JP2009120025A - Interior material for automobile and interior base material for automobile - Google Patents

Interior material for automobile and interior base material for automobile Download PDF

Info

Publication number
JP2009120025A
JP2009120025A JP2007295959A JP2007295959A JP2009120025A JP 2009120025 A JP2009120025 A JP 2009120025A JP 2007295959 A JP2007295959 A JP 2007295959A JP 2007295959 A JP2007295959 A JP 2007295959A JP 2009120025 A JP2009120025 A JP 2009120025A
Authority
JP
Japan
Prior art keywords
fiber
short fibers
fibers
base material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007295959A
Other languages
Japanese (ja)
Other versions
JP5183159B2 (en
Inventor
Toshiaki Hirohashi
利晃 広橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2007295959A priority Critical patent/JP5183159B2/en
Publication of JP2009120025A publication Critical patent/JP2009120025A/en
Application granted granted Critical
Publication of JP5183159B2 publication Critical patent/JP5183159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interior base material for an automobile excellent in rigidity, a shape maintaining characteristic and a heat insulating property in a high temperature environment regardless of orientation of a fiber constituting the base material. <P>SOLUTION: This interior base material for the automobile is furnished with a fiber layer including 5 to 70 mass% of a first short fiber the winding shrinkage number of which is 0 to 2 crests/25 mm and a second short fiber the winding shrinkage number of which is more than the first short fiber in a remaining part, and thickness under no load after molding is more than 10 mm. It is favorable that the fiber layer includes a thermal adhesive winding shrinkable short fiber of 30 mass% or more based on 100 mass% of the fiber layer as a part of the second short fiber. Additionally, it is possible to use a polyester group short fiber for the first short fiber and the second short fiber. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車用内装材及び自動車用内装基材に関するものであり、具体的には、天井材、リアパッケージトレー材、ドアトリム材、フロアインシュレーター材、トランクトリム材、ダッシュインシュレーター材などの自動車用内装材及びその基材であって、繊維層を備えるものに関する。   The present invention relates to an automotive interior material and an automotive interior base material, and specifically for automobiles such as a ceiling material, a rear package tray material, a door trim material, a floor insulator material, a trunk trim material, and a dash insulator material. It is related with an interior material and its base material provided with a fiber layer.

自動車用内装材は、主体となる基材(以下、内装基材という)に意匠性を有する表皮材を積層接着し、装着する箇所に応じた形状に加熱成型することによって製造される。この自動車用内装材の大部分の重量を占める内装基材には、プラスチック板、プラスチックフォーム、熱硬化性樹脂製のレジンフェルト、段ボール、あるいは熱硬化性樹脂材料に木粉や古紙を添加したハードボードやペーパーボードなどが用いられ、所定の成型形状の維持に好適な素材が選択される。   An automotive interior material is manufactured by laminating and bonding a skin material having a design property to a base material (hereinafter referred to as an interior base material) as a main body, and heat-molding it into a shape corresponding to a place to be mounted. The interior base material, which accounts for the majority of this automotive interior material, is a plastic plate, plastic foam, resin felt made of thermosetting resin, cardboard, or a hard material made by adding wood flour or waste paper to thermosetting resin material. A board or a paper board is used, and a material suitable for maintaining a predetermined molding shape is selected.

例えば、特開2000−229369号公報(以下、特許文献1)では、織物、編物、不織布等の布帛からなる表皮材を接着して積層することで自動車用内装材に用いることができる不織布積層体が開示されている。この不織布積層体は、繊維の絡合のみにより形状を維持させた単純絡合不織布の状態で測定した縦方向引張強さと横方向引張強さとの平均値が150N/50mm幅以上である絡合不織布からなる剛性層と、剛性層よりも見掛密度の低い不織布からなる嵩高層とを備える。このように繊維同士の絡合の程度が高い剛性層と、所定の見掛密度を有する嵩高層とを備えることで、特許文献1の不織布積層体は、充分な剛性を維持し、自動車用内装材に用いた場合には軽量化を実現できるとされている。   For example, in Japanese Unexamined Patent Publication No. 2000-229369 (hereinafter referred to as Patent Document 1), a nonwoven fabric laminate that can be used as an interior material for automobiles by bonding and laminating a skin material made of a fabric such as a woven fabric, a knitted fabric, or a nonwoven fabric. Is disclosed. This nonwoven fabric laminate is an entangled nonwoven fabric in which the average value of the longitudinal tensile strength and the transverse tensile strength measured in the state of a simple entangled nonwoven fabric whose shape is maintained only by fiber entanglement is 150 N / 50 mm width or more. And a bulky layer made of a nonwoven fabric having an apparent density lower than that of the rigid layer. Thus, the nonwoven fabric laminated body of patent document 1 maintains sufficient rigidity by providing a rigid layer with a high degree of entanglement between fibers and a bulky layer having a predetermined apparent density, and is an interior for automobiles. It is said that weight reduction can be realized when used as a material.

また、特開2003−247121号公報(以下、特許文献2)では、融解温度が180〜220℃の改質ポリブチレンテレフタレート(ポリエステルA)と、融解温度が180℃以下のポリエステルBが、重量混合比率A/B=10/90〜80/20の範囲内で溶融混合されている重合体が用いられたポリエステル熱接着繊維が開示されている。このような構成とすることで、自動車用天井材のように90〜100℃の環境に曝されるクッション材として、特許文献2の熱接着繊維は、優れた耐熱性を発揮することができるとされている。   In Japanese Patent Application Laid-Open No. 2003-247121 (hereinafter referred to as Patent Document 2), modified polybutylene terephthalate (polyester A) having a melting temperature of 180 to 220 ° C. and polyester B having a melting temperature of 180 ° C. or less are mixed by weight. A polyester heat-bonding fiber using a polymer melt-mixed within a ratio A / B = 10/90 to 80/20 is disclosed. By setting it as such a structure, as a cushioning material exposed to an environment of 90-100 degreeC like a ceiling material for motor vehicles, the heat-bonding fiber of patent document 2 can exhibit the outstanding heat resistance. Has been.

さらに、特開平9−226480号公報(以下、特許文献3)では、熱可塑性合成樹脂からなる主繊維(A)とバインダー繊維(B)と細繊化繊維(C)とをシート面に対してほぼ垂直に配向させ、かつ繊維同士を熱融着してなるシート状の繊維構造体が開示されている。図7に示されるように、特許文献3では、各構成繊維91をカード機に掛けて、シート面の面方向に対して略平行な繊維配向を有する繊維ウエブ90を形成した後、繊維ウエブ90を波型に折り畳むことで、厚さ方向に繊維が配向された繊維構造体を実現している。このように構成することで、従前知られている構造体と比べて剛性が向上するため(具体的には、面圧の負荷に対するへたりが低減し、面圧が加わっても構造体の密度増加が抑制されるため)、特許文献3の繊維構造体は、優れた軽量性、制振性を実現するとされている。
特開2000−229369号公報 特開2003−247121号公報 特開平9−226480号公報
Furthermore, in JP-A-9-226480 (hereinafter referred to as Patent Document 3), a main fiber (A), a binder fiber (B), and a fine fiber (C) made of a thermoplastic synthetic resin are bonded to the sheet surface. A sheet-like fiber structure is disclosed in which fibers are aligned substantially vertically and heat-bonded to each other. As shown in FIG. 7, in Patent Document 3, each constituent fiber 91 is hung on a card machine to form a fiber web 90 having a fiber orientation substantially parallel to the surface direction of the sheet surface, and then the fiber web 90. Is folded into a wave shape to realize a fiber structure in which fibers are oriented in the thickness direction. With this configuration, rigidity is improved as compared to a conventionally known structure (specifically, sag against a load of surface pressure is reduced, and the density of the structure is reduced even when surface pressure is applied. Because the increase is suppressed), the fiber structure of Patent Document 3 is said to realize excellent light weight and vibration damping properties.
JP 2000-229369 A Japanese Patent Laid-Open No. 2003-247121 Japanese Patent Laid-Open No. 9-226480

特許文献3の繊維構造体を用いた自動車用内装基材では、厚さ方向に繊維が配向されることで、常温下では剛性について一定の向上が期待できる。しかしながら、繊維ウエブ90を折り畳む際に表面同士が合わさることで、界面92が構造体の厚さ方向に生じるため、単に熱接着しただけでは高温環境における形状維持特性が不十分になるという問題があった。   In the automobile interior base material using the fiber structure of Patent Document 3, the fibers are oriented in the thickness direction, so that a certain improvement in rigidity can be expected at room temperature. However, since the interfaces 92 are formed in the thickness direction of the structure by joining the surfaces when the fiber web 90 is folded, there is a problem that the shape maintaining property in a high temperature environment becomes insufficient simply by thermal bonding. It was.

また、様々な利用条件や利用環境にあわせた自動車用内装材を提供するという観点から、厚さ方向と直交する面方向に繊維が配向された繊維層を備える内装材(例えば、一般的なカード機によって製造された繊維層を備える内装材)においても、剛性と高温環境における形状維持特性を向上させることが望まれている。   In addition, from the viewpoint of providing automobile interior materials suitable for various usage conditions and usage environments, interior materials (for example, general cards) having a fiber layer in which fibers are oriented in a plane direction perpendicular to the thickness direction. It is also desired to improve rigidity and shape maintenance characteristics in a high-temperature environment even in an interior material including a fiber layer manufactured by a machine.

さらに、地球温暖化抑制の観点から、自動車に起因する二酸化炭素排出量の低減が望まれており、その対策の1つとして自動車に備え付けられたエアコンの消費電力を低減するために、優れた断熱性を有する自動車用内装基材が要求されている。   Furthermore, from the viewpoint of suppressing global warming, reduction of carbon dioxide emissions caused by automobiles is desired. As one of the countermeasures, excellent heat insulation is used to reduce the power consumption of air conditioners installed in automobiles. There is a demand for a vehicle interior base material having the property.

そこで、本発明は、基材を構成する繊維の配向に関わらず、剛性、高温環境における形状維持特性及び断熱性に優れた自動車用内装基材及び自動車用内装材を提供することを目的とする。   Therefore, an object of the present invention is to provide an automotive interior base material and an automotive interior material that are excellent in rigidity, shape maintenance characteristics in a high-temperature environment and heat insulation properties, regardless of the orientation of fibers constituting the base material. .

本発明の自動車用内装材は、表皮材と、捲縮数が0〜2山/25mmである第1の短繊維を5〜70質量%含み、第1の短繊維よりも捲縮数が多い第2の短繊維を残部に含む繊維層を備え、成形後における非荷重下での厚さが10mm以上であることを特徴とする。本発明によれば、第1の短繊維が有する剛性及び高温環境における形状維持特性によって繊維層全体の特性を向上させると共に、厚さを規定することによって断熱性を向上させることができるため、基材を構成する繊維の配向に関わらず、剛性、高温環境における形状維持特性及び断熱性に優れた自動車用内装材が得られる。また、厚さが10mm以上と厚いため、吸音性能が高く、車室内の騒音を低減できる。更にルーフからの雑音を吸収するルーフサイレンサとしての機能を発揮できる。   The automotive interior material of the present invention includes 5 to 70% by mass of a skin material and a first short fiber having a crimp number of 0 to 2/25 mm, and has a larger number of crimps than the first short fiber. A fiber layer containing the second short fibers in the remainder is provided, and the thickness under molding under load is 10 mm or more. According to the present invention, the characteristics of the entire fiber layer can be improved by the rigidity of the first short fibers and the shape maintaining characteristics in a high-temperature environment, and the thermal insulation can be improved by defining the thickness. Irrespective of the orientation of the fibers constituting the material, it is possible to obtain an automotive interior material that is excellent in rigidity, shape retention characteristics in a high temperature environment, and heat insulation. Moreover, since the thickness is as thick as 10 mm or more, the sound absorption performance is high, and the noise in the passenger compartment can be reduced. In addition, it can function as a roof silencer that absorbs noise from the roof.

また、上記自動車用内装材は、自動車の内装材と外装(天井等)との間クリアランスを考慮して、成形後における非荷重下での厚さが100mm以下とすることが好ましい。さらに、上記自動車用内装材において、繊維層は、第2の短繊維の一部として、当該繊維層100質量%に対して30質量%以上の熱接着性捲縮短繊維を含むことが好ましい。このように構成することで、製造における加熱工程後に形態安定性を向上させることができる。   The automotive interior material preferably has a thickness of 100 mm or less after molding in consideration of the clearance between the automotive interior material and the exterior (ceiling, etc.). Furthermore, in the interior material for automobiles, the fiber layer preferably includes 30% by mass or more of heat-bonded crimped short fibers with respect to 100% by mass of the fiber layer as a part of the second short fibers. By comprising in this way, form stability can be improved after the heating process in manufacture.

また、上記自動車用内装材の繊維層において、第1の短繊維及び第2の短繊維は、ポリエステル系短繊維とすることができる。このように構成することで、いずれの短繊維にもポリエステル系短繊維が用いられるため、自動車用内装材の主体を構成する繊維層のリサイクル性を向上させることができる。   In the fiber layer of the automobile interior material, the first short fibers and the second short fibers may be polyester short fibers. By comprising in this way, since the polyester-type short fiber is used for any short fiber, the recyclability of the fiber layer which comprises the main body of the interior material for motor vehicles can be improved.

また、第1の短繊維の繊度は、熱接着性捲縮短繊維の繊度よりも大きいことが好ましい。このような構成とすることで、繊度が大きく、捲縮数が少ない第1の短繊維(捲縮が実質的に認められない第1の短繊維)の間に繊度の小さい熱接着性捲縮短繊維が良好に分布し、当該第1の短繊維に融着しやすくなるため、成形後における形状維持特性が向上する。   The fineness of the first short fibers is preferably larger than the fineness of the heat-adhesive crimped short fibers. By adopting such a configuration, the heat-adhesive crimped shortness having a small fineness between the first short fibers having a large fineness and a small number of crimps (first short fibers in which crimping is substantially not recognized). Since the fibers are well distributed and are easily fused to the first short fibers, the shape maintaining property after molding is improved.

なお、上記自動車用内装材の繊維層において、第1の短繊維と第2の短繊維とが、繊維層の厚さ方向に配向された状態で厚さ方向と直交する方向に連続して集積し、絡まり合ってなるように構成してもよい。また、繊維層において、第1の短繊維と第2の短繊維とが、エアレイ法によって繊維層の厚さ方向に配向された状態で厚さ方向と直交する方向に連続して集積し、ニードルパンチ加工を施してなるように構成してもよい。このように構成することで、繊維ウエブを折り畳むことなく繊維が厚さ方向に配向されるため、繊維ウエブを折り畳むときに生じる界面を実質的に排除することができる。さらに、繊維ウエブの厚さ方向に配向された繊維が絡まり合っているため、剛性と高温環境における形状維持特性に優れた自動車用内装材が得られる。   In the fiber layer of the automotive interior material, the first short fibers and the second short fibers are continuously accumulated in a direction orthogonal to the thickness direction in a state of being oriented in the thickness direction of the fiber layer. However, it may be configured to be intertwined. Further, in the fiber layer, the first short fibers and the second short fibers are continuously accumulated in a direction orthogonal to the thickness direction in a state in which the first short fibers and the second short fibers are oriented in the thickness direction of the fiber layer by the air array method. You may comprise so that a punch process may be given. By comprising in this way, since a fiber is orientated in the thickness direction without folding a fiber web, the interface which arises when a fiber web is folded can be excluded substantially. Furthermore, since the fibers oriented in the thickness direction of the fiber web are intertwined, an automotive interior material excellent in rigidity and shape maintaining characteristics in a high temperature environment can be obtained.

また、上記自動車用内装材の繊維層において、第1の短繊維と第2の短繊維とが、繊維層の厚さ方向と直交する面方向に配向されていてもよい。このように構成することで、曲げに対する剛性が低下しやすい面方向に短繊維が配向されている場合であっても、捲縮数の少ない第1の短繊維が有する剛性と高温環境における形状維持特性によって、内装材の剛性と高温環境における形状維持特性が向上する。   In the fiber layer of the automotive interior material, the first short fibers and the second short fibers may be oriented in a plane direction orthogonal to the thickness direction of the fiber layer. By comprising in this way, even if the short fibers are oriented in the plane direction where the rigidity against bending tends to decrease, the rigidity of the first short fibers with a small number of crimps and the shape maintenance in a high temperature environment are maintained. Depending on the characteristics, the rigidity of the interior material and the shape maintenance characteristics in a high temperature environment are improved.

なお、上述の繊維層を備え、自動車用内装材とするために表皮材を積層して成形した後における非荷重下での厚さが10mm以上となるようにされている自動車用内装基材も同様の作用及び効果を奏する。   In addition, an automotive interior base material provided with the above-described fiber layer and having an unloaded thickness of 10 mm or more after being formed by laminating a skin material to form an automotive interior material is also provided. The same operation and effect are exhibited.

本発明によれば、捲縮が実質的に認められない第1の短繊維を繊維層に含有させることで、基材を構成する繊維の配向に関わらず、剛性、高温環境における形状維持特性及び厚さを10mm以上とすることで断熱性に優れた自動車用内装基材及び自動車用内装材が得られる。   According to the present invention, by including the first short fibers in which crimps are not substantially recognized in the fiber layer, the rigidity, the shape maintaining characteristics in the high temperature environment, and the orientation of the fibers constituting the substrate, and By setting the thickness to 10 mm or more, an automotive interior base material and an automotive interior material excellent in heat insulation can be obtained.

以下、本発明の実施に好適な形態について、添付図面を参照して説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

本発明の実施形態に係る自動車用内装材は、表皮材と、捲縮数が0〜2山/25mmである第1の短繊維を5〜70質量%含み、第1の短繊維よりも捲縮数が多い第2の短繊維を残部に含む繊維層を備え、当該自動車用内装材の成形後における非荷重下での厚さは10mm以上とされている。また、本発明の実施形態に係る自動車用内装基材は、当該自動車用内装材と同様に、捲縮数が0〜2山/25mmである第1の短繊維を5〜70質量%含み、第1の短繊維よりも捲縮数が多い第2の短繊維を残部に含む繊維層を備え、自動車用内装材とするために表皮材を積層して成形した後における非荷重下での厚さが10mm以上となるようにされている。   The interior material for automobiles according to the embodiment of the present invention includes a skin material and 5-70 mass% of first short fibers having a crimp number of 0-2 crests / 25 mm, which is more wrinkled than the first short fibers. A fiber layer containing the second short fibers having a large number of contractions in the balance is provided, and the thickness of the automobile interior material after molding is set to 10 mm or more. Moreover, the interior substrate for automobiles according to the embodiment of the present invention includes 5 to 70% by mass of the first short fibers whose crimp number is 0 to 2/25 mm, similarly to the interior material for automobiles. Thickness under no load after forming a laminated layer of an outer skin material in order to provide an automotive interior material, comprising a fiber layer containing the second short fibers having a larger number of crimps than the first short fibers in the remainder Is set to be 10 mm or more.

ここで、「自動車用内装基材」とは、自動車用内装材を製造するために用いられる基材をいい、繊維層のみによって構成されるものだけでなく、繊維層とは異なる材料から構成される層(例えば、ホットメルトフィルムからなる接着層やポリエステル製不織布からなる熱可塑性樹脂シート層)を繊維層と組み合わせることで積層構造を有するように構成されたものを含む。   Here, “interior substrate for automobile” refers to a substrate used for producing an interior material for automobile, and is composed not only of a fiber layer but also of a material different from the fiber layer. Layer (for example, an adhesive layer made of a hot melt film or a thermoplastic resin sheet layer made of a polyester non-woven fabric) is combined with a fiber layer so as to have a laminated structure.

なお、図1に示されるように、繊維層101、第1接着層102、第2接着層103及び熱可塑性樹脂シート層105からなる積層構造を備える内装基材110に不織布表皮104をさらに積層させたものが、一般に自動車用内装材100として用いられる。また、内装基材は、図1に示されるような内装基材110のほか、図2に示されるように、繊維層201の両面に対して第1接着層202又は第2接着層203を介して熱可塑性樹脂シート層205を積層させた構造を有する内装基材210のように構成することができる。   As shown in FIG. 1, a non-woven skin 104 is further laminated on an interior substrate 110 having a laminated structure comprising a fiber layer 101, a first adhesive layer 102, a second adhesive layer 103, and a thermoplastic resin sheet layer 105. Is generally used as the automobile interior material 100. Further, in addition to the interior base material 110 as shown in FIG. 1, the interior base material has a first adhesive layer 202 or a second adhesive layer 203 on both surfaces of the fiber layer 201 as shown in FIG. Thus, it can be configured as an interior base material 210 having a structure in which the thermoplastic resin sheet layer 205 is laminated.

この自動車用内装基材は、例えば自動車における天井材、リアパッケージトレー材、ドアトリム材、フロアインシュレーター材、トランクトリム材、ダッシュインシュレーター材等の自動車用内装材に用いられる。また、自動車用内装材として用いる場合、内装基材には図1に示されるように意匠性を有する不織布表皮等の表皮材を積層接着することができる。なお、この表皮材には、積層接着後であって自動車用内装材として成形する前の段階における厚さが1.5〜2mm、自動車用内装材として成形した後の段階における厚さが1〜1.5mmとなるような材料を選択することができる。   This automobile interior base material is used for automobile interior materials such as a ceiling material, a rear package tray material, a door trim material, a floor insulator material, a trunk trim material, and a dash insulator material in an automobile. When used as an automobile interior material, a skin material such as a nonwoven fabric having design properties can be laminated and adhered to the interior base material as shown in FIG. The skin material has a thickness of 1.5 to 2 mm after lamination adhesion and before molding as an automotive interior material, and a thickness of 1 to 2 after molding as an automotive interior material. A material such as 1.5 mm can be selected.

次に、繊維層を構成する繊維である第1の短繊維及び第2の短繊維について説明する。なお、以下において、繊維層に加工される前段階である繊維ウエブを構成する場合を含めて、繊維層を構成する繊維成分を「基材構成繊維」という。   Next, the 1st short fiber and 2nd short fiber which are the fibers which comprise a fiber layer are demonstrated. In the following, the fiber component constituting the fiber layer is referred to as “base material constituting fiber”, including the case of constituting the fiber web that is a stage before being processed into the fiber layer.

本実施形態における「第1の短繊維」とは、所定の長さにおいて捲縮(クリンプ)が実質的に認められない繊維であり、具体的には、捲縮数が0〜2山/25mmの繊維である。第1の短繊維としては、ポリエチレンテレフタレート系樹脂又はポリブチレンテレフタレート系樹脂といったポリエステル系短繊維を好適に用いることができ、例えば、捲縮数が0〜2山/25mmのポリエチレンテレフタレート繊維を用いることができる。なお、このような短繊維は、JIS L1015に規定された測定法による捲縮が認められないことから、無捲縮短繊維ともいう。   The “first short fiber” in the present embodiment is a fiber in which crimping (crimp) is not substantially recognized in a predetermined length, and specifically, the number of crimps is 0 to 2 peaks / 25 mm. Of fiber. As the first short fiber, a polyester short fiber such as a polyethylene terephthalate resin or a polybutylene terephthalate resin can be suitably used. For example, a polyethylene terephthalate fiber having a crimp number of 0 to 2/25 mm is used. Can do. Such a short fiber is also referred to as a non-crimped short fiber because crimp by the measurement method specified in JIS L1015 is not recognized.

この第1の短繊維の繊維層における配合量は、繊維層100質量%に対して5〜70質量%である。第1の短繊維の配合量が5質量%に満たないと、自動車用内装材又は自動車用内装基材として十分な剛性が得られない。また、第1の短繊維の配合量が70質量%を超えると、繊維ウエブとしたときに捲縮が少ない繊維の占める割合が多くなるために、形態保持が困難となり製造工程内で搬送を行うことができなくなり、生産性が低下する。なお、繊維層の残部はすべてが後述する第2の短繊維であってもよい。   The compounding quantity in the fiber layer of this 1st short fiber is 5-70 mass% with respect to 100 mass% of fiber layers. When the blending amount of the first short fibers is less than 5% by mass, sufficient rigidity as an automobile interior material or an automobile interior base material cannot be obtained. Further, when the blending amount of the first short fibers exceeds 70% by mass, the proportion of the fibers with less crimp when the fiber web is formed increases, so that it is difficult to maintain the shape, and the fibers are conveyed within the manufacturing process. Productivity is reduced. The remainder of the fiber layer may be all second short fibers described later.

本実施形態における「第2の短繊維」とは、所定の長さにおいて第1の短繊維よりも多い捲縮数が認められる繊維である。このような短繊維としては、捲縮数5〜20山/25mmのいわゆる捲縮短繊維がある。また、この第2の短繊維は、繊維層の製造時における繊維の濡れ性(相溶性)を向上させるために、第1の短繊維と実質的に同一の樹脂で構成することが好ましい。すなわち、第1の短繊維がポリエステル系短繊維である場合には、第2の短繊維もポリエステル系短繊維(例えば、ポリエチレンテレフタレート繊維)とすることが好ましい。   The “second short fiber” in the present embodiment is a fiber in which a larger number of crimps is recognized than the first short fiber in a predetermined length. As such a short fiber, there is a so-called crimped short fiber having a number of crimps of 5 to 20 threads / 25 mm. Moreover, it is preferable that this 2nd short fiber is comprised with resin substantially the same as a 1st short fiber, in order to improve the wettability (compatibility) of the fiber at the time of manufacture of a fiber layer. That is, when the first short fiber is a polyester short fiber, the second short fiber is also preferably a polyester short fiber (for example, polyethylene terephthalate fiber).

基材構成繊維である第1の短繊維及び第2の短繊維の繊度は、1〜100dtexであることが好ましい。なお、短繊維の繊維径は繊度と材料の密度によって定まるが、総じて、繊度が1dtex未満の場合には繊維が細すぎるために、自動車用内装材又は自動車用内装基材として十分な剛性が得られず、繊度が100dtex以上の場合には繊維が太すぎるため、生産性が低下する。   The fineness of the first short fibers and the second short fibers which are base material constituting fibers is preferably 1 to 100 dtex. The fiber diameter of the short fiber is determined by the fineness and the density of the material, but generally, when the fineness is less than 1 dtex, the fiber is too thin, so that sufficient rigidity can be obtained as an automobile interior material or an automobile interior base material. In the case where the fineness is 100 dtex or more, the fiber is too thick, so that the productivity is lowered.

また、基材構成繊維は、繊維ウエブの厚さ方向(図3参照)又は厚さ方向と直交する面方向(図5参照)に繊維を配向させることが可能なカード機に使用できるものであって、繊維長は3〜200mmであることが好ましい。繊維長が3mmに満たないと、自動車用内装材又は自動車用内装基材として十分な剛性が得られず、繊維長が200mmを超えると、生産性が低下する。   Further, the base material constituting fiber can be used in a card machine capable of orienting fibers in the thickness direction (see FIG. 3) of the fiber web or in the plane direction (see FIG. 5) perpendicular to the thickness direction. The fiber length is preferably 3 to 200 mm. If the fiber length is less than 3 mm, sufficient rigidity cannot be obtained as an automobile interior material or an automobile interior base material, and if the fiber length exceeds 200 mm, productivity decreases.

特に、基材構成繊維を繊維ウエブの厚さ方向に配向させる場合、繊維長は10〜80mmの範囲とすることがより好ましい。基材構成繊維の繊維長が10mmに満たないと、カーディング性に劣るため、繊維を厚さ方向に配向することが難しくなる。一方、繊維長が80mmを超えると、厚さ方向に配向された繊維の密度にムラが発生しやすくなるため、形成される繊維ウエブの密度を均一にすることが困難になる。   In particular, when the base-constituting fibers are oriented in the thickness direction of the fiber web, the fiber length is more preferably in the range of 10 to 80 mm. If the fiber length of the base material constituting fiber is less than 10 mm, the carding property is inferior, and it becomes difficult to orient the fibers in the thickness direction. On the other hand, if the fiber length exceeds 80 mm, the density of the fibers oriented in the thickness direction tends to be uneven, and it is difficult to make the density of the formed fiber web uniform.

また、本実施形態に係る自動車用内装材又は自動車用内装基材において、繊維層は、第2の短繊維の一部として、繊維層100質量%に対して30質量%以上の熱接着性捲縮短繊維を含むことが好ましい。このような構成とすることで、製造工程の加熱成形後における形態安定性を向上させることができる。   Moreover, in the automobile interior material or the automobile interior base material according to the present embodiment, the fiber layer is a part of the second short fiber, and the thermal adhesive strength of 30% by mass or more with respect to 100% by mass of the fiber layer. It is preferable that a shortened fiber is included. By setting it as such a structure, the form stability after the thermoforming of a manufacturing process can be improved.

ここで、「熱接着性捲縮短繊維」とは、捲縮短繊維の一種であり、製造工程の加熱成形における設定温度条件(例えば、120〜180℃)において熱接着温度で軟化し、他の基材構成繊維に接着しつつ、冷却後には繊維層の形状を維持する繊維をいう。この熱接着性捲縮短繊維も、繊維層又は繊維ウエブを構成する基材構成繊維となる。なお、熱接着温度とは、熱接着性捲縮短繊維の構成材料が有する軟化点(例えば、110℃)よりも高い温度をいう。   Here, the “heat-bonded crimped short fiber” is a kind of crimped short fiber, which is softened at the heat bonding temperature under a set temperature condition (for example, 120 to 180 ° C.) in the thermoforming of the manufacturing process, and other groups. The fiber which maintains the shape of the fiber layer after cooling while adhering to the material constituting fiber. This heat-adhesive crimped short fiber is also a base material constituting fiber constituting the fiber layer or the fiber web. The thermal bonding temperature refers to a temperature higher than the softening point (for example, 110 ° C.) of the constituent material of the thermal adhesive crimped short fiber.

この熱接着性捲縮短繊維は前述の捲縮短繊維としての要件である捲縮数5〜20山/25mmを満たすものである。また、熱接着性捲縮短繊維は、繊維層を構成する基材構成繊維の中で、最も軟化点の低い単一の接着樹脂で構成された繊維、又は、軟化点の異なる複数の樹脂成分をサイドバイサイド型若しくは芯鞘型に配置構成した複合形態の繊維から選択して用いることができる。   This heat-adhesive crimped short fiber satisfies the requirement for the above-mentioned crimped short fiber, which is 5 to 20 threads / 25 mm. Further, the heat-adhesive crimped short fiber is a fiber composed of a single adhesive resin having the lowest softening point among the base constituent fibers constituting the fiber layer, or a plurality of resin components having different softening points. It can be used by selecting from composite fibers arranged and configured in a side-by-side type or a core-sheath type.

この熱接着性捲縮短繊維は、他の基材構成繊維と同様の理由から、繊度は1〜100dtexであることが好ましく、繊維長は3〜200mmであることが好ましい。   The heat-adhesive crimped short fibers preferably have a fineness of 1 to 100 dtex and a fiber length of 3 to 200 mm for the same reason as other base-constituting fibers.

また、第2の短繊維の一部として、繊維層が熱接着性捲縮短繊維を含み、第1の短繊維の繊度は、熱接着性捲縮短繊維の繊度よりも大きいことが好ましい。このような構成とすることで、繊度が大きく、捲縮数が少ない第1の短繊維の間に繊度の小さい熱接着性捲縮短繊維が良好に分布し、当該第1の短繊維に融着しやすくなるため、成形後における形状維持特性が向上する。   Moreover, it is preferable that a fiber layer contains a heat-adhesive crimped short fiber as a part of 2nd short fiber, and the fineness of a 1st short fiber is larger than the fineness of a heat-adhesive crimped short fiber. By adopting such a configuration, the heat-adhesive crimped short fibers having a small fineness are well distributed among the first short fibers having a large fineness and a small number of crimps, and are fused to the first short fibers. Therefore, the shape maintaining property after molding is improved.

本実施形態において、繊維層(又は繊維ウエブ)の基材構成繊維は、互いに絡まり合わされている。このように基材構成繊維が絡まり合っている繊維層を得るため、繊維層に加工される前の繊維ウエブの状態で、後述するニードルパンチ加工が繊維ウエブに施される。このようにニードルパンチ加工を施した繊維ウエブに対して、後述する加熱成形を施すことで、自動車用内装基材を構成する繊維層が得られる。   In this embodiment, the base material constituent fibers of the fiber layer (or fiber web) are entangled with each other. In order to obtain a fiber layer in which the base material constituent fibers are entangled in this way, needle punching described later is applied to the fiber web in the state of the fiber web before being processed into the fiber layer. Thus, the fiber layer which comprises the interior base material for motor vehicles is obtained by performing the thermoforming mentioned later with respect to the fiber web which gave the needle punch process.

繊維層の面密度は、所望する剛性並びに形状維持特性に応じて種々に設計し得るものである。しかしながら、剛性や形状維持特性の保持の観点から、繊維層の面密度は200g/m以上とすることが好ましく、自動車の軽量化の観点からは面密度は900g/m以下(より好ましくは800g/m以下)とすることが好ましい。 The areal density of the fiber layer can be designed in various ways according to the desired rigidity and shape maintaining characteristics. However, the surface density of the fiber layer is preferably 200 g / m 2 or more from the viewpoint of maintaining rigidity and shape maintaining characteristics, and the surface density is 900 g / m 2 or less (more preferably) from the viewpoint of reducing the weight of the automobile. 800 g / m 2 or less) is preferable.

また、自動車用内装材として好適な断熱性を実現するために、当該繊維層を備える自動車用内装材の厚さは、成形後における非荷重下で10mm以上とされる。このように構成することで、断熱性が向上するだけでなく、厚さが10mm以上と厚いため、吸音性が高く、車室内の騒音を低減できる。更にルーフからの雑音を吸収するルーフサイレンサとしての機能を発揮できる。なお、自動車の内装材と外装(天井等)との間のクリアランスを考慮して、当該厚さは、成形後における非荷重下で100mm以下とすることが好ましい。このように、自動車用内装材の成形後における非荷重下での厚さを10mm以上100mm以下とする場合、基材構成繊維の繊維長は、所望の厚さにあわせて適宜選択されることは言うまでもない。また、自動車用内装材の厚さは、成形後における非荷重下で15mm以上50mm以下とすることがより好ましく、同非荷重下で15mm以上40mm以下とすることがさらに好ましい。   Moreover, in order to implement | achieve heat insulation suitable as an interior material for motor vehicles, the thickness of the interior material for motor vehicles provided with the said fiber layer shall be 10 mm or more under the unloaded after shaping | molding. By configuring in this way, not only the heat insulation is improved, but also the thickness is as thick as 10 mm or more, so the sound absorption is high and the noise in the passenger compartment can be reduced. In addition, it can function as a roof silencer that absorbs noise from the roof. In consideration of the clearance between the interior material of the automobile and the exterior (ceiling, etc.), the thickness is preferably 100 mm or less under no load after molding. As described above, when the thickness under non-load after molding of the automotive interior material is 10 mm or more and 100 mm or less, the fiber length of the base material constituting fiber is appropriately selected according to the desired thickness. Needless to say. The thickness of the automobile interior material is more preferably 15 mm or more and 50 mm or less under non-load after molding, and further preferably 15 mm or more and 40 mm or less under the same non-load.

引き続き、繊維層における基材構成繊維の配向及び繊維層の作製方法について説明する。   Subsequently, the orientation of the base material constituting fibers in the fiber layer and the method for producing the fiber layer will be described.

本実施形態における繊維層は、第1の短繊維と第2の短繊維とが、繊維層の厚さ方向に配向された状態で厚さ方向と直交する方向に連続して集積し、絡まり合ってなるように構成することができる。このように構成することで、繊維ウエブを折り畳むことなく、繊維ウエブを折り畳むときに生じる界面を実質的に排除することができる。さらに、繊維ウエブの厚さ方向に配向された繊維が絡まり合っているため、剛性と高温環境における形状維持特性及び断熱性に優れた自動車用内装材及びその基材が得られる。   In the fiber layer in the present embodiment, the first short fibers and the second short fibers are continuously accumulated in the direction perpendicular to the thickness direction in a state where the first short fibers and the second short fibers are oriented in the thickness direction of the fiber layer, and are entangled. Can be configured. By comprising in this way, the interface which arises when folding a fiber web can be substantially excluded, without folding a fiber web. Furthermore, since the fibers oriented in the thickness direction of the fiber web are entangled, an automobile interior material and its base material excellent in rigidity, shape maintaining characteristics and heat insulation in a high temperature environment can be obtained.

なお、同様に基材構成繊維が厚さ方向に配向された構成とするため、繊維層は、第1の短繊維と第2の短繊維とが、エアレイ法によって繊維層の厚さ方向に配向された状態で厚さ方向と直交する方向に連続して集積し、ニードルパンチ加工を施してなるように構成することができる。   In addition, since the base material constituent fibers are similarly oriented in the thickness direction, the first short fibers and the second short fibers are oriented in the thickness direction of the fiber layer by the air array method. In this state, it can be configured such that it is continuously accumulated in a direction perpendicular to the thickness direction and subjected to needle punching.

ここで、「基材構成繊維(第1の短繊維及び第2の短繊維)が繊維層の厚さ方向となる方向に配向された状態」とは、すべての繊維が繊維層の厚さ方向に配向された状態、すなわち、繊維層の表面に対して垂直方向に配向されている状態に限らず、繊維が繊維ウエブの厚さ方向に比較的揃った状態で配向されている場合を含む。   Here, “the state in which the base material constituting fibers (first short fibers and second short fibers) are oriented in the direction of the thickness direction of the fiber layer” means that all the fibers are in the thickness direction of the fiber layer. It is not limited to the state where the fibers are oriented, that is, the state where the fibers are oriented in the direction perpendicular to the surface of the fiber layer, but includes the case where the fibers are oriented relatively in the thickness direction of the fiber web.

また、「基材構成繊維が厚さ方向に配向された状態で、厚さ方向と直交する方向に連続して基材構成繊維を集積させる」とは、図3の断面模式図に示される態様のように、繊維ウエブ1の厚さ方向に比較的揃った状態で配向された基材構成繊維11が、厚さ方向と直交する方向に集積されている場合を含む。   Further, “the base material constituting fibers are continuously accumulated in the direction orthogonal to the thickness direction in a state where the base material constituting fibers are oriented in the thickness direction” is an embodiment shown in the schematic cross-sectional view of FIG. As described above, the case where the base material constituting fibers 11 oriented in a relatively aligned state in the thickness direction of the fiber web 1 is accumulated in a direction orthogonal to the thickness direction is included.

このような繊維ウエブ1は、エアレイ法を用いたカード機によって形成することができる。図4は、エアレイ法を用いたカード機の要部を示す模式図である。   Such a fiber web 1 can be formed by a card machine using an air array method. FIG. 4 is a schematic diagram showing a main part of a card machine using the air array method.

エアレイ法を用いたカード機による繊維ウエブの作製にあたっては、まず、カード機において、基材構成繊維11を均一に混合した後、繊維を開繊する。開繊された基材構成繊維11は、空気流によってほぼ均一に引き揃えられ、気流によって円筒形状であり表面をメッシュ状とされたサクションドラム32の周面に対して垂直に当てることで集束させる。これにより、繊維群20を形成する。この時、サクションドラム32の周面において、基材構成繊維11を引き取る部分で、基材構成繊維11は吸引される。その後、ベルト33とローラ34を備えたコンベアによって集束させた繊維群20を搬送することで、基材構成繊維11が厚さ方向に配向された状態で厚さ方向と直交する方向に連続して集積された繊維ウエブ1を得ることができる。   In producing a fiber web by a card machine using the air array method, first, the base material constituting fibers 11 are uniformly mixed in the card machine, and then the fibers are opened. The opened base material constituting fibers 11 are substantially uniformly aligned by an air flow, and are converged by being applied perpendicularly to the circumferential surface of the suction drum 32 having a cylindrical shape and a mesh shape by the air flow. . Thereby, the fiber group 20 is formed. At this time, the base material constituting fiber 11 is sucked at a portion of the peripheral surface of the suction drum 32 where the base material constituting fiber 11 is taken up. Then, the fiber group 20 converged by the conveyor provided with the belt 33 and the roller 34 is conveyed, so that the base material constituting fibers 11 are oriented in the thickness direction and continuously in the direction orthogonal to the thickness direction. An integrated fiber web 1 can be obtained.

このウエブ形成工程に適した、エアレイ法を用いたカード機を含むウエブ形成装置としては、例えば、フェーラー(FEHRER)社製の「V21/R−K12」若しくは「V21/K12」、又はランド(RANDO)社製の「RANDO−WEBBER(ランドウェッバー)」(同社登録商標)がある。   As a web forming apparatus suitable for this web forming process, including a card machine using the air array method, for example, "V21 / R-K12" or "V21 / K12" manufactured by FEHERR, or LANDO ) "RANDO-WEBBER (Landweber)" (registered trademark).

ウエブ形成工程の後、繊維ウエブの基材構成繊維を絡まり合わせる絡合工程を行う。絡合工程は繊維ウエブの片面のみに対して行ってもよいが、基材構成繊維の繊維配向を乱さない限り、両面に対して行うことが好ましい。絡合工程を両面に対して行った場合、基材構成繊維の繊維配向を保ちながら、内装材又は内装基材としての形状維持特性や剛性を良好なものとすることができる。   After the web forming step, an entanglement step of entwining the base material constituting fibers of the fiber web is performed. The entanglement step may be performed only on one side of the fiber web, but it is preferably performed on both sides as long as the fiber orientation of the base fiber is not disturbed. When the entanglement process is performed on both surfaces, the shape maintaining characteristics and rigidity as the interior material or interior substrate can be made favorable while maintaining the fiber orientation of the substrate constituent fibers.

この絡合工程は、周知のニードルパンチ機によるニードルパンチ加工によって行うことができる。このニードルパンチ加工における、パンチ密度や針深さ、針形状などは任意好適に設計される。   This entanglement process can be performed by needle punching using a known needle punching machine. In this needle punching process, the punch density, the needle depth, the needle shape, etc. are arbitrarily designed.

絡合工程において基材構成繊維を絡まり合わせた繊維ウエブに対して加熱成形工程を行う。基材構成繊維に熱接着性短繊維が含まれる場合、この加熱成形工程において、熱接着性短繊維の熱特性に応じた温度で、無圧下で加熱し得る熱風循環炉や加圧可能な加熱ロールなど周知の手段によって、繊維を加熱し、熱接着性短繊維を他の基材構成繊維に溶着させることで繊維層が得られる。   In the entanglement step, the heat forming step is performed on the fiber web in which the base material constituting fibers are entangled. When the base constituent fibers include heat-adhesive short fibers, in this thermoforming step, a hot-air circulating furnace that can be heated under no pressure at a temperature according to the thermal characteristics of the heat-adhesive short fibers or heat that can be pressurized The fiber layer can be obtained by heating the fiber by a known means such as a roll and welding the heat-adhesive short fiber to another base material constituting fiber.

次いで、図1の内装基材110又は図2の内装基材210のように積層構造を有する内装基材とする場合、ウエブ形成工程、絡合工程及び加熱成形工程を経て得られた繊維層に、接着層を介在させる又は接着剤を塗布する等の手段を用いて、熱可塑性樹脂シート層等を接着する。その後、平板プレス機を用いた冷間プレス等により、成形後の厚さが所望の値となるように調整する。このような工程により、本実施形態に係る内装基材が得られる。   Then, when it is set as the interior base material which has a laminated structure like the interior base material 110 of FIG. 1 or the interior base material 210 of FIG. 2, the fiber layer obtained through the web formation process, the entanglement process and the thermoforming process is used. Then, the thermoplastic resin sheet layer or the like is adhered using means such as interposing an adhesive layer or applying an adhesive. Then, it adjusts so that the thickness after shaping | molding may become a desired value with the cold press etc. which used the flat plate press. By such a process, the interior base material according to the present embodiment is obtained.

なお、特許文献3に記載されている折り曲げた繊維ウエブにニードルパンチ加工を施す場合、繊維ウエブの折り曲げ状態がニードルパンチ加工によって破壊され、繊維配向が繊維ウエブの厚さ方向に対して直交する(すなわち、繊維ウエブの主面に対して平行になる)という傾向がある。この傾向は、厚めの繊維ウエブを使って、折り曲げ後の厚さが薄い繊維層を作成する場合に顕著となる。一方、本実施の形態では、基材構成繊維が繊維層の厚さ方向となる方向に配向されている場合、ニードルパンチ加工を施す対象となる繊維ウエブは、ニードルパンチ加工によって繊維配向が乱されて、繊維ウエブの厚さ方向に対して直交するという傾向は少ない。   In addition, when performing the needle punch process to the folded fiber web described in Patent Document 3, the folded state of the fiber web is destroyed by the needle punch process, and the fiber orientation is orthogonal to the thickness direction of the fiber web ( That is, it tends to be parallel to the main surface of the fiber web. This tendency becomes prominent when a thick fiber web is used to create a thin fiber layer after bending. On the other hand, in this embodiment, when the base material constituting fibers are oriented in the direction of the thickness of the fiber layer, the fiber orientation of the fiber web to be subjected to needle punching is disturbed by needle punching. Therefore, there is little tendency to be orthogonal to the thickness direction of the fiber web.

繊維層における基材構成繊維の配向に関して、基材構成繊維が厚さ方向に配向された構成ではなく、繊維層において、基材構成繊維である第1の短繊維と第2の短繊維とが、繊維層の厚さ方向と直交する面方向に配向されているように構成することができる。このように構成することで、曲げに対する剛性が低下しやすい面方向に短繊維が配向されている場合であっても、捲縮数の少ない第1の短繊維が有する剛性と高温環境における形状維持特性によって、繊維層全体における剛性と高温環境における形状維持特性が向上する。   Regarding the orientation of the base material constituting fibers in the fiber layer, the first short fibers and the second short fibers that are the base material constituting fibers are not in the structure in which the base material constituting fibers are oriented in the thickness direction. Further, it can be configured to be oriented in a plane direction perpendicular to the thickness direction of the fiber layer. By comprising in this way, even if the short fibers are oriented in the plane direction where the rigidity against bending tends to decrease, the rigidity of the first short fibers with a small number of crimps and the shape maintenance in a high temperature environment are maintained. The characteristics improve the rigidity of the entire fiber layer and the shape maintenance characteristics in a high temperature environment.

ここで、「第1の短繊維と第2の短繊維とが面方向に配向されている」とは、図5の繊維ウエブ4に示されるように、すべての基材構成繊維41が繊維層の面方向に配向された状態に限らず、繊維が繊維ウエブの面方向に比較的揃った状態で配向されている状態を含む。   Here, “the first short fibers and the second short fibers are oriented in the plane direction” means that all the base material constituting fibers 41 are fiber layers as shown in the fiber web 4 of FIG. In addition to the state of being oriented in the plane direction, the fiber is oriented in a relatively aligned state in the plane direction of the fiber web.

このような繊維ウエブ4は、周知のカード機によって、面方向に配向された基材構成繊維41を一定量・一定方向に送りだすことで形成できる(ウエブ形成工程)。   Such a fiber web 4 can be formed by sending out the substrate constituent fibers 41 oriented in the plane direction in a certain amount and in a certain direction by a known card machine (web forming step).

また、基材構成繊維が面方向に配向されている繊維ウエブ4の場合、基材構成繊維が厚さ方向に配向されている繊維ウエブ1と同様に、ウエブ形成工程の後、絡合工程(ニードルパンチ加工)及び加熱成形工程を経て、繊維層が得られる。その後、基材構成繊維が厚さ方向に配向された構成とする場合と同様に、適宜、熱可塑性樹脂シート層等を接着し、厚さを調整する。このような工程により、本実施形態に係る内装基材が得られる。   Further, in the case of the fiber web 4 in which the base material constituting fibers are oriented in the plane direction, the entanglement step (after the web forming step) in the same manner as the fiber web 1 in which the base material constituting fibers are oriented in the thickness direction. A fiber layer is obtained through a needle punching process and a thermoforming process. Thereafter, the thermoplastic resin sheet layer and the like are appropriately bonded to adjust the thickness in the same manner as in the case where the substrate constituting fibers are oriented in the thickness direction. By such a process, the interior base material according to the present embodiment is obtained.

前述のような構成とすることで、本発明の実施形態に係る自動車用内装材及び自動車用内装基材では、捲縮が実質的に認められない第1の短繊維が有する剛性及び高温環境における形状維持特性によって繊維層全体の特性が向上するため、基材を構成する繊維の配向に関わらず、剛性と高温環境における形状維持特性に優れた自動車用内装材及び自動車用内装基材が得られる。また、厚さが10mm以上と厚いため、吸音性能が高く、車室内の騒音を低減できる。更にルーフからの雑音を吸収するルーフサイレンサとしての機能を発揮できる。   By adopting the configuration as described above, in the automobile interior material and the automobile interior base material according to the embodiment of the present invention, the first short fiber in which crimps are not substantially recognized has the rigidity and high temperature environment. Because the overall properties of the fiber layer are improved by the shape-maintaining characteristics, it is possible to obtain an automotive interior material and an automotive interior base material that have excellent rigidity and shape-maintaining characteristics in a high-temperature environment regardless of the orientation of the fibers constituting the base material. . Moreover, since the thickness is as thick as 10 mm or more, the sound absorption performance is high, and the noise in the passenger compartment can be reduced. In addition, it can function as a roof silencer that absorbs noise from the roof.

なお、本実施形態に係る自動車用内装基材の構成は次のようにすることができる。   The configuration of the automobile interior base material according to the present embodiment can be as follows.

まず、熱可塑性樹脂シート層の積層は、剛性向上の観点から行われる。そのため、加熱成形工程までを経て得られた繊維層が充分な剛性を有する場合には、熱可塑性樹脂シート層の積層は省略することができる。   First, the lamination of the thermoplastic resin sheet layer is performed from the viewpoint of improving rigidity. Therefore, when the fiber layer obtained through the thermoforming process has sufficient rigidity, the lamination of the thermoplastic resin sheet layer can be omitted.

自動車用内装基材を積層構造とするために、繊維層と熱可塑性樹脂シート層との間に介在させる接着層は、通気性の有る不織布であっても、ホットメルトフィルムのように加熱接着後に非通気となるフィルムであってもよい。ホットメルトフィルムを用いた場合には、内装基材における層間剥離を効果的に回避することができる。また、非通気の層を設けることで、車内温度の変化或いは走行などに伴う空気対流への悪影響を軽減させることができる。例えば、本実施の形態に係る内装基材を用いた内装材の一態様である天井材の場合、空気対流に載って微細な粉塵等が内装基材の層間方向を通過し、一種の濾過現象を生じるといった悪影響を抑制することができる。   Even if the adhesive layer interposed between the fiber layer and the thermoplastic resin sheet layer is a breathable non-woven fabric to form a laminated structure for an automobile interior base material, It may be a non-ventilated film. When a hot melt film is used, delamination in the interior base material can be effectively avoided. In addition, by providing a non-ventilated layer, it is possible to reduce adverse effects on air convection caused by changes in vehicle interior temperature or traveling. For example, in the case of a ceiling material that is an aspect of the interior material using the interior base material according to the present embodiment, fine dust or the like placed on the air convection passes through the interlayer direction of the interior base material, and a kind of filtration phenomenon Adverse effects such as the occurrence of

また、熱可塑性樹脂シート層において、繊維層との接着面とは反対の面に接着層を設けて、そこに非通気性フィルムを接着させても良い。このように非通気性の層を内装基材に設けることによって、ホットメルトフィルムを用いた場合と同様に、車内温度の変化或いは走行などに伴う空気対流への悪影響を軽減することができる。   Further, in the thermoplastic resin sheet layer, an adhesive layer may be provided on the surface opposite to the adhesive surface with the fiber layer, and the non-breathable film may be adhered thereto. By providing the non-breathable layer on the interior base material in this manner, it is possible to reduce adverse effects on air convection caused by changes in the temperature inside the vehicle or traveling as in the case of using a hot melt film.

このような接着層を付加する場合において、各層間を接着して積層する装置や方法は、所望する内装基材の設計に応じたものとすれば良い。具体的には、前述と同様な熱風循環炉、加熱ロール等を任意好適に選択して用いることができる。   In the case of adding such an adhesive layer, the apparatus and method for adhering and laminating the respective layers may be in accordance with the desired design of the interior substrate. Specifically, the same hot air circulating furnace, heating roll, and the like as described above can be arbitrarily selected and used.

以下、本発明に係る実施例につき、実施例に係る構造を説明する共に、その評価結果を説明する。なお、本実施例において、特定の寸法、形状、配置関係、数値的条件など、本発明の理解を容易とする程度に特定条件を例示して説明するが、本発明はこれら例示形態にのみ限定されるものではなく、この発明の目的の範囲内で任意好適な変形または変更を行うことができる。   Hereinafter, with respect to an embodiment according to the present invention, a structure according to the embodiment will be described and an evaluation result thereof will be described. In the present embodiment, specific conditions, such as specific dimensions, shapes, arrangement relationships, and numerical conditions, will be described by way of example to an extent that facilitates understanding of the present invention. However, the present invention is limited only to these exemplary forms. However, any suitable modifications or changes can be made within the scope of the object of the present invention.

本発明の実施例1〜10に係る自動車用内装材と比較例1〜8に係る自動車用内装材の面密度、厚さ、繊維層の配合及び繊維配向を表1及び表2に示す。なお、面密度に関する( )内の数値は、繊維層の面密度である。

Figure 2009120025


Figure 2009120025


以下、実施例及び比較例のそれぞれについて、詳細を説明する。
<実施例1>
(1)繊維層の作製
基材構成繊維として、次の無捲縮短繊維(第1の短繊維に相当)、捲縮短繊維及び熱接着性捲縮短繊維(いずれも第2の短繊維に相当)を用意した。
[無捲縮短繊維(第1の短繊維)]
材料 :ポリエチレンテレフタレート
繊度 :20dtex
繊維長 :38mm
捲縮数 :0山/25mm
[捲縮短繊維(第2の短繊維)]
材料 :ポリエチレンテレフタレート
繊度 :20dtex
繊維長 :38mm
捲縮数 :9〜13山/25mm
[熱接着性捲縮短繊維(第2の短繊維)]
材料 :芯鞘型ポリエステル系樹脂(鞘成分:イソフタル酸で改質したポリブチレンテレフタレート[軟化点110℃、融点160℃]、芯成分:ポリエチレンテレフタレート[軟化点237〜238℃、融点240℃])
繊度 :4.4dtex
繊維長 :38mm
捲縮数 :9〜13山/25mm
上記の無捲縮短繊維20質量%と捲縮短繊維10質量%と熱接着性捲縮短繊維70質量%とを混綿した後、図4に示されるようなカード機を備えるウエブ形成装置を用いて、基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、この繊維ウエブの両面から、ニードルパンチ加工(針密度50本/cm)を施して基材構成繊維を絡まり合わせた。その後、熱風の温度を175℃に設定した熱風循環炉へ供給し、熱接着性捲縮短繊維の鞘成分のみを加圧することなく無捲縮短繊維及び捲縮短繊維に溶着させた。これにより、実施例1に係る繊維層(面密度700g/m)を得た。 Tables 1 and 2 show the surface density, thickness, fiber layer composition, and fiber orientation of the automotive interior materials according to Examples 1 to 10 and Comparative Examples 1 to 8 of the present invention. In addition, the numerical value in () regarding the surface density is the surface density of the fiber layer.
Figure 2009120025


Figure 2009120025


Details of each of the examples and comparative examples will be described below.
<Example 1>
(1) Fabrication of fiber layer As base material constituting fibers, the following uncrimped short fibers (corresponding to the first short fibers), crimped short fibers, and heat-adhesive crimped short fibers (all corresponding to the second short fibers) Prepared.
[Uncrimped short fibers (first short fibers)]
Material: Polyethylene terephthalate Fineness: 20 dtex
Fiber length: 38mm
Number of crimps: 0 mountain / 25 mm
[Crimped staple fiber (second staple fiber)]
Material: Polyethylene terephthalate Fineness: 20 dtex
Fiber length: 38mm
Number of crimps: 9 to 13 mountains / 25 mm
[Thermoadhesive crimped short fiber (second short fiber)]
Materials: Core-sheath type polyester resin (sheath component: polybutylene terephthalate modified with isophthalic acid [softening point 110 ° C., melting point 160 ° C.], core component: polyethylene terephthalate [softening point 237-238 ° C., melting point 240 ° C.])
Fineness: 4.4 dtex
Fiber length: 38mm
Number of crimps: 9 to 13 mountains / 25 mm
After blending 20% by mass of the above-mentioned crimped short fibers, 10% by mass of crimped short fibers, and 70% by mass of heat-adhesive crimped short fibers, using a web forming apparatus equipped with a card machine as shown in FIG. A fiber web was formed in which the base material constituting fibers were oriented in the thickness direction. Subsequently, from both sides of this fiber web, needle punching (needle density 50 / cm 2 ) was applied to entangle the base material constituting fibers. Then, it supplied to the hot-air circulation furnace which set the temperature of the hot air to 175 degreeC, and was welded to the uncrimped short fiber and the crimped short fiber, without pressing only the sheath component of a heat-adhesive crimped short fiber. Thereby, the fiber layer (surface density 700g / m < 2 >) based on Example 1 was obtained.

(2)内装基材及び内装材の調製
熱可塑性樹脂シート層として、ポリエステル製の水流絡合不織布(面密度:30g/m、厚さ:0.30mm)を用意した。また、第1接着層として、変性オレフィンのホットメルトフィルム(厚さ:0.03mm、積層接着後の通気性あり)を用意し、第2接着層として、変性オレフィン/ナイロン/変性オレフィンの3層フィルム(厚さ:0.05mm、積層接着後の通気性なし)を用意した。次に、熱可塑性樹脂シート層と第2接着層とを重ねて、温度150℃に設定した加熱ロールを用いて加圧加熱することで予め複合不織布として一体化した。また、この複合不織布とは別個に、公知のカード機によって作製された不織布ウエブにニードルパンチ加工(針密度350本/cm)を施したものを、不織布表皮(面密度:180g/m)として用意した。
(2) Preparation of Interior Base Material and Interior Material A polyester hydroentangled nonwoven fabric (surface density: 30 g / m 2 , thickness: 0.30 mm) was prepared as a thermoplastic resin sheet layer. In addition, a modified olefin hot melt film (thickness: 0.03 mm, air permeability after lamination adhesion) is prepared as the first adhesive layer, and three layers of modified olefin / nylon / modified olefin are prepared as the second adhesive layer. A film (thickness: 0.05 mm, no breathability after lamination) was prepared. Next, the thermoplastic resin sheet layer and the second adhesive layer were overlapped and preliminarily integrated as a composite nonwoven fabric by heating with pressure using a heating roll set at a temperature of 150 ° C. Further, separately from the composite nonwoven fabric, those subjected to needle punching to the nonwoven web made by known carding machine (needle density 350 present / cm 2), nonwoven epidermis (surface density: 180g / m 2) Prepared as.

続いて、前述の繊維層、第1接着層、複合不織布及び不織布表皮を、図1に示す積層接着状態とするには以下の手順によった。まず、繊維層101、第1接着層102、不織布表皮104の順になるように積層した後、熱風の温度を230℃に設定した熱風循環炉で加熱した。加熱後、シート余熱によって熱可塑性樹脂シート層105と第2接着層103とを積層接着し、さらに、平板プレス機を用いて冷間プレスした。これらの工程を経て、各層間を圧着一体化し、面密度が977g/m、内装材の成形後における非荷重下での厚さが10mmの実施例1に係るサンプル(内装材)を調製した。 Subsequently, the following procedure was used to bring the above-described fiber layer, first adhesive layer, composite nonwoven fabric, and nonwoven fabric skin into the laminated adhesive state shown in FIG. First, after laminating | stacking so that the fiber layer 101, the 1st contact bonding layer 102, and the nonwoven fabric outer skin 104 might become order, it heated with the hot-air circulation furnace which set the temperature of the hot air to 230 degreeC. After the heating, the thermoplastic resin sheet layer 105 and the second adhesive layer 103 were laminated and bonded by sheet residual heat, and further cold pressed using a flat plate press. Through these steps, the respective layers were pressure-bonded and integrated to prepare a sample (interior material) according to Example 1 having a surface density of 977 g / m 2 and a thickness of 10 mm under no load after molding of the interior material. .

<実施例2>
(1)繊維層の作製
実施例1と同一の繊維配合にて、同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同様に、この繊維ウエブの両面から、ニードルパンチ加工(針密度50本/cm)を施して基材構成繊維を絡まり合わせた。その後、熱風の温度を175℃に設定した熱風循環炉へ供給し、熱接着性捲縮短繊維の鞘成分のみを加圧することなく無捲縮短繊維及び捲縮短繊維に溶着させた。これにより、実施例1と同じ繊維配向で面密度が異なる実施例2に係る繊維層(面密度500g/m)を得た。
<Example 2>
(1) Fabrication of fiber layer A fiber web in which the base material constituting fibers were oriented in the thickness direction was formed by the same web forming apparatus with the same fiber blending as in Example 1. Next, as in Example 1, needle punching (needle density 50 / cm 2 ) was applied from both sides of the fiber web to entangle the substrate constituting fibers. Then, it supplied to the hot-air circulation furnace which set the temperature of the hot air to 175 degreeC, and was welded to the uncrimped short fiber and the crimped short fiber, without pressing only the sheath component of a heat-adhesive crimped short fiber. Thereby, the fiber layer (surface density 500g / m < 2 >) which concerns on Example 2 from which the same fiber orientation as Example 1 differs in surface density was obtained.

(2)内装材の調製
実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が777g/m、内装材の成形後における非荷重下での厚さが10mmの実施例2に係るサンプル(内装材)を調製した。
(2) Preparation of interior material The same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and nonwoven fabric skin as in Example 1 were prepared, and the surface density was 777 g / m by the same procedure as in Example 1. 2. A sample (interior material) according to Example 2 having a thickness of 10 mm under no load after molding of the interior material was prepared.

<実施例3>
(1)繊維層の作製
実施例1と同一の繊維配合にて混綿した後、実施例1の場合と異なるカード機を備えるウエブ形成装置を用いて、基材構成繊維を面方向に配向させた繊維ウエブを形成した。次いで、この繊維ウエブの両面から、ニードルパンチ加工(針密度50本/cm)を施して基材構成繊維を絡まり合わせた。その後、熱風の温度を175℃に設定した熱風循環炉へ供給し、熱接着性捲縮短繊維の鞘成分のみを加圧することなく無捲縮短繊維及び捲縮短繊維に溶着させた。これにより、実施例2と異なる繊維配向で同じ面密度を有する実施例3に係る繊維層(面密度500g/m)を得た。
<Example 3>
(1) Fabrication of fiber layer After blending with the same fiber blend as in Example 1, using a web forming apparatus equipped with a card machine different from that in Example 1, the base material constituting fibers were oriented in the plane direction. A fiber web was formed. Subsequently, from both sides of this fiber web, needle punching (needle density 50 / cm 2 ) was applied to entangle the base material constituting fibers. Then, it supplied to the hot-air circulation furnace which set the temperature of the hot air to 175 degreeC, and was welded to the uncrimped short fiber and the crimped short fiber, without pressing only the sheath component of a heat-adhesive crimped short fiber. This obtained the fiber layer (surface density 500g / m < 2 >) which concerns on Example 3 which has the same surface density by fiber orientation different from Example 2. FIG.

(2)内装材の調製
実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が777g/m、内装材の成形後における非荷重下での厚さが10mmの実施例3に係るサンプル(内装材)を調製した。
(2) Preparation of interior material The same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and nonwoven fabric skin as in Example 1 were prepared, and the surface density was 777 g / m by the same procedure as in Example 1. 2. A sample (interior material) according to Example 3 having a thickness of 10 mm under no load after molding of the interior material was prepared.

<実施例4>
実施例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向及び面密度であって、実施例1の場合とは厚さが異なる実施例4に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが15mmの実施例4に係るサンプル(内装材)を調製した。
<Example 4>
A fiber web in which the base material constituent fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blending as in Example 1. Next, in the same process as in Example 1, the fiber orientation and surface density are the same as those in Example 1, and the fiber layer according to Example 4 having a thickness different from that in Example 1 (surface density 700 g / m 2). ) Was produced. Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Example 4 having a thickness of 15 mm under non-loading after molding was prepared.

<実施例5>
実施例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向及び面密度であって、実施例1の場合とは厚さが異なる実施例5に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが30mmの実施例5に係るサンプル(内装材)を調製した。
<Example 5>
A fiber web in which the base material constituent fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blending as in Example 1. Next, in the same process as in Example 1, the fiber orientation and surface density are the same as those in Example 1, and the fiber layer according to Example 5 having a thickness different from that in Example 1 (surface density 700 g / m 2). ) Was produced. Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Example 5 having a thickness of 30 mm under no load after molding was prepared.

<実施例6>
実施例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向であって、実施例1の場合とは面密度及び厚さが異なる実施例6に係る繊維層(面密度500g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が777g/m、内装材の成形後における非荷重下での厚さが15mmの実施例6に係るサンプル(内装材)を調製した。
<Example 6>
A fiber web in which the base material constituent fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blending as in Example 1. Next, in the same process as in Example 1, the fiber orientation was the same as that in Example 1, and the fiber layer according to Example 6 having a surface density and thickness different from that in Example 1 (surface density 500 g / m 2). ) Was produced. Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 777 g / m 2 and the interior material A sample (interior material) according to Example 6 having a thickness of 15 mm under no load after molding was prepared.

<実施例7>
実施例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向であって、実施例1の場合とは面密度及び厚さが異なる実施例7に係る繊維層(面密度500g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が777g/m、内装材の成形後における非荷重下での厚さが30mmの実施例7に係るサンプル(内装材)を調製した。
<Example 7>
A fiber web in which the base material constituent fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blending as in Example 1. Next, in the same process as in Example 1, the fiber orientation was the same as that in Example 1, and the fiber layer according to Example 7 having a surface density and thickness different from that in Example 1 (surface density 500 g / m 2). ) Was produced. Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 777 g / m 2 and the interior material A sample (interior material) according to Example 7 having a thickness of 30 mm under no load after molding was prepared.

<実施例8>
(1)繊維層の作製
基材構成繊維として、次の無捲縮短繊維(第1の短繊維に相当)を用意し、捲縮短繊維及び熱接着性捲縮短繊維(いずれも第2の短繊維に相当)には、実施例1と同一の繊維を用意した。
[無捲縮短繊維(第1の短繊維)]
材料 :ポリエチレンテレフタレート
繊度 :40dtex
繊維長 :38mm
捲縮数 :0〜1山/25mm
上記の無捲縮短繊維10質量%と捲縮短繊維20質量%と熱接着性捲縮短繊維70質量%とを混綿した後、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同様に、この繊維ウエブの両面から、ニードルパンチ加工(針密度50本/cm)を施して基材構成繊維を絡まり合わせた。その後、熱風の温度を175℃に設定した熱風循環炉へ供給し、熱接着性捲縮短繊維の鞘成分のみを加圧することなく無捲縮短繊維及び捲縮短繊維に溶着させた。これにより、実施例8に係る繊維層(面密度700g/m)を得た。
(2)内装材の調製
実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが10mmの実施例8に係るサンプル(内装材)を調製した。
<Example 8>
(1) Fabrication of fiber layer The following uncrimped short fibers (corresponding to the first short fibers) are prepared as the base constituent fibers, and the crimped short fibers and the heat-adhesive crimped short fibers (both are the second short fibers). The same fiber as in Example 1 was prepared.
[Uncrimped short fibers (first short fibers)]
Material: Polyethylene terephthalate Fineness: 40 dtex
Fiber length: 38mm
Number of crimps: 0 to 1 mountain / 25 mm
After blending 10% by mass of the above-mentioned uncrimped short fibers, 20% by mass of crimped short fibers, and 70% by mass of heat-adhesive crimped short fibers, the base material constituting fibers are formed in the thickness direction using the same web forming apparatus as in Example 1. A fiber web oriented to was formed. Next, as in Example 1, needle punching (needle density 50 / cm 2 ) was applied from both sides of the fiber web to entangle the substrate constituting fibers. Then, it supplied to the hot-air circulation furnace which set the temperature of the hot air to 175 degreeC, and was welded to the uncrimped short fiber and the crimped short fiber, without pressing only the sheath component of a heat-adhesive crimped short fiber. This obtained the fiber layer (surface density 700g / m < 2 >) based on Example 8. FIG.
(2) Preparation of interior material The same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and nonwoven fabric skin as in Example 1 were prepared, and the surface density was 977 g / m by the same procedure as in Example 1. 2. A sample (interior material) according to Example 8 having a thickness of 10 mm under no load after molding of the interior material was prepared.

<実施例9>
実施例8と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例8と同じ繊維配向及び面密度であって、実施例8の場合とは厚さが異なる実施例9に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが15mmの実施例9に係るサンプル(内装材)を調製した。
<Example 9>
A fiber web having the same fiber composition as in Example 8 and having the base material constituting fibers oriented in the thickness direction was formed by the same web forming apparatus as in Example 1. Next, in the same process as in Example 1, the fiber orientation and surface density are the same as those in Example 8, and the fiber layer according to Example 9 having a thickness different from that in Example 8 (surface density 700 g / m 2). ) Was produced. Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Example 9 having a thickness of 15 mm under no load after molding was prepared.

<実施例10>
実施例8と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例8と同じ繊維配向及び面密度であって、実施例8の場合とは厚さが異なる実施例10に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが30mmの実施例10に係るサンプル(内装材)を調製した。
<Example 10>
A fiber web having the same fiber composition as in Example 8 and having the base material constituting fibers oriented in the thickness direction was formed by the same web forming apparatus as in Example 1. Next, in the same process as in Example 1, the fiber orientation and surface density are the same as those in Example 8, and the fiber layer according to Example 10 having a thickness different from that in Example 8 (surface density 700 g / m 2). ) Was produced. Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Example 10 having a thickness of 30 mm under no load after molding was prepared.

<実施例11>
実施例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向及び面密度であって、実施例1の場合とは厚さが異なる実施例11に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが50mmの実施例11に係るサンプル(内装材)を調製した。
<Example 11>
A fiber web in which the base material constituent fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blending as in Example 1. Next, in the same process as Example 1, the fiber orientation and surface density are the same as those of Example 1, and the fiber layer according to Example 11 having a thickness different from that of Example 1 (surface density 700 g / m 2). ) Was produced. Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Example 11 having a thickness of 50 mm under no load after molding was prepared.

<比較例1>
(1)繊維層の作製
実施例1と同一の捲縮短繊維及び熱接着性捲縮短繊維を用いて、捲縮短繊維30質量%と熱接着性捲縮短繊維70質量%とを混綿した後、図4に示されるようなカード機を備えるウエブ形成装置を用いて、基材構成繊維を厚さ方向に配向させた繊維ウエブであって無捲縮短繊維を含まないものを形成した。次いで、この繊維ウエブの両面から、ニードルパンチ加工(針密度50本/cm)を施して基材構成繊維を絡まり合わせた。その後、熱風の温度を175℃に設定した熱風循環炉へ供給し、熱接着性捲縮短繊維の鞘成分のみを加圧することなく無捲縮短繊維及び捲縮短繊維に溶着させた。これにより、無捲縮短繊維を含まない比較例1に係る繊維層(面密度700g/m)を得た。
<Comparative Example 1>
(1) Fabrication of fiber layer Using the same crimped short fiber and heat-adhesive crimped short fiber as in Example 1, after blending 30% by mass of crimped short fiber and 70% by mass of heat-adhesive crimped short fiber, Using a web forming apparatus having a card machine as shown in FIG. 4, a fiber web in which base material constituting fibers are oriented in the thickness direction and containing no uncrimped short fibers was formed. Subsequently, from both sides of this fiber web, needle punching (needle density 50 / cm 2 ) was applied to entangle the base material constituting fibers. Then, it supplied to the hot-air circulation furnace which set the temperature of the hot air to 175 degreeC, and was welded to the uncrimped short fiber and the crimped short fiber, without pressing only the sheath component of a heat-adhesive crimped short fiber. This obtained the fiber layer (surface density 700g / m < 2 >) which concerns on the comparative example 1 which does not contain an uncrimped short fiber.

(2)内装材の調製
実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが10mmであって、繊維が厚さ方向に配向され、実施例1と異なり無捲縮短繊維を含まない比較例1に係るサンプル(内装材)を調製した。
(2) Preparation of interior material The same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and nonwoven fabric skin as in Example 1 were prepared, and the surface density was 977 g / m by the same procedure as in Example 1. 2. A sample according to Comparative Example 1 (interior) which has a thickness of 10 mm under no load after molding of the interior material, and the fibers are oriented in the thickness direction, and does not contain uncrimped short fibers unlike Example 1. Material) was prepared.

<比較例2>
(1)繊維層の作製
比較例1と同一の繊維配合にて、同一のウエブ形成装置により、基材構成繊維を厚さ方向に配向させた繊維ウエブであって無捲縮短繊維を含まないものを形成した。次いで、この繊維ウエブの両面から、ニードルパンチ加工(針密度50本/cm)を施して基材構成繊維を絡まり合わせた。その後、熱風の温度を175℃に設定した熱風循環炉へ供給し、熱接着性捲縮短繊維の鞘成分のみを加圧することなく無捲縮短繊維及び捲縮短繊維に溶着させた。これにより、無捲縮短繊維を含まず、比較例1と面密度が異なる比較例2に係る繊維層(面密度500g/m)を得た。
<Comparative example 2>
(1) Fabrication of fiber layer A fiber web having the same fiber blending as in Comparative Example 1 and oriented in the thickness direction by the same web forming apparatus and containing no uncrimped short fibers. Formed. Subsequently, from both sides of this fiber web, needle punching (needle density 50 / cm 2 ) was applied to entangle the base material constituting fibers. Then, it supplied to the hot-air circulation furnace which set the temperature of the hot air to 175 degreeC, and was welded to the uncrimped short fiber and the crimped short fiber, without pressing only the sheath component of a heat-adhesive crimped short fiber. This obtained the fiber layer (surface density 500g / m < 2 >) which does not contain an uncrimped short fiber and which concerns on the comparative example 2 from which the surface density differs from the comparative example 1. FIG.

(2)内装材の調製
実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が777g/m、内装材の成形後における非荷重下での厚さが10mmであって、繊維が厚さ方向に配向され、実施例2と異なり無捲縮短繊維を含まない比較例2に係るサンプル(内装材)を調製した。
(2) Preparation of interior material The same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and nonwoven fabric skin as in Example 1 were prepared, and the surface density was 777 g / m by the same procedure as in Example 1. 2. A sample according to Comparative Example 2 (interior), which has a thickness of 10 mm under no load after molding of the interior material, the fibers are oriented in the thickness direction, and does not contain uncrimped short fibers unlike Example 2. Material) was prepared.

<比較例3>
(1)繊維層の作製
比較例1と同一の繊維配合にて混綿した後、比較例1の場合と異なるカード機を備えるウエブ形成装置を用いて、基材構成繊維を面方向に配向させた繊維ウエブであって無捲縮短繊維を含まないものを形成した。次いで、この繊維ウエブの両面から、各々、ニードルパンチ加工(針密度50本/cm)を施して基材構成繊維を絡まり合わせた。その後、熱風の温度を175℃に設定した熱風循環炉へ供給し、熱接着性捲縮短繊維の鞘成分のみを加圧することなく無捲縮短繊維及び捲縮短繊維に溶着させた。これにより、比較例2と異なる繊維配向で同じ面密度を有する比較例3に係る繊維層(面密度500g/m)を得た。
<Comparative Example 3>
(1) Fabrication of fiber layer After blending with the same fiber blend as in Comparative Example 1, the substrate-constituting fibers were oriented in the plane direction using a web forming apparatus equipped with a card machine different from that in Comparative Example 1. A fiber web was formed which did not contain uncrimped short fibers. Next, from both sides of the fiber web, needle punching (needle density of 50 / cm 2 ) was applied to entangle the substrate constituting fibers. Then, it supplied to the hot-air circulation furnace which set the temperature of the hot air to 175 degreeC, and was welded to the uncrimped short fiber and the crimped short fiber, without pressing only the sheath component of a heat-adhesive crimped short fiber. Thereby, the fiber layer (surface density 500g / m < 2 >) which concerns on the comparative example 3 which has the same surface density by the fiber orientation different from the comparative example 2 was obtained.

(2)内装材の調製
実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が777g/m、内装材の成形後における非荷重下での厚さが10mmであって、繊維が面方向に配向され、実施例3と異なり無捲縮短繊維を含まない比較例3に係るサンプル(内装材)を調製した。
(2) Preparation of interior material The same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and nonwoven fabric skin as in Example 1 were prepared, and the surface density was 777 g / m by the same procedure as in Example 1. 2. A sample according to Comparative Example 3 (interior material, which has a thickness of 10 mm under no load after molding of the interior material, the fibers are oriented in the plane direction, and does not include uncrimped short fibers unlike Example 3. ) Was prepared.

<比較例4>
実施例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向及び面密度であって、実施例1の場合とは厚さが異なる比較例4に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが6mmの比較例4に係るサンプル(内装材)を調製した。
<Comparative example 4>
A fiber web in which the base material constituent fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blending as in Example 1. Next, a fiber layer (surface density 700 g / m 2) according to Comparative Example 4 having the same fiber orientation and surface density as Example 1 and having a thickness different from that of Example 1 in the same process as Example 1. ) Was produced. Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Comparative Example 4 having a thickness of 6 mm under no load after molding was prepared.

<比較例5>
比較例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向及び面密度であって、実施例1の場合とは厚さ及び繊維配合が異なる比較例5に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが15mmの比較例5に係るサンプル(内装材)を調製した。
<Comparative Example 5>
A fiber web in which the base material constituting fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blend as in Comparative Example 1. Next, in the same process as in Example 1, the fiber orientation and surface density are the same as those in Example 1, and the fiber layer according to Comparative Example 5 (surface density 700 g) having a thickness and fiber composition different from those in Example 1 was obtained. / M 2 ). Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Comparative Example 5 having a thickness of 15 mm under no load after molding was prepared.

<比較例6>
比較例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向及び面密度であって、実施例1の場合とは厚さ及び繊維配合が異なる比較例6に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが30mmの比較例6に係るサンプル(内装材)を調製した。
<Comparative Example 6>
A fiber web in which the base material constituting fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blend as in Comparative Example 1. Next, in the same process as in Example 1, the fiber orientation and surface density are the same as those in Example 1, and the fiber layer according to Comparative Example 6 (surface density 700 g is different in thickness and fiber composition from Example 1). / M 2 ). Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Comparative Example 6 having a thickness of 30 mm under no load after molding was prepared.

<比較例7>
比較例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向であって、実施例1の場合とは面密度、厚さ及び繊維配合が異なる比較例7に係る繊維層(面密度500g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が777g/m、内装材の成形後における非荷重下での厚さが15mmの比較例7に係るサンプル(内装材)を調製した。
<Comparative Example 7>
A fiber web in which the base material constituting fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blend as in Comparative Example 1. Next, in the same process as in Example 1, the fiber orientation is the same as that in Example 1, and the fiber layer according to Comparative Example 7 (surface density 500 g, which has a different surface density, thickness, and fiber composition from that in Example 1). / M 2 ). Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 777 g / m 2 and the interior material A sample (interior material) according to Comparative Example 7 having a thickness of 15 mm under no load after molding was prepared.

<比較例8>
比較例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向であって、実施例1の場合とは面密度、厚さ及び繊維配合が異なる比較例8に係る繊維層(面密度500g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が777g/m、内装材の成形後における非荷重下での厚さが30mmの比較例8に係るサンプル(内装材)を調製した。
<Comparative Example 8>
A fiber web in which the base material constituting fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blend as in Comparative Example 1. Next, in the same process as in Example 1, the fiber orientation was the same as that in Example 1, and the fiber layer according to Comparative Example 8 (surface density 500 g different in surface density, thickness, and fiber composition from Example 1). / M 2 ). Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 777 g / m 2 and the interior material A sample (interior material) according to Comparative Example 8 having a thickness of 30 mm under no load after molding was prepared.

<比較例9>
比較例1と同一の繊維配合にて、実施例1と同一のウエブ形成装置により基材構成繊維を厚さ方向に配向させた繊維ウエブを形成した。次いで、実施例1と同一の工程にて実施例1と同じ繊維配向及び面密度であって、実施例1の場合とは厚さ及び繊維配合が異なる比較例9に係る繊維層(面密度700g/m)を作製した。その後、実施例1と同一の熱可塑性樹脂シート層、第1接着層、第2接着層及び不織布表皮を用意し、実施例1と同一の手順によって、面密度が977g/m、内装材の成形後における非荷重下での厚さが50mmの比較例9に係るサンプル(内装材)を調製した。
<Comparative Example 9>
A fiber web in which the base material constituting fibers were oriented in the thickness direction was formed by the same web forming apparatus as in Example 1 with the same fiber blend as in Comparative Example 1. Next, in the same process as in Example 1, the fiber orientation and surface density are the same as those in Example 1, and the fiber layer according to Comparative Example 9 (surface density 700 g is different in thickness and fiber composition from that in Example 1). / M 2 ). Thereafter, the same thermoplastic resin sheet layer, first adhesive layer, second adhesive layer and non-woven fabric skin as in Example 1 were prepared. By the same procedure as in Example 1, the surface density was 977 g / m 2 and the interior material A sample (interior material) according to Comparative Example 9 having a thickness of 50 mm under no load after molding was prepared.

<剛性の評価方法>
前述した実施例及び比較例に係るサンプルについて、常温における剛性の評価として、室温である25℃での剛性測定を実施した。この測定では、まず、各サンプルの縦方向(繊維層の生産工程における流れ方向)に150mm、横方向に50mmの寸法で短冊状試験片を採取した。この短冊状試験片を、100mmの間隔をおいて配置した2つの支持台上に、またがるように載置した。次いで、この支持台間の中央部(支持台から50mmの部分)を加圧くさびにより、加圧速度20mm/minで重力方向へ加圧した。この加圧時の荷重を、当該くさびが装着された引張試験機「テンシロンUCT−500」(オリエンテック製)により経時的に計測し、荷重が最大となる点の荷重を曲げ時最大点荷重として記録した。
<Rigidity evaluation method>
About the sample which concerns on the Example and comparative example mentioned above, the rigidity measurement in 25 degreeC which is room temperature was implemented as evaluation of the rigidity in normal temperature. In this measurement, first, strip-shaped test pieces having a size of 150 mm in the vertical direction (flow direction in the production process of the fiber layer) and 50 mm in the horizontal direction of each sample were collected. This strip-shaped test piece was placed so as to straddle two support bases arranged at an interval of 100 mm. Subsequently, the central part (50 mm from the support base) between the support bases was pressed in the direction of gravity by a press wedge at a pressurization speed of 20 mm / min. The load at the time of pressurization is measured over time by the tensile tester “Tensilon UCT-500” (Orientec) equipped with the wedge, and the load at the point where the load becomes maximum is taken as the maximum point load at the time of bending. Recorded.

さらに、曲げ時最大点荷重の測定に際して、経時的に荷重曲線を記録し、原点から曲げ時最大点に至るまでの各変曲点における傾きの最大値を求め、この値を弾性勾配とした。この弾性勾配は大きいほど、常温(25℃)におけるサンプル、つまり内装材の撓みが少ないことを意味し、内装材を車両に取り付ける作業において、内装材の折れを回避しやすく、取り付け後における剛性にも優れると評価できる。   Furthermore, when measuring the maximum point load at the time of bending, a load curve was recorded over time, the maximum value of the inclination at each inflection point from the origin to the maximum point at the time of bending was determined, and this value was used as the elastic gradient. The larger this elastic gradient, the less the sample at room temperature (25 ° C), that is, the less the inner material is bent. In the work of attaching the interior material to the vehicle, it is easier to avoid bending of the interior material, and the rigidity after the attachment is increased. Can be evaluated as excellent.

<形状維持特性の評価方法>
また、常温における剛性とあわせて、高温環境における形状維持特性を評価した。この評価では、まず、各サンプルの縦方向に300mm、横方向に50mmの寸法で短冊状試験片を採取し、この短冊状試験片の縦方向における一端から70mmまでの領域を直方体の台上に載置固定し、残りの230mmの領域を直方体の台から突出させた。次いで、この状態を維持したまま、温度90℃に設定した恒温槽に4時間放置し、直方体の台から突出した部分の先端における垂下り量(単位:mm)を測定した。一般的に、この垂下り量が10mm以下であれば、形状維持特性に優れていると評価できる。
<Method for evaluating shape maintenance characteristics>
In addition to the rigidity at room temperature, the shape maintenance characteristics in a high temperature environment were evaluated. In this evaluation, first, a strip-shaped test piece having a size of 300 mm in the vertical direction and 50 mm in the horizontal direction of each sample was collected, and an area from one end to 70 mm in the vertical direction of the strip-shaped test piece was placed on a rectangular parallelepiped table. The mounting was fixed, and the remaining 230 mm region was protruded from the rectangular parallelepiped base. Next, while maintaining this state, the sample was left in a thermostatic chamber set at a temperature of 90 ° C. for 4 hours, and the amount of sag (unit: mm) at the tip of the portion protruding from the rectangular parallelepiped base was measured. In general, if the amount of sag is 10 mm or less, it can be evaluated that the shape maintaining characteristics are excellent.

<断熱性の評価方法>
また、前述した実施例及び比較例に係るサンプルについて、断熱性の評価として、全熱遮断能の測定を実施した。全熱遮断能とは、単位時間(1時間)において、ある熱量(Cal)が単位面積(1m)を通過するときに生じる単位温度差のことであり、次のように定義される。
total=(Ts−Ta)/M ・・・(式1)
この式1において、Itotalは全熱遮断能(℃/kcal/m/hr)、Tsは外気温(℃)、Taは室内温度(℃)、Mは供給熱量(kcal/m/hr)である。
<Insulation evaluation method>
Moreover, about the sample which concerns on the Example and comparative example which were mentioned above, the measurement of total heat interruption | blocking ability was implemented as heat insulation evaluation. The total heat blocking ability is a unit temperature difference that occurs when a certain amount of heat (Cal) passes through a unit area (1 m 2 ) in a unit time (1 hour), and is defined as follows.
I total = (Ts−Ta) / M (Formula 1)
In Formula 1, I total is the total heat shut-off capability (° C./kcal/m 2 / hr), Ts is the outside air temperature (° C.), Ta is the room temperature (° C.), and M is the amount of heat supplied (kcal / m 2 / hr). ).

図6は、全熱遮断能を測定するための装置の概要を示す断面模式図である。このような測定装置としては、例えば、カトーテック株式会社製のKES−F7 サーモラボII型がある。実施例及び比較例を対象として実施した測定は、KES−F7 サーモラボII型の標準操作法に従って行った。具体的には、まず、恒温恒湿箱51の内部における温度(Ta)が23℃、湿度が60%の恒温恒湿に設定した上で、25cm角の測定サンプル53を1時間以上恒温恒湿箱51に放置しコンディショニングした。コンディショニング後、熱源52の温度Ts(式1の外気温に相当)を50℃に設定し、熱源52上に測定サンプルを載せて平衡状態になるまで待機した。30分程度待機した後に、熱源の温度を維持するために必要な熱量(M)を測定することで、全熱遮断能を算出した。なお、測定サンプルの断熱性(保温性)が高い場合、温度Tsを維持するために必要な熱量Mは小さくなるため、全熱遮断能Itotalは大きくなる。 FIG. 6 is a schematic cross-sectional view showing an outline of an apparatus for measuring the total heat blocking ability. An example of such a measuring apparatus is KES-F7 Thermolab II type manufactured by Kato Tech. Measurements carried out for the examples and comparative examples were carried out according to the standard operating method of KES-F7 Thermolab II. Specifically, first, after setting the temperature (Ta) in the constant temperature and humidity box 51 to 23 ° C. and the humidity to 60%, the 25 cm square measurement sample 53 is set to constant temperature and humidity for 1 hour or more. It was left in the box 51 and conditioned. After conditioning, the temperature Ts of the heat source 52 (corresponding to the outside air temperature of Equation 1) was set to 50 ° C., and the measurement sample was placed on the heat source 52 and waited until it reached an equilibrium state. After waiting for about 30 minutes, the total heat blocking ability was calculated by measuring the amount of heat (M) required to maintain the temperature of the heat source. In addition, when the heat insulation property (heat retention property) of the measurement sample is high, the amount of heat M necessary for maintaining the temperature Ts is small, so that the total heat blocking ability I total is large.

各サンプルに関する評価結果を表3及び表4に示す。

Figure 2009120025


Figure 2009120025

The evaluation results for each sample are shown in Tables 3 and 4.
Figure 2009120025


Figure 2009120025

表3及び表4から理解できるように、対応する比較例1から比較例9と比べて、本発明の実施の形態に係る実施例1から実施例11では、繊維層に無捲縮短繊維を含有させるとともに、自動車用内装材の成形後における非荷重下での厚さを10mm以上とすることで、剛性、高温環境における形状維持特性及び断熱性が向上していることがわかる。   As can be understood from Tables 3 and 4, compared with corresponding Comparative Examples 1 to 9, Examples 1 to 11 according to the embodiment of the present invention contain uncrimped short fibers in the fiber layer. In addition, it can be seen that by setting the thickness under non-load after molding of the automotive interior material to 10 mm or more, the rigidity, the shape maintaining characteristic in a high temperature environment and the heat insulation are improved.

具体的には、繊維配向が厚さ方向であり、面密度が977g/cmである実施例1と比較例1を対比した場合、無捲縮繊維が配合されている実施例1の方が、曲げ時最大点荷重及び弾性勾配が大きく、耐熱垂下りが小さい。また、繊維配向が厚さ方向であり、面密度が777g/cmである実施例2と比較例2を対比した場合にも、同様の傾向を示す結果が得られた。この傾向は、無捲縮短繊維の繊度及び配合量を変化させた実施例8〜10においても同様であった。これらの結果より、無捲縮短繊維を繊維層に含有させることで、剛性と高温環境における形状維持特性に優れた自動車用内装材が得られることを確認できた。 Specifically, when Example 1 in which the fiber orientation is in the thickness direction and the surface density is 977 g / cm 2 is compared with Comparative Example 1, Example 1 in which non-crimped fibers are blended is preferred. The maximum point load and the elastic gradient during bending are large, and the heat-resistant hanging is small. Further, a thickness direction fiber orientation, when the areal density of comparing Example 2 and Comparative Example 2 is 777 g / cm 2 also, the results show similar trends were obtained. This tendency was the same in Examples 8 to 10 in which the fineness and blending amount of the uncrimped short fibers were changed. From these results, it was confirmed that by containing uncrimped short fibers in the fiber layer, an automotive interior material excellent in rigidity and shape maintaining characteristics in a high temperature environment could be obtained.

また、繊維配向が面方向であり、面密度が777g/cmである実施例3と比較例3を対比した場合にも、無捲縮繊維が配合されている実施例3の方が、曲げ時最大点荷重及び弾性勾配が大きく、耐熱垂下りが小さい。この結果より、基材を構成する繊維の配向に関わらず、無捲縮短繊維を繊維層に含有させることで、剛性と高温環境における形状維持特性に優れた自動車用内装材が得られることを確認できた。 Further, when Example 3 in which the fiber orientation is in the plane direction and the surface density is 777 g / cm 2 is compared with Comparative Example 3, Example 3 in which non-crimped fibers are blended is bent. The maximum point load and elastic gradient are large, and the heat-resistant droop is small. From this result, it was confirmed that by including uncrimped short fibers in the fiber layer regardless of the orientation of the fibers that make up the substrate, it is possible to obtain automotive interior materials that are excellent in rigidity and shape retention characteristics in high-temperature environments. did it.

さらに、いずれも無捲縮短繊維が配合されている実施例1〜11と比較例4を対比した場合、自動車用内装材の成形後における非荷重下での厚さを10mm以上とすることで、無捲縮短繊維が配合されている場合にも、優れた断熱性(全熱遮断能が0.36℃/kcal/m/hr以上)を示す自動車用内装材が得られることを確認できた。 Furthermore, when Examples 1 to 11 and Comparative Example 4 in which both uncrimped short fibers are blended are compared, the thickness under non-load after molding of the interior material for automobiles is 10 mm or more, It was confirmed that an automotive interior material exhibiting excellent heat insulation (total heat shielding ability of 0.36 ° C./kcal/m 2 / hr or more) was obtained even when uncrimped short fibers were blended. .

本発明の実施形態に係る自動車用内装基材を備える自動車用内装材の断面図である。It is sectional drawing of the interior material for motor vehicles provided with the interior substrate for motor vehicles based on embodiment of this invention. 本発明の他の実施形態に係る自動車用内装基材の断面図である。It is sectional drawing of the vehicle interior base material which concerns on other embodiment of this invention. 本発明の実施形態に係る内装基材における繊維ウエブの態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the aspect of the fiber web in the interior base material which concerns on embodiment of this invention. 図3に示される繊維ウエブを形成するためのカード機の要部を示す模式図である。It is a schematic diagram which shows the principal part of the card machine for forming the fiber web shown by FIG. 本発明の実施形態に係る内装基材における繊維ウエブの他の態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the other aspect of the fiber web in the interior base material which concerns on embodiment of this invention. 全熱遮断能を測定するための装置の概要を示す断面模式図である。It is a cross-sectional schematic diagram which shows the outline | summary of the apparatus for measuring a total heat interruption | blocking capability. 従来技術に係る繊維ウエブの形成を説明する図である。It is a figure explaining formation of the fiber web which concerns on a prior art.

符号の説明Explanation of symbols

1,4…繊維ウエブ、11,41…基材構成繊維、100…自動車用内装材、101,201…繊維層、102,202…第1接着層、103,203…第2接着層、104…不織布表皮、105,205…熱可塑性樹脂シート層、110,210…内装基材。   DESCRIPTION OF SYMBOLS 1,4 ... Fiber web, 11, 41 ... Base material constituent fiber, 100 ... Automotive interior material, 101, 201 ... Fiber layer, 102, 202 ... First adhesive layer, 103, 203 ... Second adhesive layer, 104 ... Non-woven skin, 105, 205 ... thermoplastic resin sheet layer, 110, 210 ... interior substrate.

Claims (9)

表皮材と、
捲縮数が0〜2山/25mmである第1の短繊維を5〜70質量%含み、前記第1の短繊維よりも捲縮数が多い第2の短繊維を残部に含む繊維層とを備え、
成形後における非荷重下での厚さが10mm以上であることを特徴とする自動車用内装材。
Skin material,
A fiber layer containing 5 to 70% by mass of first short fibers having a number of crimps of 0 to 2 crests / 25 mm, and a second short fiber having a larger number of crimps than the first short fibers in the remainder; With
An interior material for an automobile, wherein the thickness under non-loading after molding is 10 mm or more.
成形後における非荷重下での厚さが100mm以下であることを特徴とする請求項1に記載の自動車用内装材。   The automotive interior material according to claim 1, wherein the thickness under molding under load is 100 mm or less. 前記繊維層は、前記第2の短繊維の一部として、当該繊維層100質量%に対して30質量%以上の熱接着性捲縮短繊維を含むことを特徴とする請求項1又は請求項2に記載の自動車用内装材。   The said fiber layer contains 30 mass% or more of heat-adhesive crimped short fibers with respect to 100 mass% of the said fiber layer as a part of said 2nd short fiber, The Claim 1 or Claim 2 characterized by the above-mentioned. The interior material for automobiles described in 1. 前記第1の短繊維及び前記第2の短繊維は、ポリエステル系短繊維であることを特徴とする請求項1から請求項3のいずれかに記載の自動車用内装材。   The automotive interior material according to any one of claims 1 to 3, wherein the first short fibers and the second short fibers are polyester-based short fibers. 前記第1の短繊維の繊度は、前記熱接着性捲縮短繊維の繊度よりも大きいことを特徴とする請求項3に記載の自動車用内装材。   The automobile interior material according to claim 3, wherein the fineness of the first short fibers is larger than the fineness of the heat-adhesive crimped short fibers. 前記繊維層は、前記第1の短繊維と前記第2の短繊維とが、前記繊維層の厚さ方向に配向された状態で厚さ方向と直交する方向に連続して集積し、絡まり合ってなることを特徴とする請求項1から請求項5のいずれかに記載の自動車用内装材。   In the fiber layer, the first short fibers and the second short fibers are continuously accumulated in a direction orthogonal to the thickness direction in a state where the first short fibers and the second short fibers are oriented in the thickness direction of the fiber layer, and are entangled with each other. The automobile interior material according to any one of claims 1 to 5, wherein 前記繊維層は、前記第1の短繊維と前記第2の短繊維とが、エアレイ法によって前記繊維層の厚さ方向に配向された状態で厚さ方向と直交する方向に連続して集積し、ニードルパンチ加工を施してなることを特徴とする請求項1から請求項6のいずれかに記載の自動車用内装材。   The fiber layer is continuously accumulated in a direction perpendicular to the thickness direction in a state where the first short fibers and the second short fibers are oriented in the thickness direction of the fiber layer by an air array method. The interior material for automobiles according to any one of claims 1 to 6, wherein needle punching is performed. 前記繊維層は、前記第1の短繊維と前記第2の短繊維とが、前記繊維層の厚さ方向と直交する面方向に配向されていることを特徴とする請求項1から請求項5のいずれかに記載の自動車用内装材。   6. The fiber layer, wherein the first short fibers and the second short fibers are oriented in a plane direction perpendicular to the thickness direction of the fiber layer. The interior material for automobiles according to any one of the above. 捲縮数が0〜2山/25mmである第1の短繊維を5〜70質量%含み、前記第1の短繊維よりも捲縮数が多い第2の短繊維を残部に含む繊維層を備え、
自動車用内装材とするために表皮材を積層して成形した後における非荷重下での厚さが10mm以上となるようにされていることを特徴とする自動車用内装基材。
A fiber layer containing 5 to 70% by mass of first short fibers having a number of crimps of 0 to 2 crests / 25 mm, and the second short fibers having a larger number of crimps than the first short fibers in the remainder. Prepared,
An automotive interior base material characterized in that the thickness under non-loading after the skin material is laminated and molded to form an automotive interior material is 10 mm or more.
JP2007295959A 2007-11-14 2007-11-14 Interior materials for automobiles and interior materials for automobiles Expired - Fee Related JP5183159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295959A JP5183159B2 (en) 2007-11-14 2007-11-14 Interior materials for automobiles and interior materials for automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295959A JP5183159B2 (en) 2007-11-14 2007-11-14 Interior materials for automobiles and interior materials for automobiles

Publications (2)

Publication Number Publication Date
JP2009120025A true JP2009120025A (en) 2009-06-04
JP5183159B2 JP5183159B2 (en) 2013-04-17

Family

ID=40812672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295959A Expired - Fee Related JP5183159B2 (en) 2007-11-14 2007-11-14 Interior materials for automobiles and interior materials for automobiles

Country Status (1)

Country Link
JP (1) JP5183159B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057151A (en) * 2009-09-11 2011-03-24 Japan Vilene Co Ltd Base material for automobile exterior material and automobile exterior material
KR101666422B1 (en) * 2015-10-07 2016-10-17 현대다이모스(주) Cushion cover for air ventilation seat
CN113748015A (en) * 2019-02-18 2021-12-03 三和工业株式会社 Shaped roof material for vehicle and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132861A (en) * 1987-11-11 1989-05-25 Nippon Ester Co Ltd Heat-weldable nonwoven fabric
JP2002161464A (en) * 2000-11-27 2002-06-04 Toyobo Co Ltd Lightweight sound-absorbing material
JP2005226178A (en) * 2004-02-10 2005-08-25 Toray Ind Inc Interior substrate for automobile and interior material for automobile
JP2006098890A (en) * 2004-09-30 2006-04-13 Toray Ind Inc Sound-deadening material and manufacturing method thereof
JP2006160237A (en) * 2004-11-15 2006-06-22 Japan Vilene Co Ltd Interior base material for automobile and its manufacturing method
JP2007039826A (en) * 2005-08-01 2007-02-15 Takayasu Co Ltd Water-repellent sound absorbing material and interior automotive trim using the same
JP2007302212A (en) * 2006-05-15 2007-11-22 Japan Vilene Co Ltd Internal trim base material for automobile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132861A (en) * 1987-11-11 1989-05-25 Nippon Ester Co Ltd Heat-weldable nonwoven fabric
JP2002161464A (en) * 2000-11-27 2002-06-04 Toyobo Co Ltd Lightweight sound-absorbing material
JP2005226178A (en) * 2004-02-10 2005-08-25 Toray Ind Inc Interior substrate for automobile and interior material for automobile
JP2006098890A (en) * 2004-09-30 2006-04-13 Toray Ind Inc Sound-deadening material and manufacturing method thereof
JP2006160237A (en) * 2004-11-15 2006-06-22 Japan Vilene Co Ltd Interior base material for automobile and its manufacturing method
JP2007039826A (en) * 2005-08-01 2007-02-15 Takayasu Co Ltd Water-repellent sound absorbing material and interior automotive trim using the same
JP2007302212A (en) * 2006-05-15 2007-11-22 Japan Vilene Co Ltd Internal trim base material for automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057151A (en) * 2009-09-11 2011-03-24 Japan Vilene Co Ltd Base material for automobile exterior material and automobile exterior material
KR101666422B1 (en) * 2015-10-07 2016-10-17 현대다이모스(주) Cushion cover for air ventilation seat
CN113748015A (en) * 2019-02-18 2021-12-03 三和工业株式会社 Shaped roof material for vehicle and method for manufacturing same

Also Published As

Publication number Publication date
JP5183159B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP4757523B2 (en) Automotive interior base material and manufacturing method thereof
JP4919881B2 (en) Composite sound-absorbing material
EP2297412B1 (en) Sound absorption material and method of manufacturing sound absorption material
EP3655576B1 (en) Nonwoven composite for high temperature applications requiring low flammability, smoke, and toxicity
EP2484826A1 (en) Sound insulation material for vehicle and method for forming the same
JP4574262B2 (en) SOUND ABSORBING LAMINATE AND METHOD FOR PRODUCING THE SAME
RU2671353C2 (en) Liner for upholstered furniture
JP5142677B2 (en) Interior materials for automobiles and interior materials for automobiles
KR102189102B1 (en) Sound absorbing material and method for fabricating the same
JP4823376B1 (en) Molded product using composite material and manufacturing method thereof
JP2008529869A (en) Automotive ceiling materials
CN110267804A (en) Impermeable composite material
JP5183159B2 (en) Interior materials for automobiles and interior materials for automobiles
JP2015042448A (en) Laminated sheet, molded article and production method of the same
JP2003049351A (en) High-performance acoustic material
JP4908916B2 (en) Interior materials for automobiles
KR101117779B1 (en) Dual layers composite fabrics of polyester spunbond nonwoven fabrics and woven fabric used as primary backing cloth for artificial turf
JP2019045636A (en) Composite sound absorbing material
JP2011177631A (en) Filter unit
JP2005513286A (en) Moldable composite material and manufacturing method thereof
JP6929167B2 (en) Composite sound absorbing material
JP6349019B1 (en) Melt blown non-woven fabric, its use and production method thereof
JP2005226178A (en) Interior substrate for automobile and interior material for automobile
JP2008290642A (en) Sound absorbing material and its manufacturing method
KR102388493B1 (en) Electric vehicle engine room sound-absorbing panel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees