JP2009115571A - Renewed abwr adapted to combined power generation - Google Patents

Renewed abwr adapted to combined power generation Download PDF

Info

Publication number
JP2009115571A
JP2009115571A JP2007288046A JP2007288046A JP2009115571A JP 2009115571 A JP2009115571 A JP 2009115571A JP 2007288046 A JP2007288046 A JP 2007288046A JP 2007288046 A JP2007288046 A JP 2007288046A JP 2009115571 A JP2009115571 A JP 2009115571A
Authority
JP
Japan
Prior art keywords
pressure
temperature
lead
steam
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007288046A
Other languages
Japanese (ja)
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007288046A priority Critical patent/JP2009115571A/en
Publication of JP2009115571A publication Critical patent/JP2009115571A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve power generation efficiency by renewing a current advanced boiling water reactor (ABWR) by modifying it not on a large scale. <P>SOLUTION: Further power generation through the agency of a steam turbine (41) with high-pressure saturated steam (23) produced by cooling high-pressure superheated steam (24) during a power generation process in a newly laid electrothermal semiconductor (100) after generating power with the electrothermal semiconductor (100) by producing the high-pressure superheated steam (24) through some modification of a licensed ABWR leads to combined power generation to improve the power generation efficiency. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、軽水を冷却材とする改良型沸騰水型原子炉(ABWR)の炉内構造物並びに熱電半導体に関する。   The present invention relates to an in-core structure of an improved boiling water reactor (ABWR) that uses light water as a coolant, and a thermoelectric semiconductor.

図1は、従来のABWRを高温熱源として蒸気タービン(41)を介して発電する概略図である。非特許文献1を主体にして、非特許文献2、非特許文献3、非特許文献4で補足した。核燃料を内包する圧力容器(10)内には、円筒形のシュラウド(11)、炉の横方向を支持する炉心板(9)、核燃料を内包する多数本の核燃料棒を束ねた核燃料集合体(2)、原子炉出力を調節するための中性子吸収材を十字型に成型してなる制御棒(3)、気水分離器(12)及びドライヤ(13)といった炉内構造物が内蔵されている。圧力容器(10)の外側下部には、制御棒(3)先端に固着せる制御棒延長棒(4)を介して制御棒(3)を上下に操作するための制御棒駆動機(5)及び核燃料で発生する熱を除去するために水を循環させるための回転翼(6)を駆動させるためのインターナルポンプ(7)が敷設されている。
核燃料集合体(2)の熱で発生した高圧飽和蒸気(23)の蒸気は数本の高圧蒸気配管(31)を通って矢印の方向にある蒸気タービン(41)に出て行く。蒸気タービン(41)は発電機(42)を回転させ電力を発生させる。蒸気タービン(41)で仕事を終えた湿った低温の蒸気は復水器(43)で冷やされて液体の水になり給水昇圧ポンプ(30)で昇圧されて数本の高圧給水配管(32)を通って矢印の方向にある圧力容器(10)の中に戻って給水流量となる。液体の水である給水流量は、シュラウド(11)と圧力容器(10)の間隙領域(14)にある高温水と混合し高圧未飽和水(21)となり、高圧未飽和水(21)は回転翼(6)により高速にされ炉心板(9) の下部から炉心流量となって核燃料集合体(2)内に流入する。炉心流量は給水流量の5倍程度になる。高圧未飽和水(21)は核燃料集合体(2)から受熱して高圧二相流(22)となる。高圧二相流(22) は気水分離器(12)により液体の水と湿分の高い蒸気とに分離され、湿分の高い蒸気はドライヤ(13)により湿分が除かれ70気圧程度の高圧飽和蒸気(23)の蒸気流量になる。蒸気流量は給水流量とほぼ同じである。炉心流量の約4/5は間隙領域(14)にある高温水として戻ってくる。ドライヤ(13)を出た高圧飽和蒸気(23)は蒸気流量として蒸気タービン(41)に出て行く。
ABWRは、圧力容器(10)の中の核燃料で発生する熱により高温高圧の高圧飽和蒸気(23)を高温熱源とし復水器(43)の低温低圧の水を低温熱源とするランキンサイクルで蒸気タービン(41)を回転させることにより発電機(42)を回転させ発電する。
近年、ABWR炉心設計では低減速スペクトル炉心(非特許文献5)の見通しが出てきた。炉心流量は蒸気流量の2倍程度に下げる。核燃料棒の熱除熱は自然循環で可能である。核燃料集合体(2)に核燃料棒を稠密に装荷し本数を増加させている。全核燃料棒の全伝熱面積を従来ABWRと同程度にするため核燃料棒高さを低くしている。炉心流量が下がったため流動抵抗が下がり、自然循環が可能になると考えられる。更には、炉心流量は蒸気流量と同程度でも問題が生じないと考えられる。ABWRの冷却材は純水であるから不純物が少なく、核燃料集合体(2)の上部が蒸気だけになっても水垢の問題は軽微であると考えられる。
:原子力工業、1992年、通産省三代著「改良標準化と高度化の動き」。 :オーム社、1989年、「原子力ハンドブック」。 :東京電力、1993年、「改良型BWRの概要」。 :同文書院、1988年、秋山「軽水炉」。 :日本原子力研究所、2002年、中野他編「第5回低減速スペクトル炉に関する研究報告書」。
FIG. 1 is a schematic diagram of power generation via a steam turbine (41) using a conventional ABWR as a high-temperature heat source. Non-patent document 1, non-patent document 3, non-patent document 3, and non-patent document 4 were supplemented mainly by non-patent document 1. In a pressure vessel (10) containing nuclear fuel, a cylindrical shroud (11), a core plate (9) that supports the lateral direction of the reactor, and a nuclear fuel assembly in which a large number of nuclear fuel rods containing nuclear fuel are bundled ( 2) Built-in reactor structures such as a control rod (3), a steam separator (12) and a dryer (13) formed by cross-molding a neutron absorber for adjusting the reactor power . A control rod drive (5) for operating the control rod (3) up and down via a control rod extension rod (4) fixed to the tip of the control rod (3) is attached to the outer lower part of the pressure vessel (10). An internal pump (7) for driving a rotor blade (6) for circulating water in order to remove heat generated in the nuclear fuel is installed.
The steam of the high-pressure saturated steam (23) generated by the heat of the nuclear fuel assembly (2) passes through several high-pressure steam pipes (31) and goes out to the steam turbine (41) in the direction of the arrow. The steam turbine (41) rotates the generator (42) to generate electric power. The moist and low-temperature steam that has finished work in the steam turbine (41) is cooled by the condenser (43) to become liquid water, which is pressurized by the feed water booster pump (30) and several high-pressure feed pipes (32) It passes through the pressure vessel (10) in the direction of the arrow and becomes the feed water flow rate. The feed water flow rate, which is liquid water, is mixed with high-temperature water in the gap region (14) between the shroud (11) and the pressure vessel (10) to become high-pressure unsaturated water (21), and the high-pressure unsaturated water (21) rotates. It is made high-speed by the blade (6) and flows into the nuclear fuel assembly (2) from the lower part of the core plate (9) as the core flow rate. The core flow rate is about 5 times the feed water flow rate. The high-pressure unsaturated water (21) receives heat from the nuclear fuel assembly (2) and becomes a high-pressure two-phase flow (22). The high-pressure two-phase flow (22) is separated into liquid water and high-humidity vapor by the steam separator (12). Steam flow rate of high-pressure saturated steam (23). The steam flow rate is almost the same as the feed water flow rate. About 4/5 of the core flow returns as hot water in the gap region (14). The high-pressure saturated steam (23) exiting the dryer (13) exits to the steam turbine (41) as a steam flow rate.
ABWR uses steam generated in the Rankine cycle with high-temperature and high-pressure saturated steam (23) as a high-temperature heat source and low-temperature and low-pressure water in the condenser (43) as a low-temperature heat source due to the heat generated by the nuclear fuel in the pressure vessel (10). By rotating the turbine (41), the generator (42) is rotated to generate electricity.
In recent years, the ABWR core design has come out with the prospect of a reduced-speed spectrum core (Non-Patent Document 5). Reduce the core flow rate to about twice the steam flow rate. Thermal removal of nuclear fuel rods is possible by natural circulation. The nuclear fuel assemblies (2) are densely loaded with nuclear fuel rods to increase the number. The height of the nuclear fuel rods is lowered to make the total heat transfer area of all the nuclear fuel rods comparable to that of the conventional ABWR. Since the core flow rate has decreased, the flow resistance is reduced, and natural circulation is possible. Furthermore, even if the core flow rate is about the same as the steam flow rate, no problem will occur. ABWR's coolant is pure water, so there are few impurities, and even if the upper part of the nuclear fuel assembly (2) is only steam, the problem of scale is considered to be minor.
: Nuclear Industry, 1992, Ministry of International Trade and Industry, 3rd Generation, “Improvement of Standardization and Advancement”. : Ohm, 1989, “Nuclear Handbook”. : TEPCO, 1993, “Overview of improved BWR”. : Dobunshoin, 1988, Akiyama "Light Water Reactor". : Japan Atomic Energy Research Institute, 2002, edited by Nakano et al.

大方の原子炉と同様に、ABWRの熱効率は33%程度である。ABWRで発生する蒸気は70気圧で286℃程度の高圧飽和蒸気(23)であるためこれ以上の熱効率上昇は困難である。
ABWRの建設コストを下げつつ熱効率を上げて発電コストを下げたい。
化石燃料を燃焼させる火力発電ではランキンサイクルまたはブレイトンサイクルに他のサイクルを付加した複合発電により効率を上げるのが一般的である。ランキンサイクルまたはブレイトンサイクルのみでは非常に高温高圧にしないと効率が上がらない。
核燃料の燃焼による高温高圧のランキンサイクルまたはブレイトンサイクルで発電をするには材料の制約から多くの問題が生じる。
Like most nuclear reactors, the thermal efficiency of ABWR is about 33%. The steam generated in ABWR is high-pressure saturated steam (23) at 70 atm and about 286 ° C, so it is difficult to further increase the thermal efficiency.
We want to increase the thermal efficiency and lower the power generation cost while lowering the construction cost of ABWR.
In thermal power generation in which fossil fuel is burned, the efficiency is generally increased by combined power generation in which another cycle is added to the Rankine cycle or Brayton cycle. The Rankine cycle or Brayton cycle alone will not increase the efficiency unless it is made at a very high temperature and pressure.
Many problems arise due to material limitations in generating electricity in a high-temperature and high-pressure Rankine cycle or Brayton cycle by burning nuclear fuel.

圧力容器(10)内の圧力を従来ABWR同様の70気圧程度に維持する。
炉心流量は蒸気流量と同じにして炉心上部冷却材を高圧過熱蒸気(24)にする。
炉心流量を下げると流動抵抗が減るため、循環力を高めるためのインターナルポンプモータ(7)及び回転翼(6)が不要になり削除する。
炉心上部冷却材が高圧過熱蒸気(24)になったため、気水分離器(12)及びドライヤ(13)が不要になり削除する。
高圧給水配管(32)から枝分かれせる多数本の熱電半導体内蔵給水配管(132)をドライヤ(13)があった上辺を通過して間隙領域(14)まで延長させ、熱電半導体内蔵給水配管(132)に内蔵させたる融点が286℃以上の熱電半導体(100)により発電した後、高圧過熱蒸気(24)が当該熱電半導体内蔵給水配管(132)により冷却された高圧飽和蒸気(23)により従来ABWR蒸気タービン(41)を介しても発電する複合発電にABWRをリニューアルする。
MOX(プルトニウムとウランの混合酸化物)を内包させた核燃料集合体(2)を低圧耐熱容器(201)に内蔵し鉛を冷却材とせる鉛型原子炉(299)を高温熱源とし、鉛型原子炉(299)からの高温溶融鉛で蒸気を発生させる蒸気発生器(399)と鉛型原子炉(299)を繋ぐ低圧給鉛配管(231)に敷設した融点が286℃以上の高温熱電半導体(101)で発電した後、蒸気発生器(399)で発生させた高圧高温の蒸気により蒸気タービン(41)を介しても発電する複合発電装置。
鉛型原子炉(299) を高温熱源として、鉛型原子炉(299)からの高温溶融鉛でガス温度を高めるガス昇温器(499) と鉛型原子炉(299)を繋ぐ低圧給鉛配管(231)に敷設した融点が286℃以上の高温熱電半導体(101)で発電した後、ガス昇温器(499)で昇温させたガスによりガスタービン(259)を介しても発電する複合発電装置。
化石燃料の燃焼または核燃料の燃焼を高温熱源として、融点が286℃以上の熱電半導体で発電した後、蒸気タービン(41)またはガスタービン(259)を介しても発電する複合発電装置。
The pressure in the pressure vessel (10) is maintained at about 70 atm, similar to the conventional ABWR.
The core flow rate is the same as the steam flow rate, and the high temperature superheated steam (24) is used for the core upper coolant.
When the core flow rate is lowered, the flow resistance is reduced, so the internal pump motor (7) and the rotor blade (6) for increasing the circulation force become unnecessary and are eliminated.
Since the upper core coolant has become high-pressure superheated steam (24), the steam separator (12) and dryer (13) are no longer necessary and will be deleted.
A large number of thermoelectric semiconductor built-in water supply pipes (132) branched from the high-pressure water supply pipe (32) are extended to the gap region (14) through the upper side where the dryer (13) was, and the thermoelectric semiconductor built-in water supply pipe (132) After generating electricity with a thermoelectric semiconductor (100) with a melting point of 286 ° C or higher, the high-pressure superheated steam (24) is converted into conventional ABWR steam by high-pressure saturated steam (23) cooled by the thermoelectric semiconductor built-in water supply pipe (132). The ABWR is renewed to the combined power generation that also generates electricity through the turbine (41).
A lead-type reactor (299) that contains MOX (mixed oxide of plutonium and uranium) in a low-pressure heat-resistant vessel (201) with a nuclear fuel assembly (2) contained in the low-pressure heat-resistant vessel (201) is a lead-type reactor. A high-temperature thermoelectric semiconductor with a melting point of 286 ° C or higher installed in a low-pressure lead pipe (231) that connects the steam generator (399) and the lead-type reactor (299) that generate steam with high-temperature molten lead from the reactor (299) A combined power generator that generates electric power through the steam turbine (41) by high-pressure and high-temperature steam generated by the steam generator (399) after generating power in (101).
Low pressure lead piping connecting the lead temperature reactor (299) and the lead temperature reactor (299) with the lead reactor (299) as a high-temperature heat source and the gas temperature riser (499) that raises the gas temperature with high-temperature molten lead from the lead reactor (299) Combined power generation that generates power via a gas turbine (259) using gas heated by a gas heater (499) after generating electricity with a high-temperature thermoelectric semiconductor (101) with a melting point of 286 ° C or higher laid on (231) apparatus.
A combined power generation device that generates power through a steam turbine (41) or a gas turbine (259) after generating power from a thermoelectric semiconductor having a melting point of 286 ° C. or higher, using fossil fuel combustion or nuclear fuel combustion as a high-temperature heat source.

従来のABWRの高圧飽和蒸気(23) による蒸気タービン(41)を介しての発電の前に、高圧過熱蒸気(24)と熱電半導体内蔵給水配管(132)中を流れる高圧低温の水との温度差を利用した熱電半導体(100)の発電により複合発電が実施でき発電コストが低減できた。
しかも、圧力容器(10)内の圧力を従来ABWR同様の70気圧程度に維持したため、炉内構造物を内蔵する圧力容器(10)の大幅な改良開発設計変更がなく、建設コストは勿論開発費用や許認可費用が大幅に増えることがない。
インターナルポンプモータ(7)及び回転翼(6)及び気水分離器(12)及びドライヤ(13)が削除できたため建設コストや定期検査費用の低減になり、結果として発電コストが低減できた。
蒸気圧が低い鉛を原子炉の冷却材として圧力容器(10)の代わりに耐熱容器(201)で核燃料を内蔵した鉛型原子炉(299)を高温熱源とし、鉛型原子炉(299)からの高温溶融鉛で蒸気を発生させる蒸気発生器(399)と鉛型原子炉(299)を繋ぐ低圧給鉛配管(231)に敷設した高温熱電半導体(101)で発電した後、蒸気発生器(399)で発生させた高圧高温の蒸気により蒸気タービン(41)を介しても発電する複合発電が実施でき発電コストが低減できた。
耐熱容器(201)内の圧力が低いから、鉛型原子炉(299)に敷設せる各種配管が破断したとしても冷却材たる溶融鉛が急激には減少しないため、核燃料棒からの除熱に支障をきたす度合いが小さく安全性が高い。
鉛型原子炉(299) を高温熱源とし、鉛型原子炉(299)からの高温溶融鉛でガス温度を高めるガス昇温器(499) と鉛型原子炉(299)を繋ぐ低圧給鉛配管(231)に敷設した高温熱電半導体(101)で発電した後、ガス昇温器(499)で昇温させたガスによりガスタービン(259)を介しても発電する複合発電が実施でき発電コストが低減できた。。
化石燃料を燃焼させる火力発電でも、蒸気タービン(41)またはガスタービン(259)を介しての発電の前に、高温熱電半導体(101)でも発電することによって複合発電が実施でき発電コストが低減できることは自明である。
複合発電により熱効率が向上したため、外部環境に放出される熱が減少し地球温暖化を軽減できる。
Prior to power generation via the steam turbine (41) by the high pressure saturated steam (23) of the conventional ABWR, the temperature of the high pressure superheated steam (24) and the high pressure and low temperature water flowing in the thermoelectric semiconductor built-in water supply pipe (132) Combined power generation can be carried out by the power generation of the thermoelectric semiconductor (100) using the difference, and the power generation cost can be reduced.
Moreover, since the pressure in the pressure vessel (10) was maintained at about 70 atm, the same as the conventional ABWR, the pressure vessel (10) with built-in reactor structure was not significantly improved. And licensing costs will not increase significantly.
The internal pump motor (7), the rotor blade (6), the steam separator (12) and the dryer (13) could be deleted, which led to a reduction in construction costs and periodic inspection costs, resulting in a reduction in power generation costs.
Lead reactor (299) containing nuclear fuel in a heat-resistant vessel (201) instead of a pressure vessel (10) using lead with low vapor pressure as a coolant for the reactor as a high-temperature heat source, from the lead reactor (299) After generating electricity with the high-temperature thermoelectric semiconductor (101) installed in the low-pressure lead pipe (231) connecting the steam generator (399) and the lead-type reactor (299) that generate steam with high-temperature molten lead, the steam generator ( 399) can be combined with the high-pressure and high-temperature steam generated through the steam turbine (41) to reduce power generation costs.
Since the pressure in the heat-resistant vessel (201) is low, even if various pipes installed in the lead reactor (299) are broken, molten lead as a coolant does not decrease rapidly, which hinders heat removal from the nuclear fuel rods. The degree of causing damage is small and the safety is high.
Low pressure lead piping connecting the lead temperature reactor (299) and the lead temperature reactor (299), which uses the lead reactor (299) as a high-temperature heat source and increases the gas temperature with high-temperature molten lead from the lead reactor (299) After generating power with the high-temperature thermoelectric semiconductor (101) laid on (231), combined power generation can be performed with the gas heated by the gas heater (499) via the gas turbine (259). Reduced. .
Even in thermal power generation that burns fossil fuels, combined power generation can be performed by generating power with high-temperature thermoelectric semiconductor (101) before generating power via steam turbine (41) or gas turbine (259), and power generation costs can be reduced. Is self-explanatory.
Since the combined power generation has improved the thermal efficiency, the heat released to the external environment is reduced and global warming can be reduced.

発電コストの安いリニューアルABWRが提供できた。   We were able to provide a renewed ABWR with low power generation costs.

図2は本発明の、熱電半導体(100)で発電した後、蒸気タービン(41)を介しても発電する複合発電にリニューアルしたABWRの概略図である。図中の各種矢印は流体の流れる方向を示す。
圧力容器(10)内の圧力を従来ABWR同様の70気圧程度に維持することにより、圧力容器(10)材質や肉厚や形状は元のABWRの圧力容器(10)をそのまま使える。その結果、開発費用や設計費用や申請費用といった新たな追加費用の発生が防げる。
炉心流量を蒸気流量と同じまで下げることにより流動抵抗を減少させ、自然循環力のみでも核燃料棒の除熱が可能であるようにした。したがって、循環力を高めるためのインターナルポンプモータ(7)及び回転翼(6)が不要になり削除した。
炉心上部冷却材が高圧過熱蒸気(24)になったため、気水分離器(12)及びドライヤ(13)が不要になり削除した。
高圧給水配管(32)を通って圧力容器(10)の中に戻ってきた給水流量の液体の水は、高圧給水配管(32)から枝分かれした多数本の熱電半導体内蔵給水配管(132)に入りドライヤ(13)があった上辺を通過する間に炉心上部の高圧過熱蒸気(24)で加熱されシュラウド(11)と圧力容器(10)の間隙領域(14)に放出される。間隙領域(14)に放出された水は間隙領域(14)の高温水と混合して高圧未飽和水(21)となる。高圧未飽和水(21)は炉心板(9) の下部から炉心流量となって核燃料集合体(2)内に流入する。高圧未飽和水(21)は核燃料集合体(2)から受熱して高圧二相流(22)となる。高圧二相流(22) は更に核燃料集合体(2)から受熱して従来と同じ286℃程度の高圧飽和蒸気(23)になる。高圧飽和蒸気(23) は更に核燃料集合体(2)から受熱して高圧過熱蒸気(24)になる。蒸気温度は286℃よりも高くなる。流入した高圧未飽和水(21)の炉心流量は高圧過熱蒸気(24)流となり、次に多数本の熱電半導体内蔵給水配管(132)の間隙を通過する間に冷却され高圧飽和蒸気(23)流となり従来程度の蒸気流量として蒸気タービン(41)に出て行く。高圧未飽和水(21)の密度と核燃料集合体(2)内の高圧二相流(22)の密度との差により冷却材は循環力を得る。
核燃料集合体(2)に核燃料棒を稠密に装荷し本数を増加させ核燃料棒高さを低くしている低減速スペクトル炉心とすることにより、全核燃料棒の全伝熱面積は従来ABWRと同程度である。炉心流量は蒸気流量と同程度に下げたから流動抵抗が下がった。回転翼(6)及び気水分離器(12)及びドライヤ(13)の削除は流動抵抗の削除になるため冷却材の循環力が増すことになる。その結果、自然循環でも核燃料棒からの除熱が可能になると考えられる。なお、核燃料集合体(2)上部の冷却材温度は従来の286℃よりも上昇するが問題がない。すなわち、炉心上端に近い当該上部の中性子束は上部に漏洩するためかなり小さく、中性子束と核燃料との反応によって発生する出力は核燃料集合体(2)上部では小さいから核燃料棒の温度が過度に上昇することはない。
高圧低温液体の給水が流れる熱電半導体内蔵給水配管(132)には、融点が286℃以上の熱電半導体(100)を内蔵させる。高圧過熱蒸気(24)を高温熱源とし給水を低温熱源として熱電半導体(100)のカルノーサイクルで発電する。高圧過熱蒸気(24)は熱電半導体内蔵給水配管(132)により冷却されて高圧飽和蒸気(23)になり、当該高圧飽和蒸気(23)を従来通りに蒸気タービン(41)を介しても発電する複合発電にABWRをリニューアルする。
ABWRの冷却水は純水であるから電気絶縁性が高いため熱電半導体(100)を熱電半導体内蔵給水配管(132)の中に内蔵することは問題にならない。熱電半導体(100)で発生した電気は高圧給水配管(32)を通って端子(103)から外部に取り出される。
気水分離器(12)及びドライヤ(13)が削除され熱電半導体内蔵給水配管(132)表面は高圧過熱蒸気(24)に曝されるため熱電半導体(100)への入熱は容易である。
ゼーベック効果により電気を発生させる熱電半導体の性能Zは、αをゼーベック係数、ρを電気抵抗率、κを熱伝導率とするとZ=(α2/ρ)/ κと表せる(非特許文献6)。熱電半導体(100)にはZの大きいことが望ましいが、本発明では熱電半導体(100)による発電の後ろで蒸気タービン(41)を介しても発電するため、κが大きい結果Zが小さくなってしまう熱電半導体も使用できる。熱電半導体(100)からの熱の漏洩がκに比例して大きくとも、その熱は回収され蒸気タービン(41) を介して電気に変換される。したがって、熱電半導体(100)は (α2/ρ)が大きければよい。ホウ素(B)またはリン(P)を添加したシリコンとゲルマニウムの合金(SiGe)やマンガン(Mn)またはアルミニウム(Al)またはコバルト(Co)を添加した鉄珪化物(FeSi2)は、高温での(α2/ρ)が大きい熱電半導体である。更には、後ろの蒸気タービン(41)が熱電半導体(100)からの排熱を回収するため、αが大きい熱電半導体でありさえすればよい。ρが大きく熱電半導体の内部発熱が大きくともその熱は回収される。αが大きい熱電半導体には、n型で-700μV/Kの1酸化1銅(CuO)や、p型で+1000μV/Kの1酸化2銅(Cu2O)がある。
熱電半導体は可動部分無しで発電できるため、融点近くの高温での発電が可能である。
熱電半導体による発電は、高温熱源と低温熱源との間で働くカルノーサイクルによるものであるから、その大方の効率は高温温度と低温温度の温度比で決まる。したがって、炉心上部の冷却材を従来の高圧飽和蒸気(23)を高圧過熱蒸気(24)にして温度を上げた。
炉心流量を従来のABWRの蒸気流量と同じにして、熱出力を従来のABWRよりも大きくすれば高圧過熱蒸気(24)の温度は高圧飽和蒸気(23)の温度よりも高くなる。高圧過熱蒸気(24)を熱電半導体(100)で発電した後、熱電半導体内蔵給水配管(132)で冷やされた高圧飽和蒸気(23)の流量は従来のABWRの蒸気流量と同じであるため蒸気タービン(41) を介しての発電量は従来のABWRと同じことになる。複合発電量は従来のABWRの発電量よりも熱電半導体(100)で発電した分大きくなる。
熱出力を従来のABWRと同じにして炉心流量を従来のABWRの蒸気流量よりも下げても高圧過熱蒸気(24)を発生させられる。熱電半導体(100)で発電した後、熱電半導体内蔵給水配管(132)で冷やされた高圧過熱蒸気(24)は高圧飽和蒸気(23)となるが、本発明では炉心流量と給水流量と蒸気流量はほぼ等しいから高圧飽和蒸気(23)の流量は従来のABWRでの蒸気流量よりも下がっているため蒸気タービン(41) を介しての発電量は従来のABWRよりも下がることになる。しかし、熱電半導体(100)での発電量と蒸気タービン(41) を介しての発電量との和である複合発電量は従来のABWRの発電量を上回る。
従来のABWRでは数基の給水加器を使って給水加熱をしていたが、本発明では熱電半導体(100)で発電する過程の熱電半導体内蔵給水配管(132)を通過する間に加熱されるため給水加器不要もしくは減少させることができる。建設コスト低減になる。
インターナルポンプモータ(7)及び回転翼(6)及び気水分離器(12)及びドライヤ(13)が削除できたため建設コストや定期検査費用の低減になり、結果としてこの分からも発電コストが低減できた。
:日刊工業新聞社、1988年、上村他著「熱電半導体とその応用」。
FIG. 2 is a schematic diagram of an ABWR that has been renewed into a combined power generation system that generates power using the thermoelectric semiconductor (100) and also generates power via the steam turbine (41) according to the present invention. Various arrows in the figure indicate the direction of fluid flow.
By maintaining the pressure in the pressure vessel (10) at about 70 atm as in the case of the conventional ABWR, the pressure vessel (10) can be used as it is for the material, thickness and shape of the pressure vessel (10). As a result, new additional costs such as development costs, design costs, and application costs can be prevented.
The flow resistance was reduced by reducing the core flow rate to the same as the steam flow rate, so that the nuclear fuel rods could be removed with only natural circulation force. Therefore, the internal pump motor (7) and the rotor blade (6) for increasing the circulation force are no longer necessary and have been deleted.
Since the upper core coolant became high-pressure superheated steam (24), the steam separator (12) and dryer (13) became unnecessary and were deleted.
The liquid water at the feed flow rate that has returned to the pressure vessel (10) through the high-pressure feed pipe (32) enters a large number of thermoelectric semiconductor built-in feed pipes (132) branched from the high-pressure feed pipe (32). While passing the upper side where the dryer (13) was present, it is heated by the high-pressure superheated steam (24) at the upper part of the core and released into the gap region (14) between the shroud (11) and the pressure vessel (10). The water released into the gap region (14) is mixed with the high temperature water in the gap region (14) to become high-pressure unsaturated water (21). High-pressure unsaturated water (21) flows into the nuclear fuel assembly (2) from the lower part of the core plate (9) at a core flow rate. The high-pressure unsaturated water (21) receives heat from the nuclear fuel assembly (2) and becomes a high-pressure two-phase flow (22). The high-pressure two-phase flow (22) further receives heat from the nuclear fuel assembly (2) and becomes the same high-pressure saturated steam (23) as about 286 ° C. The high-pressure saturated steam (23) further receives heat from the nuclear fuel assembly (2) and becomes high-pressure superheated steam (24). The steam temperature will be higher than 286 ° C. The core flow rate of the high-pressure unsaturated water (21) that flows into the high-pressure superheated steam (24) flows, and then is cooled while passing through the gaps between the multiple thermoelectric semiconductor built-in water supply pipes (132). It flows into the steam turbine (41) as a conventional steam flow rate. Due to the difference between the density of the high-pressure unsaturated water (21) and the density of the high-pressure two-phase flow (22) in the nuclear fuel assembly (2), the coolant gains circulation power.
By using densely loaded nuclear fuel rods on the nuclear fuel assembly (2) and increasing the number of nuclear fuel rods to reduce the height of the nuclear fuel rods, the total heat transfer area of all nuclear fuel rods is about the same as that of the conventional ABWR. It is. Since the core flow rate was lowered to the same level as the steam flow rate, the flow resistance decreased. Since the removal of the rotary blade (6), the steam separator (12) and the dryer (13) eliminates the flow resistance, the circulating force of the coolant increases. As a result, it is considered that heat can be removed from the nuclear fuel rod even in natural circulation. Although the coolant temperature above the nuclear fuel assembly (2) is higher than the conventional 286 ° C., there is no problem. That is, the upper neutron flux near the upper end of the core leaks to the upper part, so it is quite small, and the power generated by the reaction between the neutron flux and nuclear fuel is small at the upper part of the nuclear fuel assembly (2), so the temperature of the nuclear fuel rod rises excessively. Never do.
A thermoelectric semiconductor built-in water supply pipe (132) through which high-pressure low-temperature liquid feed water flows contains a thermoelectric semiconductor (100) having a melting point of 286 ° C. or higher. Electric power is generated in the Carnot cycle of the thermoelectric semiconductor (100) using the high pressure superheated steam (24) as a high temperature heat source and the feed water as a low temperature heat source. The high-pressure superheated steam (24) is cooled by the thermoelectric semiconductor built-in water supply pipe (132) to become high-pressure saturated steam (23), and the high-pressure saturated steam (23) is also generated through the steam turbine (41) as usual. ABWR is renewed for combined power generation.
Since the cooling water of ABWR is pure water and has high electrical insulation, it is not a problem to incorporate the thermoelectric semiconductor (100) in the thermoelectric semiconductor built-in water supply pipe (132). Electricity generated in the thermoelectric semiconductor (100) is taken out from the terminal (103) through the high-pressure water supply pipe (32).
The steam / water separator (12) and the dryer (13) are removed, and the surface of the thermoelectric semiconductor built-in water supply pipe (132) is exposed to the high-pressure superheated steam (24), so that heat can be easily input to the thermoelectric semiconductor (100).
The performance Z of a thermoelectric semiconductor that generates electricity by the Seebeck effect can be expressed as Z = (α 2 / ρ) / κ where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the thermal conductivity (Non-patent Document 6). . Although it is desirable that Z is large for the thermoelectric semiconductor (100), in the present invention, since power is also generated through the steam turbine (41) after power generation by the thermoelectric semiconductor (100), Z is small as a result of large κ. A thermoelectric semiconductor can also be used. Even if the heat leakage from the thermoelectric semiconductor (100) is large in proportion to κ, the heat is recovered and converted to electricity through the steam turbine (41). Therefore, the thermoelectric semiconductor (100) only needs to have a large (α 2 / ρ). An alloy of silicon and germanium (SiGe) with boron (B) or phosphorus (P) added, or iron silicide (FeSi 2 ) with manganese (Mn), aluminum (Al) or cobalt (Co) added at high temperatures It is a thermoelectric semiconductor with a large (α 2 / ρ). Furthermore, since the rear steam turbine (41) recovers exhaust heat from the thermoelectric semiconductor (100), it is only necessary to be a thermoelectric semiconductor having a large α. Even if ρ is large and the internal heat generation of the thermoelectric semiconductor is large, the heat is recovered. Thermoelectric semiconductors with a large α include n-type, −700 μV / K, 1 copper oxide (CuO), and p-type, +1000 μV / K, 2 copper oxide (Cu 2 O).
Since thermoelectric semiconductors can generate electricity without moving parts, they can generate electricity at high temperatures near the melting point.
Since power generation by a thermoelectric semiconductor is based on a Carnot cycle that works between a high-temperature heat source and a low-temperature heat source, most of the efficiency is determined by the temperature ratio between the high-temperature temperature and the low-temperature temperature. Therefore, the temperature of the coolant at the top of the core was raised from the conventional high-pressure saturated steam (23) to the high-pressure superheated steam (24).
If the core flow rate is made the same as the steam flow rate of the conventional ABWR and the heat output is made larger than that of the conventional ABWR, the temperature of the high pressure superheated steam (24) becomes higher than the temperature of the high pressure saturated steam (23). After the high pressure superheated steam (24) is generated by the thermoelectric semiconductor (100), the flow rate of the high pressure saturated steam (23) cooled by the thermoelectric semiconductor built-in water supply pipe (132) is the same as the steam flow rate of the conventional ABWR. The amount of power generated through the turbine (41) is the same as that of the conventional ABWR. The combined power generation amount is larger than the power generation amount of the conventional ABWR by the amount generated by the thermoelectric semiconductor (100).
High pressure superheated steam (24) can be generated even if the heat output is the same as that of the conventional ABWR and the core flow rate is lower than the steam flow rate of the conventional ABWR. The high-pressure superheated steam (24) cooled by the thermoelectric semiconductor built-in water supply pipe (132) after being generated by the thermoelectric semiconductor (100) becomes high-pressure saturated steam (23) .In the present invention, the core flow rate, feed water flow rate, and steam flow rate are changed. Since the flow rate of the high-pressure saturated steam (23) is lower than the steam flow rate in the conventional ABWR, the power generation amount through the steam turbine (41) is lower than that in the conventional ABWR. However, the combined power generation amount that is the sum of the power generation amount in the thermoelectric semiconductor (100) and the power generation amount through the steam turbine (41) exceeds the power generation amount of the conventional ABWR.
In the conventional ABWR, the feed water is heated using several feed water adders, but in the present invention, it is heated while passing through the thermoelectric semiconductor built-in water supply pipe (132) in the process of generating electricity with the thermoelectric semiconductor (100). Therefore, the water heater can be unnecessary or reduced. Construction cost will be reduced.
The internal pump motor (7), rotor blade (6), steam separator (12), and dryer (13) could be deleted, resulting in a reduction in construction costs and periodic inspection costs. did it.
: Nikkan Kogyo Shimbun, 1988, “Thermoelectric semiconductors and their applications” by Uemura et al.

実施例1を応用して、圧力が低く比較的安全性が高いと考えられる原子炉による複合発電装置を以下に述べる。
図3は本発明の、MOX(プルトニウムとウランの混合酸化物)を内包せる核燃料集合体(2)を低圧耐熱容器(201)に内蔵し鉛を冷却材とせる鉛型原子炉(299)を高温熱源とし、鉛型原子炉(299)からの高温溶融鉛で蒸気を発生させる蒸気発生器(399)と鉛型原子炉(299)を繋ぐ低圧給鉛配管(231)に敷設した融点が286℃以上の高温熱電半導体(101)で発電した後、蒸気発生器(399)で発生させた高圧高温の蒸気により蒸気タービン(41)を介しても発電する複合発電装置の概略図である。
中性子吸収作用が小さく中性子減速作用も小さい鉛を冷却材としたため高速中性子利用の原子炉にする。高速中性子に対して燃焼効率が高く崩壊熱も高いプルトニウム(Pu)と、ウラン(U)の混合酸化物であるMOXを核燃料とせる核燃料集合体(2)を装荷した。原子炉が停止してもPuの崩壊熱により鉛は固化することなく溶融液体状態が保てる。
鉛の蒸気圧は低いから、鉛型原子炉(299)は低圧耐熱容器(201)で核燃料集合体(2)を内蔵させることができる。
低圧耐熱容器(201)の内側に、ABWRにおけるシュラウド(11)に相当する円筒形の隔壁(202)を敷設した。低圧耐熱容器(201)と隔壁(202)の間は低圧低温溶融鉛(205)で満ちていて、低圧耐熱容器(201)に戻ってきた低温で低圧の溶融鉛が流れる低圧給鉛配管(231)によって冷やされている。隔壁(202)の内側に熱遮蔽板(203)を敷設し低圧高温溶融鉛(206)から
隔壁(202)を保護している。
低圧給鉛配管(231)からの低温で低圧の溶融鉛は炉心板(9)の下から核燃料集合体(2)に入り、核燃料集合体(2)から受熱して低圧高温溶融鉛(206)になり上部格子板(207)にぶつかって低圧高温鉛配管(232)から低圧耐熱容器(201)の外に出て行く。低圧高温鉛配管(232)を通った低圧高温溶融鉛(206)は、低圧高温溶融鉛2(246)を充填せる蒸気発生器(399)の低圧耐熱容器2(241)の中に至る。低圧高温溶融鉛2(246)は高圧細管(225)で冷やされて低圧低温溶融鉛2(245)となり、低圧低温溶融鉛2(245)は給鉛ポンプ(230)により吸い上げられ低圧給鉛配管(231)を通って鉛型原子炉(299)の低圧耐熱容器(201)の内側に戻る。隔壁2(242)は低圧高温溶融鉛2(246) と低圧低温溶融鉛2(245)とを隔て、温度が均一にならないようにする。
復水器(43)で冷やされて液体になった水は、高圧給水配管(32)を通って蒸気発生器(399)の低圧耐熱容器2(241)の中の高圧低温水管寄せ(223)に導かれ、高圧低温水管寄せ(223)から枝分かれする多数本の高圧細管(225)に入り低圧高温溶融鉛2(246)から受熱して高圧高温の蒸気となり高圧高温蒸気管寄せ(224)に入り、高圧蒸気配管(31)から蒸気タービン(41)に出て行く。蒸気タービン(41)で発電機(42)を回転させ発電する。蒸気タービン(41)で仕事を終えて湿った蒸気は復水器(43)で冷やされて液体の水になる。
制御棒(3)の操作は、制御棒(3)に固着する制御棒支持棒(4)の上下動による。制御棒支持棒(4)は上蓋(208)を貫通し上部制御棒駆動機(211)に結合されている。
上蓋(208)と上部格子板(207)の間は低圧のアルゴンガスまたは炭酸ガスからなる低圧ガス(204)で満たされている。
核燃料集合体(2)の交換は、上蓋(208)と上部格子板(207)を取り外して開放空間で行う。鉛は空気や水に対して活性が弱いから取り扱いが容易である。なお、低融点金属冷却材として鉛とビスマスの混合物が考えられるが、ビスマスは中性子を吸収してα線を放出するポロニウムになるため、開放空間での取り扱いが困難である。
低圧給鉛配管(231)の表面には高温熱電半導体(101)を敷設した。高温熱電半導体(101)は低圧高温鉛配管(232)表面からの輻射熱を高温熱源とし、低圧給鉛配管(231)表面を低温熱源として電気を発生する。
本発明は、蒸気タービン(41)を介しての発電の前に高温熱電半導体(101)で発電する複合発電装置である。高温熱電半導体(101)の排熱は低圧給鉛配管(231)を流れる低圧低温の鉛を加熱することにより回収する。
後ろの蒸気タービン(41)が高温熱電半導体(101)の排熱を回収するため、高温熱電半導体(101) は(α2/ρ)または αが大きければよい。
原子炉停止時には、低圧給鉛配管(231)に敷設せる高温熱電半導体(101)に通電することによりヒータとして利用すれば低圧給鉛配管(231)の中の鉛は固化することなく溶融液体状態が保たれる。
低圧高温鉛配管(232)の低圧給鉛配管(231)と反対側の表面にも高温熱電半導体(101)を敷設すれば原子炉停止時に通電することによりヒータとして利用すれば低圧高温鉛配管(232) の中の鉛は固化することなく溶融液体状態が保たれる。通常運転時には、外部雰囲気を低温熱源として発電もする。
高圧細管(225)破断の対策として、蒸気発生器(399)の上部に圧力緩和円筒(247)を設けた。
高圧細管(225)が破断したとき放出される高圧蒸気を蒸気逃し弁(248)から蒸気発生器(399)の外部雰囲気中に放出し、蒸気発生器(399)の健全性を保つ。溶融鉛の飛沫は蒸気逃し弁(248)の高さまで到達する割合は少ないから、鉛は外部雰囲気中には放出され難い。
冷却材としてナトリウムを使う高速増殖炉の冷却材温度は約550℃程度であるから、鉛型原子炉(299)でも550℃程度の冷却材温度は可能であると考えられる。したがって、融点が550℃以上の高温熱電半導体(101)にすれば熱効率は格段に向上する。なお、高速増殖炉では蒸気発生器により高温高圧の過熱蒸気を発生させている。
A combined power generation system using a nuclear reactor that is considered to have a low pressure and a relatively high safety by applying the first embodiment will be described below.
Fig. 3 shows a lead-type nuclear reactor (299) in which a nuclear fuel assembly (2) containing MOX (mixed oxide of plutonium and uranium) is incorporated in a low-pressure heat-resistant vessel (201) and lead is used as a coolant. A melting point of 286 was laid in the low-pressure lead pipe (231) connecting the steam generator (399) and the lead reactor (299), which generates steam with high-temperature molten lead from the lead reactor (299) as a high-temperature heat source. FIG. 2 is a schematic diagram of a combined power generation apparatus that generates power using a high-pressure high-temperature steam generated by a steam generator (399) and also generates power via a steam turbine (41) after generating power with a high-temperature thermoelectric semiconductor (101) at a temperature of ℃ or higher.
The reactor is made of fast neutrons because lead is used as a coolant because it has a small neutron absorption effect and a small neutron moderation effect. We loaded a nuclear fuel assembly (2) that uses plutonium (Pu), which has high combustion efficiency for fast neutrons, and high decay heat, and MOX, which is a mixed oxide of uranium (U). Even if the reactor shuts down, the molten liquid state can be maintained without solidifying lead by the decay heat of Pu.
Since the vapor pressure of lead is low, the lead-type reactor (299) can incorporate the nuclear fuel assembly (2) in the low-pressure heat-resistant vessel (201).
A cylindrical partition wall (202) corresponding to the shroud (11) in ABWR was laid inside the low pressure heat resistant container (201). The space between the low-pressure heat-resistant container (201) and the partition wall (202) is filled with low-pressure low-temperature molten lead (205), and the low-pressure low-pressure lead pipe (231 ). A heat shielding plate (203) is laid inside the partition wall (202) to protect the partition wall (202) from low-pressure high-temperature molten lead (206).
Low-temperature and low-pressure molten lead from the low-pressure lead supply pipe (231) enters the nuclear fuel assembly (2) from under the core plate (9), receives heat from the nuclear fuel assembly (2), and low-pressure high-temperature molten lead (206) It hits the upper grid plate (207) and goes out of the low-pressure heat-resistant container (201) from the low-pressure high-temperature lead pipe (232). The low-pressure high-temperature molten lead (206) passing through the low-pressure high-temperature lead pipe (232) reaches the low-pressure heat-resistant container 2 (241) of the steam generator (399) filled with the low-pressure high-temperature molten lead 2 (246). Low-pressure high-temperature molten lead 2 (246) is cooled by a high-pressure capillary (225) to become low-pressure low-temperature molten lead 2 (245), and low-pressure low-temperature molten lead 2 (245) is sucked up by a lead feed pump (230) Return to the inside of the low-pressure heat-resistant vessel (201) of the lead-type reactor (299) through (231). The partition wall 2 (242) separates the low-pressure high-temperature molten lead 2 (246) from the low-pressure low-temperature molten lead 2 (245) so that the temperature does not become uniform.
The water cooled by the condenser (43) and turned into liquid passes through the high-pressure water supply pipe (32), and the high-pressure low-temperature water header (223) in the low-pressure heat-resistant container 2 (241) of the steam generator (399). The high pressure and low temperature water header (223) branches into a number of high pressure thin tubes (225) and receives heat from the low pressure and high temperature molten lead 2 (246) to become high pressure and high temperature steam. Enter and exit from the high pressure steam pipe (31) to the steam turbine (41). The steam turbine (41) rotates the generator (42) to generate power. Steam that has finished working in the steam turbine (41) is cooled by the condenser (43) to become liquid water.
The operation of the control rod (3) is caused by the vertical movement of the control rod support rod (4) fixed to the control rod (3). The control rod support rod (4) passes through the upper lid (208) and is coupled to the upper control rod drive (211).
A space between the upper lid (208) and the upper lattice plate (207) is filled with a low pressure gas (204) made of low pressure argon gas or carbon dioxide gas.
The replacement of the nuclear fuel assembly (2) is performed in an open space by removing the upper lid (208) and the upper lattice plate (207). Lead is easy to handle because of its weak activity against air and water. A mixture of lead and bismuth can be considered as the low-melting point metal coolant, but bismuth becomes polonium that absorbs neutrons and emits α rays, so that it is difficult to handle in an open space.
A high temperature thermoelectric semiconductor (101) was laid on the surface of the low pressure lead pipe (231). The high-temperature thermoelectric semiconductor (101) generates electricity by using radiant heat from the surface of the low-pressure high-temperature lead pipe (232) as a high-temperature heat source and using the surface of the low-pressure lead-feed pipe (231) as a low-temperature heat source.
The present invention is a combined power generator that generates power with a high-temperature thermoelectric semiconductor (101) before power generation via a steam turbine (41). The exhaust heat of the high-temperature thermoelectric semiconductor (101) is recovered by heating the low-pressure and low-temperature lead flowing through the low-pressure lead supply pipe (231).
Since the rear steam turbine (41) recovers the exhaust heat of the high temperature thermoelectric semiconductor (101), the high temperature thermoelectric semiconductor (101) only needs to have a large (α 2 / ρ) or α.
When the reactor is shut down, if it is used as a heater by energizing the high-temperature thermoelectric semiconductor (101) installed in the low-pressure lead supply pipe (231), the lead in the low-pressure lead supply pipe (231) is in a molten liquid state without solidifying. Is preserved.
If a high-temperature thermoelectric semiconductor (101) is also laid on the surface of the low-pressure high-temperature lead pipe (232) opposite to the low-pressure lead-supply pipe (231), the low-pressure high-temperature lead pipe ( The lead in 232) remains in a molten liquid state without solidifying. During normal operation, power is also generated using the external atmosphere as a low-temperature heat source.
As a countermeasure against breakage of the high pressure thin tube (225), a pressure relaxation cylinder (247) was provided on the upper portion of the steam generator (399).
The high pressure steam released when the high pressure thin tube (225) breaks is discharged from the steam relief valve (248) into the atmosphere outside the steam generator (399), and the soundness of the steam generator (399) is maintained. Since the proportion of molten lead splashing reaches the height of the steam relief valve (248) is small, lead is not easily released into the external atmosphere.
Since the coolant temperature of the fast breeder reactor using sodium as the coolant is about 550 ° C, it is considered that a coolant temperature of about 550 ° C is possible even in the lead reactor (299). Therefore, if the high temperature thermoelectric semiconductor (101) having a melting point of 550 ° C. or higher is used, the thermal efficiency is remarkably improved. In the fast breeder reactor, high-temperature and high-pressure superheated steam is generated by a steam generator.

実施例2における蒸気発生器(399)をガス昇温器(499)に置き換え、作動流体をガスにしてガスタービン(259)を介して発電する。
図4は本発明の、鉛型原子炉(299) を高温熱源とし、鉛型原子炉(299)からの高温溶融鉛でガス温度を高めるガス昇温器(499) と鉛型原子炉(299)を繋ぐ低圧給鉛配管(231)に敷設した融点が286℃以上の高温熱電半導体(101)で発電した後、ガス昇温器(499)で昇温させたガスによりガスタービン(259)を介しても発電する複合発電装置の概略図である。
冷却器(260)で冷やされた低圧低温のガスはガス圧縮機(258)で昇圧され高圧低温のガスになる。高圧低温のガスは高圧低温ガス給管(252)からガス昇温器(499)の低圧耐熱容器2(241)の中の高圧低温ガス管寄せ(253)に入り、高圧低温ガス管寄せ(253)から枝分かれする多数本の高圧細管(225)に入り低圧高温溶融鉛2(246)から受熱して高圧高温のガスとなり高圧高温ガス管寄せ(254)に入り、高圧高温ガス配管(251)からガスタービン(259)に出て行く。ガスタービン(259) で発電機(42)を回転させ発電する。ガスタービン(259) で仕事を終えて低圧低温になったガスは冷却器(260)で冷やされてもっと低圧低温になったガスになる。
低圧給鉛配管(231)の表面には高温熱電半導体(101)を敷設した。高温熱電半導体(101)は低圧高温鉛配管(232)からの輻射熱を高温熱源とし低圧給鉛配管(231)を低温熱源として電気を発生する。
本発明は、ガスタービン(259)を介しての発電の前に高温熱電半導体(101)で発電する複合発電装置である。高温熱電半導体(101)の排熱は低圧給鉛配管(231)を流れる低圧低温の鉛を加熱することにより回収する。
原子炉停止時には、低圧給鉛配管(231)に敷設せる高温熱電半導体(101)に通電することによりヒータとして利用すれば低圧給鉛配管(231)の中の鉛は固化することなく溶融液体状態が保たれる。
低圧高温鉛配管(232) の低圧給鉛配管(231)と反対側の表面にも高温熱電半導体(101)を敷設すれば原子炉停止時に通電することによりヒータとして利用すれば低圧高温鉛配管(232) の中の鉛は固化することなく溶融液体状態が保たれる。通常運転時には、外部雰囲気を低温熱源として発電もする。
後ろのガスタービン(259)が高温熱電半導体(101)の排熱を回収するため、高温熱電半導体(101) は(α2/ρ)または αが大きければよい。
The steam generator (399) in the second embodiment is replaced with a gas temperature riser (499), and electric power is generated via the gas turbine (259) using the working fluid as a gas.
FIG. 4 shows a gas heater (499) and a lead reactor (299) that use a lead reactor (299) as a high-temperature heat source and increase the gas temperature with high-temperature molten lead from the lead reactor (299). ) Is connected to the low-pressure lead pipe (231) connecting the gas turbine (259) with the gas heated by the gas heater (499) after generating electricity with the high-temperature thermoelectric semiconductor (101) with a melting point of 286 ° C or higher. FIG.
The low-pressure and low-temperature gas cooled by the cooler (260) is pressurized by the gas compressor (258) to become a high-pressure and low-temperature gas. The high-pressure and low-temperature gas enters the high-pressure and low-temperature gas header (253) in the low-pressure heat-resistant container 2 (241) of the gas heater (499) from the high-pressure and low-temperature gas supply pipe (252). ) Enters a number of high-pressure capillaries (225) that branch off from the low-pressure and high-temperature molten lead 2 (246) to become high-pressure and high-temperature gas, enters the high-pressure and high-temperature gas header (254), and enters the high-pressure and high-temperature gas pipe (251) Go out to the gas turbine (259). The generator (42) is rotated by the gas turbine (259) to generate electricity. The gas that has become low-pressure and low-temperature after finishing work in the gas turbine (259) is cooled by the cooler (260) to become low-pressure and low-temperature gas.
A high temperature thermoelectric semiconductor (101) was laid on the surface of the low pressure lead pipe (231). The high temperature thermoelectric semiconductor (101) generates electricity using the radiant heat from the low pressure high temperature lead pipe (232) as a high temperature heat source and the low pressure lead supply pipe (231) as a low temperature heat source.
The present invention is a combined power generation apparatus that generates power with a high-temperature thermoelectric semiconductor (101) before power generation via a gas turbine (259). The exhaust heat of the high-temperature thermoelectric semiconductor (101) is recovered by heating the low-pressure and low-temperature lead flowing through the low-pressure lead supply pipe (231).
When the reactor is shut down, if it is used as a heater by energizing the high-temperature thermoelectric semiconductor (101) installed in the low-pressure lead supply pipe (231), the lead in the low-pressure lead supply pipe (231) is in a molten liquid state without solidifying. Is preserved.
If a high-temperature thermoelectric semiconductor (101) is installed on the surface of the low-pressure high-temperature lead pipe (232) opposite to the low-pressure lead-feed pipe (231), the low-pressure high-temperature lead pipe ( The lead in 232) remains in a molten liquid state without solidifying. During normal operation, power is also generated using the external atmosphere as a low-temperature heat source.
Since the rear gas turbine (259) recovers the exhaust heat of the high temperature thermoelectric semiconductor (101), the high temperature thermoelectric semiconductor (101) only needs to have a large (α 2 / ρ) or α.

化石燃料の燃焼を高温熱源とする複合発電では、高温のガスタービン(259)を介しての発電の排熱を利用して蒸気タービン(41)を介しても発電する。高温のガスタービン(259)を構成する材料の問題で高温には限界が近づいている。
本発明では、高温のガスタービン(259)の前に熱電半導体による発電を付加して複合発電を達成している。従来、熱電半導体による発電はZの大きい熱電半導体にこだわっていたが、本発明では(α2/ρ)または αが大きい熱電半導体でもよいため熱電半導体の選択範囲が広くなり実現性が高い。
熱電半導体は可動部分が無く、その材質は耐熱性の高いものが多い。たとえば、炭化ホウ素(B4C)の融点は2000℃以上であるためカルノーサイクルで電気を発生する熱電半導体の熱効率は格段によくなる。
海水中に溶存している重水素とリチウムを燃料とする核融合発電は永遠のエネルギー発生装置といわれている。海水中から重水素とリチウムを抽出する過程で海水中に溶存しているウランを副産物として抽出すれば原子力発電も永遠のエネルギー発生装置であると考えられる。
原子力発電の好ましくない性質として放射能問題があるが、核融合発電でも大量に発生する中性子に対しては世間は寛容であるように見受けられるから、核融合発電が大量に受け入れられる時代になれば原子力発電も受け入れられると考えられる。
In the combined power generation using the combustion of fossil fuel as a high-temperature heat source, power is also generated via the steam turbine (41) by using the exhaust heat of the power generation via the high-temperature gas turbine (259). Due to the problems of the materials that make up the high temperature gas turbine (259), the limit is approaching high temperatures.
In the present invention, combined power generation is achieved by adding power generation by a thermoelectric semiconductor in front of a high-temperature gas turbine (259). Conventionally, power generation by a thermoelectric semiconductor has been particular to a thermoelectric semiconductor having a large Z. However, in the present invention, a thermoelectric semiconductor having a large (α 2 / ρ) or α may be used, so that the selection range of the thermoelectric semiconductor is widened and the feasibility is high.
Thermoelectric semiconductors have no moving parts and are often made of high heat resistance materials. For example, since the melting point of boron carbide (B 4 C) is 2000 ° C. or higher, the thermal efficiency of thermoelectric semiconductors that generate electricity in the Carnot cycle is markedly improved.
Fusion power generation using deuterium and lithium dissolved in seawater is said to be an eternal energy generator. If uranium dissolved in seawater is extracted as a by-product in the process of extracting deuterium and lithium from seawater, nuclear power generation is considered to be an eternal energy generator.
Radioactivity is an unfavorable property of nuclear power generation, but the world seems to be tolerant of neutrons that are generated in large quantities in fusion power generation. Nuclear power generation is also considered acceptable.

図1は、従来のABWRを高温熱源として蒸気タービン(41)を介して発電する概略図。FIG. 1 is a schematic view of generating power through a steam turbine (41) using a conventional ABWR as a high-temperature heat source. 図2は本発明の、熱電半導体(100)で発電した後蒸気タービン(41)を介しても発電する複合発電にリニューアルしたABWRの概略図。FIG. 2 is a schematic diagram of the ABWR according to the present invention, which has been renewed to a combined power generation system that generates power using the thermoelectric semiconductor (100) and that also generates power via the steam turbine (41). 図3は本発明の、鉛型原子炉(299)を高温熱源として高温熱電半導体(101)で発電した後蒸気タービン(41) を介しても発電する複合発電装置の概略図。FIG. 3 is a schematic diagram of a combined power generation apparatus according to the present invention that generates power also through a steam turbine (41) after generating power with a high-temperature thermoelectric semiconductor (101) using a lead reactor (299) as a high-temperature heat source. 図4は本発明の、鉛型原子炉(299) を高温熱源として高温熱電半導体(101) で発電した後ガスタービン(259) を介しても発電する複合発電装置の概略図。FIG. 4 is a schematic diagram of a combined power generation apparatus according to the present invention, which generates power also through a gas turbine (259) after generating power with a high-temperature thermoelectric semiconductor (101) using a lead reactor (299) as a high-temperature heat source.

符号の説明Explanation of symbols

2は核燃料集合体。
3は制御棒。
4は制御棒延長棒。
5は制御棒駆動機。
6は回転翼。
7はインターナルポンプモータ。
9は炉心板。
10は圧力容器。
11はシュラウド。
12は気水分離器。
13はドライヤ。
14は間隙領域。
21は高圧未飽和水。
22は高圧二相流。
23は高圧飽和蒸気。
24は高圧過熱蒸気。
30は給水昇圧ポンプ。
31は高圧蒸気配管。
32は高圧給水配管。
41は蒸気タービン。
42は発電機。
43は復水器。
100は熱電半導体。
101は高温熱電半導体。
103は端子。
132は熱電半導体内蔵給水配管。
201は低圧耐熱容器。
202は隔壁。
203は熱遮蔽板。
204は低圧ガス。
205は低圧低温溶融鉛。
206は低圧高温溶融鉛。
207は上部格子板。
208は上蓋。
209は結合部。
211は上部制御棒駆動機。
223は高圧低温水管寄せ。
224は高圧高温蒸気管寄せ。
225は高圧細管。
230は給鉛ポンプ。
231は低圧給鉛配管。
232は低圧高温鉛配管。
241は低圧耐熱容器2。
242は隔壁2。
245は低圧低温溶融鉛2。
246は低圧高温溶融鉛2。
247は圧力緩和円筒。
248は蒸気逃し弁。
251は高圧高温ガス配管。
252は高圧低温ガス給配管。
253は高圧低温ガス管寄せ。
254は高圧高温ガス管寄せ。
258はガス圧縮機。
259はガスタービン。
260は冷却器。
261はガス逃し弁。
299は鉛型原子炉。
399は蒸気発生器。
499はガス昇温器。
2 is a nuclear fuel assembly.
3 is a control rod.
4 is a control bar extension bar.
5 is a control rod drive.
6 is a rotating wing.
7 is an internal pump motor.
9 is the core plate.
10 is a pressure vessel.
11 is a shroud.
12 is a steam separator.
13 is a dryer.
14 is a gap area.
21 is high-pressure unsaturated water.
22 is a high-pressure two-phase flow.
23 is high-pressure saturated steam.
24 is high-pressure superheated steam.
30 is a water supply booster pump.
31 is a high-pressure steam pipe.
32 is a high-pressure water supply pipe.
41 is a steam turbine.
42 is a generator.
43 is a condenser.
100 is a thermoelectric semiconductor.
101 is a high-temperature thermoelectric semiconductor.
103 is a terminal.
132 is a water supply pipe with a built-in thermoelectric semiconductor.
201 is a low-pressure heat-resistant container.
202 is a partition wall.
203 is a heat shielding board.
204 is low-pressure gas.
205 is low-pressure low-temperature molten lead.
206 is low pressure high temperature molten lead.
207 is an upper lattice plate.
208 is the top lid.
209 is a joint.
211 is an upper control rod drive.
223 is a high pressure low temperature water pipe.
224 is a high pressure high temperature steam pipe.
225 is a high-pressure capillary.
230 is a lead feed pump.
231 is a low-pressure lead pipe.
232 is low-pressure high-temperature lead piping.
241 is a low-pressure heat-resistant container 2.
242 is a partition wall 2.
245 is low-pressure low-temperature molten lead 2.
246 is low-pressure high-temperature molten lead 2.
247 is a pressure relief cylinder.
248 is a steam relief valve.
251 is high-pressure high-temperature gas piping.
252 is a high-pressure low-temperature gas supply pipe.
253 is a high pressure low temperature gas pipe.
254 is a high pressure high temperature gas pipe.
258 is a gas compressor.
259 is a gas turbine.
260 is a cooler.
261 is a gas relief valve.
299 is a lead reactor.
399 is a steam generator.
499 is a gas heater.

Claims (3)

圧力容器(10)内圧力を従来ABWRでの圧力に維持し、インターナルポンプ(7)及び回転翼(6)及び気水分離器(12)及びドライヤ(13)を削除し、炉心流量を蒸気流量と同じにして炉心上部冷却材を高圧過熱蒸気(24)にし、高圧給水配管(32)から枝分かれせる多数本の熱電半導体内蔵給水配管(132)をドライヤ(13)があった上辺を通過して間隙領域(14)まで延長し、熱電半導体内蔵給水配管(132)に融点が286℃以上の熱電半導体(100)を内蔵させ、熱電半導体(100)により発電した後、高圧過熱蒸気(24)が当該熱電半導体内蔵給水配管(132)により冷却された高圧飽和蒸気(23)により従来ABWR蒸気タービン(41)を介しても発電する複合発電にしたことを特徴とするリニューアルABWR。   The pressure in the pressure vessel (10) is maintained at the pressure of the conventional ABWR, the internal pump (7), the rotor blade (6), the steam separator (12) and the dryer (13) are deleted, and the core flow rate is reduced to steam. Make the core upper coolant into high-pressure superheated steam (24) with the same flow rate, and pass through the thermoelectric semiconductor built-in water supply pipes (132) branched from the high-pressure water supply pipes (32) through the upper side where the dryer (13) was located. The thermoelectric semiconductor (100) with a melting point of 286 ° C or higher is built in the thermoelectric semiconductor built-in water supply pipe (132) and generated by the thermoelectric semiconductor (100), and then the high-pressure superheated steam (24) The renewed ABWR is characterized in that it is a combined power generation that generates power even through the conventional ABWR steam turbine (41) by the high-pressure saturated steam (23) cooled by the thermoelectric semiconductor built-in water supply pipe (132). MOXを内包させた核燃料集合体(2)を低圧耐熱容器(201)に内蔵し鉛を冷却材とせる鉛型原子炉(299)を高温熱源として、鉛型原子炉(299)からの高温溶融鉛で蒸気を発生させる蒸気発生器(399)と鉛型原子炉(299)を繋ぐ低圧給鉛配管(231)に敷設した融点が286℃以上の高温熱電半導体(101)で発電した後、蒸気発生器(399)で発生させた高圧高温の蒸気による蒸気タービン(41)を介しても発電する複合発電装置。   High-temperature melting from lead-type reactor (299) using a lead-type reactor (299) with a nuclear fuel assembly (2) containing MOX in a low-pressure heat-resistant vessel (201) and lead as a coolant as a high-temperature heat source After generating electricity with a high-temperature thermoelectric semiconductor (101) with a melting point of 286 ° C or higher installed in a low-pressure lead pipe (231) connecting a steam generator (399) that generates steam with lead and a lead-type reactor (299), steam A combined power generation apparatus that generates power even through a steam turbine (41) using high-pressure and high-temperature steam generated by a generator (399). MOXを内包させた核燃料集合体(2)を低圧耐熱容器(201)に内蔵し鉛を冷却材とせる鉛型原子炉(299) を高温熱源として、鉛型原子炉(299)からの高温溶融鉛でガス温度を高めるガス昇温器(499) と鉛型原子炉(299)を繋ぐ低圧給鉛配管(231)に敷設した融点が286℃以上の高温熱電半導体(101)で発電した後、ガス昇温器(499)で昇温させたガスによりガスタービン(259)を介しても発電する複合発電装置。   High-temperature melting from lead-type reactor (299) using lead-type reactor (299) that contains nuclear fuel assembly (2) containing MOX in a low-pressure heat-resistant vessel (201) and lead as a coolant as a high-temperature heat source After generating electricity with a high-temperature thermoelectric semiconductor (101) with a melting point of 286 ° C or higher installed in a low-pressure lead pipe (231) that connects a gas heater (499) that raises the gas temperature with lead and a lead-type reactor (299), A combined power generation apparatus that generates power via the gas turbine (259) using the gas heated by the gas temperature riser (499).
JP2007288046A 2007-11-06 2007-11-06 Renewed abwr adapted to combined power generation Pending JP2009115571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007288046A JP2009115571A (en) 2007-11-06 2007-11-06 Renewed abwr adapted to combined power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007288046A JP2009115571A (en) 2007-11-06 2007-11-06 Renewed abwr adapted to combined power generation

Publications (1)

Publication Number Publication Date
JP2009115571A true JP2009115571A (en) 2009-05-28

Family

ID=40782873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007288046A Pending JP2009115571A (en) 2007-11-06 2007-11-06 Renewed abwr adapted to combined power generation

Country Status (1)

Country Link
JP (1) JP2009115571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006475A (en) * 2010-06-24 2012-01-12 Toshihisa Shirakawa Engine with non-combustion type duct for electric airplane
KR101223273B1 (en) 2011-10-28 2013-01-17 영남대학교 산학협력단 An nuclear reactor cooling management system
JP2013057654A (en) * 2011-09-08 2013-03-28 Korea Nuclear Fuel Co Ltd Emergency battery charging apparatus for nuclear power plant by using thermoelectric generating element
EP2877997A4 (en) * 2012-07-24 2016-03-16 Westinghouse Electric Corp Passive power production during a nuclear station blackout

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006475A (en) * 2010-06-24 2012-01-12 Toshihisa Shirakawa Engine with non-combustion type duct for electric airplane
JP2013057654A (en) * 2011-09-08 2013-03-28 Korea Nuclear Fuel Co Ltd Emergency battery charging apparatus for nuclear power plant by using thermoelectric generating element
KR101223273B1 (en) 2011-10-28 2013-01-17 영남대학교 산학협력단 An nuclear reactor cooling management system
WO2013062283A2 (en) * 2011-10-28 2013-05-02 영남대학교 산학협력단 System for managing cooling of reactor
WO2013062283A3 (en) * 2011-10-28 2013-06-20 영남대학교 산학협력단 System for managing cooling of reactor
JP2015503088A (en) * 2011-10-28 2015-01-29 インダストリー−アカデミック・コーオペレーション・ファウンデーション,ヨンナム・ユニバーシティIndustry−Academic Cooperation Foundation,Yeungnam University Reactor cooling management system
EP2877997A4 (en) * 2012-07-24 2016-03-16 Westinghouse Electric Corp Passive power production during a nuclear station blackout
US9536629B2 (en) 2012-07-24 2017-01-03 Westinghouse Electric Company Llc Passive power production during a nuclear station blackout

Similar Documents

Publication Publication Date Title
Jiang et al. Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook
Yetisir et al. Development and integration of Canadian SCWR concept with counter-flow fuel assembly
Zheng et al. Water-ingress analysis for the 200áMWe pebble-bed modular high temperature gas-cooled reactor
CN103928064B (en) Thermally-operated conversion system
JP5645283B2 (en) High temperature gas cooled reactor steam power generation system and method
US2865827A (en) Power generation from liquid metal nuclear fuel
Dobran Fusion energy conversion in magnetically confined plasma reactors
CN101630931B (en) Combined power-generation device of nuclear power and alkali metal thermoelectricity conversion device
EP2589049B1 (en) Triuranium disilicide nuclear fuel composition for use in light water reactors
CN106297914A (en) A kind of passive high-temperature heat pipe fast reactor reactor core heat transfer system and method thereof
JP2009115571A (en) Renewed abwr adapted to combined power generation
CN203070789U (en) Thermally-operated conversion system
CN108643984A (en) A kind of spentnuclear fuel pond passive cooling system based on organic rankie cycle
WO2012075010A1 (en) Heat transfer systems and methods for a fast reactor
Miletić et al. Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation
US2796396A (en) Method of intermittently operating a neutronic reactor
Dudek et al. An analysis of the thermodynamic cycles with high-temperature nuclear reactor for power generation and hydrogen co-production
CN105679384A (en) Small nuclear power plant
KR101322441B1 (en) Thorium oxide nano-fluid coolants, Breeder reactor using the same
JP2007256230A (en) Coolant separation type fused nuclear fuel reactor
Dragunov et al. Investigation of thermophysical and nuclear properties of prospective coolants for generation-IV nuclear reactors
RU2407669C1 (en) Atom-powered ship (versions)
Miletić et al. Supercritical-water experimental setup for in-pile operation
Helmy Supercritical water cooled reactors
Dragunov et al. Study on Primary and Secondary Heat-Transport Systems for Sodium-Cooled Fast Reactor