JP2009114486A - Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder - Google Patents

Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder Download PDF

Info

Publication number
JP2009114486A
JP2009114486A JP2007286664A JP2007286664A JP2009114486A JP 2009114486 A JP2009114486 A JP 2009114486A JP 2007286664 A JP2007286664 A JP 2007286664A JP 2007286664 A JP2007286664 A JP 2007286664A JP 2009114486 A JP2009114486 A JP 2009114486A
Authority
JP
Japan
Prior art keywords
aluminum
sintering
fluoride
alloy powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286664A
Other languages
Japanese (ja)
Other versions
JP4941236B2 (en
Inventor
Sachiko Masuoka
佐千子 益岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2007286664A priority Critical patent/JP4941236B2/en
Publication of JP2009114486A publication Critical patent/JP2009114486A/en
Application granted granted Critical
Publication of JP4941236B2 publication Critical patent/JP4941236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum-containing copper-based alloy powder to be sintered which can provide a sintered compact having sufficient hardness and radial crushing strength, when having been compacted in an atmosphere containing nitrogen by a powder metallurgy process. <P>SOLUTION: The alloy powder to be sintered is prepared by adding 0.02 to 20.5 mass% of a fluoride which includes either or both of 20 mass% or less of calcium fluoride and 0.5 mass% or less of aluminum fluoride, and 0.05 to 0.5 mass% of phosphorus which is contained in a phosphorus alloy, with respect to an aluminum-containing copper-based alloy powder to be sintered. In addition, an inorganic solid lubricant may be added to the powder, as needed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、焼結助剤及び焼結用アルミニウム含有銅系合金粉末並びに該焼結用アルミニウム含有銅系合金粉末を焼結してなる焼結体に関するものである。   The present invention relates to a sintering aid, a sintering aluminum-containing copper-based alloy powder, and a sintered body obtained by sintering the sintering aluminum-containing copper-based alloy powder.

周知のとおり、アルミニウム青銅やアルミニウム黄銅などのアルミニウム含有銅系合金は、強度、耐食性、耐摩耗性に優れており、他種多様な製品の素材として使用されている。アルミニウム含有銅系合金の加工方法としては、アルミニウム含有銅系合金粉末を圧縮成形して焼結させる粉末冶金法が良く知られているが、粉末冶金法においては、アルミニウム含有銅系合金粉末の表面を被覆する酸化アルミニウムが粉末間での原子の拡散を阻害するために十分に結合しないので、高強度を有する焼結体を形成することができなかった。このため、粉末冶金法によって高強度を有する焼結体を形成できるように種々の焼結助剤を加えたアルミニウム含有銅系合金粉末が開発されている。   As is well known, aluminum-containing copper-based alloys such as aluminum bronze and aluminum brass are excellent in strength, corrosion resistance, and wear resistance, and are used as materials for various other products. As a processing method of an aluminum-containing copper-based alloy, a powder metallurgy method in which an aluminum-containing copper-based alloy powder is compression-molded and sintered is well known. In the powder metallurgy method, the surface of the aluminum-containing copper-based alloy powder is used. Since the aluminum oxide covering the layer does not bond sufficiently to inhibit the diffusion of atoms between the powders, a sintered body having high strength could not be formed. For this reason, aluminum-containing copper-based alloy powders to which various sintering aids have been added have been developed so that a sintered body having high strength can be formed by powder metallurgy.

例えば、後出特許文献1には、基質を構成する合金粉末がCu-Al合金粉、Cu粉及びAl粉より選ばれる1種の粉末もしくは2種以上からなる混合粉末に、Pを0.5mass%以上含み、残部がCr、Mn、Fe、Co、Ni及びCuの1種以上からなる合金粉を1種以上添加してなる焼結アルミニウム合金粉末が開示されている。   For example, in Patent Document 1 listed below, P is added to 0.5 mass% of a mixed powder composed of one kind or two or more kinds selected from Cu-Al alloy powder, Cu powder and Al powder as an alloy powder constituting the substrate. A sintered aluminum alloy powder is disclosed that includes one or more alloy powders including one or more of Cr, Mn, Fe, Co, Ni, and Cu.

また、後出特許文献2には、アルミニウム含有銅系合金から成る焼結用合金粉であって、前記合金粉は、フッ化アルミニウムに、フッ化カルシウム及びフッ化マグネシウムから選択される少なくとも1種類を1〜70質量%混合してなる焼結助剤を0.02〜0.5質量%含んでいる焼結用合金粉が開示されている。
特開平2−173224号公報 特開2003−49206号公報
Further, Patent Document 2 listed below is an alloy powder for sintering made of an aluminum-containing copper-based alloy, and the alloy powder is selected from aluminum fluoride, calcium fluoride and magnesium fluoride. An alloy powder for sintering containing 0.02 to 0.5% by mass of a sintering aid obtained by mixing 1 to 70% by mass of the above is disclosed.
JP-A-2-173224 JP 2003-49206 A

ところが、前記特許文献1記載の焼結アルミニウム合金粉末は、水素雰囲気中で焼結を行った場合においては焼結助剤の効果によって焼結が促進されるものの、窒素を含有する雰囲気中においては焼結が促進されず、焼結体の硬度や圧環強度が著しく低下するという問題点がある。   However, in the sintered aluminum alloy powder described in Patent Document 1, sintering is promoted by the effect of the sintering aid in the case of sintering in a hydrogen atmosphere, but in an atmosphere containing nitrogen, There is a problem that the sintering is not promoted, and the hardness and the crushing strength of the sintered body are remarkably lowered.

また、前記特許文献2記載の焼結用合金粉は、特許文献1記載の焼結用合金粉末に比べて水素雰囲気中で焼結を行った場合には硬度や圧環強度が僅かに向上するものの、窒素を含有する雰囲気中においては焼結が促進されず、十分な硬度や圧環強度を有する焼結体を得ることができないという問題点がある。   In addition, the sintering alloy powder described in Patent Document 2 is slightly improved in hardness and crushing strength when sintered in a hydrogen atmosphere as compared with the sintering alloy powder described in Patent Document 1. Further, there is a problem that sintering is not promoted in an atmosphere containing nitrogen, and a sintered body having sufficient hardness and crushing strength cannot be obtained.

そこで、本発明は、窒素を含有する雰囲気中において粉末冶金法で加工する場合にも、十分な硬度や圧環強度を有する焼結体を得ることができる焼結用アルミニウム含有銅系合金粉末を得ることを技術的課題として、その具現化をはかるべく、試作・実験を繰り返した結果、焼結用アルミニウム含有銅系合金粉末にフッ化カルシウムとフッ化アルミニウムのいずれか一方又は双方からなるフッ化物と燐合金とを焼結助剤として添加すれば、窒素を含有する雰囲気中においても十分な硬度や圧環強度を有する焼結体を形成することができるという刮目すべき知見を得、前記技術的課題を達成したものである。   Therefore, the present invention provides an aluminum-containing copper-based alloy powder for sintering capable of obtaining a sintered body having sufficient hardness and crushing strength even when processed by a powder metallurgy method in an atmosphere containing nitrogen. As a result of repeating trial manufacture and experiment to achieve the realization of the above, as a result of repeating trial manufacture and experiment, the fluoride containing either or both of calcium fluoride and aluminum fluoride was added to the aluminum-containing copper-based alloy powder for sintering. By adding a phosphorus alloy as a sintering aid, it is possible to form a sintered body having sufficient hardness and crushing strength even in an atmosphere containing nitrogen. Is achieved.

前記技術的課題は、次の通りの本発明によって解決できる。   The technical problem can be solved by the present invention as follows.

即ち、本発明に係る焼結助剤は、フッ化カルシウムとフッ化アルミニウムのいずれか一方又は双方からなるフッ化物と燐合金とを含有しているものである。   That is, the sintering aid according to the present invention contains a fluoride composed of either or both of calcium fluoride and aluminum fluoride and a phosphorus alloy.

また、本発明に係る焼結用アルミニウム含有銅系合金粉末は、フッ化カルシウムとフッ化アルミニウムのいずれか一方又は双方からなるフッ化物と燐合金とを含有しているものである。   Moreover, the aluminum-containing copper-based alloy powder for sintering according to the present invention contains a fluoride and a phosphorus alloy made of one or both of calcium fluoride and aluminum fluoride.

また、本発明は、前記焼結用アルミニウム含有銅系合金粉末において、20質量%以下のフッ化カルシウムと0.5質量%以下のフッ化アルミニウムとからなるフッ化物を0.02〜20.5質量%含有しているものである。   Further, the present invention provides the above-described aluminum-containing copper-based alloy powder for sintering containing 0.02 to 20.5 fluoride comprising 20% by mass or less calcium fluoride and 0.5% by mass or less aluminum fluoride. It is contained by mass%.

また、本発明は、前記いずれかの焼結用アルミニウム含有銅系合金粉末において、燐合金に含まれる燐を0.05〜0.5質量%含有しているものである。   Moreover, this invention contains 0.05-0.5 mass% of phosphorus contained in a phosphorus alloy in the said aluminum-containing copper-type alloy powder for sintering.

また、本発明は、前記いずれかの焼結用アルミニウム含有銅系合金粉末において、フッ化カルシウム以外の無機系固体潤滑剤を含有しているものである。   Moreover, this invention contains inorganic solid lubricants other than calcium fluoride in any of the above-mentioned aluminum-containing copper-based alloy powders for sintering.

さらに、本発明に係る焼結体は、前記いずれかの焼結用アルミニウム含有銅系合金粉末を焼結してなるものである。   Furthermore, the sintered body according to the present invention is obtained by sintering any one of the above-mentioned aluminum-containing copper-based alloy powders for sintering.

なお、本発明の他の実施の形態は、焼結用アルミニウム含有銅系合金粉末において、0.01〜20質量%のフッ化カルシウム及び/又は0.01〜0.5質量%のフッ化アルミニウムとからなり、これらの合計が0.02〜20.5質量%となるフッ化物と燐合金に含まれる燐0.05〜0.5質量%とを含有しているものである。   In addition, other embodiment of this invention is 0.01-20 mass% calcium fluoride and / or 0.01-0.5 mass% aluminum fluoride in aluminum containing copper-type alloy powder for sintering. The total amount of these is 0.02 to 20.5% by mass of fluoride and the content of phosphorus contained in the phosphorus alloy is 0.05 to 0.5% by mass.

本発明によれば、焼結用アルミニウム含有銅系合金粉末に対してフッ化アルミニウムとフッ化カルシウムのいずれか一方又は双方からなるフッ化物と燐合金とを焼結助剤として添加したので、焼結時に燐合金によって形成される燐酸塩で母金属粉末間の結合を阻害する酸化アルミニウム被膜が破壊されると共に、フッ化アルミニウムとフッ化カルシウムの混合に伴って生成される液相により母金属粉末間の結合が補助されるため、これらの相乗効果によって母金属粉末間の焼結が飛躍的に促進され、これにより、水素雰囲気中だけでなく、窒素を含む雰囲気中においても硬度及び圧環強度の高い焼結体を得ることができる。なお、フッ化物としてフッ化アルミニウムを単体で添加した場合にも、焼結時におけるフッ化アルミニウムの蒸発に伴って酸化アルミニウム被膜が破壊されるため、母金属粉末間の焼結が促進され、また、フッ化物としてフッ化カルシウムを単体で添加した場合にも、燐合金に含まれる燐と作用することにより、母金属粉末間の焼結が促進される。なお、窒素は水素に比べて安価であるため、焼結時のコストを下げることができる。   According to the present invention, since a fluoride and a phosphorus alloy made of one or both of aluminum fluoride and calcium fluoride are added as sintering aids to the aluminum-containing copper-based alloy powder for sintering, The aluminum oxide film which inhibits the bond between the parent metal powders with the phosphate formed by the phosphorus alloy during the sintering is broken, and the mother metal powders are formed by the liquid phase generated with the mixing of aluminum fluoride and calcium fluoride. As a result of these synergistic effects, the sintering between the parent metal powders is greatly promoted, and thus the hardness and crushing strength of not only in a hydrogen atmosphere but also in an atmosphere containing nitrogen. A high sintered body can be obtained. Even when aluminum fluoride is added alone as a fluoride, the aluminum oxide coating is destroyed as the aluminum fluoride evaporates during sintering, which promotes sintering between the parent metal powders. Even when calcium fluoride is added alone as a fluoride, sintering between the parent metal powders is promoted by acting with phosphorus contained in the phosphorus alloy. Note that since nitrogen is less expensive than hydrogen, the cost during sintering can be reduced.

従って、本発明の産業上利用性は非常に高いといえる。   Therefore, it can be said that the industrial applicability of the present invention is very high.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明に係る焼結用アルミニウム含有銅系合金粉末は、母金属粉末に対してフッ化物と燐合金とを含有する焼結助剤を添加したものである。なお、「質量%」の単位は、焼結用アルミニウム含有銅系合金粉末全体に対する割合を示している。   The aluminum-containing copper-based alloy powder for sintering according to the present invention is obtained by adding a sintering aid containing a fluoride and a phosphorus alloy to a base metal powder. In addition, the unit of “mass%” indicates a ratio with respect to the entire aluminum-containing copper-based alloy powder for sintering.

母金属粉末は、1種類又は複数種類の金属粉末から構成されており、母金属粉末全体として見るとアルミニウム及び銅が主な成分となっており、必要に応じてアルミニウム及び銅以外の金属も成分として加えられる。また、1種類の金属粉末に着目した場合に、その金属粉末は、純金属粉末からなっていてもよく、合金粉末からなっていてもよい。なお、アルミニウム及び銅を含有した合金粉末、即ち、銅−アルミニウム合金粉末から母金属粉末を構成するよりも、銅−アルミニウム合金粉末と銅のみからなる純金属粉末、即ち、銅粉末とから母金属粉末を構成する方が得られる焼結体の機械的特性が向上し、また、焼結時の雰囲気にも影響を受け難くなる。   The parent metal powder is composed of one or more kinds of metal powders, and aluminum and copper are the main components when viewed as a whole of the parent metal powder, and metals other than aluminum and copper are also components as necessary. Added as. Moreover, when paying attention to one kind of metal powder, the metal powder may be made of pure metal powder or alloy powder. It should be noted that the alloy metal containing aluminum and copper, that is, the parent metal powder consisting of copper-aluminum alloy powder and copper, rather than the mother metal powder comprising the copper-aluminum alloy powder, ie, the parent metal from the copper powder. The mechanical properties of the sintered body obtained by composing the powder are improved, and the atmosphere during sintering is less affected.

具体的には、焼結体としてアルミニウム青銅合金を得ようとする場合には、アルミニウムが1〜13質量%の割合で配合されるように金属粉末を混合して母金属粉末とすればよく、この場合には、鉄、ニッケル、マンガンから選ばれる1又は2種以上の金属を1〜10質量%の割合で配合させてもよい。また、焼結体としてアルミニウム黄銅合金を得ようとする場合には、アルミニウムが1〜13質量%の割合で配合されるように金属粉末を混合し、さらに、亜鉛を10〜40質量%の割合で配合させればよく、この場合には、鉄、ニッケル、マンガン、錫から選ばれる1又は2以上の金属を0.5〜5質量%の割合で配合させてもよい。   Specifically, when trying to obtain an aluminum bronze alloy as a sintered body, it is only necessary to mix a metal powder so that aluminum is blended at a ratio of 1 to 13% by mass to obtain a mother metal powder, In this case, you may mix | blend 1 or 2 or more types of metals chosen from iron, nickel, and manganese in the ratio of 1-10 mass%. Moreover, when it is going to obtain an aluminum brass alloy as a sintered compact, a metal powder is mixed so that aluminum may be mix | blended in the ratio of 1-13 mass%, Furthermore, the ratio of 10-40 mass% zinc. In this case, one or more metals selected from iron, nickel, manganese, and tin may be added in a proportion of 0.5 to 5% by mass.

母金属粉末として混合される金属粉末の粒度は、粉末冶金法においてハンドリング性の良い−150μm以下のものが好適であるが、特に限定されるものではない。   The particle size of the metal powder mixed as the base metal powder is preferably −150 μm or less with good handling properties in the powder metallurgy method, but is not particularly limited.

焼結助剤に用いるフッ化物は、フッ化カルシウムとフッ化アルミニウムのいずれか一方又は双方からなり、これらの合計が0.02〜20.5質量%、より好ましくは0.02〜15.3質量%となるように母金属粉末に添加される。但し、フッ化カルシウムは、焼結用アルミニウム含有銅系合金粉末に対して20質量%以下、好ましくは0.01〜15質量%、より好ましくは0.02〜15質量%で添加され、フッ化アルミニウムは、焼結用アルミニウム含有銅系合金粉末に対して0.5質量%以下、好ましくは0.01〜0.3質量%、より好ましくは0.02〜0.3質量%で添加される。フッ化アルミニウムは、母金属粉末の表面を被覆する酸化アルミニウムを蒸発によって破壊する働きを有しており、これにより、金属粉末間で原子が拡散して金属粉末間の結合が強化されるため、焼結体の硬度及び圧環強度が向上する。また、フッ化アルミニウムとフッ化カルシウムを共存させると、母金属粉末の表面に液相が生成されて焼結がより促進される。なお、フッ化カルシウムの正確な働きについては未だ解明されていないが、各種実験においてフッ化カルシウムと共に燐合金を添加すると焼結体の硬度及び圧環強度が向上していることから、燐合金に含まれる燐と共存することによって焼結助剤として働くことが判明している。   The fluoride used for the sintering aid is composed of one or both of calcium fluoride and aluminum fluoride, and the total of these is 0.02 to 20.5% by mass, more preferably 0.02 to 15.3. It is added to the base metal powder so as to be mass%. However, calcium fluoride is added in an amount of 20% by mass or less, preferably 0.01 to 15% by mass, more preferably 0.02 to 15% by mass with respect to the aluminum-containing copper-based alloy powder for sintering. Aluminum is added in an amount of 0.5% by mass or less, preferably 0.01 to 0.3% by mass, more preferably 0.02 to 0.3% by mass with respect to the aluminum-containing copper-based alloy powder for sintering. . Aluminum fluoride has the function of destroying the aluminum oxide covering the surface of the parent metal powder by evaporation, which causes the atoms to diffuse between the metal powders and strengthen the bond between the metal powders. The hardness and crushing strength of the sintered body are improved. Further, when aluminum fluoride and calcium fluoride coexist, a liquid phase is generated on the surface of the parent metal powder, and sintering is further promoted. Although the exact function of calcium fluoride has not yet been elucidated, the addition of phosphorus alloy together with calcium fluoride in various experiments improves the hardness and crushing strength of the sintered body. It has been found that it acts as a sintering aid by coexisting with phosphorous.

フッ化カルシウムの添加量が20質量%を超えると、焼結用アルミニウム含有銅系合金粉末に対するフッ化カルシウムの割合が多くなり過ぎ、母金属粉末間に多くのフッ化カルシウムが入り込んで母金属粉末同士の接触が妨げられるため、これに伴ってフッ化カルシウムの母金属粉末間の焼結を促進させる効果も低下する。フッ化アルミニウムの添加量が0.5質量%を超えると、フッ化アルミニウムが過剰に添加された状態となり、その過剰に添加されたフッ化アルミニウムが焼結助剤として作用することなく多量に蒸発するために焼結体の質量減少を引き起こすと共に焼結体の形状に歪みをきたす。また、フッ化物は、添加量の合計が0.02質量%に満たないと、焼結助剤として十分に作用しないために焼結体の硬度や圧環強度が向上せず、添加量の合計が20.5質量%を超えると、その大半を占めるフッ化カルシウムの焼結用アルミニウム含有銅系合金粉末に対する割合が多くなり過ぎ、母金属粉末間に多くのフッ化カルシウムが入り込んで母金属粉末同士の接触が妨げられるため、これに伴ってフッ化カルシウムの母金属粉末間の焼結を促進させる効果も低下する。なお、フッ化アルミニウムに比べてフッ化カルシウムの添加量の上限が多いのは、両フッ化物の焼結時における反応の違いによるものである。即ち、フッ化アルミニウムは焼結時に蒸発するため、添加量が増しても母金属粉末間に介在する数は増加せずに母金属粉末間の結合を阻害することはないが、焼結時の蒸発量が増して焼結体の形状に影響を与えるため、焼結体の形状を保持したままで焼結させるために添加量の上限が定めれている。これに対して、フッ化カルシウムは焼結時に蒸発しないため、添加量が増しても焼結時の蒸発量が増加せずに焼結体の形状に影響を与えることはないが、母金属粉末間に介在する数が増して母金属粉末間の結合を阻害するため、焼結体の硬度や圧環強度をある程度保持するために添加量の上限が定められている。   When the added amount of calcium fluoride exceeds 20% by mass, the ratio of calcium fluoride to the aluminum-containing copper-based alloy powder for sintering becomes excessive, and a lot of calcium fluoride enters between the parent metal powders. Since contact with each other is hindered, the effect of promoting sintering between the calcium fluoride base metal powders is also reduced. When the amount of aluminum fluoride added exceeds 0.5% by mass, aluminum fluoride is excessively added, and the excessively added aluminum fluoride evaporates in a large amount without acting as a sintering aid. Therefore, the mass of the sintered body is reduced and the shape of the sintered body is distorted. Further, if the total amount of fluoride is less than 0.02% by mass, the fluoride does not sufficiently function as a sintering aid, so the hardness and crushing strength of the sintered body is not improved, and the total amount added is If it exceeds 20.5% by mass, the proportion of calcium fluoride occupying the majority of the aluminum-containing copper-based alloy powder for sintering will increase, and a large amount of calcium fluoride will enter between the parent metal powders. Accordingly, the effect of promoting the sintering between the calcium fluoride base metal powders is also reduced. The reason why the upper limit of the amount of calcium fluoride added is larger than that of aluminum fluoride is due to the difference in reaction during sintering of both fluorides. That is, since aluminum fluoride evaporates during sintering, even if the amount added is increased, the number interposed between the parent metal powders does not increase and does not hinder the bonding between the parent metal powders. Since the amount of evaporation increases and affects the shape of the sintered body, the upper limit of the amount of addition is determined in order to sinter while maintaining the shape of the sintered body. On the other hand, since calcium fluoride does not evaporate during sintering, increasing the amount of addition does not increase the amount of evaporation during sintering and does not affect the shape of the sintered body. Since the number of intervening layers increases to inhibit the bonding between the parent metal powders, the upper limit of the amount of addition is set in order to maintain the hardness and crushing strength of the sintered body to some extent.

なお、フッ化物の平均粒径は、50μm以下が好適であり、平均粒径が50μmを超えると、焼結を促進させる作用が少なくなるため、多量に添加する必要があり、少量の添加で十分に焼結を促進させるためには、50μm以下の平均粒径であることが好ましい。なお、平均粒径の下限については特に限定されない。   The average particle size of the fluoride is preferably 50 μm or less. If the average particle size exceeds 50 μm, the action of promoting the sintering is reduced, so it is necessary to add a large amount. In order to promote the sintering, it is preferable that the average particle diameter is 50 μm or less. The lower limit of the average particle size is not particularly limited.

焼結助剤に用いる燐合金は、燐銅、燐鉄、燐ニッケルから選ばれる1又は2種以上のものが特に好ましい。焼結助剤として燐合金を用いることにより、焼結時に液相が生成されて焼結が促進され、また、母金属粉末の表面に形成された酸化アルミニウム被膜が燐合金によって形成される燐酸塩で破壊され、金属粉末間で原子が拡散して金属粉末間の結合が強化されて焼結体の硬度及び圧環強度が向上する。また、燐合金自体の添加量は限定されないが、燐合金に含有される燐は、焼結用アルミニウム含有銅系合金粉末に対して0.05〜0.5質量%添加されることが好ましく、より好ましくは0.2〜0.5質量%である。燐の添加量が0.05質量%に満たないと、添加量が少なくなり過ぎて焼結助剤としての効果を十分に得ることができず、添加量が0.5質量%を超えると、焼結が過剰に進行して焼結体の組織が粗大化、即ち、結晶が大きく成長し過ぎて焼結体の硬度や圧環強度が低下する。なお、燐合金の粒度は、−150μmが好ましい。   The phosphorus alloy used for the sintering aid is particularly preferably one or more selected from phosphorous copper, phosphorous iron and phosphorous nickel. By using a phosphorus alloy as a sintering aid, a liquid phase is generated during sintering to promote the sintering, and an aluminum oxide film formed on the surface of the parent metal powder is formed by the phosphorus alloy. In this case, the atoms are diffused between the metal powders, the bonds between the metal powders are strengthened, and the hardness and the crushing strength of the sintered body are improved. Moreover, although the addition amount of the phosphorus alloy itself is not limited, it is preferable that phosphorus contained in the phosphorus alloy is added in an amount of 0.05 to 0.5 mass% with respect to the aluminum-containing copper-based alloy powder for sintering, More preferably, it is 0.2-0.5 mass%. If the addition amount of phosphorus is less than 0.05% by mass, the addition amount becomes too small to obtain a sufficient effect as a sintering aid, and when the addition amount exceeds 0.5% by mass, Sintering proceeds excessively and the structure of the sintered body becomes coarse, that is, the crystal grows too much, and the hardness and the crushing strength of the sintered body decrease. The particle size of the phosphorus alloy is preferably −150 μm.

本発明の焼結用アルミニウム含有銅系合金粉末に対しては、フッ化カルシウム以外の無機系固体潤滑剤(以下、単に「無機系固体潤滑剤」という)を添加してもよい。なお、この無機系固体潤滑剤は、黒鉛又は二硫化モリブデンのいずれか一方又は双方からなるものであることが好ましい。無機系固体潤滑剤を添加することにより、金属粉末間に無機系固体潤滑剤が不純物として点在することになり、焼結による金属粉末間の結合が妨げられて焼結体の硬度や圧環強度などの機械的特性は低下するものの焼結体の表面に固体潤滑剤が存在した状態となり、その固体潤滑剤によって他物体との接触・摺動時に生じる焼結体表面の劣化を抑制できるため、軸受けなどの製品において効果をもたらす。なお、無機系固体潤滑剤の添加量は、0.5〜10質量%が好ましく、より高い硬度、圧環強度及び耐摩耗性を有する焼結体を得るためには0.5〜5質量%であることが好ましい。無機系固体潤滑剤の添加量が0.5質量%に満たないと、焼結体の表面に潤滑剤として作用するのに十分な固体潤滑剤が存在しなくなり、添加量が10質量%を超えると、焼結体の硬度や圧環強度が著しく低下して製品価値がなくなる。   An inorganic solid lubricant other than calcium fluoride (hereinafter simply referred to as “inorganic solid lubricant”) may be added to the aluminum-containing copper-based alloy powder for sintering of the present invention. The inorganic solid lubricant is preferably composed of either one or both of graphite and molybdenum disulfide. By adding the inorganic solid lubricant, the inorganic solid lubricant is scattered as impurities between the metal powders, and the bonding between the metal powders due to sintering is hindered, and the hardness and crushing strength of the sintered body Although the mechanical properties such as are deteriorated, a solid lubricant is present on the surface of the sintered body, and the solid lubricant can suppress deterioration of the surface of the sintered body that occurs during contact and sliding with other objects. Effective in products such as bearings. The addition amount of the inorganic solid lubricant is preferably 0.5 to 10% by mass, and 0.5 to 5% by mass in order to obtain a sintered body having higher hardness, crushing strength and wear resistance. Preferably there is. If the addition amount of the inorganic solid lubricant is less than 0.5% by mass, there is no solid lubricant enough to act as a lubricant on the surface of the sintered body, and the addition amount exceeds 10% by mass. As a result, the hardness and crushing strength of the sintered body are remarkably lowered and the product value is lost.

そして、焼結用アルミニウム含有銅系合金粉末を100〜1000MPaで圧縮成形した後、その成形物を水素雰囲気、水素−窒素雰囲気又は窒素雰囲気中において750〜1000℃で加熱することによって焼結体を得ることができる。   And after compression-molding the aluminum containing copper-type alloy powder for sintering at 100-1000 MPa, the sintered compact is heated by heating at 750-1000 degreeC in the hydrogen atmosphere, hydrogen-nitrogen atmosphere, or nitrogen atmosphere. Obtainable.

以下において本発明に係る実施例を示す。   Examples according to the present invention will be described below.

実施例1〜14,比較例1〜8.   Examples 1-14, Comparative Examples 1-8.

先ず、電解法によって製造した粒度−150μmの銅粉末と、搗砕法によって製造した粒度−63μmの銅−50質量%アルミニウム合金粉末とを混合して母金属粉末とした。そして、母金属粉末に対してフッ化物として平均粒径10μmのフッ化アルミニウムと平均粒径1.5μmのフッ化カルシウムのいずれか一方又は双方を添加すると共に、燐合金として粒度−75μmの燐銅(Cu−8質量%P)、粒度−75μmの燐鉄(Fe−20質量%P)又は粒度−75μmの燐ニッケル(Ni−15質量%P)のいずれかを添加して焼結用アルミニウム含有銅系合金粉末を得た。なお、母金属粉末に対してフッ化物及び燐合金を添加する際には、得られる焼結用アルミニウム含有銅系合金粉末中のフッ化物及び燐合金に含有される燐の添加量を表1に示すように変化させると共に、アルミニウムの含有量が10質量%になるように調節した。   First, a copper powder having a particle size of −150 μm produced by an electrolytic method and a copper-50 mass% aluminum alloy powder having a particle size of −63 μm produced by a grinding method were mixed to obtain a base metal powder. Then, either or both of aluminum fluoride having an average particle diameter of 10 μm and calcium fluoride having an average particle diameter of 1.5 μm is added as a fluoride to the base metal powder, and phosphorous copper having a particle size of −75 μm is added as a phosphorus alloy. (Cu-8 mass% P), phosphorous iron (Fe-20 mass% P) with a particle size of -75 [mu] m or phosphorous nickel (Ni-15 mass% P) with a particle size of -75 [mu] m is added to contain aluminum for sintering Copper alloy powder was obtained. In addition, when adding fluoride and phosphorus alloy to the base metal powder, Table 1 shows the addition amount of fluoride contained in the fluoride and phosphorus alloy in the obtained aluminum-containing copper alloy powder for sintering. While changing as shown, the aluminum content was adjusted to 10% by mass.

次に、得られた焼結用アルミニウム含有銅系合金粉末をプレス成形機(品名:CM-1000KN型耐圧試験機;東京衝機製造所製)によって500MPaの圧力にて成形し、外径20mm・内径12mm・高さ10mmの円筒状の成形物を得た。そして、この成形物をステンレス製の蓋付のボート内に入れて水素:窒素が1:3の比率で混合された水素−窒素雰囲気の小型管状炉に投入し、950℃で30分間加熱して焼結体を得た。   Next, the obtained aluminum-containing copper-based alloy powder for sintering was molded at a pressure of 500 MPa by a press molding machine (product name: CM-1000KN type pressure tester; manufactured by Tokyo Shiki Manufacturing Co., Ltd.). A cylindrical molded product having a size of 12 mm and a height of 10 mm was obtained. Then, this molded product is put in a boat with a stainless steel lid, put into a small tubular furnace in a hydrogen-nitrogen atmosphere in which hydrogen: nitrogen is mixed at a ratio of 1: 3, and heated at 950 ° C. for 30 minutes. A sintered body was obtained.

そして、得られた焼結体についてJIS Z 2245に基づくロックウェル硬さ、JIS Z 2507に基づく圧環強度をそれぞれ測定した。その結果を表1に示す。   And about the obtained sintered compact, the Rockwell hardness based on JIS Z 2245 and the crushing strength based on JIS Z 2507 were measured, respectively. The results are shown in Table 1.

Figure 2009114486
Figure 2009114486

実施例9,10及び比較例7から分かるようにフッ化アルミニウムを0.5質量%を超えた割合で添加しても、焼結体の硬度及び圧環強度は高い値を示しているが、その焼結体を目視にて確認したところ形状が歪んでいることを確認した。また、実施例4〜7及び比較例6から分かるようにフッ化カルシウムを20質量%を超えた割合で添加すると、焼結体の硬度及び圧環強度が低下する。また、実施例1,7及び比較例1,6から分かるようにフッ化物を0.02〜20.5質量%の範囲外の割合で添加すると、焼結体の硬度が低下する。さらに、実施例3,4,8及び比較例5,8から分かるように燐合金に含有される燐を0.05〜0.5質量%の範囲外の割合になるように添加すると、焼結体の硬度及び圧環強度が低下する。   As can be seen from Examples 9 and 10 and Comparative Example 7, even when aluminum fluoride was added at a rate exceeding 0.5 mass%, the hardness and crushing strength of the sintered body showed high values. When the sintered body was visually confirmed, it was confirmed that the shape was distorted. Further, as can be seen from Examples 4 to 7 and Comparative Example 6, when calcium fluoride is added at a rate exceeding 20% by mass, the hardness and the crushing strength of the sintered body are lowered. Further, as can be seen from Examples 1 and 7 and Comparative Examples 1 and 6, when the fluoride is added at a ratio outside the range of 0.02 to 20.5% by mass, the hardness of the sintered body decreases. Further, as can be seen from Examples 3, 4 and 8 and Comparative Examples 5 and 8, when phosphorus contained in the phosphorus alloy was added so as to have a ratio outside the range of 0.05 to 0.5 mass%, sintering was performed. Body hardness and crushing strength are reduced.

実施例15〜25,比較例9〜14.   Examples 15 to 25, Comparative Examples 9 to 14.

得られる焼結用アルミニウム含有銅系合金粉末中のフッ化物及び燐合金に含有される燐の添加量を表2に示すように変化させると共に、アルミニウムの含有量が7質量%となるように変更した他は、前記実施例1と同様の条件にて焼結用アルミニウム含有銅系合金粉末を得た。また、成形物を加熱する温度を900℃に変更した他は、前記実施例1と同様の条件にて焼結体を得た。   The amount of fluoride contained in the resulting aluminum-containing copper-based alloy powder for sintering and the amount of phosphorus contained in the phosphorus alloy were changed as shown in Table 2, and the aluminum content was changed to 7% by mass. Otherwise, an aluminum-containing copper-based alloy powder for sintering was obtained under the same conditions as in Example 1. Moreover, the sintered compact was obtained on the conditions similar to the said Example 1 except having changed the temperature which heats a molded object into 900 degreeC.

そして、得られた焼結体についてJIS Z 2245に基づくロックウェル硬さ、JIS Z 2507に基づく圧環強度をそれぞれ測定した。その結果を表2に示す。   And about the obtained sintered compact, the Rockwell hardness based on JIS Z 2245 and the crushing strength based on JIS Z 2507 were measured, respectively. The results are shown in Table 2.

Figure 2009114486
Figure 2009114486

実施例26〜30,比較例15〜19.   Examples 26-30, Comparative Examples 15-19.

噴霧法で製造した粒度−150μmの銅−9質量%アルミニウム−2質量%ニッケル−3.5質量%鉄合金粉末を母金属粉末とした。そして、得られる焼結用アルミニウム含有銅系合金粉末中のフッ化物及び燐合金に含有される燐の添加量を表3に示すように変化させた他は、前記実施例1と同様の条件にて焼結用アルミニウム含有銅系合金粉末を得た。また、炉内を水素と窒素が1:1の比率で混合された水素−窒素雰囲気に変更した他は、前記実施例1と同様の条件にて焼結体を得た。   The base metal powder was a copper-9 mass% aluminum-2 mass% nickel-3.5 mass% iron alloy powder having a particle size of −150 μm produced by a spray method. The same conditions as in Example 1 were applied except that the amount of fluoride contained in the obtained aluminum-containing copper-based alloy powder for sintering and the amount of phosphorus contained in the phosphorus alloy were changed as shown in Table 3. Thus, an aluminum-containing copper-based alloy powder for sintering was obtained. Further, a sintered body was obtained under the same conditions as in Example 1 except that the inside of the furnace was changed to a hydrogen-nitrogen atmosphere in which hydrogen and nitrogen were mixed at a ratio of 1: 1.

そして、得られた焼結体についてJIS Z 2245に基づくロックウェル硬さ、JIS Z 2507に基づく圧環強度をそれぞれ測定した。その結果を表3に示す。     And about the obtained sintered compact, the Rockwell hardness based on JIS Z 2245 and the crushing strength based on JIS Z 2507 were measured, respectively. The results are shown in Table 3.

Figure 2009114486
Figure 2009114486

実施例31〜35,比較例20〜24.   Examples 31-35 and Comparative Examples 20-24.

噴霧法で製造した粒度−150μmの銅−35質量%亜鉛−3質量%アルミニウム合金粉末を母金属粉末とした。そして、得られる焼結用アルミニウム含有銅系合金粉末中のフッ化物及び燐合金に含有される燐の添加量を表4に示すように変化させた他は、前記実施例1と同様の条件にて焼結用アルミニウム含有銅系合金粉末を得た。また、成形物を加熱する温度を900℃に変更すると共に、炉内を水素と窒素が1:1の比率で混合された水素−窒素雰囲気に変更した他は、前記実施例1と同様の条件にて焼結体を得た。   A copper-35 mass% zinc-3 mass% aluminum alloy powder having a particle size of -150 μm produced by a spraying method was used as a base metal powder. The same conditions as in Example 1 were applied except that the fluoride content in the obtained aluminum-containing copper-based alloy powder for sintering and the amount of phosphorus contained in the phosphorus alloy were changed as shown in Table 4. Thus, an aluminum-containing copper-based alloy powder for sintering was obtained. The temperature of the molded product was changed to 900 ° C., and the furnace was changed to a hydrogen-nitrogen atmosphere in which hydrogen and nitrogen were mixed at a ratio of 1: 1. A sintered body was obtained.

そして、得られた焼結体についてJIS Z 2245に基づくロックウェル硬さ、JIS Z 2507に基づく圧環強度をそれぞれ測定した。その結果を表4に示す。   And about the obtained sintered compact, the Rockwell hardness based on JIS Z 2245 and the crushing strength based on JIS Z 2507 were measured, respectively. The results are shown in Table 4.

Figure 2009114486
Figure 2009114486

実施例1〜14と母金属粉末を変更した実施例15〜25、実施例26〜30及び実施例31〜35においてもそれぞれの比較例に比べて相対的に高い硬度及び圧環強度を有する焼結体が得られており、これにより、母金属粉末を変更したとしても焼結用アルミニウム含有銅系合金粉末に対してフッ化物及び燐合金に含有される燐を所定範囲で添加することによって硬度及び圧環強度を高く保持できることが分かる。   In Examples 15 to 25, Examples 26 to 30 and Examples 31 to 35 in which Examples 1 to 14 and the base metal powder are changed, sintering having relatively higher hardness and crushing strength than the respective comparative examples. Thus, even if the mother metal powder is changed, the hardness and the phosphorus content of the fluoride and the phosphorus alloy are added to the sintering aluminum-containing copper-based alloy powder within a predetermined range. It can be seen that the crushing strength can be kept high.

実施例36〜40,比較例25〜29.   Examples 36 to 40, Comparative Examples 25 to 29.

得られる焼結用アルミニウム含有銅系合金粉末中のフッ化物及び燐合金に含有される燐の添加量を表5に示すように変化させると共に、無機系固形潤滑剤を表5に示すように変化させて添加した他は、前記実施例1と同様の条件にて焼結用アルミニウム含有銅系合金粉末を得た。また、前記実施例1と同様の条件にて焼結体を得た。   The amount of fluoride contained in the obtained aluminum-containing copper-based alloy powder for sintering and the amount of phosphorus contained in the phosphorus alloy are changed as shown in Table 5, and the inorganic solid lubricant is changed as shown in Table 5. An aluminum-containing copper-based alloy powder for sintering was obtained under the same conditions as in Example 1 except that the addition was performed. Further, a sintered body was obtained under the same conditions as in Example 1.

そして、得られた焼結体についてJIS Z 2245に基づくロックウェル硬さ、JIS Z 2507に基づく圧環強度をそれぞれ測定した。その結果を表5に示す。   And about the obtained sintered compact, the Rockwell hardness based on JIS Z 2245 and the crushing strength based on JIS Z 2507 were measured, respectively. The results are shown in Table 5.

Figure 2009114486
Figure 2009114486

無機系固体潤滑剤が添加されることにより、実施例36〜40は実施例1〜14よりも相対的に硬度及び圧環強度が低下しているが、比較例25〜29に比べて高い硬度及び圧環強度を保持しており、これにより、無機系固体潤滑剤が添加された焼結用アルミニウム含有銅系合金粉末においてもフッ化物及び燐合金に含有される燐を所定範囲で添加することによって硬度及び圧環強度を高く保持できることが分かる。   By adding the inorganic solid lubricant, Examples 36 to 40 have relatively lower hardness and crushing strength than Examples 1 to 14, but higher hardness and Comparative Examples 25 to 29. The crushing strength is maintained, and thus hardness can be obtained by adding phosphorus contained in the fluoride and the phosphorus alloy within a predetermined range even in the aluminum-containing copper-based alloy powder for sintering to which the inorganic solid lubricant is added. It can also be seen that the crushing strength can be kept high.

次に、実施例4、比較例1及び比較例5の焼結用アルミニウム含有銅系合金粉末を成形してなる成形物を加熱する炉内を水素に対して表6に示す比率で窒素を混合した雰囲気とした他は、実施例1と同様の条件にて焼結体を得た。   Next, nitrogen is mixed at a ratio shown in Table 6 with respect to hydrogen in the furnace for heating the molded product formed by molding the aluminum-containing copper-based alloy powder for sintering of Example 4, Comparative Example 1 and Comparative Example 5. A sintered body was obtained under the same conditions as in Example 1 except that the atmosphere was changed.

そして、得られた焼結体についてJIS Z 2245に基づくロックウェル硬さ、JIS Z 2507に基づく圧環強度及びCu−10質量%Al合金の真密度7.5g/cm3に対する焼結体密度を示した焼結密度比を測定した。その結果を表6及び図1に示す。なお、図1中、丸点は、実施例4の焼結体を示しており、四角点は、比較例1の焼結体を示しており、三角点は、比較例5の焼結体を示している。 And about the obtained sintered compact, the Rockwell hardness based on JIS Z 2245, the crushing strength based on JIS Z 2507, and the sintered compact density with respect to the true density 7.5g / cm 3 of Cu-10 mass% Al alloy are shown. The sintered density ratio was measured. The results are shown in Table 6 and FIG. In FIG. 1, the circle points indicate the sintered body of Example 4, the square points indicate the sintered body of Comparative Example 1, and the triangle points indicate the sintered body of Comparative Example 5. Show.

Figure 2009114486
Figure 2009114486

表6及び図1から分かるようにいずれの雰囲気中において焼結した焼結体であっても、実施例4の焼結体は、他の比較例の焼結体に比べてに硬度及び圧環強度が高くなることが分かる。   As can be seen from Table 6 and FIG. 1, even if the sintered body is sintered in any atmosphere, the sintered body of Example 4 has hardness and crushing strength as compared with the sintered body of other comparative examples. It turns out that becomes high.

焼結体の焼結時における雰囲気と該焼結体の硬度、圧環強度及び焼結密度比との関係を示したグラフである。It is the graph which showed the relationship between the atmosphere at the time of sintering of a sintered compact, the hardness of this sintered compact, crumbling strength, and a sintered density ratio.

Claims (6)

焼結用アルミニウム含有銅系合金粉末に添加される焼結助剤であって、フッ化カルシウムとフッ化アルミニウムのいずれか一方又は双方からなるフッ化物と燐合金とを含有していることを特徴とする焼結助剤。 A sintering aid added to the aluminum-containing copper-based alloy powder for sintering, characterized in that it contains a fluoride and a phosphorus alloy composed of either or both of calcium fluoride and aluminum fluoride. A sintering aid. フッ化カルシウムとフッ化アルミニウムのいずれか一方又は双方からなるフッ化物と燐合金とを含有してなることを特徴とする焼結用アルミニウム含有銅系合金粉末。 An aluminum-containing copper-based alloy powder for sintering, characterized by containing a fluoride and a phosphorus alloy made of one or both of calcium fluoride and aluminum fluoride. 20質量%以下のフッ化カルシウムと0.5質量%以下のフッ化アルミニウムとからなるフッ化物を0.02〜20.5質量%含有している請求項2記載の焼結用アルミニウム含有銅系合金粉末。 The aluminum-containing copper system for sintering according to claim 2, containing 0.02 to 20.5% by mass of a fluoride comprising 20% by mass or less of calcium fluoride and 0.5% by mass or less of aluminum fluoride. Alloy powder. 燐合金に含まれる燐を0.05〜0.5質量%含有している請求項2又は3のいずれかに記載の焼結用アルミニウム含有銅系合金粉末。 The aluminum-containing copper-based alloy powder for sintering according to any one of claims 2 and 3, containing 0.05 to 0.5 mass% of phosphorus contained in the phosphorus alloy. フッ化カルシウム以外の無機系固体潤滑剤を含有している請求項2乃至4のいずれかに記載の焼結用アルミニウム含有銅系合金粉末。 The aluminum-containing copper-based alloy powder for sintering according to any one of claims 2 to 4, comprising an inorganic solid lubricant other than calcium fluoride. 請求項2乃至5のいずれかに記載の焼結用アルミニウム含有銅系合金粉末を焼結してなることを特徴とする焼結体。 A sintered body obtained by sintering the aluminum-containing copper-based alloy powder for sintering according to any one of claims 2 to 5.
JP2007286664A 2007-11-02 2007-11-02 Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder Active JP4941236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286664A JP4941236B2 (en) 2007-11-02 2007-11-02 Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286664A JP4941236B2 (en) 2007-11-02 2007-11-02 Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder

Publications (2)

Publication Number Publication Date
JP2009114486A true JP2009114486A (en) 2009-05-28
JP4941236B2 JP4941236B2 (en) 2012-05-30

Family

ID=40781948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286664A Active JP4941236B2 (en) 2007-11-02 2007-11-02 Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder

Country Status (1)

Country Link
JP (1) JP4941236B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137347A1 (en) * 2012-03-13 2013-09-19 Ntn株式会社 Sintered bearing and manufacturing method for same
JP2013216972A (en) * 2012-03-13 2013-10-24 Ntn Corp Method for manufacturing sintered bearing
JP2013217493A (en) * 2012-03-13 2013-10-24 Ntn Corp Sintered bearing
CN103909271A (en) * 2013-12-19 2014-07-09 浙江中达精密部件股份有限公司 High-performance copper-nickel-based powder metallurgy porous oil-containing bearing and production process thereof
WO2015037668A1 (en) * 2013-09-13 2015-03-19 Ntn株式会社 Sintered bearing for an egr valve and manufacturing method thereof
CN105473258A (en) * 2013-08-27 2016-04-06 Ntn株式会社 Sintered bearing for fuel pump and method for manufacturing same
KR20170054042A (en) * 2015-11-09 2017-05-17 강릉원주대학교산학협력단 Preparation method of high purity silicon carbide
JP2019112719A (en) * 2013-09-13 2019-07-11 Ntn株式会社 Sintered shaft bearing for egr valve
CN114425617A (en) * 2020-10-29 2022-05-03 马勒国际有限公司 Wear-resistant high-thermal-conductivity sintered alloy especially suitable for bearing and valve seat ring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115708A (en) * 1976-09-17 1977-09-28 Fukuda Metal Foil Powder Powder for production of sintered copper alloy
JPH02173224A (en) * 1988-12-24 1990-07-04 Fukuda Metal Foil & Powder Co Ltd Manufacture of sintered aluminum bronze alloy
JP2001271129A (en) * 2000-03-27 2001-10-02 Komatsu Ltd Sintering material and composite sintered sliding part
JP2003049206A (en) * 2001-08-07 2003-02-21 Fukuda Metal Foil & Powder Co Ltd Sintering assistant for aluminum containing copper based alloy powder and alloy powder for sintering containing same sintering assistant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115708A (en) * 1976-09-17 1977-09-28 Fukuda Metal Foil Powder Powder for production of sintered copper alloy
JPH02173224A (en) * 1988-12-24 1990-07-04 Fukuda Metal Foil & Powder Co Ltd Manufacture of sintered aluminum bronze alloy
JP2001271129A (en) * 2000-03-27 2001-10-02 Komatsu Ltd Sintering material and composite sintered sliding part
JP2003049206A (en) * 2001-08-07 2003-02-21 Fukuda Metal Foil & Powder Co Ltd Sintering assistant for aluminum containing copper based alloy powder and alloy powder for sintering containing same sintering assistant

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137347A1 (en) * 2012-03-13 2013-09-19 Ntn株式会社 Sintered bearing and manufacturing method for same
JP2013216972A (en) * 2012-03-13 2013-10-24 Ntn Corp Method for manufacturing sintered bearing
JP2013217493A (en) * 2012-03-13 2013-10-24 Ntn Corp Sintered bearing
US11351608B2 (en) 2012-03-13 2022-06-07 Ntn Corporation Sintered bearing and manufacturing method for same
CN104204247A (en) * 2012-03-13 2014-12-10 Ntn株式会社 Sintered bearing and manufacturing method for same
US20150064045A1 (en) * 2012-03-13 2015-03-05 Ntn Corporation Sintered bearing and manufacturing method for same
EP2826876A4 (en) * 2012-03-13 2016-08-31 Ntn Toyo Bearing Co Ltd Sintered bearing and manufacturing method for same
US20160223018A1 (en) * 2013-08-27 2016-08-04 Yoshinori Ito Sintered bearing for fuel pump and method of manufacturing same
CN105473258A (en) * 2013-08-27 2016-04-06 Ntn株式会社 Sintered bearing for fuel pump and method for manufacturing same
CN108620590A (en) * 2013-08-27 2018-10-09 Ntn株式会社 Petrolift sintered bearing and its manufacturing method
CN105517735B (en) * 2013-09-13 2018-06-29 Ntn株式会社 EGR valve sintered bearing and its manufacturing method
US20160223017A1 (en) * 2013-09-13 2016-08-04 Ntn Corporation Sintered bearing for an egr valve and manufacturing method thereof
WO2015037668A1 (en) * 2013-09-13 2015-03-19 Ntn株式会社 Sintered bearing for an egr valve and manufacturing method thereof
JP2015078432A (en) * 2013-09-13 2015-04-23 Ntn株式会社 Sintered bearing for egr valve and method of manufacturing the same
CN105517735A (en) * 2013-09-13 2016-04-20 Ntn株式会社 Sintered bearing for an egr valve and manufacturing method thereof
JP2019112719A (en) * 2013-09-13 2019-07-11 Ntn株式会社 Sintered shaft bearing for egr valve
US11306778B2 (en) 2013-09-13 2022-04-19 Ntn Corporation Sintered bearing for an EGR valve and manufacturing method thereof
CN103909271A (en) * 2013-12-19 2014-07-09 浙江中达精密部件股份有限公司 High-performance copper-nickel-based powder metallurgy porous oil-containing bearing and production process thereof
KR20170054042A (en) * 2015-11-09 2017-05-17 강릉원주대학교산학협력단 Preparation method of high purity silicon carbide
KR102508544B1 (en) 2015-11-09 2023-03-09 강릉원주대학교산학협력단 Preparation method of high purity silicon carbide
CN114425617A (en) * 2020-10-29 2022-05-03 马勒国际有限公司 Wear-resistant high-thermal-conductivity sintered alloy especially suitable for bearing and valve seat ring

Also Published As

Publication number Publication date
JP4941236B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4941236B2 (en) Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
JP5367502B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JP5113555B2 (en) Iron-based sintered alloy and method for producing the same
WO2008059855A1 (en) Iron/copper composite powder for powder metallurgy and process for producing the same
JPH01225749A (en) Sintered material for oilless bearing and production thereof
JP2009007650A (en) Mixed powder for sintered aluminum-containing copper alloy, and method for producing the same
JP2009007648A (en) Powder for infiltration
JP2008101245A (en) Copper-based metal powder
TWI465589B (en) Production method of sintered bronze alloy powder
CN107427923B (en) Mechanical part and its manufacturing method
JP5403707B2 (en) Cu-based infiltration powder
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
JP2001294905A (en) Method for producing micromodule gear
JP2013023707A (en) Mixed powder for powder metallurgy
WO1984004712A1 (en) Tin-containing iron powder and process for its production
JPS591764B2 (en) Iron-copper composite powder and its manufacturing method
JP2004018940A (en) Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
CN111417477B (en) Copper-based powder for infiltration
JP2006161076A (en) Weight made of tungsten based sintered alloy, its production method and vibrator for vibration generator
JP7453118B2 (en) Method for manufacturing hard particles, sliding members, and sintered alloys
JP2022035017A (en) Cu-BASED MIXED POWDER FOR POWDER METALLURGY COMPRISING EASILY OXIDIZABLE ELEMENT
JP2012162771A (en) Iron-based sintered sliding member, and method for manufacturing the same
JP4532793B2 (en) Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4941236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250