JP2009108335A - MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY - Google Patents

MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY Download PDF

Info

Publication number
JP2009108335A
JP2009108335A JP2007278314A JP2007278314A JP2009108335A JP 2009108335 A JP2009108335 A JP 2009108335A JP 2007278314 A JP2007278314 A JP 2007278314A JP 2007278314 A JP2007278314 A JP 2007278314A JP 2009108335 A JP2009108335 A JP 2009108335A
Authority
JP
Japan
Prior art keywords
powder
oxide
content
magnetic recording
recording film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007278314A
Other languages
Japanese (ja)
Inventor
Sohei Nonaka
荘平 野中
Shozo Komiyama
昌三 小見山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007278314A priority Critical patent/JP2009108335A/en
Publication of JP2009108335A publication Critical patent/JP2009108335A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a Co-base sintered alloy sputtering target for forming a magnetic recording film of low relative magnetic permeability. <P>SOLUTION: In the manufacturing method of the Co-base sintered alloy sputtering target for forming the magnetic recording film of low relative magnetic permeability, Co-Cr-Pt alloy powder containing high Cr, Co-Cr-Pt alloy powder containing low Cr with less Cr content than that of the Co-Cr-Pt alloy powder containing high Cr, Pt powder and non-magnetic oxide powder are mixed so as to get the composition containing 0.5-15 mol% non-magnetic oxide, 4-20 mol% Cr, and 5-25 mol% Pt and the balance Co and inevitable impurities, and the mixture is pressure-sintered. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するためのスパッタリングターゲットの製造方法に関するものである。   The present invention relates to a method of manufacturing a sputtering target for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium.

ハードディスク装置は一般にコンピューターやデジタル家電等の外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、従来の面内記録方式と異なり、原理的に高密度化するほど記録磁化が安定すると言われており、実用化が開始された。この垂直磁気記録方式のハードディスク媒体の磁気記録層に適用する材料の有力な候補としてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、この磁気記録膜は高性能な磁気記録膜であることが必要である。これに適用可能な磁気記録膜の一つとしてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、このCoCrPt−SiOグラニュラ磁気記録膜はCrおよびPtを含むCo基焼結合金相と二酸化珪素相の混合相を有するCo基焼結合金スパッタリングターゲットを用いてマグネトロンスパッタ法により作製することが知られている(非特許文献1参照)。
このCo基焼結合金スパッタリングターゲットは、通常、二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、ホットプレスまたは熱間静水圧プレスなどの方法で加圧焼結することにより作製されることが知られている(特許文献1、特許文献2などを参照)。
さらに、前記非磁性酸化物はSiOのほかにTiO、Cr、TiO、Ta、Al、BeO、MgO、ThO、ZrO、CeO、Yなどの非磁性酸化物が使用できることが知られている(特許文献3、4参照)。
「富士時報」Vol.75No.3 2002(169〜172ページ) 特開2001‐236643号公報 特開2004‐339586号公報 特開2003‐36525号公報 特開2006‐24346号公報
Hard disk devices are generally used as external recording devices such as computers and digital home appliances, and further improvement in recording density is required. Therefore, in recent years, a perpendicular magnetic recording system that can realize ultra-high density recording has attracted attention. Unlike the conventional in-plane recording system, this perpendicular magnetic recording system is said to have a stable recording magnetization as the density is increased in principle, and its practical use has started. A CoCrPt—SiO 2 granular magnetic recording film has been proposed as a promising candidate for a material to be applied to the magnetic recording layer of this perpendicular magnetic recording type hard disk medium, and this magnetic recording film is a high-performance magnetic recording film. is necessary. As one of the magnetic recording films applicable to this, a CoCrPt—SiO 2 granular magnetic recording film has been proposed. This CoCrPt—SiO 2 granular magnetic recording film has a Co-based sintered alloy phase containing Cr and Pt and silicon dioxide. It is known to produce by a magnetron sputtering method using a Co-based sintered alloy sputtering target having a mixed phase (see Non-Patent Document 1).
This Co-based sintered alloy sputtering target usually comprises silicon dioxide powder, Cr powder, Pt powder and Co powder, silicon dioxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%. It is known that it is prepared by mixing and mixing so as to have a composition consisting of Co: the balance: Co, and then pressure sintering by a method such as hot pressing or hot isostatic pressing (patent) (See Reference 1, Patent Reference 2, etc.).
Furthermore, the non-magnetic oxide is TiO Besides SiO 2, Cr 2 O 3, TiO 2, Ta 2 O 5, Al 2 O 3, BeO 2, MgO, ThO 2, ZrO 2, CeO 2, Y 2 O It is known that nonmagnetic oxides such as 3 can be used (see Patent Documents 3 and 4).
“Fuji Times” Vol. 75No. 3 2002 (pages 169-172) Japanese Patent Laid-Open No. 2001-236643 JP 2004-339586 A JP 2003-36525 A JP 2006-24346 A

しかし、前記従来の方法で作製したCo基焼結合金スパッタリングターゲットは比透磁率が高いために、ターゲット上空に漏れ出る磁束が少ないマグネトロンスパッタリングに適用した際には成膜速度が低下しさらにターゲットの利用効率が低下するという問題点があった。したがって、一層比透磁率の低いCo基焼結合金からなるスパッタリングターゲットが求められていた。   However, since the Co-based sintered alloy sputtering target produced by the conventional method has a high relative magnetic permeability, when applied to magnetron sputtering where the magnetic flux leaking over the target is small, the film formation rate decreases and the target There was a problem that the utilization efficiency decreased. Therefore, a sputtering target made of a Co-based sintered alloy having a lower relative permeability has been demanded.

そこで、本発明者は、一層比透磁率の低いCo基焼結合金スパッタリングターゲットを得るべく研究を行なったところ、
原料粉末として純Co粉末および純Cr粉末を使用することなく、原料粉末として高Cr含有Co−Cr−Pt合金粉末および前記高Cr含有Co−Cr−Pt合金粉末よりもCr含有量の少ない低Cr含有Co−Cr−Pt合金粉末を使用し、高Cr含有Co−Cr−Pt合金粉末、低Cr含有Co−Cr−Pt合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することにより得られた磁気記録膜形成用Co基焼結合金スパッタリングターゲットは比透磁率が一層低くなる、という知見を得たのである。
Therefore, the present inventor conducted research to obtain a Co-based sintered alloy sputtering target having a lower relative permeability.
Without using pure Co powder and pure Cr powder as raw material powder, high Cr content Co-Cr-Pt alloy powder as raw material powder and low Cr content with less Cr content than said high Cr content Co-Cr-Pt alloy powder Containing Co—Cr—Pt alloy powder, high Cr content Co—Cr—Pt alloy powder, low Cr content Co—Cr—Pt alloy powder, Pt powder and nonmagnetic oxide powder, nonmagnetic oxide: 0 .5-15 mol%, Cr: 4-20 mol%, Pt: 5-25 mol%, with the balance being a component composition consisting of Co and inevitable impurities, mixed and then pressure sintered The Co-based sintered alloy sputtering target for forming a magnetic recording film obtained by doing so has the knowledge that the relative permeability is further reduced.

この発明は、かかる知見に基づいてなされたものであって、
(1)高Cr含有Co−Cr−Pt合金粉末、前記高Cr含有Co−Cr−Pt合金粉末よりもCr含有量の少ない低Cr含有Co−Cr−Pt合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結する比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) High Cr content Co—Cr—Pt alloy powder, low Cr content Co—Cr—Pt alloy powder, Pt powder and non-magnetic oxide with less Cr content than the high Cr content Co—Cr—Pt alloy powder The powder is blended so that it contains a nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the balance is composed of Co and inevitable impurities. And a method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability, which is subjected to pressure sintering after mixing.

この発明の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法で使用する前記高Cr含有Co−Cr−Pt合金粉末は、Cr:50〜70原子%を含有し、残部がCoからなる成分組成を有する粉末であることが好ましく、また、前記低Cr含有Co−Cr−Pt合金粉末はCr:5〜15原子%、Pt:0.01〜2原子%を含有し、残部がCoからなる成分組成を有する粉末であることが好ましい。また、前記非磁性酸化物粉末は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであり、特に二酸化珪素、酸化タンタル、酸化チタンのうちのいずれかであることが好ましいことはすでに知られている。したがって、この発明は、
(2)前記高Cr含有Co−Cr−Pt合金粉末は、Cr:50〜70原子%、Pt:0.01〜2原子%を含有し、残部がCoからなる成分組成を有する粉末であり、
前記低Cr含有Co−Cr−Pt合金粉末は、Cr:5〜15原子%、Pt:0.01〜2原子%を含有し、残部がCoからなる成分組成を有する粉末であり、
前記非磁性酸化物粉末は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかである前記(1)記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
The high Cr-containing Co—Cr—Pt alloy powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative permeability according to the present invention contains Cr: 50 to 70 atomic%, The balance is preferably a powder having a component composition of Co, and the low Cr-containing Co—Cr—Pt alloy powder contains Cr: 5 to 15 atomic%, Pt: 0.01 to 2 atomic%. The powder is preferably a powder having a component composition of Co. The nonmagnetic oxide powder is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide, and particularly silicon dioxide, tantalum oxide. It is already known that any one of titanium oxide is preferable. Therefore, the present invention
(2) The high Cr content Co—Cr—Pt alloy powder is a powder having a component composition containing Cr: 50 to 70 atomic%, Pt: 0.01 to 2 atomic%, with the balance being Co.
The low Cr-containing Co—Cr—Pt alloy powder is a powder having a component composition containing Cr: 5 to 15 atomic%, Pt: 0.01 to 2 atomic%, with the balance being Co.
The non-magnetic oxide powder is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. The manufacturing method of a Co-based sintered alloy sputtering target for forming a low magnetic recording film is characterized.

前記加圧焼結は、具体的には、ホットプレスまたは熱間静水圧プレスであることが好ましい。したがって、この発明は、
(3)前記加圧焼結は、ホットプレスまたは熱間静水圧プレスである前記(1)または(2)記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
Specifically, the pressure sintering is preferably hot pressing or hot isostatic pressing. Therefore, the present invention
(3) The method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability according to (1) or (2), wherein the pressure sintering is hot pressing or hot isostatic pressing. , Has characteristics.

この発明の磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において、原料粉末としていずれもPtを含有する高Cr含有Co−Cr−Pt合金粉末および低Cr含有Co−Cr−Pt合金粉末を使用する理由は、原料粉末としてさらに添加したPt粉末と高Cr含有Co−Cr−Pt合金粉末および低Cr含有Co−Cr−Pt合金粉末との間のPt濃度勾配が緩和され、PtがCoCr合金中に大量に拡散してターゲットの透磁率が高くなるのを抑制するからである。
また、この発明の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において原料粉末として使用するCo−Cr−Pt合金粉末をCr含有量の異なる高Cr含有Co−Cr−Pt合金粉末と低Cr含有Co−Cr−Pt合金粉末とに分けて添加する理由を説明すると、高Cr含有Co−Cr−Pt合金粉末はCoとCrが非磁性体の金属間化合物を生成する組成域であることから低透磁率化に有効であり、なおかつ金属間化合物中のCrは酸化しにくくなってパーティクルの原因となるCrの酸化凝集体を生じにくくすることから、出発原料粉末として非常に有効であるからである。しかし、この高Cr含有Co−Cr−Pt合金粉末を使用する際に、目標のターゲット組成を得るためには残量のCoを純Co粉末で供給すると透磁率が上昇する。これを抑制するためにCoに少量のCrを加えて、ある程度透磁率を下げた低Cr組成の低Cr含有Co−Cr−Pt合金粉末からCoを供給することが有効であるからである。
In the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film of the present invention, a high Cr-containing Co—Cr—Pt alloy powder and a low Cr-containing Co—Cr—Pt alloy powder both containing Pt as a raw material powder The reason for using Pt is that the Pt concentration gradient between the Pt powder further added as the raw material powder and the high Cr-containing Co—Cr—Pt alloy powder and the low Cr-containing Co—Cr—Pt alloy powder is relaxed, and Pt becomes CoCr This is because a large amount of diffusion into the alloy is suppressed to increase the magnetic permeability of the target.
In addition, the Co—Cr—Pt alloy powder used as a raw material powder in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative permeability according to the present invention is a high Cr content Co—Cr having a different Cr content. Explaining the reason why it is added separately to the -Pt alloy powder and the low Cr content Co-Cr-Pt alloy powder, the high Cr content Co-Cr-Pt alloy powder produces a non-magnetic intermetallic compound of Co and Cr. As a starting material powder, it is effective for lowering the magnetic permeability of the composition range, and Cr in the intermetallic compound is difficult to oxidize, making it difficult to produce an oxidized aggregate of Cr that causes particles. This is because it is very effective. However, when this high Cr-containing Co—Cr—Pt alloy powder is used, the magnetic permeability increases when the remaining amount of Co is supplied as pure Co powder in order to obtain a target composition. In order to suppress this, it is effective to add Co from a low Cr-containing Co—Cr—Pt alloy powder having a low Cr composition in which a small amount of Cr is added to Co and the permeability is lowered to some extent.

次に、この発明の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用する高Cr含有Co−Cr−Pt合金粉末の成分組成をCr:50〜70原子%、Pt:0.01〜2原子%を含有し、残部がCoからなる成分組成とし、一方、前記低Cr含有Co−Cr−Pt合金粉末の成分組成をCr:5〜15原子%、Pt:0.01〜2原子%を含有し、残部がCoからなる成分組成に限定した理由を説明する。
高Cr含有Co−Cr−Pt合金粉末のCrを50〜70原子%としたのは、この範囲を外れると、粉末中のCoCrの金属間化合物が少なくなり、Cr酸化防止効果が小さくなるので好ましくないからであり、一方、低Cr含有Co−Cr−Pt合金粉末のCrを5〜15原子%としたのは、5原子%未満ではCo合金粉末の透磁率が高くなりすぎるので好ましくなく、15原子%を超えて含有するとターゲット中のCrが高Cr含有Co−Cr−Pt合金粉末よりも低Cr含有Co−Cr−Pt合金粉末の方に多く存在することとなり、低透磁率化およびCr酸化防止の観点から好ましくない理由によるものである。
また、高Cr含有Co−Cr−Pt合金粉末および低Cr含有Co−Cr−Pt合金粉末に含まれるPtをいずれも0.01〜2原子%としたのは、Ptが0.01原子%未満では他の原料粉末として添加されるPt粉末のPtが高Cr含有Co−Cr−Pt合金粉末および低Cr含有Co−Cr−Pt合金粉末に拡散侵入することを抑制することができないからであり、一方、2原子%を越えて含有すると、高Cr含有Co−Cr−Pt合金粉末および低Cr含有Co−Cr−Pt合金粉末の透磁率が上昇するので好ましくないからである。
Next, the component composition of the high Cr-containing Co—Cr—Pt alloy powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative permeability according to the present invention is Cr: 50 to 70 atomic%. , Pt: 0.01 to 2 atomic%, with the balance being Co, while the component composition of the low Cr-containing Co—Cr—Pt alloy powder is Cr: 5 to 15 atomic%, Pt: The reason why the content is limited to the component composition containing 0.01 to 2 atomic% and the balance being Co will be described.
The reason why the Cr content of the high Cr-containing Co—Cr—Pt alloy powder is set to 50 to 70 atomic% is that if it is out of this range, the intermetallic compound of CoCr in the powder is reduced, and the Cr oxidation preventing effect is reduced. On the other hand, the Cr content of the low Cr-containing Co—Cr—Pt alloy powder is set to 5 to 15 atomic%. If the Cr content is less than 5 atomic%, the magnetic permeability of the Co alloy powder becomes too high. When the content exceeds the atomic%, Cr in the target is present more in the low Cr content Co—Cr—Pt alloy powder than in the high Cr content Co—Cr—Pt alloy powder. This is due to an unfavorable reason from the viewpoint of prevention.
In addition, the Pt contained in the high Cr content Co—Cr—Pt alloy powder and the low Cr content Co—Cr—Pt alloy powder is 0.01 to 2 atomic% in both cases. Then, it is because Pt of Pt powder added as another raw material powder cannot suppress diffusion and penetration into the high Cr-containing Co—Cr—Pt alloy powder and the low Cr-containing Co—Cr—Pt alloy powder, On the other hand, if the content exceeds 2 atomic%, the magnetic permeability of the high Cr-containing Co—Cr—Pt alloy powder and the low Cr-containing Co—Cr—Pt alloy powder increases, which is not preferable.

つぎに、この発明の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用する高Cr含有Co−Cr−Pt合金粉末および低Cr含有Co−Cr−Pt合金粉末の粒径は、50%粒径が150μmを越えると混合粉砕時に粉砕が十分に進まないことから、高Cr含有Co−Cr−Pt合金粉末の粒径は50%粒径が150μm以下であることが好ましく、微細であるほど好ましいところから分級などにより50%粒径が75μm以下にすることが一層好ましく、さらに50%粒径が45μm以下とすることがさらに一層好ましい。さらにPt粉末はいずれも50%粒径が40μm以下(一層好ましくは50%粒径が30μm以下)、非磁性酸化物粉末は50%粒径が20μm以下(一層好ましくは50%粒径が10μm以下)とすることが好ましい。前記原料粉末の混合は不活性ガス雰囲気中で行なうことが好ましい。これは混合中にCrが酸素と結合してクロム酸化物凝集体が形成されるのをより一層防止するからである。   Next, a high Cr-containing Co—Cr—Pt alloy powder and a low Cr-containing Co—Cr—Pt alloy powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative permeability according to the present invention. When the 50% particle size exceeds 150 μm, the pulverization does not proceed sufficiently during the mixing and pulverization. Therefore, the particle size of the high Cr-containing Co—Cr—Pt alloy powder is 50% particle size of 150 μm or less. It is more preferable that the finer the finer, the more preferable it is to make the 50% particle size 75 μm or less by classification or the like, and it is even more preferable that the 50% particle size be 45 μm or less. Furthermore, Pt powder has a 50% particle size of 40 μm or less (more preferably, 50% particle size is 30 μm or less), and nonmagnetic oxide powder has a 50% particle size of 20 μm or less (more preferably, 50% particle size is 10 μm or less). ) Is preferable. The raw material powder is preferably mixed in an inert gas atmosphere. This is because it further prevents Cr from being combined with oxygen to form chromium oxide aggregates during mixing.

この発明は、一層比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットを提供することができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得るものである。   The present invention can provide a Co-based sintered alloy sputtering target for forming a magnetic recording film having a lower relative permeability, and can greatly contribute to the development of industries such as computers and digital home appliances.

原料粉末として、いずれも50%粒径が35μmを有する表1に示される成分組成の高Cr含有Co−Cr−Pt合金粉末A〜Cをガスアトマイズ法により作製した。さらに原料粉末として、いずれも50%粒径が35μmを有する表2に示される成分組成の低Cr含有Co−Cr−Pt合金粉末a〜cをガスアトマイズ法により作製した。   As raw material powders, high Cr-containing Co—Cr—Pt alloy powders A to C having the composition shown in Table 1 each having a 50% particle size of 35 μm were prepared by a gas atomization method. Furthermore, low Cr-containing Co—Cr—Pt alloy powders a to c having the component composition shown in Table 2 each having a 50% particle size of 35 μm were prepared as a raw material powder by a gas atomization method.

Figure 2009108335
Figure 2009108335


Figure 2009108335
Figure 2009108335

さらに市販の50%粒径:10μmのCo粉末、50%粒径:15μmのPt粉末を用意し、さらに非磁性酸化物粉末として50%粒径:3μmのSiO粉末、50%粒径:3μmのTiO粉末および50%粒径:3μmのTa粉末を用意し、さらに50%粒径:15μmのCr粉末を用意した。 Furthermore, commercially available 50% particle size: 10 μm Co powder and 50% particle size: 15 μm Pt powder were prepared. Further, as nonmagnetic oxide powder, 50% particle size: 3 μm SiO 2 powder, 50% particle size: 3 μm TiO 2 powder and 50% particle size: 3 μm Ta 2 O 5 powder were prepared, and further 50% particle size: 15 μm Cr powder was prepared.

実施例1
表1に示される高Cr含有Co−Cr−Pt粉末A、表2に示される低Cr含有Co−Cr−Pt粉末a、Pt粉末およびSiO粉末を表3に示される組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表3に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより本発明法1を実施し、前記本発明法1で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表3に示した。
Example 1
The high Cr content Co—Cr—Pt powder A shown in Table 1 and the low Cr content Co—Cr—Pt powder a, Pt powder and SiO 2 powder shown in Table 2 are blended so as to have the composition shown in Table 3. Then, the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, the atmosphere in the container is replaced with an Ar gas atmosphere, and then the container is sealed, and this container is sealed with a ball mill. The mixed powder was produced by rotating for a time.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 3 by vacuum hot pressing in a vacuum atmosphere under the conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. The present invention method 1 was carried out by cutting the hot press body to produce a target having dimensions of diameter: 152.4 mm and thickness: 6 mm. The maximum relative permeability in the in-plane direction of the target was measured, and the results are shown in Table 3.

従来例1
先に用意したCo粉末、Pt粉末、SiO粉末およびCr粉末を表3に示される割合で配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表3に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより従来法1を実施し、従来法1で得られたターゲットの面内方向の最大比透磁率を測定し、その結果を表3に示した。
Conventional example 1
The previously prepared Co powder, Pt powder, SiO 2 powder and Cr powder are blended in the proportions shown in Table 3, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium. The atmosphere inside was replaced with an Ar gas atmosphere, and then the container was sealed, and this container was rotated with a ball mill for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 3 by vacuum hot pressing in a vacuum atmosphere under the conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. A conventional method 1 is carried out by producing a target and cutting the hot press body to prepare a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction was measured, and the results are shown in Table 3.

Figure 2009108335
Figure 2009108335

表3に示される結果から、本発明法1で作製したターゲットと従来法1で作製したターゲットを比較すると、得られたターゲットの成分組成は同じであっても、本発明法1で作製したターゲットは従来法1で作製したターゲットよりも面内方向の最大比透磁率が低いことがわかる。   From the results shown in Table 3, when comparing the target prepared by the method 1 of the present invention and the target prepared by the conventional method 1, the target prepared by the method 1 of the present invention was obtained even though the component composition of the obtained target was the same. Shows that the maximum relative permeability in the in-plane direction is lower than that of the target produced by the conventional method 1.

実施例2
表1に示される高Cr含有Co−Cr−Pt粉末B、表2に示される低Cr含有Co−Cr−Pt粉末b、Pt粉末およびTiO粉末を表4に示される組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表4に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより本発明法2を実施し、前記本発明法2で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表4に示した。
Example 2
The high Cr content Co—Cr—Pt powder B shown in Table 1 and the low Cr content Co—Cr—Pt powder b, Pt powder and TiO 2 powder shown in Table 2 are blended so as to have the composition shown in Table 4. Then, the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, the atmosphere in the container is replaced with an Ar gas atmosphere, and then the container is sealed, and this container is sealed with a ball mill. The mixed powder was produced by rotating for a time.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 4 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. The present invention method 2 was carried out by cutting the hot press body to produce a target having dimensions of diameter: 152.4 mm and thickness: 6 mm. The maximum relative permeability in the in-plane direction of the target was measured, and the result is shown in Table 4.

従来例2
先に用意したCo粉末、Pt粉末、TiO粉末およびCr粉末を表4に示される割合で配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表4に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより従来法2を実施し、前記従来法2で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表4に示した。
Conventional example 2
The previously prepared Co powder, Pt powder, TiO 2 powder and Cr powder are blended in the proportions shown in Table 4, and the resulting blended powder is put into a 10-liter container together with zirconia balls as a grinding medium. The atmosphere inside was replaced with an Ar gas atmosphere, and then the container was sealed, and this container was rotated with a ball mill for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 4 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. A conventional method 2 is carried out by cutting the hot-pressed body to produce a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction was measured and the results are shown in Table 4.

Figure 2009108335
Figure 2009108335

表4に示される結果から、本発明法2で作製したターゲットと従来法2で作製したターゲットを比較すると、得られたターゲットの成分組成は同じであっても、本発明法2で作製したターゲットは従来法2で作製したターゲットよりも面内方向の最大比透磁率が低いことがわかる。   From the results shown in Table 4, when the target produced by the method 2 of the present invention and the target produced by the conventional method 2 are compared, the target produced by the method 2 of the present invention is obtained even though the component composition of the obtained target is the same. Shows that the maximum relative magnetic permeability in the in-plane direction is lower than that of the target produced by the conventional method 2.

実施例3
表1に示される高Cr含有Co−Cr−Pt粉末C、表2に示される低Cr含有Co−Cr−Pt粉末c、Pt粉末およびTa粉末を表5に示される組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表5に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより本発明法3を実施し、前記本発明法3で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表5に示した。
Example 3
The high Cr content Co—Cr—Pt powder C shown in Table 1 and the low Cr content Co—Cr—Pt powder c, Pt powder and Ta 2 O 5 powder shown in Table 2 have the composition shown in Table 5. And the resulting blended powder together with zirconia balls as a grinding medium is put into a 10-liter container, the atmosphere in the container is replaced with an Ar gas atmosphere, the container is then sealed, and the container is sealed with a ball mill. Was mixed for 12 hours to prepare a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 5 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. The method of the present invention 3 was carried out by cutting the hot-pressed body to produce a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction of the target was measured, and the results are shown in Table 5.

従来例3
先に用意したCo粉末、Pt粉末、Ta粉末およびCr粉末を表5に示される割合で配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉し、この容器をボールミルで12時間回転させることにより混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1000℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより表5に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切加工して直径:152.4mm、厚さ:6mmの寸法を有するターゲットを作製することにより従来法3を実施し、前記従来法3で作製したターゲットの面内方向の最大比透磁率を測定し、その結果を表5に示した。
Conventional example 3
The previously prepared Co powder, Pt powder, Ta 2 O 5 powder and Cr powder were blended in the proportions shown in Table 5, and the obtained blended powder was put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed, and the mixed powder was produced by rotating the container with a ball mill for 12 hours.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 5 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1000 ° C., pressure: 35 MPa, and 3 hours. A conventional method 3 is carried out by cutting the hot-pressed body to produce a target having a diameter of 152.4 mm and a thickness of 6 mm. The maximum relative permeability in the in-plane direction was measured and the results are shown in Table 5.

Figure 2009108335
Figure 2009108335

表5に示される結果から、本発明法3で作製したターゲットと従来法3で作製したターゲットを比較すると、得られたターゲットの成分組成は同じであっても、本発明法3で作製したターゲットは従来法3で作製したターゲットよりも面内方向の最大比透磁率が低いことがわかる。   From the results shown in Table 5, when the target produced by the method 3 of the present invention and the target produced by the conventional method 3 are compared, the target produced by the method 3 of the present invention is the same even though the component composition of the obtained target is the same. Shows that the maximum relative magnetic permeability in the in-plane direction is lower than that of the target produced by the conventional method 3.

Claims (3)

高Cr含有Co−Cr−Pt合金粉末、前記高Cr含有Co−Cr−Pt合金粉末よりもCr含有量の少ない低Cr含有Co−Cr−Pt合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することを特徴とする比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 A high Cr content Co—Cr—Pt alloy powder, a low Cr content Co—Cr—Pt alloy powder, a Pt powder and a nonmagnetic oxide powder having a lower Cr content than the high Cr content Co—Cr—Pt alloy powder, Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, with the balance being a component composition consisting of Co and inevitable impurities, mixed and mixed A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability, which is then subjected to pressure sintering. 前記高Cr含有Co−Cr−Pt合金粉末は、Cr:50〜70原子%、Pt:0.01〜2原子%を含有し、残部がCoからなる成分組成を有する粉末であり、
前記低Cr含有Co−Cr−Pt合金粉末は、Cr:5〜15原子%、Pt:0.01〜2原子%を含有し、残部がCoからなる成分組成を有する粉末であり、
前記非磁性酸化物粉末は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであることを特徴とする請求項1記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。
The high Cr content Co—Cr—Pt alloy powder is a powder having a component composition containing Cr: 50 to 70 atomic%, Pt: 0.01 to 2 atomic%, with the balance being Co.
The low Cr-containing Co—Cr—Pt alloy powder is a powder having a component composition containing Cr: 5 to 15 atomic%, Pt: 0.01 to 2 atomic%, with the balance being Co.
2. The nonmagnetic oxide powder is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide and yttrium oxide. A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film having a low relative magnetic permeability.
前記加圧焼結は、ホットプレスまたは熱間静水圧プレスであることを特徴とする請求項1または2記載の比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 3. The method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with a low relative magnetic permeability according to claim 1, wherein the pressure sintering is hot pressing or hot isostatic pressing.
JP2007278314A 2007-10-26 2007-10-26 MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY Withdrawn JP2009108335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278314A JP2009108335A (en) 2007-10-26 2007-10-26 MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278314A JP2009108335A (en) 2007-10-26 2007-10-26 MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY

Publications (1)

Publication Number Publication Date
JP2009108335A true JP2009108335A (en) 2009-05-21

Family

ID=40777144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278314A Withdrawn JP2009108335A (en) 2007-10-26 2007-10-26 MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY

Country Status (1)

Country Link
JP (1) JP2009108335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077665A1 (en) * 2010-12-09 2012-06-14 Jx日鉱日石金属株式会社 Ferromagnetic material sputtering target
CN111020299A (en) * 2019-12-12 2020-04-17 西安航天新宇机电装备有限公司 Co-Al-W-TiO2Alloy bar and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077665A1 (en) * 2010-12-09 2012-06-14 Jx日鉱日石金属株式会社 Ferromagnetic material sputtering target
CN111020299A (en) * 2019-12-12 2020-04-17 西安航天新宇机电装备有限公司 Co-Al-W-TiO2Alloy bar and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009001860A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
TWI537408B (en) Fe-Pt sputtering target with dispersed C particles
JP2009132975A (en) Sputtering target for forming film of perpendicular magnetic recording medium having low relative permeability
WO2012029498A1 (en) Fe-pt-type ferromagnetic material sputtering target
JP5847203B2 (en) Co-Cr-Pt-based sputtering target and method for producing the same
JPWO2014013920A1 (en) Sputtering target for forming a magnetic recording film and method for producing the same
TW201400630A (en) Magnetic material sputtering target and manufacturing method for same
JP5375707B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
JP2009001861A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
TWI615479B (en) Sintered body, sputtering target for forming a magnetic recording film composed of the sintered body
JP2010222639A (en) METHOD OF MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM HAVING LOW MAGNETIC PERMEABILITY
JP5024661B2 (en) Co-based sintered alloy sputtering target for magnetic recording film formation with less generation of particles
TWI608113B (en) Sputtering target
JP2011175725A (en) Sputtering target for forming magnetic recording medium film and method for manufacturing the same
JP2009001862A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP5654121B2 (en) Ferromagnetic material sputtering target containing chromium oxide
JP2009108335A (en) MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY
JP2009108336A (en) MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY
TWI640642B (en) Strong magnetic material sputtering target containing chromium oxide
JP2009293102A (en) Sputtering target for depositing vertical magnetic recording medium film with low relative permeability
JP5024660B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP2011216135A (en) Sputtering target for forming magnetic recording medium film, and manufacturing method thereof
TWI527918B (en) Co-based alloy sputtering target and co-based alloy material for magnetic recording media
WO2021014760A1 (en) Sputtering target member for non-magnetic layer formation
JP2009132976A (en) Sputtering target for depositing perpendicular magnetic recording medium film having low relative magnetic permeability

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104