JP2009112996A5 - - Google Patents

Download PDF

Info

Publication number
JP2009112996A5
JP2009112996A5 JP2007291727A JP2007291727A JP2009112996A5 JP 2009112996 A5 JP2009112996 A5 JP 2009112996A5 JP 2007291727 A JP2007291727 A JP 2007291727A JP 2007291727 A JP2007291727 A JP 2007291727A JP 2009112996 A5 JP2009112996 A5 JP 2009112996A5
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
seawater
combustion exhaust
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007291727A
Other languages
Japanese (ja)
Other versions
JP2009112996A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2007291727A priority Critical patent/JP2009112996A/en
Priority claimed from JP2007291727A external-priority patent/JP2009112996A/en
Publication of JP2009112996A publication Critical patent/JP2009112996A/en
Publication of JP2009112996A5 publication Critical patent/JP2009112996A5/ja
Pending legal-status Critical Current

Links

Description

燃焼排ガスの浄化処理方法及びその装置Method and apparatus for purifying combustion exhaust gas

本発明は燃焼排ガスの浄化処理方法及びその装置、より具体的には、海水を冷却水として利用する火力・原子力発電所の復水器や冷却器、或いは海水をバラスト水として利用する船舶など海水利用システムの用水中に含まれる海洋生物を殺滅して用水中の海洋生物による汚染、損傷を防止する方法等にも用いられる燃焼排ガスの浄化処理方法及びその装置に関するものである。 The present invention relates to a method and apparatus for purifying combustion exhaust gas , more specifically, a thermal power or nuclear power plant condenser or cooler that uses seawater as cooling water, or a ship that uses seawater as ballast water. The present invention relates to a method and apparatus for purifying combustion exhaust gas, which is also used in a method for killing marine organisms contained in water for use in a utilization system to prevent contamination and damage by marine organisms in the water for use.

一般に、海水利用システム、例えば、火力・原子力発電所の復水器には、タービンを回したあとの蒸気を冷やすため海水が利用されているが、取水した海水は、通常、pH8.3前後で塩分濃度3.5%程度のものが多く、これには多種多様の海洋生物、例えば、細菌、植物プランクトン、動物プランクトン、魚貝類の幼生、シスト、卵等が含まれ、その中でも海水中のフジツボや二枚貝など強固な殻を持つ貝類等が取水ラインや放水ライン或いは復水器の細管内壁に付着、生育して海水の流れを悪くするだけでなく、細管を浸食し、最悪の場合には穴をあけて冷却用海水の細管から復水器内への漏洩を引き起こすという問題がある。また、海洋細菌は、伝熱管内面に粘着性のバイオフイルムを形成して浮遊生体の付着を促進させる他、伝熱部の伝熱性能を低下させ、さらには金属材の腐食等の障害を引き起こすという問題もある。   In general, seawater is used in a seawater utilization system, for example, a condenser of a thermal power / nuclear power plant, to cool the steam after turning the turbine, but the taken-up seawater usually has a pH of around 8.3. Many of them have a salinity of about 3.5%, and this includes a wide variety of marine organisms such as bacteria, phytoplankton, zooplankton, shellfish larvae, cysts, eggs, etc. Among them, barnacles in seawater Shells with strong shells, such as shellfish and bivalves, attach to and grow on the inner wall of the intake pipe, discharge line, or condenser narrow tube, not only worsening the flow of seawater, but also eroding the capillary tube, in the worst case There is a problem of causing leakage of the cooling seawater from the narrow pipe into the condenser. In addition, marine bacteria form a sticky biofilm on the inner surface of the heat transfer tube to promote the attachment of floating organisms, reduce the heat transfer performance of the heat transfer section, and cause damage such as corrosion of metal materials There is also a problem.

従来においても、海洋細菌の殺滅や海洋生物の付着防止のため、塩素ガス等の殺菌剤を取水ライン中の海水に注入する方法(特許文献1)、取水された海水中に塩素系殺菌剤の代わりに二酸化炭素を注入し、海水のpHを5〜6に低下させる方法(特許文献2)などが提案されている他、防汚塗料等を取水ラインや放水ラインに塗布することが行われている。   Conventionally, in order to kill marine bacteria and prevent adhesion of marine organisms, a method of injecting a disinfectant such as chlorine gas into seawater in a water line (Patent Document 1), a chlorine-based disinfectant in the ingested seawater In addition to a method of injecting carbon dioxide in place of water to lower the pH of seawater to 5 to 6 (Patent Document 2), etc., antifouling paints and the like are applied to water lines and water discharge lines. ing.

他方、船舶のバラスト水として使用された海水が海洋生態系の異なる寄航地で排水されることにより異種生物が異常繁殖し、当該海域の生態系の破壊が世界的な規模で進行しており、バラスト水の無害化処理技術の確立が緊急課題になっている。   On the other hand, when the seawater used as ship ballast water is drained at different calling sites in the marine ecosystem, heterogeneous organisms proliferate abnormally, and the destruction of the marine ecosystem is progressing on a global scale. The establishment of ballast water detoxification technology has become an urgent issue.

特開昭60−110392号公報JP-A-60-110392 特許第3605128号公報Japanese Patent No. 3605128 特許第3901559号明細書Japanese Patent No. 3901559 特開2004−89770号公報JP 2004-89770 A 社団法人 日本海難防止協会発行「平成10年度船舶のバラスト水管理方策に係る調査研究報告書」Published by the Japan Marine Accident Prevention Association, “Research Report on 1998 Ballast Water Management Measures for Ships”

しかしながら、海水中に含まれる多種多様の微小な海洋生物は、季節的にも個体種やその数の変動或いは海水の水質が変動するため、水質管理が困難となり、従来の殺菌剤の注入処理や防錆塗料の塗布等では、期待する効果が十分に得られないという問題があった。このため、発電所等では発電設備を定期的にオーバーホールし、クリーニングスポンジボール等による付着物の物理的な除去掃除や内壁の磨耗点検が行われているが、発電設備の停止から運転再開までに1〜2月もの長期間を要し、経済的に多大な負担を強いられているのが現状である。   However, a wide variety of minute marine organisms contained in seawater are difficult to manage because of seasonal variations in the number of individual species and their number, or the quality of seawater. There has been a problem that the expected effect cannot be obtained sufficiently in the application of a rust preventive paint or the like. For this reason, power generation facilities are regularly overhauled, and physical removal of deposits and cleaning of inner walls are performed using cleaning sponge balls, etc. The current situation is that it takes a long period of one to two months, and it is economically burdensome.

また、前記問題を解決するためには、海水中の細菌数をできるだけ10CFU/L(海水)以下まで殺菌処理することが求められている。 Moreover, in order to solve the said problem, it is calculated | required to sterilize the number of bacteria in seawater to 10 < 4 > CFU / L (seawater) or less as much as possible.

従って、本発明の課題は、海水利用システムに利用する海水の水質管理が容易で、塩素ガスやオゾン等の殺菌剤を添加しなくても用水中の海洋生物を殺滅でき、少なくとも定期的オーバーホールの周期を延長し得る海水利用システム用水中の海洋生物殺滅処理方法等にも用いられる燃焼排ガスの浄化処理装置及び海洋生物殺滅処理装置を得ることにある。 Accordingly, an object of the present invention is to easily manage the quality of seawater used in a seawater utilization system, and to kill marine organisms in the water without adding a bactericide such as chlorine gas or ozone, and at least regular overhaul. The object of the present invention is to obtain a combustion exhaust gas purification treatment apparatus and a marine organism killing treatment apparatus that are also used in a method for killing marine organisms in water for use in seawater utilization systems.

本発明は、海洋生物は、通常pH8前後の海水中で生育しているが、その生育環境のHイオン濃度が数10〜1000倍程度(pHで1〜3程度)変化するだけで、生命の維持機能が損なわれて生育が困難になり、まもなく斃死すること、並びに発電所のボイラー、ガスタービン、焼却炉、燃焼炉、燃料分解ガス化炉、溶鉱炉、焼結炉、焙焼炉、加熱炉、焼成炉、焼却炉その他の燃焼機器或いは内燃機関等から排出される排ガスには塵埃粒子及び煤塵(PM)等の他、硫黄酸化物(SOx)、窒素酸化物(NOx)、炭素酸化物(COx)が含まれ、これらを気液接触反応により海水に溶解又は吸収させればpHの低い酸性廃液が得られ、しかも、この酸性廃液にはガス活性酸素種で殺菌力の強い・OHラジカルに加えて、海洋生物に対し急性毒性を示す二酸化炭素(重炭酸イオンや炭酸イオン)が含まれることに着目し、前記酸性廃液を海水利用システム用水としての海水に添加混合して用水のpH値を1〜3程度下げることを特徴とするものである。 In the present invention, marine organisms usually grow in seawater at a pH of about 8, but the life environment is changed by changing the H + ion concentration in the growth environment by several 10 to 1000 times (about 1 to 3 in pH). The plant's maintenance function will be impaired, making it difficult to grow, and drowning soon, as well as power plant boilers, gas turbines, incinerators, combustion furnaces, fuel cracking gasification furnaces, blast furnaces, sintering furnaces, roasting furnaces, heating Exhaust gas discharged from furnaces, firing furnaces, incinerators, other combustion equipment, internal combustion engines, etc., in addition to dust particles and dust (PM), sulfur oxide (SOx), nitrogen oxide (NOx), carbon oxide (COx) is contained, and if these are dissolved or absorbed in seawater by a gas-liquid contact reaction, an acidic waste liquid having a low pH can be obtained. In addition to marine life Focusing on the fact that carbon dioxide (bicarbonate ion and carbonate ion) showing acute toxicity is included, the acidic waste liquid is added and mixed with seawater as seawater utilization system water to lower the pH value of the water by about 1 to 3 It is a feature.

即ち、本発明に係る海水利用システム用水中の海洋生物殺滅処理方法は、燃焼排ガスを海水と気液接触反応させて酸性廃液を生成させ、当該酸性廃液を海水利用システム用水の取水海水と混合して該取水海水のpHを5〜7.3、好ましくは、5〜6.3に調整し、そのpH調整海水を海水利用システム用水として供給することを特徴とするものである。   That is, the marine organism killing treatment method for seawater utilization system water according to the present invention generates an acidic waste liquid by causing gas-liquid contact reaction of combustion exhaust gas with seawater, and mixing the acidic waste liquid with seawater intake water for seawater utilization system water. Then, the pH of the intake seawater is adjusted to 5 to 7.3, preferably 5 to 6.3, and the pH adjusted seawater is supplied as seawater utilization system water.

前記海水を用いて燃焼排ガスを気液接触反応させて酸性廃液を生成させる手段としては、例えば、特許文献3に記載の排ガス浄化装置や特許文献4に記載の排ガス浄化方法及びその装置を採用することができる。しかし、前者の排ガス浄化装置では、海水又は塩水を電解して酸性電解液とアルカリ性電解液を生成させ、その酸性電解液及び/又はアルカリ性電解液を排ガスと気液接触反応させ、後者のものでは、気液接触部内で電解反応を生じさせているため、圧力損失が大きく送風動力が過大となり、また、海水又は塩水の電解に要する消費電力が大きく経済的損失が多いという新たな問題が明らかとなった。   For example, the exhaust gas purifying apparatus described in Patent Document 3 or the exhaust gas purifying method described in Patent Document 4 and the apparatus thereof are adopted as means for generating an acidic waste liquid by gas-liquid contact reaction of the combustion exhaust gas using seawater. be able to. However, in the former exhaust gas purification device, seawater or salt water is electrolyzed to produce an acidic electrolyte solution and an alkaline electrolyte solution, and the acidic electrolyte solution and / or alkaline electrolyte solution is subjected to gas-liquid contact reaction with the exhaust gas, and in the latter case, Since the electrolytic reaction is caused in the gas-liquid contact portion, the pressure loss is large and the blast power is excessive, and the new problem that the power consumption required for electrolysis of seawater or salt water is large and the economic loss is large is clear. became.

この新たな問題を解決すべく研究した結果、気液接触させるスクラバの気液接触部を多孔質のガス拡散電極で構成し、これに水素ガスを供給する一方、海水を電解することなくそのまま気液接触部に供給して排ガスと気液接触反応させることによって、排ガス中の塵埃粒子及び煤塵(PM)等が除去されるだけでなく、硫黄酸化物(SOx)、窒素酸化物(NOx)、炭素酸化物(COx)が可溶性物質となって海水に溶解して除去され、それと同時に微生物殺傷力の強い・OHラジカルを含む酸性液が廃液として容易に得られ、この酸性廃液を海水利用システム用水の取水海水に添加混合してpH調整海水となし、これを用水として使用することにより用水中の海洋生物を効率よく死滅させ得ることを見出した。   As a result of research to solve this new problem, the gas-liquid contact part of the scrubber to be contacted with gas and liquid is composed of a porous gas diffusion electrode, and hydrogen gas is supplied to this, while the seawater is not electrolyzed without being electrolyzed. By supplying to the liquid contact portion and causing gas-liquid contact reaction with the exhaust gas, not only dust particles and soot (PM) in the exhaust gas are removed, but also sulfur oxide (SOx), nitrogen oxide (NOx), Carbon oxide (COx) is dissolved and removed in seawater as a soluble substance. At the same time, an acidic liquid containing OH radicals with strong microbial killing power is easily obtained as waste liquid. It was found that by adding and mixing to the intake water seawater to obtain pH-adjusted seawater, and using it as water, marine organisms in the water can be efficiently killed.

従って、本発明は、多孔質のガス拡散電極を備えた気液接触部を有するスクラバからなる燃焼排ガス浄化処理装置を用い、前記気液接触部に海水と燃焼排ガスを供給することにより気液接触反応させて排ガス浄化処理を行うと同時に、前記ガス拡散電極に水素ガスを供給し、当該ガス拡散電極で水素ガスと酸素との燃料電池発電反応を生じさせることにより酸性廃液を生成させ、当該酸性廃液を海水利用システム用水の取水海水と混合して当該取水海水のpHを5〜7.3、好ましくは、5〜6.3に調整し、そのpH調整海水を海水利用システム用水として供給することを特徴とする海水利用システム用水中の海洋生物殺滅処理方法をも提供するものである。   Therefore, the present invention uses a combustion exhaust gas purification treatment device comprising a scrubber having a gas-liquid contact portion equipped with a porous gas diffusion electrode, and supplies gas-liquid contact by supplying seawater and combustion exhaust gas to the gas-liquid contact portion. At the same time as performing the exhaust gas purification treatment, hydrogen gas is supplied to the gas diffusion electrode, and an acid waste liquid is generated by causing a fuel cell power generation reaction between hydrogen gas and oxygen at the gas diffusion electrode. The waste liquid is mixed with the intake seawater of the seawater utilization system water to adjust the pH of the intake seawater to 5 to 7.3, preferably 5 to 6.3, and the pH adjusted seawater is supplied as the seawater utilization system water. The present invention also provides an underwater marine organism killing method for use in a seawater utilization system.

前記酸性廃液は、燃焼排ガス中のCOx、SOx、NOx等の有害物が、その浄化処理の過程で水に溶解して、HCO 、SO 2−、SO 2−、NO 、NO 等陰イオンとH陽イオン、ならびに活性酸素種の・OHラジカルや重炭酸イオン及び炭酸イオンを含む酸性溶液として得られる。 In the acidic waste liquid, harmful substances such as COx, SOx, NOx in the combustion exhaust gas are dissolved in water in the course of the purification treatment, and HCO 3 , SO 3 2− , SO 4 2− , NO 2 , NO 3 - etc. anions and H + cations, and obtained as an acidic solution containing active oxygen species · OH radicals and bicarbonate ions and carbonate ions.

前記ガス拡散電極としては、0.1〜1.2Vの混成電位の電気化学的な反応が行える、市販のアルカリ電解質型水素燃料電池用活性炭素系多孔電極を使用することができる。   As the gas diffusion electrode, a commercially available activated carbon based porous electrode for an alkaline electrolyte type hydrogen fuel cell capable of performing an electrochemical reaction with a hybrid potential of 0.1 to 1.2 V can be used.

前記pH調整海水の生成をより効率的に行うため、排ガス処理装置を流動する排ガスに赤外線乃至遠赤外線を放射する赤外線放射手段、前記混成電位のガス拡散電極を分極してそれらに電圧を印加する直流電力印加手段、及び前記多孔質ガス拡散電極と対向電極との間に生成する水素燃料電池発電により生じる電力を取り出す電力出力手段の少なくとも一種を適便選択して付加するようにしても良い。   In order to generate the pH-adjusted seawater more efficiently, infrared radiation means for radiating infrared or far-infrared radiation to the exhaust gas flowing through the exhaust gas treatment device, and the gas diffusion electrode having the mixed potential are polarized and a voltage is applied to them. At least one of DC power application means and power output means for extracting the electric power generated by the hydrogen fuel cell power generation generated between the porous gas diffusion electrode and the counter electrode may be appropriately selected and added.

前記気液接触部は、通常、棚板の材料として無孔または多数の孔を有する平板が用いられ、これを円形状または矩形状に加工し、その中央部に開口を形成した中央開口型棚板と、当該中央開口型棚板とほぼ同じ面積を有する円形状または矩形状に加工され中央部に開口の無い中央無開口型棚板とを、気液が流通可能に、所定間隔を置いて交互に配置することにより構成するのが好ましく、これによって棚段の開口部面積の調節によりガス/液比率の調節が可能となり、また圧力損失を最小にする機構を設けることにより送風動力の省エネルギー化を図ることが可能であり、また、本発明に従って、棚板の材料としてガス拡散電極を用い、これにより面積がほぼ同じ中央開口型棚板と、中央無開口型棚板を構成するのが最適である。   For the gas-liquid contact portion, a flat plate having no holes or a large number of holes is usually used as a material of the shelf plate, and this is processed into a circular shape or a rectangular shape, and a central opening type shelf in which an opening is formed in the central portion. A plate and a central non-opening shelf that is processed into a circular or rectangular shape having substantially the same area as the central opening shelf and has no opening in the center, with a predetermined interval so that gas and liquid can circulate. It is preferable to arrange them alternately, which makes it possible to adjust the gas / liquid ratio by adjusting the opening area of the shelf, and to save energy in the blast power by providing a mechanism that minimizes pressure loss. In addition, according to the present invention, it is optimal to use a gas diffusion electrode as the material of the shelf board, thereby configuring a central opening shelf board and a central non-opening shelf board having substantially the same area. It is.

前記燃焼排ガスの浄化処理装置から排出される廃液中の固形物の除外手段としては、液中の固形物を分離、回収することができる手段であれば任意の物を使用でき、例えば、サイクロンなどの遠心分離器、微細加圧空気気泡による微粒子収着分離機構を備えた沈降濃縮装置(シックナー)及び濾過装置からなる群から選ばれた液中固形物の離回収手段を採用することができる。   As the means for excluding solids in the waste liquid discharged from the combustion exhaust gas purification treatment device, any means can be used as long as it can separate and recover the solids in the liquid, such as a cyclone. In this case, means for separating and recovering the solid matter in the liquid selected from the group consisting of a centrifugal separator, a sedimentation concentration device (thickener) equipped with a fine particle sorption separation mechanism using fine pressurized air bubbles, and a filtration device can be employed.

前記海水利用システム用水として利用したpH調整海水の廃液は、海水電解槽とエゼクタを用いて無害化処理し海洋排水基準に適合させた後、海洋に廃棄すれば良い。   The wastewater of the pH-adjusted seawater used as the seawater utilization system water may be detoxified using a seawater electrolysis tank and an ejector and adapted to marine drainage standards, and then discarded to the ocean.

本発明によれば、燃焼排ガスを海水と気液接触反応させて得られる酸性廃液を取水海水と混合してpH調整海水となし、これを海水利用システム用水として用いることにより、低pH化と当該酸性廃液に含まれる・OHラジカル及び二酸化炭素の作用とが相俟って取水海水中の海洋生物の活性が急速に失われ、海水利用システムの用水流動ライン系統への付着を防止でき、海水利用システムの海洋生物による汚染防止処理を高効率で行うことができ、バラスト水のように長時間保持される環境下では致死させて環境保全を行え、また、燃焼排ガスの浄化処理及び燃料電池反応による発電出力を得ることができ、さらにはその発電出力を利用することによって海水利用システムの省エネルギー効果を図ることができる。   According to the present invention, acidic waste liquid obtained by gas-liquid contact reaction of combustion exhaust gas with seawater is mixed with water seawater to form pH-adjusted seawater, which is used as seawater utilization system water, thereby reducing the pH. Combined with the action of OH radicals and carbon dioxide contained in the acidic waste liquid, the activity of marine organisms in the intake seawater is rapidly lost, and adhesion to the water flow line system of the seawater utilization system can be prevented. The system can prevent pollution by marine organisms with high efficiency, can be lethal in an environment where it is held for a long time, such as ballast water, and can preserve the environment. The power generation output can be obtained, and further, the energy saving effect of the seawater utilization system can be achieved by using the power generation output.

ガス拡散電極を備えた気液接触部5を有するスクラバからなる燃焼排ガス浄化処理装置3を用い、前記気液接触部5に海水と燃焼排ガスを供給することにより気液接触反応させて排ガス浄化処理を行うと同時に、前記ガス拡散電極に水素ガスを供給して当該ガス拡散電極に拡散する水素ガスと燃焼排ガス中の酸素による発電反応を生じさせることにより酸性廃液を生成させ、当該酸性廃液を海水利用システム用水の取水海水と混合して該取水海水のpHを5〜7.3に調整し、得られたpH調整海水を海水利用システム用水として利用することにより海水利用システム用水中の海洋生物殺滅処理を行う。   Using a combustion exhaust gas purification treatment device 3 comprising a scrubber having a gas-liquid contact portion 5 equipped with a gas diffusion electrode, seawater and combustion exhaust gas are supplied to the gas-liquid contact portion 5 to cause a gas-liquid contact reaction, thereby exhaust gas purification treatment. At the same time, an acidic waste liquid is generated by supplying a hydrogen gas to the gas diffusion electrode and generating a power generation reaction with the hydrogen gas diffused to the gas diffusion electrode and oxygen in the combustion exhaust gas. Mixing with the intake water of the utilization system water, adjusting the pH of the intake seawater to 5 to 7.3, and using the obtained pH-adjusted seawater as the seawater utilization system water, killing marine organisms in the seawater utilization system water Perform the destruction process.

燃焼排ガスの浄化処理システムの構成を示す図1において、1は海水利用システムの冷却器、2は水素ガス発生供給装置、3は燃焼排ガス浄化処理装置、4はスクラバ本体、5は気液接触部、6は浄化処理液貯留槽、7は排ガス供給口、8は水素ガス供給口、9は浄化排ガス排出口、10は海水散水ノズル、11は海水取水ポンプ、12はブロワ、13は廃液中の固形物回収装置、14はエゼクタ、15はドーナツ盤型棚板、16は円板型棚板、17は赤外線放射手段、18は赤外線放射体材、19は赤外線放射体材ハウジング、20は水素ガス供給ライン、21は炭化水素燃料供給ライン、22は空気供給ライン、23は水供給ライン、24は気液分離部、25は燃焼排ガス供給ライン、26は浄化排ガス排出ライン、27は回収固形物排出ライン、28は直流電源、29は導線、30は海洋、31は海水取水ライン、32は第一取水海水供給ライン、33は浄化処理廃液ライン、34は酸性廃液供給ライン、35は取水海水第二供給ライン、36はpH調整用混合器、37は用水液供給ライン、38は用水廃液排出ライン、39は中和・希釈用海水流入口、40は海水混合廃液排出ラインである。 In FIG. 1 showing the configuration of a purification system for combustion exhaust gas , 1 is a cooler of a seawater utilization system, 2 is a hydrogen gas generation and supply device, 3 is a combustion exhaust gas purification treatment device, 4 is a scrubber body, and 5 is a gas-liquid contact portion. , 6 is a purification treatment liquid storage tank, 7 is an exhaust gas supply port, 8 is a hydrogen gas supply port, 9 is a purification exhaust gas discharge port, 10 is a seawater spray nozzle, 11 is a seawater intake pump, 12 is a blower, and 13 is in waste liquid. Solid material recovery device, 14 is an ejector, 15 is a donut board shelf, 16 is a disk shelf, 17 is an infrared radiation means, 18 is an infrared radiation material, 19 is an infrared radiation material housing, and 20 is hydrogen gas Supply line, 21 is a hydrocarbon fuel supply line, 22 is an air supply line, 23 is a water supply line, 24 is a gas-liquid separator, 25 is a combustion exhaust gas supply line, 26 is a purified exhaust gas discharge line, and 27 is a recovered solid matter exhaust line. Line 28, DC power supply 29, conductor 29, ocean 30, seawater intake line 32, first intake seawater supply line 33, purification waste liquid line 33, acidic waste liquid supply line 35, intake water second A supply line, 36 is a pH adjusting mixer, 37 is a water supply line, 38 is a waste water discharge line, 39 is a neutralization / dilution seawater inlet, and 40 is a seawater mixed waste discharge line.

前記燃焼排ガス浄化処理装置3は、水素ガス発生供給装置2、スクラバ本体4、浄化処理液貯留槽6及び固形物回収装置13を備え、第一取水海水供給ライン32によりスクラバ本体4の上部に供給された海水とスクラバ本体4の下部に供給された燃焼排ガスとを気液接触部5で気液接触処理させて当該燃焼排ガス中の有害酸化物を還元又は可溶化し、スクラバ本体上部の気液分離部24で上昇気流中に含まれる液体を分離し、当該液体と分離された気体をスクラバ本体頂部の浄化ガス排出口を介して系外へ排出する一方、処理液としての海水は気液接触反応により有害酸化物を吸収して酸性化しスクラバ本体内を流下して浄化処理液貯留槽6に降下し、浄化処理廃液排出ラインを介して固形物回収装置13に送られ、そこで固液分離により固形分を除去された後、混合器36に送られる。   The combustion exhaust gas purification treatment device 3 includes a hydrogen gas generation and supply device 2, a scrubber main body 4, a purification treatment liquid storage tank 6, and a solid matter recovery device 13, and is supplied to the upper portion of the scrubber main body 4 through a first intake seawater supply line 32. The gas-liquid contact section 5 causes the gas-liquid contact portion 5 to perform the gas-liquid contact treatment on the generated seawater and the combustion exhaust gas supplied to the lower portion of the scrubber body 4 to reduce or solubilize harmful oxides in the combustion exhaust gas, The separation unit 24 separates the liquid contained in the updraft and discharges the gas separated from the liquid to the outside of the system through the purified gas discharge port at the top of the scrubber body, while seawater as the processing liquid is in gas-liquid contact. The reaction absorbs harmful oxides and acidifies them, flows down in the scrubber body, falls to the purification treatment liquid storage tank 6, and is sent to the solids recovery device 13 through the purification treatment waste liquid discharge line, where solid separation separates them. After being removed solid content, it is sent to the mixer 36.

前記スクラバ本体4は、内部に気液接触部5及び気液分離部24を備え、前記気液接触部5は、スクラバ本体4の胴部に上下方向に所定間隔をおいて交互に配設された複数のドーナツ盤型多孔棚板15と円板型多孔棚板16とで構成され、両多孔棚板15、16は、それぞれ直径1〜5mmの多数の孔が穿設されると共に、棚段面積がほぼ等しくなるように形成されている。前記棚段の開口比を変えることにより、液/ガス容積比を0.1/100〜7/100の広範囲で変えることができ、これにより圧力損失が比較的に少なくできると共に、省動力を図ることが可能である。なお、前記燃焼排ガス浄化処理装置3の気液接触操作は、本実施例では気液対向流で行っているが、気液並行流、気液並行流と気液対向流の組み合わせや、単段もしくは多段の塔で構成することができる。   The scrubber body 4 includes a gas-liquid contact part 5 and a gas-liquid separation part 24 inside, and the gas-liquid contact part 5 is alternately arranged on the body part of the scrubber body 4 with a predetermined interval in the vertical direction. A plurality of donut board-type perforated shelves 15 and disk-type perforated shelves 16, each of which is provided with a plurality of holes each having a diameter of 1 to 5 mm, It is formed so that the areas are almost equal. By changing the opening ratio of the shelf, the liquid / gas volume ratio can be changed in a wide range of 0.1 / 100 to 7/100, thereby reducing pressure loss relatively and attaining power saving. It is possible. In this embodiment, the gas-liquid contact operation of the combustion exhaust gas purification processing device 3 is performed in the gas-liquid counterflow, but the gas-liquid parallel flow, the combination of the gas-liquid parallel flow and the gas-liquid counterflow, Or it can comprise a multistage tower.

前記ドーナツ盤型多孔棚板及び円板型多孔棚板は、ガス拡散電極として機能させるため、炭素繊維の布を基体とし、これに触媒金属のナノサイズ微粒子を担持させたもので、通常、多孔質活性炭素及び/又は多孔質金属酸化物、撥水性賦与剤(例えば、フッ素樹脂)、親水性賦与剤(例えば、金属酸化物微粒子)などを配合してなる組成物を前記基体に塗布して焼結させたシート状成形物が用いられる。また、前記シート状成形物に替えて、アルカリ液電解質の燃料電池用電極として市販されているカーボン系のガス拡散電極シートで構成してもよい。   The donut disk-type porous shelf and the disk-type porous shelf are made of carbon fiber cloth as a base, and supported with nano-sized fine particles of catalyst metal, so that they function as gas diffusion electrodes. A composition comprising a carbonaceous active carbon and / or porous metal oxide, a water repellent agent (for example, a fluororesin), a hydrophilic agent (for example, metal oxide fine particles) and the like is applied to the substrate. A sintered sheet-like molded product is used. Moreover, it may replace with the said sheet-like molded object, and you may comprise with the carbon type gas diffusion electrode sheet marketed as an electrode for fuel cells of an alkaline liquid electrolyte.

前記ガス拡散電極は、多孔質活性炭素又は多孔質活性炭素及び多孔質金属酸化物に、白金族金属、金、銀、銅及びVIII族遷移金属から選択された少なくとも一種を単体又は合金のナノサイズの微粒子の形態で2.5〜5g(グラム)/m(シート)程度担持させた触媒金属含有シートを使用するのが好ましい。 The gas diffusion electrode is made of porous activated carbon or porous activated carbon and porous metal oxide, and at least one selected from platinum group metal, gold, silver, copper and group VIII transition metal as a single element or alloy nanosize. It is preferable to use a catalyst metal-containing sheet in which about 2.5 to 5 g (gram) / m 2 (sheet) is supported in the form of fine particles.

前記活性炭素には、活性炭粒子、活性炭素繊維、カーボンナノチューブ、カーボンホーン、カーボンフラーレン、前記触媒金属を体内に胎持した微生物の炭化焼成物及び膨張化黒鉛等が、また、前記金属酸化物には、ハニカム状細孔のフォトエッチング酸化チタン、酸化チタンナノチューブ、珪藻、ゼオライト等がそれぞれ含まれ、前記活性炭素及び多孔質金属酸化物は必要に応じて単独で又は組合せて使用することができる。前記ガス拡散電極は、赤外線放射体材18としても使用できるほかに、その使用にあたって、収容容器とは、絶縁して取り付け、耐食金属のメッキ電極を併用してもよい。   Examples of the activated carbon include activated carbon particles, activated carbon fibers, carbon nanotubes, carbon horns, carbon fullerenes, carbonized calcined products of microorganisms with expanded catalytic metals and expanded graphite, and the metal oxides. Includes photo-etched titanium oxide, titanium oxide nanotubes, diatoms, zeolite and the like of honeycomb-shaped pores, and the activated carbon and porous metal oxide can be used alone or in combination as necessary. In addition to being able to be used as the infrared radiator material 18, the gas diffusion electrode may be insulated from the storage container and used together with a corrosion-resistant metal plating electrode.

前記水素ガス供給手段は、メタンガス等の炭化水素燃料を分解して水性ガスを生成し、これを水素ガス供給ライン20を介してガス拡散電極、即ち、燃焼排ガス浄化処理装置3のドーナツ盤型多孔棚板及び円板型多孔棚板に供給するが、その水素の原料としては、炭化水素燃料として使用される天燃ガス、石油、石炭、褐炭、バイオマス、油井ガス、炭鉱排気等の熱分解ガス、工業プロセスの高炉炉頂ガス、転炉ガス、コークスガス、水電解ガス、燃料電池水素極排ガス、水素精製工程の排ガス、天燃水性ガス等、少なくとも水素(H)を含むガスを利用できる。 The hydrogen gas supply means decomposes a hydrocarbon fuel such as methane gas to produce a water gas, which is supplied through a hydrogen gas supply line 20 to a gas diffusion electrode, that is, a donut board type porous of the combustion exhaust gas purification treatment device 3. It is supplied to shelves and disk-type perforated shelves, but the hydrogen source is natural gas used as hydrocarbon fuel, pyrolysis gas such as petroleum, coal, lignite, biomass, oil well gas, coal mine exhaust, etc. Industrial process blast furnace top gas, converter gas, coke gas, water electrolysis gas, fuel cell hydrogen electrode exhaust gas, hydrogen purification process exhaust gas, natural water gas, etc., gas containing at least hydrogen (H 2 ) can be used .

前記回収手段としては、例えば、サイクロン、微細加圧空気気泡による微粒子収着分離機構を備えたシックナ及び濾過装置から選択された少なくとも一種を使用すればよく、これにより廃液中に浮遊する固形物を分離、回収してスクラバ廃液を清澄化して、清澄化した酸性廃液を混合器36に供給する。   As the recovery means, for example, at least one selected from a cyclone, a thickener equipped with a fine particle sorption separation mechanism by fine pressurized air bubbles, and a filtration device may be used, and thereby solid matter floating in the waste liquid can be used. The scrubber waste liquid is clarified by separation and recovery, and the clarified acidic waste liquid is supplied to the mixer 36.

前記気液分離部24は、スクラバ本体4の上方に配設されたデミスター(ワイヤーメッシュデミスター)と、当該デミスターから落下する液体を受けて貯留する浄化処理液貯留槽とを備え、スクラバ内を上昇してきた気液並行流中に含まれる微粒子の液体成分をデミスターで捕捉してガス成分から分離し、その液体を浄化処理液貯留槽に収集及び貯留する一方、液体成分から分離されたガス成分はデミスターを通過し、浄化排ガスとして排ガス排出口から外部へ排出される。前記浄化排ガスは冬季に燃焼排ガスの添加又はそれとの熱交換等で加熱すると白煙の排出が解消され、景観の悪化を防ぐことが可能である。浄化処理液貯留槽は浄化処理廃液排出ラインを介して廃液処理装置及び/又は混合器36に接続してもよい。   The gas-liquid separation unit 24 includes a demister (wire mesh demister) disposed above the scrubber body 4 and a purification treatment liquid storage tank that receives and stores the liquid falling from the demister, and rises in the scrubber. The liquid component of the fine particles contained in the gas-liquid parallel flow that has been captured is separated with a demister and separated from the gas component, and the liquid is collected and stored in the purification treatment liquid storage tank, while the gas component separated from the liquid component is It passes through the demister and is discharged to the outside as a purified exhaust gas from the exhaust gas outlet. When the purified exhaust gas is heated in the winter by adding combustion exhaust gas or heat exchange with the exhaust gas, the emission of white smoke is eliminated and the landscape can be prevented from deteriorating. The purification treatment liquid storage tank may be connected to the waste treatment apparatus and / or the mixer 36 via a purification treatment waste liquid discharge line.

前記燃焼排ガスの浄化処理システムは、基本的には、海水取水ポンプ11により海洋30から海水を取水し、海水取水ライン31により送給される取水海水の一部を海水利用システム用水として取水海水第二供給ライン35によりpH調整用混合器36に送給し、残部を第一取水海水供給ライン32により燃焼排ガス浄化処理装置3に供給し、そこで燃焼排ガスライン25から供給される燃焼排ガスを浄化処理して酸性廃液を生成し、その酸性廃液は浄化処理液貯留槽6から浄化処理廃液ライン33を介して固形物回収装置13に送られ、そこで酸性廃液中の固形物を分離除去された後、酸性廃液供給ライン34により前記混合器36に供給され、そこで取水海水第二供給ライン35からの取水海水と混合されて取水海水のpH調整を行い、生成したpH調整海水を海水利用システム用水として海水供給ライン23により海水利用システムの冷却器1に供給する。 The combustion exhaust gas purification treatment system basically takes seawater from the ocean 30 by the seawater intake pump 11 and uses a portion of the intake seawater supplied by the seawater intake line 31 as seawater utilization system water. The two supply lines 35 are supplied to the pH adjusting mixer 36, and the remaining portion is supplied to the combustion exhaust gas purification processing device 3 by the first intake seawater supply line 32, where the combustion exhaust gas supplied from the combustion exhaust gas line 25 is purified. Then, the acidic waste liquid is generated, and the acidic waste liquid is sent from the purification treatment liquid storage tank 6 to the solid matter recovery device 13 through the purification treatment waste liquid line 33, where the solid matter in the acidic waste liquid is separated and removed. It is supplied to the mixer 36 by the acidic waste liquid supply line 34, where it is mixed with the intake seawater from the intake seawater second supply line 35 to adjust the pH of the intake seawater, Supplied to the condenser 1 of seawater utilization system by seawater supply line 23 and the pH adjusted seawater form as seawater utilization system water.

燃焼排ガス浄化処理装置内では、燃焼排ガス中のCOx、SOx、NOx等の有害物が下記海水との気液接触反応及びガス拡散電極の内部及び表面での触媒金属の水素分解作用の起電力により電解質である海水に溶解及び吸収され、浄化される。
=2H+2e (1)
+e=O (2)
+H O=3・OH (3)
O+e=N (4)
+HO=N+2・OH (5)
+e=N (6)
+HO=N+4・OH (7)
CO+e=CO (8)
CO +HO=HCO+e (9)
SO+e−=SO (10)
SO +HO=HSO+e (11)
SO+e=SO (12)
SO +HO=HSO+e (13)
+HO=HNO+HNO (14)
CO+2・OH=HCO (15)
CH+8・OH=HCO+5HO (16)
前記(1)〜(16)式に示される電圧が0.1〜1.2Vの混成電位及び直流低電圧の電気化学的反応と水和・溶解反応が並行して行われ、その浄化処理によりHCO 、SO 2−、SO 2−、NO 、NO 等の陰イオンとH陽イオン、活性酸素種で殺菌力の強い・OHラジカル等を含む酸性廃液が生成される。
In the flue gas purification treatment equipment, harmful substances such as COx, SOx, NOx in the flue gas are caused by the gas-liquid contact reaction with the seawater below and the electromotive force of the hydrogen decomposition action of the catalytic metal inside and on the surface of the gas diffusion electrode. It is dissolved and absorbed in seawater, which is an electrolyte, and purified.
H 2 = 2H + + 2e - (1)
O 2 + e = O 2 (2)
O 2 + H 3 + O = 3 · OH (3)
N 2 O + e = N 2 O (4)
N 2 O - + H 2 O = N 2 +2 · OH (5)
N 2 O 2 + e = N 2 O 2 (6)
N 2 O 2 - + H 2 O = N 2 +4 · OH (7)
CO 2 + e = CO 2 (8)
CO 2 + H 2 O═H 2 CO 3 + e (9)
SO 2 + e− = SO 2 (10)
SO 2 - + H 2 O = H 2 SO 3 + e - (11)
SO 3 + e = SO 3 (12)
SO 3 + H 2 O═H 2 SO 4 + e (13)
N 2 O 4 + H 2 O = HNO 2 + HNO 3 (14)
CO + 2 · OH = H 2 CO 3 (15)
CH 4 +8 · OH = H 2 CO 3 + 5H 2 O (16)
The electrochemical reaction and the hydration / dissolution reaction of the hybrid potential of 0.1 to 1.2 V and the DC low voltage and the hydration / dissolution reaction shown in the above formulas (1) to (16) are performed in parallel. Acid waste liquid containing strong sterilizing power, OH radical, etc. is produced with anions such as HCO 3 , SO 3 2− , SO 4 2− , NO 2 , NO 3 , H + cation, and active oxygen species. The

なお、前記水素ガス供給手段は、下記(17)式の天然ガス(CH)の熱分解と(18)式のシフト反応により水性ガス(H、CO、CO)を生成させ、これを水素ガスとして供給する。また、PSA(圧力スイング吸着)方式の精製装置で精製した水素ガスを供給するようにしても良い。
2CH+O=2CO+4H (17)
2CO+2HO=2CO+2H (18)
海水利用システムの冷却器1に供給する用水としてのpH調整海水は、海洋生物の斃死及び殺菌性能の確保、排水の無害化処理の負荷の低減、水界面の金属腐食度の軽減対策が必要なことから、pH5〜7.3、好ましくは排水基準下限のpH5.8〜6.3に設定されるが、これは前記冷却器1へ供給されるpH調整海水の生存海洋生物固体数を測定し、これがpH調整海水の水質管理として予め設定された基準指標の数値を超えない範囲内に入るように、取水海水と前記pH調整海水との混合比率を調整することにより行われる。前記取水海水よりも低pH化したpH調整海水には、強酸化力の・OHラジカルが含まれるため、海洋生物の斃死・殺菌処理のほか、海洋排水の規制値のBOD,CODを低減する作用がある。また、必要に応じて、前記酸性廃液に石灰石を中和剤として添加して、pH5以上のpH調整海水を得ることも可能である。
The hydrogen gas supply means generates water gas (H 2 , CO 2 , CO) by thermal decomposition of natural gas (CH 4 ) of the following formula (17) and shift reaction of formula (18), Supply as hydrogen gas. Further, hydrogen gas purified by a PSA (pressure swing adsorption) type purification apparatus may be supplied.
2CH 4 + O 2 = 2CO + 4H 2 (17)
2CO + 2H 2 O = 2CO 2 + 2H 2 (18)
The pH-adjusted seawater used as the water to be supplied to the cooler 1 of the seawater utilization system requires measures to ensure the drowning and disinfection performance of marine organisms, reduce the load of detoxification treatment of drainage, and reduce the degree of metal corrosion at the water interface Therefore, it is set to pH 5 to 7.3, preferably pH 5.8 to 6.3, which is the lower limit of the drainage standard, which measures the number of living marine organism solids in the pH adjusted seawater supplied to the cooler 1. This is performed by adjusting the mixing ratio between the intake seawater and the pH-adjusted seawater so that it falls within a range that does not exceed the numerical value of the reference index set in advance as the water quality management of the pH-adjusted seawater. The pH-adjusted seawater, which has a lower pH than the intake seawater, contains strong oxidative power and OH radicals, so that marine organisms are drowned and sterilized, as well as the effects of reducing BOD and COD, the regulation values for marine drainage. There is. If necessary, limestone can be added to the acidic waste liquid as a neutralizing agent to obtain pH-adjusted seawater having a pH of 5 or more.

pH調整海水中では、海洋生物は従来生育していた弱アルカリ性(pH7〜8.4)の環境に比べてHイオン濃度で数10倍〜1000倍を超える変化、即ち、pH値で1〜3低い過酷な生育環境の変化に曝されるため、その生育機能が損なわれると同時に、それに含まれる二酸化炭素及び・OHラジカルの作用とが相俟って活性低下、更には致死するに至り、10CFU/L(海水)以下までの殺菌処理を行うことができる。 In pH-adjusted seawater, marine organisms have a change in H + ion concentration that is several tens to 1000 times greater than the weakly alkaline (pH 7 to 8.4) environment that has been conventionally grown. 3 Since it is exposed to a severe change in the growth environment, its growth function is impaired, and at the same time, combined with the action of carbon dioxide and OH radicals contained in it, the activity is reduced, and further lethal. Sterilization up to 10 4 CFU / L (seawater) or less can be performed.

海水利用システムの冷却器1に供給され、そこで熱交換して生じた海水利用システムからの用水廃液は、排水域の水質との格差を少なくするために、海洋30の水面下に配置されたエゼクタ内で中和・希釈用海水流入口39からの海水により中和及び希釈されて無害化され、海洋30に排水される。因みに、我国の現在の海洋排水の基準は、pH5.8〜8.6、COD150ppm以下、BOD150ppm以下、SS200ppm以下である。   The waste water from the seawater utilization system supplied to the cooler 1 of the seawater utilization system and exchanging heat there is an ejector disposed below the surface of the ocean 30 in order to reduce the disparity with the water quality of the drainage area. It is neutralized and diluted with seawater from the neutralization / dilution seawater inlet 39 to be rendered harmless, and is drained to the ocean 30. Incidentally, our current marine drainage standards are pH 5.8 to 8.6, COD 150 ppm or less, BOD 150 ppm or less, SS 200 ppm or less.

前記実施例では、原料を無尽蔵にある海水を利用しているが、天日塩、岩塩等の結晶塩を水に溶解させて得られる塩水、海水淡水化装置や地下のかん水等を海水取水に替えても適用できる。   In the above embodiment, seawater with inexhaustible raw materials is used, but salt water obtained by dissolving crystalline salt such as sun salt and rock salt in water, seawater desalination equipment and underground brine are replaced with seawater intake. Is also applicable.

図2に示す実施例は、燃焼排ガス供給ライン25、水素ガス供給ライン20及び前記スクラバの気液接触部5に、それぞれ赤外線放射手段17を配置して低pH化海水を得るようにしたものである。前記赤外線放射手段17は赤外線放射体材18を含み、燃焼排ガス供給ライン25及び水素ガス供給ライン20に配設された赤外線放射体材18は赤外線放射体材ハウジング19に収納されている。   In the embodiment shown in FIG. 2, infrared radiation means 17 is disposed in the combustion exhaust gas supply line 25, the hydrogen gas supply line 20 and the gas-liquid contact portion 5 of the scrubber to obtain low pH seawater. is there. The infrared radiation means 17 includes an infrared radiation material 18, and the infrared radiation material 18 disposed in the combustion exhaust gas supply line 25 and the hydrogen gas supply line 20 is accommodated in an infrared radiation material housing 19.

前記赤外線放射体材18としては、黒鉛シート、シート状成形物表面に酸化チタン微粒子等の溶射したセラミックス微粒子の溶射皮膜などを採用することができるが、加工や配置等の容易性の観点からは黒鉛シートが好適である。なお、シート状成形物表面に酸化チタン微粒子等の溶射皮膜を採用した場合でも、黒鉛と同程度の放射強度が得られる。黒鉛シートや酸化チタン溶射被覆等のシート状物は、その断面形状が渦巻き状になるように巻回し、円筒管等の容器内にガス流の方向に沿うように金属ラス平板材等でサンドイッチ状に挟んで、通風抵抗が少なく、ガスの通過可能な空間を形成するように構成され、煙道の配管途中のハウジング19内に収納して配置されている。   As the infrared radiator material 18, a thermal sprayed coating of ceramic fine particles sprayed with titanium oxide fine particles or the like on the surface of a graphite sheet or a sheet-like molded article can be adopted, but from the viewpoint of ease of processing and arrangement, etc. A graphite sheet is preferred. Even when a thermal spray coating such as titanium oxide fine particles is employed on the surface of the sheet-like molded product, a radiation intensity comparable to that of graphite can be obtained. Sheet materials such as graphite sheets and titanium oxide spray coatings are wound so that the cross-sectional shape is spiral, and sandwiched with a metal lath flat plate or the like so as to follow the direction of gas flow in a container such as a cylindrical tube It is configured so as to form a space through which gas can pass with little ventilation resistance, and is housed and arranged in a housing 19 in the middle of the flue piping.

前記スクラバの気液接触部5は、ドーナツ盤型棚板15と、当該ドーナツ盤型棚板15とほぼ同じ面積を有する円板型棚板16とを、気液が流通可能に、所定間隔を置いて交互に配置することにより棚段を構成され、各棚段の上部面に、各棚段を構成する平板と同じ形状と面積の赤外線放射体材18を固定したものが好適である。前記赤外線放射体材18として黒鉛シートを採用した場合、黒体の場合に比べて、その約40%相当の放射光の出力が可能である。放射波長2〜15μmでの黒鉛シートの放射光放射強度の平均値は、雰囲気温度25℃で約10W/m2・μm、227℃で約150W/m2・μm程度である。 The scrubber gas-liquid contact section 5 has a predetermined interval so that gas-liquid can flow between the donut board-type shelf board 15 and the disk-type shelf board 16 having substantially the same area as the donut board-type shelf board 15. It is preferable that the shelf is configured by placing and alternately arranging the infrared radiator material 18 having the same shape and area as the flat plate constituting each shelf on the upper surface of each shelf. When a graphite sheet is employed as the infrared radiator material 18, approximately 40% of the emitted light can be output compared to a black body. Mean value of the emitted light radiation intensity of the graphite sheet in the emission wavelength 2~15μm is about 10W / m 2 · μm at ambient temperature 25 ° C., is about 150W / m 2 · μm approximately at 227 ° C..

前記燃焼排ガス中の有害成分及び水分子は、放射波長が2〜15μmの赤外線をよく吸収する領域に位置していることから、波長2〜15μmの赤外線を放射する黒鉛シート等からの赤外線の被曝を受けて、その分子振動エネルギーが励起状態に達する活性化現象を生じる。また、スクラバへの供給ガスの保有熱は、その熱量に比例して赤外線放射体の放射強度を高める効果があり、これが前記活性化現象と相俟って排ガス浄化過程の電気化学的反応及び水和反応を促進し、燃焼排ガス中のCOx、SOx、NOx等の有害物が海水に容易に溶解又は吸収される。   The harmful components and water molecules in the flue gas are located in a region that absorbs infrared rays having a radiation wavelength of 2 to 15 μm well, so that exposure of infrared rays from a graphite sheet or the like that emits infrared rays having a wavelength of 2 to 15 μm is performed. In response, an activation phenomenon occurs in which the molecular vibration energy reaches an excited state. In addition, the retained heat of the gas supplied to the scrubber has the effect of increasing the radiant intensity of the infrared radiator in proportion to the amount of heat, and this is coupled with the activation phenomenon and the electrochemical reaction and water in the exhaust gas purification process. The sum reaction is promoted, and harmful substances such as COx, SOx, NOx in the combustion exhaust gas are easily dissolved or absorbed in seawater.

図3に示す燃焼排ガスの浄化処理装置は、燃焼排ガス浄化処理装置3の気液接触部5の棚板材料として、ガス拡散電極でドーナツ盤型棚板15a,15b及び円板型棚板16a,16bを形成し、これらを交互に所定間隔をおいて配設する一方、円板型棚板16a,16bをその上位に位置するドーナツ盤型棚板15a,15bとそれぞれ導線29a、29bを介して電気的に接続すると共に、円板型棚板16aをアノードとし,円板型棚板16bをカソードとして直流電源28に接続し、両電極間に直流電圧を印加するようにしたもので、他の構成は実施例1のものと同じである。 The flue gas purification treatment apparatus shown in FIG. 3 uses doughnut-type shelf boards 15a, 15b and disk-type shelf boards 16a as gas shelf electrodes for the gas-liquid contact portion 5 of the flue gas purification treatment apparatus 3 using gas diffusion electrodes. 16b is formed, and these are alternately arranged at a predetermined interval, while the disk-type shelf boards 16a and 16b are disposed above the donut board-type shelf boards 15a and 15b and the conductors 29a and 29b, respectively. In addition to being electrically connected, the disk-type shelf 16a is used as an anode, the disk-type shelf 16b is used as a cathode and connected to a DC power supply 28, and a DC voltage is applied between both electrodes. The configuration is the same as that of the first embodiment.

本実施例では、ガス拡散電極の燃焼排ガス浄化処理装置3は、気液接触部5に海水、燃焼排ガス及びH2ガスが供給されると同時に、気液接触部5に、直流電圧の印加手段を備えて、気液接触部5の一対のガス拡散電極が、前記0.1〜1.2Vの混成電位を超える高い分極電位の直流電圧を印加する気液の電解処理の単独又は前記混成電位の電解処理との併用で、低pH化海水の生成が促される。 In the present embodiment, the gas diffusion electrode combustion exhaust gas purification treatment device 3 is supplied with seawater, combustion exhaust gas, and H 2 gas to the gas-liquid contact portion 5, and at the same time, DC voltage application means to the gas-liquid contact portion 5. And a pair of gas diffusion electrodes of the gas-liquid contact part 5 applies a direct current voltage having a high polarization potential exceeding the hybrid potential of 0.1 to 1.2 V alone or in the hybrid potential. In combination with the electrolytic treatment, the generation of low pH seawater is promoted.

図4に示す燃焼排ガスの浄化処理装置は、燃料電池発電出力機構を備え、二つのスクラバ本体を備え、第一スクラバ本体Aと、その燃焼排ガス浄化処理装置が廃液貯留槽6上に立接された二つのスクラバ本体、即ち、第一スクラバ本体4A及び第二スクラバ本体4Bを備え、両スクラバ本体4A、4Bが廃液貯留槽6により連通され、第一スクラバ本体4Aの気液接触部5Aに配設されたガス拡散電極と第二スクラバ本体4Bの気液接触部5Bに配設されたガス拡散電極とは外部負荷41に電気的に接続されている。第一スクラバ本体4Aの気液接触部5Aは、水素ガス供給ライン20a及び第一取水海水供給ライン32によってそれぞれ水素ガスと海水を供給され、気液並行流で気液接触させた後、第一処理気液として第一処理気液排出筒42を介して廃液貯留槽6に排出する。廃液貯留槽6に流入した第一処理気液のガス成分は燃焼排ガス供給ライン25からの燃焼排ガスと混合されて廃液貯留槽6から第二スクラバ本体4Bに入り、水素ガス供給ライン20bから供給される水素ガスと混合された後、気液接触部5Bで海水散水ノズル10からの海水と向流で気液接触し、その気液接触反応により燃焼排ガス中の有害成分を除去され、前記有害成分を吸収及び/又は溶解した海水は低pHの酸性廃液となって廃液貯留槽6に流下し、貯留される。 Purification treatment unit of the combustion exhaust gas shown in FIG 4 is provided with a fuel cell power output mechanism comprises two scrubber body, Tatsuse' a first scrubber body 4 A, the flue gas purification process apparatus on waste reservoir 6 The two scrubber main bodies, that is, the first scrubber main body 4A and the second scrubber main body 4B, both scrubber main bodies 4A, 4B are communicated by the waste liquid storage tank 6, and are connected to the gas-liquid contact portion 5A of the first scrubber main body 4A. The disposed gas diffusion electrode and the gas diffusion electrode disposed in the gas-liquid contact portion 5B of the second scrubber body 4B are electrically connected to the external load 41. The gas-liquid contact portion 5A of the first scrubber body 4A is supplied with hydrogen gas and seawater by the hydrogen gas supply line 20a and the first intake seawater supply line 32, respectively, and after making gas-liquid contact in a gas-liquid parallel flow, As a process gas / liquid, it is discharged to the waste liquid storage tank 6 through the first process gas / liquid discharge cylinder 42. The gas component of the first process gas / liquid flowing into the waste liquid storage tank 6 is mixed with the combustion exhaust gas from the combustion exhaust gas supply line 25, enters the second scrubber body 4B from the waste liquid storage tank 6, and is supplied from the hydrogen gas supply line 20b. After being mixed with hydrogen gas, the gas-liquid contact portion 5B makes a gas-liquid contact with seawater from the seawater sprinkling nozzle 10 in countercurrent, and the harmful components in the combustion exhaust gas are removed by the gas-liquid contact reaction. The seawater that has absorbed and / or dissolved becomes an acidic waste liquid having a low pH and flows down to the waste liquid storage tank 6 to be stored.

他方、第一スクラバ本体4Aの気液接触部5Aを構成するガス拡散電極と第二スクラバ本体4Bの気液接触部5Bを構成するガス拡散電極は、水性ガス(Hガス)と海水が気液並行流により供給される第一スクラバ本体4A側をアノードとし、水素ガスと海水が向流または並流で気液接触する第二スクラバ本体4B側をカソードとして燃料電池を構成し、その出力は外部負荷41に出力される。 On the other hand, the gas diffusion electrode constituting the gas-liquid contact part 5A of the first scrubber body 4A and the gas diffusion electrode constituting the gas-liquid contact part 5B of the second scrubber body 4B are water gas (H 2 gas) and seawater. The fuel cell is constituted by using the first scrubber body 4A side supplied by the liquid parallel flow as an anode and the second scrubber body 4B side in which hydrogen gas and seawater are in gas-liquid contact in a countercurrent or parallel flow as a cathode, and its output is It is output to the external load 41.

前記第一スクラバ本体4A内での反応は、水性ガス(H,CO,CO)が供給される場合は、該ガス中に酸素を含むことや、供給される海水に溶存酸素があることから、下記に示される反応が主なものとなる。
=2H+2e (1)
+e=O (2)
+H O=3・OH (3)
CO+e=CO (8)
CO +HO=HCO+e (9)
CO+2・OH=HCO (15)
In the reaction in the first scrubber body 4A, when water gas (H 2 , CO 2 , CO) is supplied, oxygen is included in the gas or dissolved oxygen is present in the supplied seawater. Therefore, the reaction shown below is the main one.
H 2 = 2H + + 2e (1)
O 2 + e = O 2 (2)
O 2 + H 3 + O = 3 · OH (3)
CO 2 + e = CO 2 (8)
CO 2 + H 2 O═H 2 CO 3 + e (9)
CO + 2 · OH = H 2 CO 3 (15)

第二スクラバ本体4B内での反応は、実施例1に示す式(1)〜(16)等の諸反応が生じ、又、第二スクラバ本体4B内に電解質の海水が間断なく流通して存在することから、前記第一スクラバ本体4Aの水素の分解で起電力が生じて、その電子(e)が、前記アノードとカソードが導線で接続された外部に配置の負荷装置を経て第二スクラバ本体4Bに供給される回路が構成され、負荷装置41に直流の発電出力が供給される。この発電出力は、負荷装置41に昇圧素子及びDC/ACコンバータを組み込むことにより、所望の交流電力の出力が可能になる。 The reactions in the second scrubber body 4B are caused by reactions such as the formulas (1) to (16) shown in Example 1, and the electrolyte seawater is circulated in the second scrubber body 4B without interruption. Therefore, an electromotive force is generated by the decomposition of hydrogen in the first scrubber body 4A, and the electrons (e ) pass through a load device arranged outside where the anode and the cathode are connected by a conductive wire, and then the second scrubber. A circuit supplied to the main body 4 </ b> B is configured, and a DC power generation output is supplied to the load device 41. This power generation output can output desired AC power by incorporating a booster element and a DC / AC converter into the load device 41.

前記第一スクラバ本体4Aを、図5に示すように、その下部に配置の供給口から供給される水性ガスのHガスと海水が、気液並行の上昇流を形成しながらアノードのガス拡散電極に供給されて、第一処理気液排出筒42から廃液貯留槽6内に排出される構成にすることもできる。この場合には、廃液貯留槽6を共通として、第一スクラバ本体4Aと第二スクラバ本体4Bが前記廃液貯留槽6を挟むかたちに、第一スクラバ本体4Aを最下部に配置して、廃液貯留槽6、第二スクラバ本体4Bの順に、鉛直に一体的にそれぞれが配置されるスクラバの構成になり、設置スペースが少なくて済む利点がある。前記スクラバの構成は、前記のほかに、廃液貯留槽を共通とする、共に気液並行流の第1スクラバ本体と第2スクラバ本体との組み合わせが可能である。 As shown in FIG. 5, the first scrubber body 4 </ b > A has an aqueous gas H 2 gas and seawater supplied from a supply port disposed below the first scrubber main body 4 </ b > A while forming an upward flow parallel to the gas and liquid. It can also be set as the structure supplied to an electrode and discharged | emitted in the waste liquid storage tank 6 from the 1st process gas-liquid discharge cylinder 42. FIG. In this case, the first scrubber body 4A is disposed at the lowermost portion so that the first scrubber body 4A and the second scrubber body 4B sandwich the waste liquid storage tank 6 with the waste liquid storage tank 6 in common. The scrubber is configured in such a manner that the tank 6 and the second scrubber main body 4B are arranged integrally in the vertical direction in this order, and there is an advantage that installation space can be reduced. In addition to the above, the scrubber has a common waste liquid storage tank, and a combination of a first scrubber main body and a second scrubber main body, both of which are in a gas-liquid parallel flow, is possible.

図5に示す燃焼排ガスの浄化処理装置は、第一スクラバ本体4Aの上に廃液貯留槽6及び第二スクラバ本体4Bを鉛直方向に順次配設して一体化した構成を有し、その付帯設備として直流入出力電源装置43を備え、当該直流入出力電源装置43は連動スイッチ44を介して廃液貯留槽の液中に配設された電極(アノード45a、カソード45b)に接続されると共に、アノードとしての第一気液接触部4Aのガス拡散電極16a及びカソードとしての第二気液接触部5Bのガス拡散電極16bにそれぞれ接続されている。 The combustion exhaust gas purification treatment apparatus shown in FIG. 5 has a configuration in which a waste liquid storage tank 6 and a second scrubber body 4B are sequentially arranged in the vertical direction on the first scrubber body 4A, and the associated equipment. The DC input / output power supply device 43 is connected to electrodes (anode 45a and cathode 45b) disposed in the liquid of the waste liquid storage tank via the interlock switch 44, and the anode Are connected to the gas diffusion electrode 16a of the first gas-liquid contact part 4A as the gas diffusion electrode 16b and the gas diffusion electrode 16b of the second gas-liquid contact part 5B as the cathode.

使用に際しては、直流入出力電源装置43により直流電圧を前記廃液貯留槽内の一対の電極対に印加するか、直流入出力電源装置43を介して第一気液接触部5Aと第二気液接触部5Bとの間に生成する直流電力を出力するかの何れかを行うことによって、海洋生物の斃死及び殺菌剤となる・OHラジカル及びHClOを含む低pH化海水を得ることができる。   In use, a DC voltage is applied to the pair of electrodes in the waste liquid storage tank by the DC input / output power supply device 43, or the first gas / liquid contact portion 5 </ b> A and the second gas / liquid are connected via the DC input / output power supply device 43. By performing any one of the output of the direct-current power generated between the contact part 5B, low pH seawater containing OH radicals and HClO which becomes a mortality and disinfectant of marine organisms can be obtained.

前記構成において、廃液33の電解処理が必要な場合には、開閉器を閉(ON)にして、スクラバの電極対に印加される電圧(直流入出力電源装置の電圧)は、廃液貯留槽内の電極対に印加される電圧に律速されるが、単に廃液貯留槽に配置の電極対のみの電解処理の場合の印加電圧に比べて、第一及び第二気液接触部5A、5Bの電極でHガス分解により生じる起電力相当分が減極(印加電圧の低減化)されて、印加電力が節減できる特徴を備えている。 In the above configuration, when the waste liquid 33 needs to be electrolyzed, the switch is closed (ON), and the voltage applied to the electrode pair of the scrubber (the voltage of the DC input / output power supply) is stored in the waste liquid storage tank. The electrodes of the first and second gas-liquid contact portions 5A and 5B are limited by the voltage applied to the electrode pair of the first and second electrodes but compared to the applied voltage in the case of the electrolytic treatment of only the electrode pair disposed in the waste liquid storage tank. Thus, the portion corresponding to the electromotive force generated by the H 2 gas decomposition is depolarized (reduced applied voltage), and the applied power can be saved.

廃液貯留槽内の電極対における反応式は、塩水の電解処理の場合と同じで、下記に示される。
2HO+2e=2OH+H (19)
2Cl−2e=Cl (20)
Cl+HO=HClO+HCl (21)
The reaction formula in the electrode pair in the waste liquid storage tank is the same as in the case of the electrolytic treatment of salt water, and is shown below.
2H 2 O + 2e = 2OH + H 2 (19)
2Cl −2e = Cl 2 (20)
Cl 2 + H 2 O = HClO + HCl (21)

また前記構成にすることによって、廃液の電解で生成するH及びClガスは、第二スクラバで、下記の反応式でそれぞれ分解される。
=2H+2e (1)
Cl+2e=2Cl (22)
Cl+HO=HClO+HCl (21)
また、廃液貯留槽6のアノードで生成するClガスは、前記のほかに、海洋微生物の殺菌処理と排ガス中のNOx成分の塩素化による脱硝処理にも利用できる。
In addition, with the above-described configuration, H 2 and Cl 2 gas generated by electrolysis of the waste liquid are decomposed by the following reaction formulas in the second scrubber.
H 2 = 2H + + 2e (1)
Cl 2 + 2e = 2Cl (22)
Cl 2 + H 2 O = HClO + HCl (21)
In addition to the above, the Cl 2 gas generated at the anode of the waste liquid storage tank 6 can also be used for denitration treatment by sterilization of marine microorganisms and chlorination of NOx components in the exhaust gas.

他方、廃液の電解処理が不要な場合には、開閉器を開(OFF)にして、発電出力と・OHラジカルを含む低pH化海水を得ることができる。前記直流入出力電源装置は、実施例4と同様に、直流出力のほかに、昇圧素子とDC/ACコンバータを組み込むことによって所望の交流電力の出力が可能になる。   On the other hand, when electrolytic treatment of the waste liquid is unnecessary, the switch is opened (OFF), and the low pH seawater containing the power generation output and .OH radical can be obtained. As in the fourth embodiment, the DC input / output power supply device can output desired AC power by incorporating a booster element and a DC / AC converter in addition to DC output.

塩水電解処理液にCO2を溶解する際の赤外線放射の効果を確認するため、赤外線放射体として直径5m/mのアルミナ製セラミックスボールを用い、天日塩を水に溶解して得た天日塩水(体積2Lx2、塩水導電率4.5S/m前後)を多孔テフロン隔膜で仕切られた電解槽(容積2.5Lx2)に入れ、その電解槽の陰極室(溶液量約2L)内に、前記セラミックスボール約400gを浸漬した後、電解槽の塩水中に浸漬した電極間に直流電圧10Vを所定時間印加し、電解してpHを異にする試料を作成した。 In order to confirm the effect of infrared radiation when CO 2 is dissolved in the salt water electrolysis solution, a ceramic salt ball made of alumina having a diameter of 5 m / m is used as the infrared radiator, and the salt water obtained by dissolving the salt in water (volume) 2Lx2, salt water conductivity of around 4.5S / m) is placed in an electrolytic cell (volume 2.5Lx2) partitioned by a porous Teflon diaphragm, and the ceramic balls are placed in the cathode chamber (solution amount of about 2L) of the electrolytic cell. After immersing 400 g, a DC voltage of 10 V was applied for a predetermined time between the electrodes immersed in the salt water of the electrolytic cell to prepare a sample having different pH by electrolysis.

酸性液の作成は、印加電圧の極性を反転して得られる。試料の塩水は、毎回、新規なものと入れ替えた。対照区の試料は、前記セラミックスボールを排除して同じ条件下で電解処理することにより作成した。   The acidic liquid is produced by reversing the polarity of the applied voltage. The salt water of the sample was replaced with a new one each time. The sample for the control group was prepared by removing the ceramic balls and subjecting them to electrolytic treatment under the same conditions.

各試料には、通電を止めた電解槽の底部に配設した微細気泡発生器にCO2ガスボンベより純CO2ガスを2L/min又は2.5L/minで供給してバブリングさせ、表1に示す条件下でpHの変化を測定した。試料のpH値は、最初の2分間は、30秒ごとに1回、その後は、サンプリングの時間間隔を徐々に開けて、毎回約10mL量をサンプリングし、携帯型pH計(株式会社堀場製作所製)を用いて測定した。得られた結果を表2及び図6に示す。なお、対照区の試料(試料番号6)では陽極室のpHは6.5であった。 Each sample, the more CO 2 gas cylinder pure CO 2 gas was bubbled supplied at 2L / min or 2.5L / min to the fine-bubble generator disposed in the bottom portion of the stopped energization electrolytic cell, in Table 1 The change in pH was measured under the conditions indicated. The pH value of the sample is once every 30 seconds for the first 2 minutes, and thereafter, the sampling time interval is gradually opened to sample approximately 10 mL each time. A portable pH meter (manufactured by Horiba, Ltd.) ). The obtained results are shown in Table 2 and FIG. In the control sample (Sample No. 6), the pH of the anode chamber was 6.5.

Figure 2009112996
Figure 2009112996

Figure 2009112996
Figure 2009112996

二酸化炭素は海水中に放出されると、水に溶けて水素イオンを放出するため(CO+HO → HCO + H → CO 2− + 2H)海水のpHが低下するが、その反応過程に赤外線放射体を存在させると赤外線の作用を受けて二酸化炭素等が活性化されて水との反応が促進され、より多くの水素イオンが放出される結果、赤外線放射体を存在しない場合に比べてpHが一段と低くなることが判る。また、二酸化炭素は海洋生物に対して急性毒性を示し、pH6.5前後でも海水中の二酸化炭素濃度が高ければ海洋生物が致死することが知られているが、二酸化炭素を塩水中にバブリングさせると、上記結果から明らかなように、短時間でpH6前後に低下し、しかも、本発明方法によれば、燃焼排ガスを浄化処理して得られる酸性廃液には海洋生物に毒性を示す重炭酸イオンや炭酸イオンに加えて、ガス活性酸素種で殺菌力の強い・OHラジカルが含まれるため、酸性廃液を取水海水に添加混合することにより海洋生物の活力を低下させ、その付着を阻止することが可能となり、更には海洋生物を致死及び殺菌させることが可能になることが判る。 When carbon dioxide is released into seawater, it dissolves in water and releases hydrogen ions (CO 2 + H 2 O → HCO 3 + H + → CO 3 2− + 2H + ). In the presence of an infrared emitter in the reaction process, carbon dioxide is activated by the action of infrared rays, and the reaction with water is promoted, resulting in the release of more hydrogen ions, resulting in the presence of an infrared emitter. It can be seen that the pH is further lowered as compared with the case of not doing so. In addition, carbon dioxide is acutely toxic to marine organisms, and it is known that marine organisms will die if the concentration of carbon dioxide in seawater is high even at a pH of around 6.5. However, carbon dioxide is bubbled into salt water. As is apparent from the above results, bicarbonate ions that fall to around pH 6 in a short time and that are toxic to marine organisms are contained in the acidic waste liquid obtained by purifying the combustion exhaust gas. In addition to gas ions and carbonate ions, gas active oxygen species with strong bactericidal power. OH radicals are included, so adding and mixing acidic waste liquid with seawater can reduce the vitality of marine organisms and prevent their attachment. It turns out that marine life can be killed and sterilized.

採取した海水(pH8.4、導電率4.52S/m、水温27.2℃)中の細菌をZoBell2216E培地を用いて24℃で5日間培養した後、直流電圧を印加して7.3V/3A及び4.8V/1.5Aの各条件下で電解処理して生菌数を計測した。なお、希釈率は等倍、10倍及び100倍希釈の三段階とした。得られた結果を表3に示す。表3中、生菌数の単位はCFU/mlである。   Bacteria in the collected seawater (pH 8.4, conductivity 4.52 S / m, water temperature 27.2 ° C.) were cultured at 24 ° C. for 5 days using ZoBell 2216E medium, and then DC voltage was applied to obtain 7.3 V / The number of viable bacteria was measured by electrolytic treatment under conditions of 3A and 4.8V / 1.5A. In addition, the dilution rate was made into three steps of 1 time, 10 times, and 100 times dilution. The obtained results are shown in Table 3. In Table 3, the unit of viable cell count is CFU / ml.

Figure 2009112996
Figure 2009112996

また、電解室を多孔テフロン隔膜で二室に区画された海水電解槽(容積:2.5Lx2)とタンク(容積:100L)を含む海水循環系を構成し、前記タンクに採取した海水約50L(pH8.4、導電率4.52S/m、水温27.2℃)を入れ、当該海水をポンプにより流量10L/minで循環させながら電極間に直流電圧を印加し、フジツボ幼生の斃死処理を行った。   In addition, a seawater circulation system including a seawater electrolysis tank (volume: 2.5 L × 2) and a tank (volume: 100 L) in which the electrolysis chamber is divided into two chambers by a porous Teflon diaphragm, and about 50 L of seawater collected in the tank ( pH 8.4, conductivity 4.52 S / m, water temperature 27.2 ° C.), DC voltage is applied between the electrodes while circulating the seawater at a flow rate of 10 L / min, and barnacle larvae are moribund. It was.

Figure 2009112996
表4中、フジツボ幼生の生存数の単位はN/Lであり、分母の数字が幼生数、分子側の数字が生残数である。また、電流3.0Aの欄の取水海水は全てノープリウス幼生のみを含み、電流1.5Aの欄の取水海水はノープリウス幼生とキプリス幼生を含む。
Figure 2009112996
In Table 4, the unit of the survival number of barnacle larvae is N / L, the denominator number is the number of larvae, and the numerator side number is the survival number. In addition, all the intake seawater in the column of current 3.0A includes only Nauplius larvae, and the intake water in the column of current 1.5A includes Nauplius larvae and Cypris larvae.

表3及び表4の結果から海水を電解処理することにより海水中の微生物及びフジツボの幼生など海洋生物を短時間で殺滅できることが判る。これは海水の電解によりHClOが生成され、これが殺菌剤として作用するためであると考えられる。従って、燃焼排ガスを海水と気液接触反応させて酸性廃液を生成させる過程或いは該酸性廃液を取水海水に添加混合して海水利用システムに供給するまでの過程で電解処理を付加することにより、取水海水中の海洋生物は重炭酸イオンや炭酸イオン及びガス活性酸素種で殺菌力の強い・OHラジカルに加えて、殺菌作用のあるHClOの作用を受けることにより、活性を低下し、殺滅されることになり、海水利用システムへの海洋生物の付着を阻止し得ることが判る。   From the results of Tables 3 and 4, it can be seen that by subjecting seawater to electrolytic treatment, marine organisms such as microorganisms in the seawater and barnacle larvae can be killed in a short time. This is considered to be because HClO is produced by electrolysis of seawater and this acts as a bactericidal agent. Accordingly, by adding an electrolytic treatment in the process of causing combustion exhaust gas to react with seawater in a gas-liquid contact process to generate acidic waste liquid or adding and mixing the acidic waste liquid to water seawater and supplying it to the seawater utilization system, Marine organisms in seawater are killed by being reduced in activity by receiving bactericidal HClO in addition to OH radicals, which have strong bactericidal activity with bicarbonate ions, carbonate ions and gas reactive oxygen species. It turns out that marine organisms can be prevented from attaching to the seawater utilization system.

燃焼排ガスの浄化処理システムの構成模式図Schematic diagram of the configuration of a purification system for combustion exhaust gas スクラバの気液接触部及び供給ガスの煙道に赤外線放射体を配置する模式図Schematic diagram of placing an infrared radiator in the gas-liquid contact part of the scrubber and the flue of the supply gas 気液接触部にガス拡散電極の電極対を備えたスクラバの構成模式図Configuration diagram of scrubber equipped with gas diffusion electrode pair in gas-liquid contact area 燃料電池発電出力機構を備えた低pH海水生成システムの構成模式図Schematic diagram of a low pH seawater generation system equipped with a fuel cell power generation output mechanism スクラバの電極対に直流電力の入出力手段を配置するシステムの構成模式図Schematic diagram of a system in which DC power input / output means are arranged on the scrubber electrode pair 塩水電解処理液へのCO2溶解における赤外線放射効果を示すデータData showing the effect of infrared radiation on the dissolution of CO 2 in brine electrolysis solution

1: 冷却器
2: 水素ガス発生供給装置
3: 燃焼排ガス浄化処理装置
4、4A、4B: スクラバ本体
5、5A、5B: 気液接触部
6: 浄化処理液貯留槽
7: 排ガス供給口
8: 水素ガス供給口
9: 浄化排ガス排出口
10: 海水散水ノズル
11: 海水取水ポンプ
12: ブロワ
13: 固形物回収装置
14: エゼクタ
15、15a、15b: 中央開口型棚板
16、16a、16b: 中央無開口型棚板
17: 赤外線放射手段
18: 赤外線放射体材
19: 赤外線放射体材ハウジング
20、20a、20b: 水素ガス供給ライン
21: 炭化水素燃料供給ライン
22: 空気供給ライン
23: 水供給ライン
24: 気液分離部
25: 燃焼排ガス供給ライン
26: 浄化排ガス排出ライン
27: 回収固形物排出ライン
28: 直流電源28
29、29a、29b: 導線
30: 海洋
31: 海水取水ライン
32、32a、32b: 第一取水海水供給ライン
33: 浄化処理廃液ライン
34: 酸性廃液供給ライン
35: 取水海水第二供給ライン
36: 混合器
37: 用水液供給ライン
38: 用水廃液排出ライン
39: 海水流入口
40: 海水混合廃液排出ライン
41: 外部負荷
42: 第一処理気液排出筒
43: 直流入出力電源装置
44: 連動スイッチ
45: 電極
45a: アノード
45b: カソード
1: Cooler 2: Hydrogen gas generation and supply device 3: Combustion exhaust gas purification treatment device 4, 4A, 4B: Scrubber body 5, 5A, 5B: Gas-liquid contact portion 6: Purification treatment liquid storage tank 7: Exhaust gas supply port 8: Hydrogen gas supply port 9: Purified exhaust gas discharge port 10: Seawater sprinkling nozzle 11: Seawater intake pump 12: Blower 13: Solid matter recovery device 14: Ejector 15, 15a, 15b: Central opening type shelf board 16, 16a, 16b: Center Non-opening type shelf board 17: Infrared radiation means 18: Infrared radiation material 19: Infrared radiation material housing 20, 20a, 20b: Hydrogen gas supply line 21: Hydrocarbon fuel supply line 22: Air supply line 23: Water supply line 24: Gas-liquid separator 25: Combustion exhaust gas supply line 26: Purified exhaust gas discharge line 27: Recovered solid matter discharge line 28: DC power Source 28
29, 29a, 29b: Conductor 30: Ocean 31: Seawater intake line 32, 32a, 32b: First intake seawater supply line 33: Purification treatment waste liquid line 34: Acid waste liquid supply line 35: Intake seawater second supply line 36: Mixing 37: Water supply line 38: Water waste discharge line 39: Seawater inlet 40: Seawater mixed waste discharge line 41: External load 42: First treatment gas / liquid discharge cylinder 43: DC input / output power supply 44: Interlocking switch 45 : Electrode 45a: Anode 45b: Cathode

Claims (13)

ガス拡散電極を備えた少なくとも一つの気液接触部を有するスクラバを備え、
前記気液接触部に海水と燃焼排ガスとを供給することにより気液接触反応させて排ガスの浄化処理を行い、取水海水中の海洋生物を殺滅しうる酸性廃液を生成させると同時に、前記ガス拡散電極に水素ガスを供給し、当該ガス拡散電極表面で水素ガスと前記排ガス中の酸素との燃料電池発電反応を生じさせることにより発電出力を行うことを特徴とする燃焼排ガスの浄化処理装置。
A scrubber having at least one gas-liquid contact portion with a gas diffusion electrode;
By supplying seawater and combustion exhaust gas to the gas-liquid contact portion, gas-liquid contact reaction is performed to purify the exhaust gas, and at the same time, an acidic waste liquid capable of killing marine organisms in the intake seawater is generated, and at the same time, the gas An apparatus for purifying combustion exhaust gas, wherein hydrogen gas is supplied to a diffusion electrode, and a power generation output is generated by causing a fuel cell power generation reaction between hydrogen gas and oxygen in the exhaust gas on the surface of the gas diffusion electrode.
酸性液供給ライン及びアルカリ電解液供給ラインを有する電解装置をさらに備え、当該電解装置により海水又は塩水を電気分解して酸性電解液及びアルカリ電解液を生成させ、前記酸性液供給ライン及び/又はアルカリ電解液供給ラインを介して前記酸性電解液及び/又はアルカリ電解液を前記気液接触部に供給し前記酸性電解液及びアルカリ電解液を排ガスと気液接触反応させる請求項1記載の燃焼排ガスの浄化処理装置。   The apparatus further includes an electrolytic device having an acidic liquid supply line and an alkaline electrolyte supply line, and electrolyzes seawater or salt water by the electrolytic apparatus to generate an acidic electrolytic solution and an alkaline electrolytic solution, and the acidic liquid supply line and / or alkali 2. The combustion exhaust gas according to claim 1, wherein the acidic electrolyte solution and / or the alkaline electrolyte solution is supplied to the gas-liquid contact portion via an electrolyte solution supply line, and the acidic electrolyte solution and the alkaline electrolyte solution are subjected to gas-liquid contact reaction with the exhaust gas. Purification device. 前記スクラバが、下部に燃焼排ガス導入口を上部に排ガス排出口をそれぞれ備えた縦型スクラバである請求項1又は2に記載の燃焼排ガスの浄化処理装置。   The apparatus for purifying combustion exhaust gas according to claim 1 or 2, wherein the scrubber is a vertical scrubber having a combustion exhaust gas inlet at a lower portion and an exhaust gas outlet at an upper portion. 前記燃焼排ガスが供給される気液接触部に配設された二つのガス拡散電極間に直流電圧が印加され、前記燃焼排ガスを浄化することを特徴とする請求項1〜3のいずれかに記載の燃焼排ガスの浄化処理装置。   4. A direct current voltage is applied between two gas diffusion electrodes disposed in a gas-liquid contact portion to which the combustion exhaust gas is supplied to purify the combustion exhaust gas. Purification equipment for combustion exhaust gas. 少なくとも2つのスクラバと、当該スクラバを連通させる廃液貯留槽と、を備え、
一方の第一スクラバ本体の気液接触部に配設されたガス拡散電極と、前記燃焼排ガスが供給される他方の第二スクラバ本体の気液接触部に配設されたガス拡散電極とが外部負荷に電気的に接続されると共に、前記第一スクラバ本体の気液接触部に水素ガスと前記電解酸性液及び/又は海水とが気液並行流で供給される一方、前記第二スクラバ本体では、前記第一スクラバの排出ガスと前記燃焼排ガスとの混合ガスと、前記電解アルカリ液及び/又は海水とが気液対向流又は気液並行流で供給されることにより、前記燃焼排ガスの浄化処理及び燃料電池の発電出力を行うことを特徴とする請求項1〜3のいずれかに記載の燃焼排ガスの浄化処理装置。
Comprising at least two scrubbers and a waste liquid storage tank for communicating the scrubbers,
A gas diffusion electrode disposed in a gas-liquid contact portion of one first scrubber body and a gas diffusion electrode disposed in a gas-liquid contact portion of the other second scrubber body to which the combustion exhaust gas is supplied are externally provided. While being electrically connected to a load, hydrogen gas and the electrolytic acid solution and / or seawater are supplied to the gas-liquid contact portion of the first scrubber body in a gas-liquid parallel flow, while in the second scrubber body The exhaust gas from the first scrubber and the combustion exhaust gas, and the electrolytic alkaline liquid and / or seawater are supplied in a gas-liquid countercurrent flow or a gas-liquid parallel flow, thereby purifying the combustion exhaust gas. The apparatus for purifying combustion exhaust gas according to any one of claims 1 to 3, wherein the power generation output of the fuel cell is generated.
さらに、水素ガスを生成する水素ガス生成手段を備え、
前記ガス拡散電極において前記水素ガス生成手段から供給される水素ガスとスクラバ内を流動する排ガス中の酸素とを反応させて電気エネルギーに変換する燃料電池を構成することを特徴とする請求項1〜5のいずれかに記載の燃焼排ガスの浄化処理装置。
Furthermore, a hydrogen gas generating means for generating hydrogen gas is provided,
2. The fuel cell configured to react hydrogen gas supplied from the hydrogen gas generating means and oxygen in exhaust gas flowing in a scrubber to convert into electric energy in the gas diffusion electrode. The purification apparatus of the combustion exhaust gas in any one of 5.
前記気液接触部が、面積がほぼ同じ中央開口型棚板と中央無開口型棚板とで構成され、前記中央開口型棚板と中央無開口型棚板が相互に所定の間隔を置いて交互に配置された請求項1〜6のいずれかに記載の燃焼排ガス浄化処理装置。   The gas-liquid contact portion is composed of a central opening type shelf plate and a central non-opening type shelf plate having substantially the same area, and the central opening type shelf plate and the central non-opening type shelf plate are spaced apart from each other by a predetermined distance. The combustion exhaust gas purification treatment device according to any one of claims 1 to 6, which is arranged alternately. さらに、前記廃液貯留槽の廃液中に配設された少なくとも一対のガス拡散電極を有し、該一対のガス拡散電極の陽極と前記第一スクラバのガス拡散電極とが電気的に接続され、さらに、該一対のガス拡散電極の陰極と前記第二スクラバのガス拡散電極とが電気的に接続され、前記廃液中の一対のガス拡散電極に直流電圧が印加されて前記燃焼排ガスの浄化処理を行う請求項1〜7のいずれかに記載の燃焼排ガス浄化処理装置。   Furthermore, it has at least a pair of gas diffusion electrodes disposed in the waste liquid of the waste liquid storage tank, the anode of the pair of gas diffusion electrodes and the gas diffusion electrode of the first scrubber are electrically connected, The cathode of the pair of gas diffusion electrodes and the gas diffusion electrode of the second scrubber are electrically connected, and a DC voltage is applied to the pair of gas diffusion electrodes in the waste liquid to perform the purification treatment of the combustion exhaust gas. The combustion exhaust gas purification processing apparatus according to any one of claims 1 to 7. 前記燃焼排ガスの供給側流路内及び前記スクラバの気液接触部に、波長2〜15μmの赤外線を放射する赤外線放射材が配置されて前記燃焼排ガスの浄化を促す請求項1〜8のいずれかに記載の燃焼排ガス浄化処理装置。   The infrared emission material which radiates | emits infrared rays with a wavelength of 2-15 micrometers is arrange | positioned in the gas-liquid contact part of the said combustion exhaust gas supply side flow path, and the said scrubber, The promotion of the purification | cleaning of the said combustion exhaust gas is carried out Combustion exhaust gas purification treatment apparatus according to claim 1. 前記ガス拡散電極が、多孔質活性炭素又は多孔質活性炭素及び多孔質金属酸化物に、白金族金属、金、銀、銅並びにVIII族遷移金属からなる群から選択された少なくとも一種の単体又はその合金の微粒子を担持させたシートを含んでなる請求項1〜9のいずれかに記載の燃焼排ガス浄化処理装置。   The gas diffusion electrode is at least one simple substance selected from the group consisting of porous activated carbon or porous activated carbon and porous metal oxide, platinum group metal, gold, silver, copper, and group VIII transition metal, or The combustion exhaust gas purification processing apparatus according to any one of claims 1 to 9, further comprising a sheet carrying fine particles of the alloy. 前記気液接触部に供給される水素ガスは、炭化水素燃料を分解して得られる水性ガスである請求項1〜10のいずれかに記載の燃焼排ガス浄化処理装置。   The combustion exhaust gas purification processing apparatus according to any one of claims 1 to 10, wherein the hydrogen gas supplied to the gas-liquid contact portion is a water gas obtained by decomposing hydrocarbon fuel. さらに、遠心分離器、微細加圧空気気泡による微粒子収着分離機構を備えた沈降濃縮機、及び濾過装置からなる群から選択された液中固形物の分離回収手段を備えることを特徴とする請求項1〜11のいずれかに記載の燃焼排ガス浄化処理装置。   Furthermore, it comprises a separation and recovery means for solid matter in a liquid selected from the group consisting of a centrifugal separator, a sedimentation concentrator equipped with a fine particle sorption separation mechanism using fine pressurized air bubbles, and a filtration device. The combustion exhaust gas purification processing apparatus according to any one of Items 1 to 11. 請求項1〜12のいずれかに記載の燃焼排ガス浄化処理装置と、海水を取水して海水利用システムに送給する取水手段と、当該取水手段から供給される取水海水と当該燃焼排ガス浄化処理装置から排出される酸性廃液とを混合してpH5〜7.3の海水利用システム用水に調整する用水調整手段と、を備える海洋生物殺滅処理装置。   The combustion exhaust gas purification treatment apparatus according to any one of claims 1 to 12, water intake means for taking seawater and feeding it to a seawater utilization system, intake seawater supplied from the water intake means, and the combustion exhaust gas purification treatment apparatus A marine organism killing treatment apparatus comprising: a water adjusting unit that mixes with an acidic waste liquid discharged from the water to adjust to a seawater utilization system water having a pH of 5 to 7.3.
JP2007291727A 2007-11-09 2007-11-09 Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor Pending JP2009112996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291727A JP2009112996A (en) 2007-11-09 2007-11-09 Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291727A JP2009112996A (en) 2007-11-09 2007-11-09 Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor

Publications (2)

Publication Number Publication Date
JP2009112996A JP2009112996A (en) 2009-05-28
JP2009112996A5 true JP2009112996A5 (en) 2010-12-24

Family

ID=40780732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291727A Pending JP2009112996A (en) 2007-11-09 2007-11-09 Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor

Country Status (1)

Country Link
JP (1) JP2009112996A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016781A1 (en) * 2009-08-03 2011-02-10 The Maritime And Port Authority Of Singapore Emissions control system and method
JP6003245B2 (en) * 2011-06-24 2016-10-05 株式会社Ihi Exhaust gas treatment method and treatment apparatus
JP5996351B2 (en) * 2012-09-27 2016-09-21 中部電力株式会社 Sea life removal method in heat exchanger
CN107427768A (en) * 2015-03-04 2017-12-01 三星重工业株式会社 Polluter reduces device and method
EP3299342B1 (en) * 2015-05-18 2024-01-24 Sunrui Marine Environment Engineering Co., Ltd. Dehydrogenation tank for ballast water treatment system having same
US10781112B2 (en) 2015-05-18 2020-09-22 Sunrui Marine Environment Engineering Co., Ltd. Dehydrogenation tank and ballast water treatment system having the same
KR20190073546A (en) * 2017-06-28 2019-06-26 후지 덴키 가부시키가이샤 Electrolytic Treatment Apparatus and Treatment System
JP7026515B2 (en) * 2018-01-23 2022-02-28 三菱重工業株式会社 Wet exhaust gas desulfurization equipment and wet exhaust gas desulfurization method
CN108837700A (en) * 2018-09-13 2018-11-20 宁波工程学院 A kind of marine diesel waste gas dedusting desulphurization system

Similar Documents

Publication Publication Date Title
JP2009112996A5 (en)
JP2009112996A (en) Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor
EP2937131B1 (en) Exhaust gas purifying apparatus
US5439577A (en) Electrochemical device for generating hydroxyl free radicals and oxidizing chemical substances dissolved in water
JP2004089770A (en) Method and apparatus for cleaning exhaust gas
KR101803368B1 (en) Emissions control system and method
JP2002317287A (en) Electrolytic cell for preparation of hydrogen peroxide and method for producing hydrogen peroxide
KR101436138B1 (en) A seawater electrolysi and fuel cell complex system
CN110980895B (en) Method and device for electro-adsorption and degradation removal of antibiotics from water
KR101220891B1 (en) A porous 3-dimensional bipolar electrode, an electrolyzer having the porous 3-dimensional bipolar electrode, and water treatment method using the electrolyzer having the porous 3-dimensional bipolar electrode
CN105236628B (en) Electrical enhanced photocatalysis degraded sewage device
CN112194236A (en) Method for treating salt-containing degradation-resistant wastewater by activating peroxymonosulfate through biochar-copper oxide composite material
EP3895785A1 (en) Unit for desalination and greenhouse gas sequestration
KR101289848B1 (en) Byproduct generated during the electrolysis of hydrogen processing unit
JP5891358B2 (en) Energy system
CN102246712A (en) Method of expelling ectoparasites parasitic on breeding fish
CN111233224A (en) Treatment method for simultaneously removing nitrogen, phosphorus and antibiotics in mariculture wastewater and sterilizing
EP2663531B1 (en) Electrochemical water processing method and unit with electrochemical conditioning cell
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
JP2000126773A (en) Apparatus for producing hypochlorite solution and water treatment apparatus
CN201777951U (en) Sewage treatment system
KR102492246B1 (en) Hybrid water treatment system for red tide removal and perchlorate control and water treatment method using the same
JP4760120B2 (en) Apparatus and method for treating water containing hardly biodegradable organic matter
CN103420451B (en) Electrochemical multiple oxidization sewage treatment equipment
WO2023181794A1 (en) Carbon dioxide fixation method and carbon dioxide fixation system