JP2009107890A - Glass flow path, apparatus for manufacturing glass, and method of manufacturing glass - Google Patents

Glass flow path, apparatus for manufacturing glass, and method of manufacturing glass Download PDF

Info

Publication number
JP2009107890A
JP2009107890A JP2007282516A JP2007282516A JP2009107890A JP 2009107890 A JP2009107890 A JP 2009107890A JP 2007282516 A JP2007282516 A JP 2007282516A JP 2007282516 A JP2007282516 A JP 2007282516A JP 2009107890 A JP2009107890 A JP 2009107890A
Authority
JP
Japan
Prior art keywords
glass
flow path
flow
temperature
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007282516A
Other languages
Japanese (ja)
Inventor
Koji Shimizu
晃治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2007282516A priority Critical patent/JP2009107890A/en
Publication of JP2009107890A publication Critical patent/JP2009107890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow path for simply obtaining high quality glass molded body of a recent high refractive glass or low softening temperature glass which is difficult to select molding conditions by averaging a flow rate or a temperature distribution to reduce occurrence of striae or devitrification in the glass flow path of the glass manufacturing apparatus which usually has a tendency that the flow rate in the vicinity of the center is made higher and to provide the flow path in which the flow rate or the temperature distribution is simply controlled even in a short distance in the conventional glass to make the apparatus small-sized. <P>SOLUTION: The flow path is connected to a molten glass tank to allow molten glass to flow out and is divided into a plurality of regions by two or more partitioning plates. In each of the partitioning plate, a slit for passing the glass stream is provided and directions of the slits of the adjacent partitioning plates differ from each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、所定量のガラス成形体製造する技術に関し、特に光学ガラス成形体を製造する技術に関する。 The present invention relates to a technique for manufacturing a predetermined amount of a glass molded body, and particularly to a technique for manufacturing an optical glass molded body.

近年、デジタルカメラやプロジェクタなどの光学機器の分野においては、小型化、軽量化が要求され、それに伴い、使用レンズ枚数を減らすことができる非球面レンズの需要が増加している。   In recent years, in the field of optical devices such as digital cameras and projectors, there has been a demand for miniaturization and weight reduction, and accordingly, there is an increasing demand for aspheric lenses that can reduce the number of lenses used.

通常、光学系を構成するレンズには一般に球面レンズと非球面レンズがある。多くの球面レンズは、ガラス材料をリヒートプレス成形して得られたガラス成形品を研削研磨することによって製造される。一方、非球面レンズは、加熱軟化したプリフォームを、高精度な成形面をもつ金型でプレス成形し、金型の高精度な成形面の形状をプリフォーム材に転写して得る方法、すなわち、精密プレス成形によって製造されることが主流となっている。 In general, the lenses constituting the optical system generally include a spherical lens and an aspheric lens. Many spherical lenses are manufactured by grinding and polishing a glass molded product obtained by reheat press molding a glass material. On the other hand, an aspheric lens is a method in which a heat-softened preform is press-molded with a mold having a high-precision molding surface, and the shape of the high-precision molding surface of the mold is transferred to a preform material, that is, It is mainly produced by precision press molding.

精密プレス成形用プリフォームとしては、球形、楕円球又は扁平状ガラス成形体(ガラスゴブ)が使用されることが多いが、これらは、原料ガラスを坩堝等の溶融装置で溶融した後、溶融装置に連結されたノズル等から成形型上に流出させ、板状ガラスや棒状ガラス等に成形し、それらをさらに冷間加工することにより製造することができる。また、近年では、ノズル等の流路から流出する溶融ガラスを、シャーにより切断して、或いは表面張力を利用して分離し、例えばガスを噴出する多孔質型上に流下(滴下)させ、浮上成形させることにより、適当な大きさ及び形状のガラスゴブに調整する技術が用いられる。ただし前者ではシャーによる切断の痕跡がガラスゴブに残ることがあるため、近年ではもっぱら後者が用いられることが多い。   As a precision press-molding preform, a spherical, elliptical or flat glass molded body (glass gob) is often used. It can be manufactured by allowing it to flow out from a connected nozzle or the like onto a mold, forming it into plate-like glass or rod-like glass, and further cold-working them. In recent years, molten glass that flows out from a flow path such as a nozzle is cut by a shear or separated by using surface tension, and flows down (drops) onto a porous mold that ejects gas, for example, and then floats. A technique for adjusting the glass gob to an appropriate size and shape by molding is used. However, in the former case, traces of cutting by the shear may remain on the glass gob, so in recent years the latter is often used.

上記のいずれの手段においても、流路からガラスを流出させる場合、そのガラス流の温度、流出量を制御するため、或いは成形の際に生じる脈理、失透等の不良発生を防ぐため、その流路については様々な形状が考案されてきた。近年、高屈折率化等に代表される光学ガラスの改良に伴う液相温度の高温化や粘性の低粘性化、あるいは低温軟化に伴う粘性の低粘性化に対応すべく様々な手法が考案されてきたが、十分には対応し切れていないのが現状である。 In any of the above means, when glass is caused to flow out of the flow path, in order to control the temperature and flow rate of the glass flow, or to prevent defects such as striae and devitrification occurring during molding, Various shapes have been devised for the flow path. In recent years, various methods have been devised to cope with the increase in liquid phase temperature, the decrease in viscosity due to the improvement of optical glass represented by higher refractive index, etc., or the decrease in viscosity due to lower temperature softening. However, the current situation is not enough.

特許文献1には、流路本体の径よりも流出口の径を大きくすることにより、例えば流路末端の溶融ガラス流出口をテーパー状に開くことにより、溶融ガラス流を流路流出口により長い時間滞留させ、ガラスの流下のタイミングを遅延制御することができるノズルが記載されている。   In Patent Document 1, the diameter of the outlet is made larger than the diameter of the channel main body, for example, the molten glass outlet at the end of the channel is opened in a tapered shape so that the molten glass flow is longer than the channel outlet. Nozzles are described that can be held for a period of time to delay the timing of glass flow.

特許文献2には、溶融ガラスが溶融装置から流れ始めて、パイプを通過し、流出口から流出する際に、内部に絞りを加えることにより流速分布を一様にさせ、成分が揮発した変質ガラスの滞留を抑え、脈理の発生を防ぐ方法が記載されている。また、絞りによる流量低下を防止するために、絞り部の温度を絞り部以外よりも高温に制御することが記載されている。   In Patent Document 2, when molten glass starts to flow from a melting apparatus, passes through a pipe, and flows out from an outlet, the flow velocity distribution is made uniform by adding a constriction inside, and the modified glass in which the components are volatilized is disclosed. A method is described that suppresses retention and prevents striae. In addition, it is described that the temperature of the throttle portion is controlled to be higher than that other than the throttle portion in order to prevent the flow rate from being reduced due to the throttle.

特許文献3には、流路の内部に抵抗部材を設けて流路断面の中央を流れるガラス流の流速を低減させ、取得できるガラスゴブの最大重量を増加させる方法が記載されている。   Patent Document 3 describes a method in which a resistance member is provided inside a flow path to reduce the flow velocity of the glass flow flowing through the center of the cross section of the flow path and increase the maximum weight of the glass gob that can be obtained.

削除 Delete

特開平10−36123号公報JP-A-10-36123 特開2003−306334号公報JP 2003-306334 A 特開平8−26737号公報JP-A-8-26737

しかし、上記従来の方法は以下のような問題点を有していた。 However, the above conventional methods have the following problems.

一般的には、溶融ガラスを、流路を介して溶融槽から流出させ、成形型にて成形する場合には、溶融槽から流出口まで漸次低下させた温度制御を行い、成形に適した温度まで溶融ガラス温度を下げる必要がある。ここで、例えば流出後に、ガラス成分の揮発に由来する脈理が発生することがあるが、この場合には流路制御温度を下げることで対応しなければならない。流路外壁からの放熱によって、ノズル内のガラスの温度は内壁面近傍が低く、流路断面重心付近が高くなる。ガラスは温度が低いほど粘性は高くなるため、流路断面におけるガラスの流速分布は内壁面近傍では低く、断面重心付近では高い値を示す。 In general, when molten glass is flowed out of a melting tank through a flow path and molded with a molding die, temperature control is performed by gradually decreasing the temperature from the melting tank to the outlet, and a temperature suitable for molding. It is necessary to lower the molten glass temperature. Here, for example, striae derived from the volatilization of the glass component may occur after the outflow, but in this case, it is necessary to cope with this by lowering the flow path control temperature. Due to the heat radiation from the outer wall of the flow path, the temperature of the glass in the nozzle is lower near the inner wall surface and higher near the center of gravity of the flow path cross section. Since the viscosity of the glass increases as the temperature decreases, the flow velocity distribution of the glass in the cross section of the flow path is low near the inner wall surface and is high near the center of gravity of the cross section.

流路中のガラス流の温度を適正な値とするために、流路壁の温度をフィードバックして制御した場合、流路壁での測定温度は内壁面近傍のガラス温度をほぼ正確に表しているものの、ガラス流中心温度(すなわち流路内の流路断面重心付近を通過するガラス流の温度)とは乖離した低い温度を示す。そのため、液相温度が高いガラスでは、ガラス流中心が揮発を生じない温度に制御しようとすると、流路内壁近傍のガラス温度は結晶を成長する温度、いわゆる失透温度まで低下してしまい、失透の発生を招くことがある。   When the temperature of the flow path wall is fed back and controlled in order to set the temperature of the glass flow in the flow path to an appropriate value, the measured temperature at the flow path wall represents the glass temperature near the inner wall surface almost accurately. However, it shows a low temperature deviating from the glass flow center temperature (that is, the temperature of the glass flow passing near the center of gravity of the cross section of the flow channel in the flow channel). Therefore, in a glass having a high liquidus temperature, if the glass flow center is controlled to a temperature at which volatilization does not occur, the glass temperature in the vicinity of the inner wall of the flow path decreases to a crystal growth temperature, a so-called devitrification temperature. Occurrence of see-through may occur.

特許文献1に記載される流路では、流出口がテーパー状に開き内径が大きくなっているため、内壁面とガラス流中心との温度差および流速差が増大し、上述の傾向がより顕著となる。 In the flow path described in Patent Document 1, since the outlet is tapered and the inner diameter is increased, the temperature difference and the flow velocity difference between the inner wall surface and the glass flow center are increased, and the above-described tendency is more prominent. Become.

特許文献2のような絞りを有する流路を使用した場合、ガラス流の流出速度分布の一様化の効果はあるが、流路断面重心付近の高温のガラス流を取り出すことになるため、流出時に揮発由来の脈理を防止することは困難である。揮発を抑えようと制御温度を下げると、直ちに失透発生・成長を生じやすく、これにより絞り部の流路を塞いでしまい、流出そのものが停止しやすい。実施例では、絞りによる流量低下を抑制するために、絞り部の温度を絞り部以外よりも高温に設定しており、近年の高屈折率ガラスの製造に適した方法ではないことが明らかである。 When a flow path having a restriction as in Patent Document 2 is used, there is an effect of uniforming the flow velocity distribution of the glass flow, but a high temperature glass flow near the center of gravity of the cross section of the flow channel is taken out. Sometimes it is difficult to prevent striae from volatilization. If the control temperature is lowered to suppress volatilization, devitrification is likely to occur and grow immediately, thereby blocking the flow path of the throttle portion, and the outflow itself is likely to stop. In the example, in order to suppress the flow rate drop due to the restriction, the temperature of the restriction part is set to a temperature higher than that other than the restriction part, and it is clear that this is not a method suitable for the production of high refractive index glass in recent years. .

特許文献3に記載される流路は、内部の中央に設けた抵抗部材によって中央部の溶融ガラスの流下速度を遅延させており、流出速度の速度分布の一様化は成されるものの、熱容量の小さい貴金属を主成分とする小さな抵抗部材では、直ちに高温のガラス流中心温度になってしまう。そのため、ガラス流中心温度を下げる効果は得られず、揮発由来の脈理の抑制効果はない。また、特許文献3中の図3のように支持部材を用いて抵抗部材を固定する必要があり、白金等の貴金属を主成分とするガラス流出用流路として加工するのは極めて困難である。また、特許文献3の請求項4にはルツボ底部に複数の流路が設けられ、当該複数の流路の各々の先端部は、互いに連結されることにより一つの流路口を構成していることを特徴としているが、複数流路の各々の中心で高温のガラス流が発生し、流下するガラス流中心温度を低下させる効果は得られない。これらのような複雑な構造を適用すると、ガラスの温度、粘度、濡れ、密度及び液圧に適応するための構造の変更が極めて困難なため、流速や温度分布も複雑化するため、その点においても、より単純な構造が求められていた。   The flow path described in Patent Document 3 delays the flow rate of the molten glass at the center by a resistance member provided at the center of the inside, and the velocity distribution of the outflow rate is made uniform, but the heat capacity In a small resistance member mainly composed of a small noble metal, the glass flow center temperature immediately becomes high. Therefore, the effect of lowering the glass flow center temperature cannot be obtained, and there is no effect of suppressing striae derived from volatilization. Further, as shown in FIG. 3 in Patent Document 3, it is necessary to fix the resistance member using a support member, and it is extremely difficult to process the glass outlet channel mainly containing a noble metal such as platinum. Further, in claim 4 of Patent Document 3, a plurality of flow paths are provided at the bottom of the crucible, and tip ends of the plurality of flow paths are connected to each other to form one flow path opening. However, the high temperature glass flow is generated at the center of each of the plurality of flow paths, and the effect of lowering the glass flow center temperature flowing down cannot be obtained. Applying such a complicated structure makes it very difficult to change the structure to adapt to the temperature, viscosity, wetting, density, and fluid pressure of the glass, which also complicates the flow rate and temperature distribution. However, a simpler structure was sought.

本発明では、通常、中央付近の流速が大きくなる傾向があるガラス流路において、その流速を平均化することにより、脈理や失透の発生を低減させる。そして、その結果として、成形条件の選定が非常に難しい近年の高屈折ガラスあるいは低温軟化ガラスのガラス成形体を、簡単かつ高品質に得るための流路を提供するものである。さらに、従来のガラスにおいても、簡単かつ短距離での制御を可能とし、装置の小型化が可能な流路を提供することを目的とする。   In the present invention, the occurrence of striae and devitrification is usually reduced by averaging the flow velocity in the glass flow path where the flow velocity near the center tends to increase. As a result, the present invention provides a flow path for obtaining a glass molded body of recent high refractive glass or low temperature softened glass that is very difficult to select molding conditions in a simple and high quality manner. It is another object of the present invention to provide a flow path that enables simple and short-distance control even in conventional glass, and that can reduce the size of the apparatus.

本発明者は、溶融ガラスの流出方向に略垂直に設置された2以上の仕切板により流路を複数の領域に仕切り、当該仕切板にはガラス流を通過させるためのスリットを設け、隣り合う前記仕切板のスリットの向きを互いに異なる構成とすることにより、温度・流速分布を平均化させることに加え、所望の温度・流速分布が得られ、結果として脈理等の不利益を抑えることができることを見出し、上記課題を解決するに至った。
具体的には本発明は以下の構成を有する。
The inventor divides the flow path into a plurality of regions by two or more partition plates installed substantially perpendicular to the flowing direction of the molten glass, and the partition plates are provided with slits for allowing the glass flow to pass and adjacent to each other. By making the slit directions of the partition plates different from each other, in addition to averaging the temperature / flow velocity distribution, the desired temperature / flow velocity distribution can be obtained, and as a result, the disadvantages such as striae can be suppressed. We found out what we can do and came to solve the above problems.
Specifically, the present invention has the following configuration.

(構成1)
溶融ガラス槽に接続され、溶融ガラスを流出させる流路であって、
溶融ガラスの流出方向に略垂直に設置された2以上の仕切板により複数の領域に仕切られ、当該仕切板にはガラス流を通過させるためのスリットが設けられ、
隣り合う前記仕切板のスリットの向きが互いに異なることを特徴とする前記流路。
(構成2)
隣合う前記仕切板のスリットの向きが30度以上異なることを特徴とする構成1に記載の流路。
(構成3)
スリットのアスペクト比は1.8以上であることを特徴とする構成1または2に記載の流路。
(構成4)
前記仕切板の1枚当たりに設けられたスリットの数は1〜5であることを特徴とする構成1から3のいずれかに記載の流路。
(構成5)
前記スリットの幅は、ガラス流に垂直な流路断面形状の最大幅に対して1/2以下であることを特徴とする構成1から5のいずれかに記載の流路。
(構成6)
構成1から5のいずれかに記載の流路を有するガラス製造装置。
(構成7)
ガラス原料を溶融槽にて溶融し、溶融槽に接続されたノズルを介して溶融ガラス流を成形型へ流出させガラス成形体を成形することを含むガラス成形体の製造方法であって、溶融ガラスを、構成1〜4のいずれかの流路を通過させることにより流路内の温度分布を平均化させる工程を含む前記製造方法。
(Configuration 1)
A flow path connected to the molten glass tank and allowing the molten glass to flow out,
Partitioned into a plurality of regions by two or more partition plates installed substantially perpendicular to the outflow direction of the molten glass, the partition plate is provided with a slit for passing the glass flow,
The said flow path characterized by the direction of the slit of the said adjacent partition plate differing mutually.
(Configuration 2)
The flow path according to Configuration 1, wherein the direction of the slits of the adjacent partition plates is different by 30 degrees or more.
(Configuration 3)
The flow path according to Configuration 1 or 2, wherein an aspect ratio of the slit is 1.8 or more.
(Configuration 4)
4. The flow path according to any one of configurations 1 to 3, wherein the number of slits provided per sheet of the partition plate is 1 to 5.
(Configuration 5)
6. The flow path according to any one of configurations 1 to 5, wherein a width of the slit is ½ or less with respect to a maximum width of a cross-sectional shape of the flow path perpendicular to the glass flow.
(Configuration 6)
The glass manufacturing apparatus which has a flow path in any one of composition 1 to 5.
(Configuration 7)
A method for producing a glass molded body, comprising melting a glass raw material in a melting tank, and flowing a molten glass flow into a mold through a nozzle connected to the melting tank to form a glass molded body. The manufacturing method including a step of averaging the temperature distribution in the flow path by passing any of the flow paths through the flow paths of configurations 1 to 4.

以下、本発明の流路について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, the flow path of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. .

本発明において「流路」とは、溶融ガラスを溶融及び/又は保持する溶融槽に接続され、溶融ガラスを型(例えば成形型)に流出させる際の、ガラス流が通過する流路全体及び流出口を含む概念である。つまり、いわゆるパイプ、オリフィス、ノズルを包括する概念である。また、「流路断面」とは流路内の溶融ガラスが流れる空間形状の断面をいい、「流路の断面」とは流路を構成する部材と溶融ガラスが流れる空間形状の断面をいう。 In the present invention, the “flow path” is connected to a melting tank for melting and / or holding molten glass, and the entire flow path and flow path through which the glass flow passes when the molten glass flows out into a mold (for example, a mold). It is a concept that includes an exit. That is, it is a concept that encompasses so-called pipes, orifices, and nozzles. Further, the “channel cross section” refers to a space-shaped cross section in which the molten glass in the flow channel flows, and the “channel cross section” refers to a space-shaped cross section in which the members constituting the flow channel and the molten glass flow.

通常、流路の温度制御は流路も種々の方法により行われるが、流路を流れる溶融ガラスの温度分布は、流路断面重心(流路断面が略円形の場合は、断面方向中心)付近が最も高く、そのため流速も大きい。
前述のように、本発明では流路を溶融ガラスの流出方向に略垂直に設置された2以上の仕切板により流路を複数の領域に仕切り、当該仕切板にはガラス流を通過させるためのスリットを設け、隣り合う前記仕切板のスリットの向きを互いに異なる構成とすることにより、かかる温度分布及び流速の位置によるギャップを緩和しようとするものである。
Normally, the temperature control of the flow path is also performed by various methods, but the temperature distribution of the molten glass flowing through the flow path is near the center of gravity of the cross section of the flow path (in the case of a substantially circular cross section, the center of the cross section direction) Is the highest, so the flow rate is high.
As described above, in the present invention, the flow path is divided into a plurality of regions by two or more partition plates installed substantially perpendicular to the flowing direction of the molten glass, and the partition plate is used for passing the glass flow. By providing slits and making the direction of the slits of the adjacent partition plates different from each other, the gap due to the temperature distribution and the position of the flow velocity is to be relaxed.

図1は本発明の流路を表す一例である。図1に示すように、仕切板1は流路2の内壁に接していることが好ましい。しかし、その設置法は特に限定されるものではなく、溶接により設置しても良いし、例えば流路内壁に溝を設ける等の加工を施すことにより、はめ込み式にすることもできる。はめ込み式であれば溶融されるガラスの種類により、適宜仕切板を変更することが可能となる。 FIG. 1 is an example showing the flow path of the present invention. As shown in FIG. 1, the partition plate 1 is preferably in contact with the inner wall of the flow path 2. However, the installation method is not particularly limited, and it may be installed by welding, or may be a fitting type by performing a process such as providing a groove on the inner wall of the flow path. If it is a built-in type, the partition plate can be appropriately changed depending on the type of glass to be melted.

仕切板1の材質は特に限定されるものではないが、溶融ガラス流の熱的負荷及び圧力負荷に耐えうるだけの耐熱性と強度を併せ持つことが必要である。従って、公知の白金合金、強化材を分散させた強化白金合金、又は濡れ性を向上させた金含有強化白金合金を使用することが好ましい。 The material of the partition plate 1 is not particularly limited, but it is necessary to have both heat resistance and strength sufficient to withstand the thermal load and pressure load of the molten glass flow. Therefore, it is preferable to use a known platinum alloy, a reinforced platinum alloy in which a reinforcing material is dispersed, or a gold-containing reinforced platinum alloy with improved wettability.

なお仕切板周囲全体が、流路内壁と接していることが好ましい。仕切板周囲と流路内壁との間に隙間があると、仕切板を保持する効果が減じられ、変形しやすくなるからである。 The entire periphery of the partition plate is preferably in contact with the inner wall of the flow path. This is because if there is a gap between the periphery of the partition plate and the inner wall of the flow path, the effect of holding the partition plate is reduced and deformation is likely to occur.

仕切板は1には、溶融ガラス流を通過するためのスリットが設けられ、隣り合う仕切り板のスリットの向きは互いに異なることが好ましい。このようにスリットを設けることで乱流を生じさせ、かつ隣り合う仕切板のスリットを異なる向きとすることで、流路内のガラス流の撹拌効果が飛躍的に高くなり、流路断面において温度・流速分布を平均化させることに加え、所望の温度・流速分布が得られるのである。
撹拌効果をより高めるために、隣り合う仕切板のスリットの向きは30度以上異なることが好ましく、45度以上異なることがより好ましく、90度異なることが最も好ましい。ここで隣ある仕切り板のスリットの向きとは、隣り合うそれぞれの仕切板のスリットを平行な2直線で挟んだ時に2直線間の距離が最大となる2直線の方向のなす角であり、0度〜90度の範囲を取るものである。1枚の仕切板においてスリットが複数存在するときは、なす角が最大となるものを選択する。
The partition plate 1 is preferably provided with slits for passing the molten glass flow, and the directions of the slits of the adjacent partition plates are preferably different from each other. By providing the slits in this way, turbulent flow is generated, and the slits of the adjacent partition plates are made in different directions, so that the stirring effect of the glass flow in the flow path is dramatically increased, and the temperature in the cross section of the flow path is increased. In addition to averaging the flow velocity distribution, the desired temperature / flow velocity distribution can be obtained.
In order to further enhance the stirring effect, the direction of the slits of adjacent partition plates is preferably different by 30 degrees or more, more preferably 45 degrees or more, and most preferably 90 degrees. Here, the direction of the slits of the adjacent partition plates is an angle formed by the directions of the two straight lines that maximize the distance between the two straight lines when the slits of the adjacent partition plates are sandwiched between the two parallel straight lines. It takes a range of degrees to 90 degrees. When there are a plurality of slits in one partition plate, the one having the largest angle is selected.

また、隣り合う仕切り板のスリットの向きを異ならせることによる撹拌効果をより高めるためには、スリットの形状のアスペクト比は1.8以上であることが好ましく、1.9以上であることがより好ましく、2.0以上であることが好ましい。
スリットの形状は特に限定されないが、楕円、長方形などが好ましい。
ここでスリットの形状のアスペクト比とは、平行な2直線でスリット形状を挟んだとき、2直線間の距離が最も大きくなる距離をLとし、2直線間の距離が最も小さくなる距離をlとして、L/lによって表わされる値である。
Moreover, in order to further enhance the stirring effect by changing the direction of the slits of the adjacent partition plates, the aspect ratio of the slit shape is preferably 1.8 or more, more preferably 1.9 or more. Preferably, it is 2.0 or more.
The shape of the slit is not particularly limited, but an ellipse, a rectangle and the like are preferable.
Here, the aspect ratio of the slit shape means that when the slit shape is sandwiched between two parallel straight lines, the distance where the distance between the two straight lines is the largest is L, and the distance where the distance between the two straight lines is the smallest is l. , L / l.

仕切板1枚当たりに設けられるスリットの数は1以上であり、必要以上に多いとガラス流の撹拌効果が十分に得られないため5以下であることが好ましく、4以下であることがより好ましく、3以下であることが最も好ましい。本発明の撹拌効果をより高めるためには、仕切板1枚に設けられるスリットが複数である場合、スリットは平行であることが好ましい。 The number of slits provided per partition plate is 1 or more, and if it is more than necessary, the effect of stirring the glass flow cannot be obtained sufficiently, preferably 5 or less, and more preferably 4 or less. Most preferably, it is 3 or less. In order to further enhance the stirring effect of the present invention, when there are a plurality of slits provided on one partition plate, the slits are preferably parallel.

流路内でのガラス流の撹拌効果をより高める為に、前記スリットの幅は、ガラス流に垂直な流路断面形状の最大幅に対して1/2以下が好ましく、1/2.5以下がより好ましく、1/3以下が最も好ましい。他方、スリットの幅が必要以上に狭いとガラス流の流れが悪くなるため、失透を生じさせやすくなる。従ってスリットの幅はガラス流に垂直な流路断面形状の最大幅に対して1/30以上が好ましく、1/20以上がより好ましく、1/15以上が最も好ましい。
ここで、ガラス流に垂直な流路断面形状の最大幅とは、ガラス流に垂直な流路断面形状を平行な2直線で挟んだ時、2直線間の距離が最大となる値である。
In order to further enhance the stirring effect of the glass flow in the flow path, the width of the slit is preferably 1/2 or less with respect to the maximum width of the cross-sectional shape of the flow channel perpendicular to the glass flow, and is 1 / 2.5 or less. Is more preferable, and 1/3 or less is most preferable. On the other hand, if the width of the slit is narrower than necessary, the flow of the glass flow deteriorates, and devitrification is likely to occur. Therefore, the width of the slit is preferably 1/30 or more, more preferably 1/20 or more, and most preferably 1/15 or more with respect to the maximum width of the channel cross-sectional shape perpendicular to the glass flow.
Here, the maximum width of the channel cross-sectional shape perpendicular to the glass flow is a value at which the distance between the two straight lines becomes maximum when the channel cross-sectional shape perpendicular to the glass flow is sandwiched between two parallel straight lines.

仕切板1枚当たりに設けられるスリットの面積が必要以上に大きいとガラス流を撹拌する効果が減ぜられやすく、必要以上に小さいとガラス流の流れが悪くなるため失透を生じさせやすくなる。従って、仕切板1枚当たりに設けられるスリットの面積の総和は、流路断面積の好ましくは10%以上、より好ましくは15%以上、最も好ましくは20%以上であり、好ましくは90%以下、より好ましくは85%以下、最も好ましくは80%以下である。 If the area of the slit provided per partition plate is larger than necessary, the effect of stirring the glass flow is likely to be reduced, and if it is smaller than necessary, the flow of the glass flow is deteriorated and devitrification is likely to occur. Therefore, the total area of the slits provided per partition plate is preferably 10% or more, more preferably 15% or more, most preferably 20% or more, preferably 90% or less of the flow path cross-sectional area. More preferably, it is 85% or less, and most preferably 80% or less.

仕切板の設置位置は特に限定するものではないが、各位置は、ガラスの熱伝導率、熱容量、流路径、流量、所望の温度/温度分布等を勘案しながら決定される。流路の全長にも当然に依存するが、あまり上流過ぎると流速分布を一旦平均化させても、新たな流速分布を生じやすくなり、本発明において期待される効果が得にくくなる。したがって、好ましくは流路の全長に対して、下流側50%、より好ましくは下流側45%、最も好ましくは下流側40%までの範囲に、前記仕切板を有することが好ましい。 The installation position of the partition plate is not particularly limited, but each position is determined in consideration of the thermal conductivity, heat capacity, flow path diameter, flow rate, desired temperature / temperature distribution, and the like of the glass. Although it naturally depends on the total length of the flow path, if it is too upstream, a new flow velocity distribution is likely to be generated even if the flow velocity distribution is once averaged, and it is difficult to obtain the effect expected in the present invention. Therefore, it is preferable to have the partition plate in a range of 50% downstream, more preferably 45% downstream, and most preferably 40% downstream with respect to the total length of the flow path.

本発明の流路は、流路自体及び/又は外部からの付加手段による加熱及び/又は冷却を妨げるものではない。流路自体の加熱としては、流路に直接通電させることによる公知の加熱方法が使用できるし、外部からの付加手段としてはガスバーナー、電熱式ヒーター、赤外線放射、高周波加熱などの公知の手法を適宜使用してよい。さらに、ガラス流出口付近をリングバーナー等で覆い、保温することにより、失透、脈理等の不良をいっそう抑えることができる。 The flow path of the present invention does not hinder heating and / or cooling by the flow path itself and / or external addition means. As the heating of the channel itself, a known heating method by directly energizing the channel can be used, and as an external addition means, a known method such as a gas burner, an electric heater, infrared radiation, high frequency heating or the like can be used. You may use suitably. Further, by covering the vicinity of the glass outlet with a ring burner or the like and keeping it warm, defects such as devitrification and striae can be further suppressed.

本発明の流路を公知のガラス製造装置に適用することにより、脈理等の無い高い品質の光学ガラス成形体を得ることができる。   By applying the flow path of the present invention to a known glass production apparatus, a high-quality optical glass molded body free from striae or the like can be obtained.

本発明の流路を使用したガラスの成形手段は特に制限されるものではない。光学ガラスの成形としては、成形型にガラス流として連続的に流出させ、板状或いは棒状ガラス等に連続成形してもよいし、シャー又は表面張力によりガラスゴブを分離し、多孔質型上にて浮上成形させることによりガラスゴブを成形するものでもよい。 The glass forming means using the flow path of the present invention is not particularly limited. As optical glass molding, it may be continuously flown out as a glass flow into a mold, and may be continuously molded into a plate-like or rod-like glass, etc., or the glass gob is separated by shear or surface tension, and on a porous mold. A glass gob may be formed by floating molding.

本発明の流路の材質は、通常、ガラスの溶融工程に使用される材質を使用することができ、例えば白金、強化白金、金、強化金、ロジウム、その他貴金属及びそれらの合金、或いは石英が使用できる。また、公知の手法によりメッキされた材質、例えば内面を金メッキ、あるいはSiCなどのセラミックを成膜した白金を使用しても良い。 As the material of the flow path of the present invention, materials usually used in the glass melting process can be used, for example, platinum, reinforced platinum, gold, reinforced gold, rhodium, other noble metals and their alloys, or quartz. Can be used. Further, a material plated by a known method, for example, platinum having a gold-plated inner surface or a ceramic film such as SiC may be used.

本発明は、流路の内部構造を規定するものであるから、流路流出口付近の雰囲気を適宜変更しても良い。例えば窒素雰囲気、アルゴン等の不活性ガス雰囲気にしてもよい。また場合によっては、加熱雰囲気にて流路流出口を覆ってもよい。 Since the present invention defines the internal structure of the flow path, the atmosphere in the vicinity of the flow path outlet may be appropriately changed. For example, a nitrogen atmosphere or an inert gas atmosphere such as argon may be used. In some cases, the channel outlet may be covered with a heated atmosphere.

以下、本発明の具体的な実施例を示す。 Specific examples of the present invention will be described below.

(実施例1)
本実施例においては、光学ガラスを白金坩堝にて溶融させ、坩堝に接続された流路を介して溶融ガラスをその末端の流出口から流出させ、ガスを噴出するステンレス製多孔質成形型上にて浮上成形させ、精密プレス成形用プリフォームとして使用するためのガラスゴブを取得した。
Example 1
In this example, the optical glass is melted in a platinum crucible, and the molten glass is caused to flow out from its outlet through a flow path connected to the crucible. The glass gob for use as a precision press-molding preform was obtained.

流路としては前述の図3と同じ形状の強化白金流路を使用した。ここで、流路内径は3mm(流路断面積7.07mm)で、流出口は6mmまで拡開している。流路全長、すなわち坩堝の出口から流路末端の流出口までの長さは2mであった。 As the flow path, a reinforced platinum flow path having the same shape as that shown in FIG. 3 was used. Here, the inner diameter of the flow path is 3 mm (the cross-sectional area of the flow path is 7.07 mm 2 ), and the outlet is expanded to 6 mm. The total length of the channel, that is, the length from the outlet of the crucible to the outlet at the end of the channel was 2 m.

流路内の仕切板は、流出口から坩堝へ向かって50mm、55mmの地点に取り付けられ、仕切り板の厚さは1mmであった。スリットは長方形であり、仕切板にそれぞれ2カ所平行に設けられ、幅は0.4mm、長さは2.2mmであった。隣り合う仕切板のスリットの向きは90度であった。仕切板を取り付けた部分のガラス流路断面の面積は1.76mmであった。すなわち当該仕切板が設置された場所の流路断面積は、そうでない場所の約24.9%であった。 The partition plate in the flow path was attached at a point of 50 mm and 55 mm from the outlet to the crucible, and the thickness of the partition plate was 1 mm. The slits were rectangular, provided in parallel at two locations on the partition plate, the width was 0.4 mm, and the length was 2.2 mm. The direction of the slit of the adjacent partition plate was 90 degrees. The area of the cross section of the glass flow path at the part where the partition plate was attached was 1.76 mm 2 . That is, the flow path cross-sectional area where the partition plate was installed was about 24.9% of the place where the partition plate was not installed.

受け型は、多孔質ステンレスで作られ、その受面から空気を噴出している状態で、溶融ガラスを受けることにより、受け型から浮上した状態で溶融ガラスを受け、ガラスゴブを得た。 The receiving mold was made of porous stainless steel, and received molten glass in a state where air was blown from the receiving surface thereof. Thus, the molten glass floated from the receiving mold to receive glass gob.

使用したガラスは、酸化ホウ素及び酸化ランタンを主成分とする光学ガラスを溶融した。坩堝は約1200℃に保たれ、流路は通電加熱により約1100℃に保たれた。流出口からは、溶融ガラスを液滴状に分離している状態にした。この時の溶融ガラスの流出量は毎分80gであった。 The glass used was melted optical glass mainly composed of boron oxide and lanthanum oxide. The crucible was kept at about 1200 ° C., and the flow path was kept at about 1100 ° C. by energization heating. From the outlet, the molten glass was separated into droplets. The amount of molten glass flowing out at this time was 80 g per minute.

このガラスゴブには、失透及び脈理などの光学欠陥を目視で観察したところ、そのような不良は発見できず、光学素子成形用プリフォームとして使用できる高品質のガラスゴブであった。   When this glass gob was visually observed for optical defects such as devitrification and striae, such a defect could not be found, and it was a high-quality glass gob that could be used as a preform for molding an optical element.

本発明の流路の要部概念図である。It is a principal part conceptual diagram of the flow path of this invention. 本発明の流路の他の態様を示す要部概念図である。It is a principal part conceptual diagram which shows the other aspect of the flow path of this invention.

符号の説明Explanation of symbols

1 仕切板
2 流路
3 スリット
1 Partition plate 2 Flow path 3 Slit

Claims (7)

溶融ガラス槽に接続され、溶融ガラスを流出させる流路であって、
溶融ガラスの流出方向に略垂直に設置された2以上の仕切板により複数の領域に仕切られ、当該仕切板にはガラス流を通過させるためのスリットが設けられ、
隣り合う前記仕切板のスリットの向きが互いに異なることを特徴とする前記流路。
A flow path connected to the molten glass tank and allowing the molten glass to flow out,
Partitioned into a plurality of regions by two or more partition plates installed substantially perpendicular to the flowing direction of the molten glass, the partition plate is provided with a slit for passing the glass flow,
The said flow path characterized by the direction of the slit of the said adjacent partition plate differing mutually.
隣合う前記仕切板のスリットの向きが30度以上異なることを特徴とする請求項1に記載の流路。   The flow path according to claim 1, wherein the direction of the slits of the adjacent partition plates is different by 30 degrees or more. スリットのアスペクト比は1.8以上であることを特徴とする請求項1または2に記載の流路。   The flow path according to claim 1 or 2, wherein the slit has an aspect ratio of 1.8 or more. 前記仕切板の1枚当たりに設けられたスリットの数は1〜5であることを特徴とする請求項1から3のいずれかに記載の流路。   The flow path according to any one of claims 1 to 3, wherein the number of slits provided per sheet of the partition plate is 1 to 5. 前記スリットの幅は、ガラス流に垂直な流路断面形状の最大幅に対して1/2以下であることを特徴とする請求項1から5のいずれかに記載の流路。   The flow path according to any one of claims 1 to 5, wherein a width of the slit is ½ or less of a maximum width of a cross-sectional shape of the flow path perpendicular to the glass flow. 請求項1から5のいずれかに記載の流路を有するガラス製造装置。   The glass manufacturing apparatus which has a flow path in any one of Claims 1-5. ガラス原料を溶融槽にて溶融し、溶融槽に接続されたノズルを介して溶融ガラス流を成形型へ流出させガラス成形体を成形することを含むガラス成形体の製造方法であって、溶融ガラスを、請求項1〜4のいずれかの流路を通過させることにより流路内の温度分布を平均化させる工程を含む前記製造方法。   A method for producing a glass molded body, comprising melting a glass raw material in a melting tank, and flowing a molten glass flow into a mold through a nozzle connected to the melting tank to form a glass molded body. The said manufacturing method including the process of averaging the temperature distribution in a flow path by letting a flow path in any one of Claims 1-4 pass.
JP2007282516A 2007-10-30 2007-10-30 Glass flow path, apparatus for manufacturing glass, and method of manufacturing glass Pending JP2009107890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282516A JP2009107890A (en) 2007-10-30 2007-10-30 Glass flow path, apparatus for manufacturing glass, and method of manufacturing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282516A JP2009107890A (en) 2007-10-30 2007-10-30 Glass flow path, apparatus for manufacturing glass, and method of manufacturing glass

Publications (1)

Publication Number Publication Date
JP2009107890A true JP2009107890A (en) 2009-05-21

Family

ID=40776827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282516A Pending JP2009107890A (en) 2007-10-30 2007-10-30 Glass flow path, apparatus for manufacturing glass, and method of manufacturing glass

Country Status (1)

Country Link
JP (1) JP2009107890A (en)

Similar Documents

Publication Publication Date Title
JP5724552B2 (en) Thin glass manufacturing equipment
JP5045667B2 (en) Apparatus for transferring molten glass onto a float bath
US20070271963A1 (en) Apparatus and Process for Producing Tubes or Rods
JP4938988B2 (en) Press molding preform manufacturing method, optical element manufacturing method, and molten glass outflow device
JP5243723B2 (en) Nozzle and method of manufacturing optical glass block using the nozzle
JP2015074574A (en) Method of manufacturing plate glass
JP2009102200A (en) Glass flow passage and method for manufacturing optical glass formed body using the same
JP2009107890A (en) Glass flow path, apparatus for manufacturing glass, and method of manufacturing glass
JP2009096684A (en) Flow passage for flowing-out molten glass
TW202106637A (en) Apparatus and method for producing glass ribbons
JP2008280194A (en) Glass flow passage and method for manufacturing optical glass formed body using the same
JP2009107889A (en) Glass flow passage, glass production device, and glass production method
JP5438084B2 (en) Manufacturing method of glass molded body, and manufacturing method of optical element using the glass molded body
JP2015145316A (en) Nozzle and method of manufacturing optical glass lump using the nozzle
JP2008273800A (en) Glass flow path and method for manufacturing optical glass molded body using the flow path
JP2008280218A (en) Glass flow path, and method of manufacturing optical glass formed article using the same
JP2008297173A (en) Glass flow passage and method for manufacturing optical glass molding by using the same
CN101172750A (en) Nozzle and method for producing optical glass gob using the nozzle
JP2008110313A (en) Nozzle for discharging molten material
CN101041549B (en) Glass gob shaping apparatus, process for the production of glass gobs and process for the production of optical element
JP3862589B2 (en) Optical glass outflow device and method of manufacturing optical glass block
KR101432413B1 (en) Glass plate production method
JP2005089275A (en) Method for producing glass formed body, method for producing glass material for press molding and method for producing optical element
JP2007145627A (en) Glass suitable for droplet-like glass
JP3965627B2 (en) Method for producing glass molded body and method for producing optical element