JP2009123792A - Reflow board and manufacturing method of semiconductor device - Google Patents

Reflow board and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2009123792A
JP2009123792A JP2007293874A JP2007293874A JP2009123792A JP 2009123792 A JP2009123792 A JP 2009123792A JP 2007293874 A JP2007293874 A JP 2007293874A JP 2007293874 A JP2007293874 A JP 2007293874A JP 2009123792 A JP2009123792 A JP 2009123792A
Authority
JP
Japan
Prior art keywords
reflow
multilayer wiring
wiring board
region
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007293874A
Other languages
Japanese (ja)
Inventor
Tomoaki Taniguchi
智昭 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2007293874A priority Critical patent/JP2009123792A/en
Publication of JP2009123792A publication Critical patent/JP2009123792A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflow board for improving mountability and mounting reliability by reducing the warp of a multilayer wiring board upon mounting without opposing pin increase and pitch narrowing, and a manufacturing method of a semiconductor device. <P>SOLUTION: In the reflow board to be brought into contact with one surface of the multilayer wiring board when mounting a semiconductor chip on the other surface of the multilayer wiring board through a solder bump, the reflow board includes a first region with a heat conductivity of K1 and a second region with a heat conductivity of K2, wherein K2 is smaller than K1, and the second region includes a region where the solder bump is present. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リフロー板及び半導体装置の実装方法に関し、特に、多層配線基板上のはんだバンプを介して半導体チップを実装する半導体装置の製造方法に関する。   The present invention relates to a reflow board and a method for mounting a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device in which a semiconductor chip is mounted via solder bumps on a multilayer wiring board.

半導体チップを多層配線基板上に実装する方法は、接点数の増大、または、信号遅延の問題により、ワイヤーボンディング接続から、はんだバンプを介するフリップチップ接続に移行してきている。従来のようなコア層を持ち、比較的総厚が厚い多層配線基板上に半導体チップをフリップチップ接続で実装する場合は、多層配線基板はそれほど反らないが、電気特性に優れるコア層を持たず、総厚が薄い多層配線基板では、半導体チップ実装のリフロー時に、多層配線基板と半導体チップとの熱膨張係数の相異から、多層配線基板が反ってしまい、実装不良または実装信頼性の低下を引き起こす。   The method of mounting a semiconductor chip on a multilayer wiring board has shifted from wire bonding connection to flip chip connection via solder bumps due to an increase in the number of contacts or signal delay. When mounting a semiconductor chip on a multilayer wiring board having a conventional core layer and a relatively large total thickness by flip chip connection, the multilayer wiring board is not warped so much, but has a core layer with excellent electrical characteristics. On the other hand, in a multilayer wiring board with a thin total thickness, the multilayer wiring board is warped due to the difference in thermal expansion coefficient between the multilayer wiring board and the semiconductor chip during reflow of the semiconductor chip mounting, resulting in poor mounting or reduced mounting reliability. cause.

上記実装性、実装信頼性の問題を解決するため、特許文献1には、はんだバンプエリア周辺部のはんだバンプを大きくする方法が開示されている。しかし、これらの方法は、必要以上に大きいはんだバンプが必要になり、多ピン、狭ピッチ化に逆向する問題がある。   In order to solve the above problems of mounting property and mounting reliability, Patent Document 1 discloses a method for enlarging solder bumps around the solder bump area. However, these methods require solder bumps that are larger than necessary, and there is a problem that this is counter to multi-pin and narrow pitch.

図3(a)〜(d)に示すように、従来の熱膨張係数の相異により平面度が大きくなるリフロー方法の工程を示す。図3(a)に示すように、リフロー前、多層配線側はんだバンプ25上に半導体チップ側はんだバンプ24を載せた状態である。   As shown in FIGS. 3A to 3D, steps of a reflow method in which the flatness is increased by the difference in the conventional thermal expansion coefficients are shown. As shown in FIG. 3A, the semiconductor chip side solder bump 24 is placed on the multilayer wiring side solder bump 25 before reflow.

図3(b)に示すように、リフロー中、はんだ融点温度直前であり、熱膨張係数が大きいことにより多層配線基板23は矢印方向に伸びる(膨脹する)が、半導体チップ21は熱膨張係数が小さいため、ほとんど伸びない(膨脹しない)。   As shown in FIG. 3 (b), during reflow, just before the solder melting point temperature, the large thermal expansion coefficient causes the multilayer wiring board 23 to expand (expand) in the direction of the arrow, but the semiconductor chip 21 has a thermal expansion coefficient. Because it is small, it hardly stretches (does not expand).

図3(c)に示すように、リフロー中、最高温度直後であり、多層配線側はんだバンプ25と半導体チップ側はんだバンプ24とがお互い溶け合い、はんだバンプ22を形成する。冷却中、多層配線基板23は除々に縮むが、半導体チップ21直下部分は、はんだバンプ22で固定されるため、縮み量が減少される。   As shown in FIG. 3C, during the reflow, immediately after the maximum temperature, the multilayer wiring side solder bump 25 and the semiconductor chip side solder bump 24 are melted together to form the solder bump 22. During the cooling, the multilayer wiring board 23 gradually shrinks, but the portion immediately below the semiconductor chip 21 is fixed by the solder bumps 22, so that the amount of shrinkage is reduced.

図3(d)に示すように、半導体装置20は、常温時において、半導体チップ21直下のみ押し上げられ、平面度が大きくなる。   As shown in FIG. 3D, the semiconductor device 20 is pushed up just below the semiconductor chip 21 at room temperature, and the flatness is increased.

従来のリフロー工程においては、半導体チップ21と多層配線基板23との熱膨張係数の相異から発生する反りが大きくなってしまう。
特開平11−74312号公報
In the conventional reflow process, the warp generated due to the difference in thermal expansion coefficient between the semiconductor chip 21 and the multilayer wiring board 23 becomes large.
JP-A-11-74312

本発明は、多ピン、狭ピッチ化に逆向することなく、実装時の多層配線基板の反りを小さくすることで、実装性、実装信頼性を向上させるリフロー板及び半導体装置の製造方法を提供することである。   The present invention provides a method for manufacturing a reflow board and a semiconductor device, which improves mountability and mounting reliability by reducing warpage of a multilayer wiring board during mounting without reversing the multi-pin and narrow pitch. That is.

本発明の請求項1に係る発明は、多層配線基板の一方の面にはんだバンプを介して半導体チップを実装する際に多層配線基板のもう一方の面に接触されるリフロー板において、リフロー板は熱伝導率がK1である第1の領域と、熱伝導率がK2である第2の領域とを含み、K2はK1よりも小さく、第2の領域は、はんだバンプが存在する領域を含むことを特徴とするリフロー板としたものである。   The invention according to claim 1 of the present invention provides a reflow board that is in contact with the other surface of the multilayer wiring board when a semiconductor chip is mounted on one surface of the multilayer wiring board via solder bumps. It includes a first region having a thermal conductivity of K1 and a second region having a thermal conductivity of K2, where K2 is smaller than K1 and the second region includes a region where solder bumps are present. This is a reflow plate characterized by the following.

本発明の請求項2に係る発明は、K1は670W/mK以上であり、K2は170W/mK以下であり、K1とK2の差が500W/mK以上であることを特徴とする請求項1に記載のリフロー板としたものである。   The invention according to claim 2 of the present invention is characterized in that K1 is 670 W / mK or more, K2 is 170 W / mK or less, and the difference between K1 and K2 is 500 W / mK or more. The reflow plate described is used.

本発明の請求項3に係る発明は、第2の領域はリフロー板の中央部に存在することを特徴とする請求項1又は2に記載のリフロー板としたものである。   The invention according to claim 3 of the present invention is the reflow plate according to claim 1 or 2, characterized in that the second region exists in a central portion of the reflow plate.

本発明の請求項4に係る発明は、多層配線基板の一方の面にはんだバンプを介して半導体チップを実装する半導体装置の製造方法において、半導体チップを実装する際のリフロー時に、熱伝導率がK1である第1の領域と、熱伝導率がK2である第2の領域とを含み、K2はK1よりも小さく、第2の領域は、はんだバンプが存在する領域を含むリフロー板を多層配線基板のもう一方の面に接触させ、リフロー板を接触させた多層配線基板のはんだバンプにリフロー熱を加えて半導体チップを多層配線基板に実装することを特徴とする半導体装置の製造方法としたものである。   The invention according to claim 4 of the present invention is a method of manufacturing a semiconductor device in which a semiconductor chip is mounted on one surface of a multilayer wiring board via solder bumps, and the thermal conductivity is reduced during reflow when the semiconductor chip is mounted. A reflow board including a first region that is K1 and a second region that has a thermal conductivity of K2 is smaller than K1, and the second region includes a region where a solder bump exists. A method of manufacturing a semiconductor device, characterized in that a semiconductor chip is mounted on a multilayer wiring board by applying reflow heat to the solder bumps of the multilayer wiring board in contact with the other surface of the board and contacting the reflow board It is.

本発明の請求項5に係る発明は、K1は670W/mK以上であり、K2は170W/mK以下であり、K1とK2の差が500W/mK以上であることを特徴とする請求項4に記載の半導体装置の製造方法としたものである。   The invention according to claim 5 of the present invention is characterized in that K1 is 670 W / mK or more, K2 is 170 W / mK or less, and the difference between K1 and K2 is 500 W / mK or more. This is a manufacturing method of the semiconductor device described.

本発明の請求項6に係る発明は、多層配線基板は、絶縁層と配線部とを有する複数の層が形成され、半導体チップの実装後の平面度が200μm以下であることを特徴とする請求項4又は5に半導体装置の製造方法としたものである。   The invention according to claim 6 of the present invention is characterized in that the multilayer wiring board is formed with a plurality of layers having an insulating layer and a wiring portion, and the flatness after mounting the semiconductor chip is 200 μm or less. Item 4 or 5 is a method for manufacturing a semiconductor device.

本発明の請求項7に係る発明は、第2の領域はリフロー板の中央部に存在することを特徴とする請求項4乃至6のいずれかに記載の半導体装置の製造方法としたものである。   The invention according to claim 7 of the present invention is the method of manufacturing a semiconductor device according to any one of claims 4 to 6, characterized in that the second region exists in a central portion of the reflow plate. .

本発明によれば、実装時の多層配線基板の反りを小さくすることで、実装性、実装信頼性を向上させるリフロー板及び半導体装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the reflow board and semiconductor device which improve mounting property and mounting reliability can be provided by reducing the curvature of the multilayer wiring board at the time of mounting.

以下、本発明の実施の形態を、図面を用いて詳細に説明する。なお、以下の実施の形態の説明において参照する図面は、本発明の構成を説明するためのものであり、図示される各部の大きさや厚さ、寸法等は、実際のものとは異なる。また、本発明はこれらに限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the drawings referred to in the following description of the embodiments are for explaining the configuration of the present invention, and the size, thickness, dimensions, and the like of each part shown in the drawings are different from the actual ones. The present invention is not limited to these.

図1に示すように、本発明の実施の形態に係る半導体装置10は、多層配線基板3と、はんだバンプ2と、半導体チップ1とを備えている。半導体チップ1と多層配線基板3との熱膨張係数の相異により、半導体チップ1直下部分の多層配線基板3がせりあがるが、平面度を200μm以下にすることができる。多層配線基板3の平面度を200μm以下にすることにより実装信頼性を向上させることができる。多層配線基板3の平面度が200μm以上だと、半導体チップ1と多層配線基板3との接続不良が発生してしまい、実装信頼性の低下を引き起こしてしまう。   As shown in FIG. 1, a semiconductor device 10 according to an embodiment of the present invention includes a multilayer wiring board 3, solder bumps 2, and a semiconductor chip 1. Due to the difference in thermal expansion coefficient between the semiconductor chip 1 and the multilayer wiring board 3, the multilayer wiring board 3 immediately below the semiconductor chip 1 rises, but the flatness can be reduced to 200 μm or less. Mounting reliability can be improved by setting the flatness of the multilayer wiring board 3 to 200 μm or less. If the flatness of the multilayer wiring board 3 is 200 μm or more, poor connection between the semiconductor chip 1 and the multilayer wiring board 3 occurs, resulting in a decrease in mounting reliability.

本発明の実施の形態に係る多層配線基板3は、ポリイミドを絶縁層、銅を配線部とする総厚220μm、熱膨張係数が20ppmの6層基板を用意した。ここで、絶縁層の材料には、エポキシ樹脂及びアクリル樹脂などを用いることができるが本発明ではこれらに限定されるわけではない。   The multilayer wiring board 3 according to the embodiment of the present invention was prepared as a 6-layer board having a total thickness of 220 μm and a thermal expansion coefficient of 20 ppm with polyimide as an insulating layer and copper as a wiring part. Here, an epoxy resin, an acrylic resin, or the like can be used as the material of the insulating layer, but the present invention is not limited thereto.

多層配線基板3の一方の面は、はんだバンプ5を形成する部分のみ開口してあるソルダーレジストにて覆い、ソルダーレジストの開口部に、はんだ印刷法により、SnPb共晶はんだバンプ5を形成した。はんだバンプ5の径は100μm、ピッチは200μm、はんだバンプ数は、5000バンプとした。   One surface of the multilayer wiring board 3 was covered with a solder resist that was opened only in the portion where the solder bumps 5 were to be formed, and SnPb eutectic solder bumps 5 were formed in the solder resist openings by solder printing. The diameter of the solder bump 5 was 100 μm, the pitch was 200 μm, and the number of solder bumps was 5000 bumps.

本発明の実施の形態に係る半導体チップ1は、Siを主体とし、もう一方の面にSnPb共晶はんだボールにてバンプを形成している半導体チップ1を用意した。   The semiconductor chip 1 according to the embodiment of the present invention was prepared by preparing a semiconductor chip 1 mainly composed of Si and having bumps formed on the other surface with SnPb eutectic solder balls.

図2(a)〜(d)に示すように、本発明の実施の形態に係る実装時のリフロー方法の工程である。図2(a)に示すように、熱伝導率がK2である第2の領域の中央部にセラミック7を有し、熱伝導率がK1である第1の領域に銅からなるリフロー板6上に多層配線基板3と半導体チップ1とを載せ、リフローに投入する。この時、半導体チップ1直下にセラミック7の部分(リフロー板6の中央部)がくるようにする。   As shown in FIGS. 2A to 2D, it is a process of the reflow method at the time of mounting according to the embodiment of the present invention. As shown in FIG. 2 (a), the ceramic 7 is provided in the center of the second region where the thermal conductivity is K2, and the first region where the thermal conductivity is K1 is on the reflow plate 6 made of copper. The multilayer wiring board 3 and the semiconductor chip 1 are placed on and put into reflow. At this time, the portion of the ceramic 7 (the center portion of the reflow plate 6) is placed directly under the semiconductor chip 1.

本発明の実施の形態に係るリフロー板6の材料においては、銅からなるリフロー板6の中央部にセラミック7を用いているが本発明ではこれらに限定されるわけではない。リフロー板6に用いられる材料は、リフロー板6の中央部の熱伝導率が170W/mK以下である物質を用いることができ、リフロー板6の中央部以外の熱伝導率が670W/mK以上である物質を用いることができる。ここで、リフロー板6の中央部は、熱伝導率がK2である第2の領域であり、リフロー板6の中央部以外は、熱伝導率がK1である第1の領域である。   In the material of the reflow plate 6 according to the embodiment of the present invention, the ceramic 7 is used at the center of the reflow plate 6 made of copper, but the present invention is not limited to these. The material used for the reflow plate 6 can be a substance having a thermal conductivity of 170 W / mK or less at the center of the reflow plate 6, and a thermal conductivity of other than the center of the reflow plate 6 is 670 W / mK or more. Certain materials can be used. Here, the central portion of the reflow plate 6 is a second region where the thermal conductivity is K2, and the portions other than the central portion of the reflow plate 6 are the first regions where the thermal conductivity is K1.

本発明の実施の形態に係るリフロー板6の熱伝導率は、K1(リフロー板6の中央部以外の第1の領域)が670W/mK以上であり、K2(リフロー板6の中央部の第2の領域)170W/mK以下であり、K1とK2との差が500W/mK以上である必要がある。この範囲に熱伝導率がない場合は、多層配線基板3と半導体チップ1との熱膨張係数の相異から、多層配線基板3の反りが大きくなってしまい、実装不良または実装信頼性の低下を引き起こしてしまう。   The thermal conductivity of the reflow plate 6 according to the embodiment of the present invention is such that K1 (first region other than the central portion of the reflow plate 6) is 670 W / mK or more, and K2 (first of the central portion of the reflow plate 6). 2 area) 170 W / mK or less, and the difference between K1 and K2 needs to be 500 W / mK or more. If there is no thermal conductivity in this range, the warpage of the multilayer wiring board 3 increases due to the difference in thermal expansion coefficient between the multilayer wiring board 3 and the semiconductor chip 1, resulting in poor mounting or reduced mounting reliability. It will cause.

図2(b)に示すように、リフロー中、はんだ融点温度直前であり、銅からなるリフロー板6に接している部分と中央部のセラミック7とに接している部分の多層配線基板3は熱膨張係数が相違しているために矢印方向に伸びる(膨脹する)速度も異なる。半導体チップ1は熱膨張係数が小さいため、ほとんど伸びない(膨脹しない)。   As shown in FIG. 2B, during the reflow, the multilayer wiring board 3 in the portion immediately before the solder melting point temperature and in contact with the copper reflow plate 6 and the portion in contact with the central ceramic 7 is heated. Since the expansion coefficients are different, the speed of expansion (expansion) in the direction of the arrow is also different. Since the semiconductor chip 1 has a small coefficient of thermal expansion, it hardly expands (does not expand).

図2(c)に示すように、リフロー中、最高温度から冷却し、常温にいたるまで多層配線基板3は熱膨張係数により矢印方向に縮むが、銅からなるリフロー板6に接している部分と中央部のセラミック7とに接している半導体チップ1直下部分では熱伝導率の相異から矢印方向に縮む速度も異なる。   As shown in FIG. 2C, during reflow, the multilayer wiring board 3 is cooled in the direction of the arrow due to the coefficient of thermal expansion until it is cooled from the maximum temperature to room temperature, and a portion in contact with the reflow plate 6 made of copper In the portion immediately below the semiconductor chip 1 in contact with the ceramic 7 at the center, the contraction speed in the direction of the arrow is different due to the difference in thermal conductivity.

図2(d)に示すように、半導体チップ1直下がはんだ融点温度以下になり、はんだバンプ2が形成された時には、周辺部分は、より温度が低下しており、縮み量も大きくなっている。最終的に常温まで温度が低下した際には、平面度は小さくなる。   As shown in FIG. 2D, when the temperature immediately below the semiconductor chip 1 is below the solder melting point temperature and the solder bump 2 is formed, the temperature of the peripheral portion is further lowered and the amount of shrinkage is also increased. . When the temperature finally decreases to room temperature, the flatness decreases.

以上のような工法により作製した多層配線基板3の平面度を測定したところ180μmであった。従来のリフロー方法で作製した多層配線基板3の平面度は約300μmであるので、大幅に実装時の平面度を縮小することができた。   It was 180 micrometers when the flatness of the multilayer wiring board 3 produced by the above construction methods was measured. Since the flatness of the multilayer wiring board 3 produced by the conventional reflow method is about 300 μm, the flatness at the time of mounting can be greatly reduced.

本発明は、半導体装置の実装時のリフロー工程に適用できる。   The present invention can be applied to a reflow process at the time of mounting a semiconductor device.

本発明の実施の形態に係る半導体装置の概略断面図である。1 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention. 本発明の実施の形態に係るリフロー方法の工程を示す図であり、(a)はリフロー前であり、(b)はリフロー中のはんだ融点温度直前であり、(c)はリフロー中の最高温度直後であり、(d)はリフロー後の常温時を示す図である。It is a figure which shows the process of the reflow method which concerns on embodiment of this invention, (a) is before reflow, (b) is immediately before solder melting | fusing point temperature during reflow, (c) is the highest temperature during reflow (D) is a diagram showing the room temperature after reflow. 従来のリフロー方法の工程を示す図であり、(a)はリフロー前であり、(b)はリフロー中のはんだ融点温度直前であり、(c)はリフロー中の最高温度直後であり、(d)はリフロー後の常温時を示す図である。It is a figure which shows the process of the conventional reflow method, (a) is before reflow, (b) is just before the solder melting | fusing point temperature during reflow, (c) is immediately after the highest temperature during reflow, (d ) Is a diagram showing the room temperature after reflow.

符号の説明Explanation of symbols

1 半導体チップ
2 はんだバンプ
3 多層配線基板
4 半導体チップ側はんだバンプ
5 多層配線基板側はんだバンプ
6 リフロー板
7 セラミック
10 半導体装置
20 半導体装置
21 半導体チップ
22 はんだバンプ
23 多層配線基板
24 半導体チップ側はんだバンプ
25 多層配線基板側はんだバンプ
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Solder bump 3 Multilayer wiring board 4 Semiconductor chip side solder bump 5 Multilayer wiring board side solder bump 6 Reflow board 7 Ceramic 10 Semiconductor device 20 Semiconductor device 21 Semiconductor chip 22 Solder bump 23 Multilayer wiring board 24 Semiconductor chip side solder bump 25 Multilayer wiring board side solder bump

Claims (7)

多層配線基板の一方の面にはんだバンプを介して半導体チップを実装する際に前記多層配線基板のもう一方の面に接触されるリフロー板において、
前記リフロー板は熱伝導率がK1である第1の領域と、熱伝導率がK2である第2の領域とを含み、
前記K2はK1よりも小さく、
前記第2の領域は、前記はんだバンプが存在する領域を含むことを特徴とするリフロー板。
In a reflow board that comes into contact with the other surface of the multilayer wiring board when mounting a semiconductor chip on one surface of the multilayer wiring board via solder bumps,
The reflow plate includes a first region having a thermal conductivity of K1, and a second region having a thermal conductivity of K2.
K2 is smaller than K1,
The reflow board, wherein the second region includes a region where the solder bump exists.
前記K1は670W/mK以上であり、前記K2は170W/mK以下であり、K1とK2の差が500W/mK以上であることを特徴とする請求項1に記載のリフロー板。   The reflow plate according to claim 1, wherein the K1 is 670 W / mK or more, the K2 is 170 W / mK or less, and a difference between K1 and K2 is 500 W / mK or more. 前記第2の領域は前記リフロー板の中央部に存在することを特徴とする請求項1又は2に記載のリフロー板。   The reflow plate according to claim 1, wherein the second region exists in a central portion of the reflow plate. 多層配線基板の一方の面にはんだバンプを介して半導体チップを実装する半導体装置の製造方法において、
前記半導体チップを実装する際のリフロー時に、熱伝導率がK1である第1の領域と、熱伝導率がK2である第2の領域とを含み、前記K2はK1よりも小さく、前記第2の領域は、前記はんだバンプが存在する領域を含むリフロー板を前記多層配線基板のもう一方の面に接触させ、
前記リフロー板を接触させた前記多層配線基板の前記はんだバンプにリフロー熱を加えて前記半導体チップを前記多層配線基板に実装することを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which a semiconductor chip is mounted on one surface of a multilayer wiring board via solder bumps,
When reflowing when mounting the semiconductor chip, the semiconductor chip includes a first region having a thermal conductivity of K1, and a second region having a thermal conductivity of K2, where K2 is smaller than K1, The area of the contact of the reflow board including the area where the solder bump exists with the other surface of the multilayer wiring board,
A method of manufacturing a semiconductor device, wherein reflow heat is applied to the solder bumps of the multilayer wiring board in contact with the reflow plate to mount the semiconductor chip on the multilayer wiring board.
前記K1は670W/mK以上であり、前記K2は170W/mK以下であり、K1とK2の差が500W/mK以上であることを特徴とする請求項4に記載の半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 4, wherein the K1 is 670 W / mK or more, the K2 is 170 W / mK or less, and a difference between K1 and K2 is 500 W / mK or more. 前記多層配線基板は、絶縁層と配線部とを有する複数の層が形成され、前記半導体チップの実装後の平面度が200μm以下であることを特徴とする請求項4又は5に記載の半導体装置の製造方法。   6. The semiconductor device according to claim 4, wherein the multilayer wiring board is formed with a plurality of layers each having an insulating layer and a wiring portion, and the flatness after the semiconductor chip is mounted is 200 [mu] m or less. Manufacturing method. 前記第2の領域は前記リフロー板の中央部に存在することを特徴とする請求項4乃至6のいずれかに記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 4, wherein the second region exists in a central portion of the reflow plate.
JP2007293874A 2007-11-13 2007-11-13 Reflow board and manufacturing method of semiconductor device Pending JP2009123792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293874A JP2009123792A (en) 2007-11-13 2007-11-13 Reflow board and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293874A JP2009123792A (en) 2007-11-13 2007-11-13 Reflow board and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2009123792A true JP2009123792A (en) 2009-06-04

Family

ID=40815655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293874A Pending JP2009123792A (en) 2007-11-13 2007-11-13 Reflow board and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2009123792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166097A (en) * 2010-04-28 2010-07-29 Sony Chemical & Information Device Corp Connection method and connection structure obtained by using connection apparatus and the connection method
CN102941387A (en) * 2012-12-07 2013-02-27 中国船舶重工集团公司第七一二研究所 Welding device and method for superconducting lines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166097A (en) * 2010-04-28 2010-07-29 Sony Chemical & Information Device Corp Connection method and connection structure obtained by using connection apparatus and the connection method
CN102941387A (en) * 2012-12-07 2013-02-27 中国船舶重工集团公司第七一二研究所 Welding device and method for superconducting lines
CN102941387B (en) * 2012-12-07 2015-07-22 中国船舶重工集团公司第七一二研究所 Welding device and method for superconducting lines

Similar Documents

Publication Publication Date Title
JP4198566B2 (en) Manufacturing method of electronic component built-in substrate
JP6064705B2 (en) Semiconductor device manufacturing method and semiconductor mounting substrate
JP2001217514A (en) Multi-layered wiring board
JP2008147596A (en) Semiconductor package
JP2007266111A (en) Semiconductor device, laminated semiconductor device using the same, base substrate, and semiconductor device manufacturing method
CN103839897B (en) Integrated antenna package and manufacturing method
US7459796B2 (en) BGA-type multilayer circuit wiring board
JP2008042154A (en) Package board
CN101360393B (en) Circuit board construction embedded with semi-conductor chip and preparation thereof
JP2007300029A (en) Semiconductor device, method of manufacturing the same, and circuit substrate device
JP6592977B2 (en) Semiconductor package substrate, semiconductor package and manufacturing method thereof
JP2009123792A (en) Reflow board and manufacturing method of semiconductor device
JP2006344624A (en) Manufacturing method of electronic component
JP6464762B2 (en) Semiconductor package substrate, semiconductor package, semiconductor package substrate manufacturing method, and semiconductor package manufacturing method
JP2008047825A (en) Circuit substrate, manufacturing method thereof, semiconductor device, and manufacturing method thereof
JP2006140401A (en) Semiconductor integrated circuit device
JP2023550986A (en) Control of substrate warpage for mounting semiconductor die
JP2010267792A (en) Semiconductor device and manufacturing method therefor
JPH10209591A (en) Wiring board
JP2002164475A (en) Semiconductor device
JP4599891B2 (en) Semiconductor device substrate and semiconductor device
JP5934057B2 (en) Printed circuit board
JP2011035283A (en) Semiconductor device and method of manufacturing the same
JPH09260529A (en) Substrate for semiconductor device, and semiconductor device
JP2008135483A (en) Substrate incorporating electronic component and its manufacturing method