal 30 Transformer 30 'High Frequency Transformer 31 Primary Winding 32 Secondary Winding 35 Rectifier (Rectifier Bridge)
DESCRIPTION OF SYMBOLS 40 Switching circuit 5 Control apparatus 51 Voltage detection means 52 Current detection means 53 Input voltage detection means 54 Control circuit 541 Charging voltage / charge current control means 542 Charge automatic termination means 543 Charge forced termination means 544 Charge start means 55 Transformer 56 Rectification bridge 57 Power circuit of control circuit 7 High-frequency signal oscillation circuit 71 Rectifier bridge 72 Semiconductor switching element T0 to T5 Tap R1 to R5 Branch circuit TR1 to TR5 Switching element (triac)
RY2 switch

Claims (12)

トランスの一次巻線を含み,交流電源に接続される一次側回路と,トランスの二次巻線を含み,充電を行う蓄電池に接続される二次側回路と,前記二次側回路内に設けられた整流手段を備え,交流電源からの電力を変圧すると共に直流に整流して出力する電源装置を用いて行う蓄電池の充電方法において,
前記蓄電池に対する充電中,前記トランスの巻数比を変更して前記二次側回路内を所定の充電電圧値未満に維持しつつ,所定の充電電流値となるよう制御することを特徴とする蓄電池の充電方法。
A primary side circuit including a primary winding of a transformer and connected to an AC power source, a secondary side circuit including a secondary winding of the transformer and connected to a storage battery for charging, and provided in the secondary side circuit In a method of charging a storage battery using a power supply device that is provided with a rectifying means and that transforms power from an AC power source and rectifies and outputs to DC,
During the charging of the storage battery, the control is performed so as to obtain a predetermined charging current value while changing the turns ratio of the transformer and maintaining the secondary side circuit below a predetermined charging voltage value. Charging method.
前記トランスの巻数比を変更しても前記二次側回路内の電圧値を前記充電電圧値未満に維持することができず,前記二次側回路内の電圧値が前記充電電圧値以上になったら,前記トランスの巻数比を変更して前記二次側回路内を前記充電電圧値に維持するよう制御することを特徴とする請求項1記載の蓄電池の充電方法。   Even if the turns ratio of the transformer is changed, the voltage value in the secondary circuit cannot be maintained below the charging voltage value, and the voltage value in the secondary circuit becomes equal to or higher than the charging voltage value. 2. The method of charging a storage battery according to claim 1, wherein the control is performed such that the turn ratio of the transformer is changed to maintain the secondary side circuit at the charging voltage value. 前記二次側回路内を前記充電電圧値に維持する制御により前記二次側回路内の電流値が,前記充電電流値に対して低い値に設定された所定の充電完了電流値未満となったときに,前記蓄電池に対する充電を完了することを特徴とする請求項2記載の蓄電池の充電方法。   The current value in the secondary circuit is less than a predetermined charge completion current value set to a value lower than the charge current value by controlling to maintain the charge voltage value in the secondary circuit. 3. The method of charging a storage battery according to claim 2, wherein charging of the storage battery is completed. 充電開始から所定時間が経過した時,前記二次側回路内の電流が前記充電完了電流値以上であっても充電を完了する請求項3記載の蓄電池の充電方法。   The method for charging a storage battery according to claim 3, wherein when a predetermined time has elapsed from the start of charging, charging is completed even if the current in the secondary side circuit is equal to or greater than the charging completion current value. 前記蓄電池が鉛蓄電池であり,前記充電電圧値を2.33〜2.42V/セルとしたことを特徴とする請求項1〜4いずれか1項記載の蓄電池の充電方法。   The method for charging a storage battery according to any one of claims 1 to 4, wherein the storage battery is a lead storage battery, and the charging voltage value is set to 2.33 to 2.42 V / cell. トランスの一次巻線を含み,交流電源に接続される一次側回路と,トランスの二次巻線を含み,充電を行う蓄電池に接続される二次側回路と,前記二次側回路内に設けられた整流手段を備え,交流電源からの電力を変圧すると共に直流に整流して出力する電源装置を備えた充電器において,
前記トランスを巻数比可変型のものとし,前記トランスの巻数比を変更する巻数比変更手段を設けると共に,
前記二次側回路内の電圧を検出する電圧検出手段と,前記二次側回路内の電流を検出する電流検出手段と,前記電圧検出手段が検出する電圧を所定の充電電圧値未満に維持しつつ,前記電流検出手段が検出する電流が所定の充電電流値の範囲となるように,前記巻数比変更手段を制御する制御回路を備えた制御装置を有することを特徴とする充電器。
A primary side circuit including a primary winding of a transformer and connected to an AC power source, a secondary side circuit including a secondary winding of the transformer and connected to a storage battery for charging, and provided in the secondary side circuit A battery charger including a power supply device that includes a rectifying means that transforms power from an AC power source and rectifies the power into a direct current,
The transformer is of a variable turn ratio, provided with a turn ratio changing means for changing the turn ratio of the transformer,
Voltage detection means for detecting a voltage in the secondary side circuit, current detection means for detecting a current in the secondary side circuit, and a voltage detected by the voltage detection means are maintained below a predetermined charging voltage value. However, a charger having a control circuit for controlling the turn ratio changing means so that the current detected by the current detecting means falls within a predetermined charging current value range.
前記トランスの一次巻線に複数のタップを設けると共に,前記トランスの巻数比を変更可能に前記交流電源と前記タップ間の接続パターンを切り換えるスイッチング回路を前記巻数比変更手段として前記電源装置の前記一次側回路に設けたことを特徴とする充電器。   A plurality of taps are provided in the primary winding of the transformer, and a switching circuit that switches a connection pattern between the AC power source and the tap so that the turns ratio of the transformer can be changed is used as the turns ratio changing means. A charger provided in a side circuit. 前記制御回路は,前記電圧検出手段が検出する二次側回路内の電圧値が前記巻数比変更手段の制御による前記トランスの巻数比の変更によっても前記充電電圧値未満に維持することができず,前記電圧検出手段が検出する電圧値が前記充電電圧値以上になったら,前記電圧検出手段が検出する電圧を所定の充電電圧値に維持するように,前記巻数比変更手段を制御することを特徴とする請求項6又は7記載の充電器。   The control circuit cannot maintain the voltage value in the secondary circuit detected by the voltage detecting means below the charging voltage value even by changing the turns ratio of the transformer under the control of the turns ratio changing means. The turn ratio changing means is controlled so that the voltage detected by the voltage detecting means is maintained at a predetermined charging voltage value when the voltage value detected by the voltage detecting means exceeds the charging voltage value. The charger according to claim 6 or 7, characterized in that 前記二次側回路の前記二次巻線と前記蓄電池間に開閉器を設けると共に,
前記制御回路に,前記二次側回路内を前記充電電圧値に維持する制御後,前記電流検出手段が前記充電電流値に対して低い値に設定された所定の充電完了電流値未満となったことを検出したときに,前記開閉器を開く充電自動終了手段を設けたことを特徴とする請求項8記載の充電器。
While providing a switch between the secondary winding of the secondary circuit and the storage battery,
After controlling the control circuit to maintain the charge voltage value in the secondary circuit, the current detection means becomes less than a predetermined charge completion current value set to a value lower than the charge current value. 9. The charger according to claim 8, further comprising automatic charging end means for opening the switch when it is detected.
前記充電自動終了手段が,前記制御回路に設けたタイマにより充電開始から所定時間の経過がカウントされた時,前記二次側回路内の電流が前記充電完了電流値以上であっても前記開閉器を開く充電強制終了手段を備えることを特徴とする請求項9記載の充電器。   When the automatic charging end means counts the elapse of a predetermined time from the start of charging by a timer provided in the control circuit, the switch even if the current in the secondary circuit is equal to or higher than the charging completion current value The charger according to claim 9, further comprising a forced charge termination means for opening the battery. 前記制御回路が,前記電圧検出手段が検出した電圧が前記充電電圧値を越えるとき,及び前記電流検出手段が検出した電流が所定の充電電流値を超えるとき,前記トランスの巻数比が増加するように前記巻数比変更手段を制御し,
前記電圧検出手段が検出した電圧が前記充電電圧値未満かつ,前記電流検出手段が検出する電流が所定の充電電流値未満となったとき,前記トランスの巻数比が減少するように前記巻数比変更手段を制御することを特徴とする請求項6〜10いずれか1項記載の充電器。
When the voltage detected by the voltage detecting means exceeds the charging voltage value and when the current detected by the current detecting means exceeds a predetermined charging current value, the control circuit increases the turns ratio of the transformer. To control the turn ratio changing means,
When the voltage detected by the voltage detecting means is less than the charging voltage value and the current detected by the current detecting means is less than a predetermined charging current value, the turns ratio is changed so that the turns ratio of the transformer decreases. The charger according to any one of claims 6 to 10, wherein the charger is controlled.
前記交流電源の電圧を検出する入力電圧検出手段を設け,前記入力電圧検出手段が検出した電圧が,所定の始動許可電圧の範囲内であるとき,前記開閉器を閉じる充電開始手段を前記制御回路に設けたことを特徴とする請求項9記載の充電器。   Input voltage detection means for detecting the voltage of the AC power supply is provided, and when the voltage detected by the input voltage detection means is within a predetermined start permission voltage range, charging start means for closing the switch is provided in the control circuit. The charger according to claim 9, wherein the charger is provided.
JP2007298406A 2007-11-16 2007-11-16 Charging method for storage battery, and charger Pending JP2009124905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298406A JP2009124905A (en) 2007-11-16 2007-11-16 Charging method for storage battery, and charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298406A JP2009124905A (en) 2007-11-16 2007-11-16 Charging method for storage battery, and charger

Publications (1)

Publication Number Publication Date
JP2009124905A true JP2009124905A (en) 2009-06-04

Family

ID=40816455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298406A Pending JP2009124905A (en) 2007-11-16 2007-11-16 Charging method for storage battery, and charger

Country Status (1)

Country Link
JP (1) JP2009124905A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116255A (en) * 2014-12-11 2016-06-23 富士重工業株式会社 Electric power supply unit
JP2020166226A (en) * 2019-03-28 2020-10-08 日東電工株式会社 Polarizing plate
CN113721068A (en) * 2020-05-26 2021-11-30 致茂电子(苏州)有限公司 Error warning module
US20210373052A1 (en) * 2020-05-26 2021-12-02 Chun-Sheng Hung Error warning module
CN114454746A (en) * 2020-11-09 2022-05-10 沃尔沃汽车公司 On-board charger for battery of electric vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116255A (en) * 2014-12-11 2016-06-23 富士重工業株式会社 Electric power supply unit
JP2020166226A (en) * 2019-03-28 2020-10-08 日東電工株式会社 Polarizing plate
JP6995813B2 (en) 2019-03-28 2022-01-17 日東電工株式会社 Polarizer
CN113721068A (en) * 2020-05-26 2021-11-30 致茂电子(苏州)有限公司 Error warning module
US20210373052A1 (en) * 2020-05-26 2021-12-02 Chun-Sheng Hung Error warning module
CN114454746A (en) * 2020-11-09 2022-05-10 沃尔沃汽车公司 On-board charger for battery of electric vehicle

Similar Documents

Publication Publication Date Title
KR100723989B1 (en) Li-ion/Li-polymer Battery Charger Configured to be DC-powerd from Multiple Types of Wall Adapters
US20110210701A1 (en) Battery system
KR101197243B1 (en) Portable Power Supply Device
JP2008236878A (en) Charging device
WO2009119271A1 (en) Charging method for an assembled cell and an assembled cell system
CN102144346A (en) Charging apparatus and charge control method
JP2013102573A (en) Charge/discharge controlling apparatus and charge/discharge controlling system
WO2013042293A1 (en) Rechargeable electrical device
JP2014036528A (en) Insulated charging device
JP2009124905A (en) Charging method for storage battery, and charger
CN103460547A (en) Charger and power supply system
CN104838559A (en) Charging device
JP2009142135A (en) Charging device
CN103503272A (en) Power supply device, inverter device, power tool
JP2010041826A (en) Ac-dc converter and electronic apparatus using the same
JP2010016976A (en) Charging system
EP0103124A2 (en) Battery charging flashlight circuit
JP2005073328A (en) Power supply for electric vehicle
JP2009017648A (en) Charging device
JP2015029388A (en) Charger and charging system
CN115516756A (en) Working machine
JP2015226445A (en) Charger
CN214045155U (en) Charging protection circuit and charger
JP4962793B2 (en) Charger
US11095133B2 (en) Simple battery and charger system