JP2009103423A - Steam generation type heat pump device - Google Patents

Steam generation type heat pump device Download PDF

Info

Publication number
JP2009103423A
JP2009103423A JP2007278286A JP2007278286A JP2009103423A JP 2009103423 A JP2009103423 A JP 2009103423A JP 2007278286 A JP2007278286 A JP 2007278286A JP 2007278286 A JP2007278286 A JP 2007278286A JP 2009103423 A JP2009103423 A JP 2009103423A
Authority
JP
Japan
Prior art keywords
steam
evaporator
compressor
heat
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007278286A
Other languages
Japanese (ja)
Inventor
Shigeo Hatamiya
重雄 幡宮
Takanori Shibata
貴範 柴田
Susumu Nakano
晋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007278286A priority Critical patent/JP2009103423A/en
Publication of JP2009103423A publication Critical patent/JP2009103423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device suppressing erosion, suppressing drain, and suppressing deterioration of reliability even though there is a possibility of generation of drain in an evaporator or a pipe connecting the evaporator to a compressor, the drain is entrained in a high speed air current to generate bulky droplets, and the droplets flow into the compressor and collide to compressor blades to cause erosion. <P>SOLUTION: The heat pump device includes the evaporator 11 evaporating liquid by heat from a heat source to produce steam, and the compressor compressing the steam produced by the evaporator 11. The system includes a superheater 12 heating the steam produced by the evaporator 11 before flowing into the compressor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蒸気を供給するヒートポンプシステムに関わる。   The present invention relates to a heat pump system for supplying steam.

水を作動媒体としたヒートポンプに関し、100℃以上の蒸気を供給する技術が特開2006−194242に開示されている。   Japanese Unexamined Patent Application Publication No. 2006-194242 discloses a technology for supplying steam at 100 ° C. or higher with respect to a heat pump using water as a working medium.

特開2006−194242号公報JP 2006-194242 A

しかし、特開2006−194242号公報には、蒸発器から圧縮機に至る経路に関しては特に記載はない。蒸発器あるいは蒸発器と圧縮機を接続する配管でドレンが発生し、そのドレンが高速気流に同伴されて粗大な液滴が発生しそれが圧縮機に流入すると液滴が圧縮機翼に衝突しエロージョンを発生する可能性がある。エロージョンとは固体面上に高速の粒子が衝突し物理的な力により固体壁面に損傷を与える現象であり、壊食とも言われる。エロージョンが発生すると圧縮機翼に沿った気体の流れが乱されるため性能が低下し圧縮機の信頼性,耐久性を低下させる原因になる。   However, Japanese Patent Laid-Open No. 2006-194242 has no particular description regarding the path from the evaporator to the compressor. Drain is generated in the evaporator or the pipe connecting the evaporator and the compressor, and the drain is entrained by the high-speed airflow to generate coarse droplets that flow into the compressor and the droplets collide with the compressor blades. May cause erosion. Erosion is a phenomenon in which high-speed particles collide with a solid surface and damage the solid wall surface by physical force, and is also called erosion. When erosion occurs, the gas flow along the compressor blades is disturbed, so the performance is reduced and the reliability and durability of the compressor are reduced.

本発明の目的は、ドレンの発生を抑え信頼性の低下を抑制したヒートポンプ装置を提供することにある。   The objective of this invention is providing the heat pump apparatus which suppressed generation | occurrence | production of drain and suppressed the fall of reliability.

上記目的を達成するために、本発明は、熱源からの熱で液水を蒸発させて蒸気を生成する蒸発器と、前記蒸発器で生成された蒸気を圧縮する圧縮機とを備えたヒートポンプ装置において、
前記蒸発器で生成され前記圧縮機に流入する前の蒸気を加熱する過熱装置を備えたことを特徴とする。
In order to achieve the above object, the present invention provides a heat pump apparatus comprising an evaporator that generates liquid by evaporating liquid water with heat from a heat source, and a compressor that compresses the steam generated by the evaporator. In
A superheater that heats steam generated in the evaporator and before flowing into the compressor is provided.

本発明によれば、ドレンの発生を抑え信頼性の低下を抑制したヒートポンプ装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump apparatus which suppressed generation | occurrence | production of drain and suppressed the reliability can be provided.

最初に水を作動媒体とするヒートポンプシステムの蒸発器に関し、詳細に説明する。   First, the evaporator of the heat pump system using water as a working medium will be described in detail.

(ヒートポンプの説明)
図6は、比較例である水蒸気発生型ヒートポンプシステムの構成図を示す。このシステムは、排熱を熱源とする蒸発器を備え、蒸発器で生成した蒸気を圧縮機で昇温昇圧し、この高温高圧蒸気を需要先へ供給するよう構成されている。具体的には、供給水30と外部熱源である排熱10とを熱交換することで飽和蒸気を生成する蒸発器11と、生成された飽和蒸気を圧縮する水蒸気圧縮機システム1と、水蒸気圧縮機システム1を駆動する電動モータ2とから構成される。本例における水蒸気圧縮機システム1は、電動モータ2に連結された増速ギア及びピニオンギア4を介した第一段31,第二段32,第三段33,第四段34の4段の圧縮機から構成されているが、所定の圧力比を満足する仕様であれば、段数は4段である必要はない。また、多段の水蒸気圧縮機システム1の代わりに複数の圧縮機を設置したものを用いてもよい。
(Description of heat pump)
FIG. 6 shows a configuration diagram of a steam generation type heat pump system as a comparative example. This system includes an evaporator that uses exhaust heat as a heat source, and is configured to raise the temperature and pressure of steam generated by the evaporator using a compressor and supply the high-temperature and high-pressure steam to a customer. Specifically, an evaporator 11 that generates saturated steam by exchanging heat between the feed water 30 and the exhaust heat 10 that is an external heat source, a steam compressor system 1 that compresses the generated saturated steam, and steam compression And an electric motor 2 that drives the machine system 1. The steam compressor system 1 in this example includes four stages of a first stage 31, a second stage 32, a third stage 33, and a fourth stage 34 via a speed increasing gear connected to the electric motor 2 and the pinion gear 4. Although it is composed of a compressor, the number of stages need not be four as long as the specification satisfies a predetermined pressure ratio. Moreover, you may use what installed the several compressor instead of the multistage steam compressor system 1. FIG.

水蒸気圧縮機システム1の各段間では、供給水30の一部が給水配管41bを通して第一段と第二段の段間に設置された噴霧冷却装置41,第二段と第三段の段間に設けられた噴霧冷却装置42,第三段と第四段の段間に設置された噴霧冷却装置43に供給される。各装置からの微細液滴噴霧により水蒸気圧縮機システム1の作動流体である水蒸気が冷却され、次の段に流入する水蒸気の過熱度を小さくするように制御されて圧縮動力の低減が図られている。蒸気圧縮機の段数が異なる場合にも、各段間にそれぞれ噴霧冷却装置が設置されて蒸気が冷却される。第四段圧縮機34に流入した蒸気は所定の圧力まで圧縮され、高温高圧(例えば圧力0.3MPa,温度約200℃)の過熱蒸気となり、圧縮機吐出配管34b,弁38を介して製紙工場や食品工場,化学工場など蒸気を必要とする熱利用施設20へ工業用熱源として供給される。   Between each stage of the steam compressor system 1, a part of the supply water 30 is installed between the first stage and the second stage through the water supply pipe 41b, and between the second stage and the third stage. It is supplied to the provided spray cooling device 42 and the spray cooling device 43 installed between the third and fourth stages. Water vapor, which is the working fluid of the water vapor compressor system 1, is cooled by spraying fine droplets from each device, and is controlled so as to reduce the superheat degree of water vapor flowing into the next stage, thereby reducing the compression power. Yes. Even when the number of stages of the steam compressors is different, a spray cooling device is installed between each stage to cool the steam. The steam that has flowed into the fourth stage compressor 34 is compressed to a predetermined pressure, becomes high-temperature and high-pressure (for example, pressure 0.3 MPa, temperature about 200 ° C.) superheated steam, and passes through the compressor discharge pipe 34 b and the valve 38 to the paper mill. It is supplied as an industrial heat source to heat utilization facilities 20 that require steam, such as food plants and chemical factories.

上述のヒートポンプシステムを蒸気供給のために利用する場合には、以下の2点の課題がある。   When the above heat pump system is used for supplying steam, there are the following two problems.

1点目は蒸発器11で発生する蒸気は通常飽和蒸気であり、蒸発器11あるいは蒸発器と圧縮機第一段31を接続する低圧蒸気配管12bに放熱があると飽和蒸気が冷却され凝縮(ドレン水)を生じる。低圧条件では水蒸気の比容積が大きくなり、そのため本発明のヒートポンプシステムの低圧蒸気配管12b内の蒸気流速は例えば数10m/sである。この高速気流にドレン水が同伴し、粗大な液滴となって圧縮機第一段31に流入し、圧縮機翼に衝突しエロージョンを生じる恐れがある。エロージョンが発生すると流体力学的に滑らかに加工された圧縮機翼面が粗面になり流動抵抗が増大するため圧縮機性能が低下し、機器の信頼性・健全性が損なわれる原因になる。   The first point is that the steam generated in the evaporator 11 is usually saturated steam. If there is heat radiation in the evaporator 11 or the low-pressure steam pipe 12b connecting the evaporator and the compressor first stage 31, the saturated steam is cooled and condensed ( Drain water). Under the low pressure condition, the specific volume of water vapor becomes large, so that the steam flow rate in the low pressure steam pipe 12b of the heat pump system of the present invention is, for example, several tens of m / s. Drain water accompanies this high-speed air stream, and it becomes coarse droplets that flow into the compressor first stage 31 and may collide with the compressor blades to cause erosion. When erosion occurs, the compressor blade surface processed smoothly hydrodynamically becomes rough and the flow resistance increases, so that the compressor performance deteriorates and the reliability and soundness of the equipment are impaired.

2点目は、圧縮機に流入する蒸気の圧力が同じであっても、蒸気温度が高くなると圧縮動力が増加しヒートポンプとしての性能が低下する点である。蒸発器あるいは配管で発生した液滴を蒸発させる目的で過熱器を設置し飽和水蒸気を加熱する場合、加熱量を大きくすれば液滴を蒸発させることはできるが蒸気の過熱度も大きくなることに注意すべきである。図7は蒸気圧を一定とし、蒸気を加熱して過熱状態としていった場合の圧縮機流入蒸気温度が圧縮動力に与える影響の計算例である。前述したように過熱度が30℃になると飽和蒸気の場合に比べ、圧縮動力が相対値として約6%増加するとの結果が示されている。   The second point is that even if the pressure of the steam flowing into the compressor is the same, the compression power increases and the performance as a heat pump decreases as the steam temperature increases. When a superheater is installed for the purpose of evaporating droplets generated in an evaporator or piping and saturated steam is heated, droplets can be evaporated by increasing the heating amount, but the degree of superheat of the steam will also increase. You should be careful. FIG. 7 is a calculation example of the influence of the compressor inflow steam temperature on the compression power when the steam pressure is constant and the steam is heated to an overheated state. As described above, it is shown that when the degree of superheat becomes 30 ° C., the compression power increases by about 6% as a relative value as compared with the case of saturated steam.

このように、排熱10を利用したヒートポンプシステムでは、蒸発器11において発生させた飽和蒸気に粗大な液滴を含ませずに圧縮機に流入させることが求められる。また、水蒸気圧縮機に流入する蒸気の過熱度は大きくなりすぎないように制御することが望ましい。以下説明する本発明の各実施例であるヒートポンプ装置は、蒸発器11で生成され圧縮機に流入する前の蒸気を加熱する過熱装置である過熱器12を備えているため、ドレンの発生を抑え信頼性の低下を抑制することができる。また、過熱装置である過熱器12で加熱される蒸気の過熱度を調整する調整装置50を備えているため、過熱度の増大を抑制し、圧縮動力の増加を抑制できる。さらに、蒸発器11で生成された蒸気を圧縮機吐出蒸気との熱交換により過熱するよう構成しているため、新たな加熱源を別途用意する必要がなく、熱の有効利用が可能である。   Thus, in the heat pump system using the exhaust heat 10, the saturated steam generated in the evaporator 11 is required to flow into the compressor without including coarse droplets. Moreover, it is desirable to control so that the superheat degree of the steam flowing into the steam compressor does not become too large. The heat pump apparatus according to each embodiment of the present invention to be described below includes a superheater 12 that is a superheater 12 that heats steam generated by the evaporator 11 and before flowing into the compressor, thereby suppressing generation of drain. A decrease in reliability can be suppressed. Moreover, since the adjustment apparatus 50 which adjusts the superheat degree of the steam heated with the superheater 12 which is a superheater is provided, the increase in superheat degree can be suppressed and the increase in compression power can be suppressed. Furthermore, since the steam generated in the evaporator 11 is configured to be superheated by heat exchange with the compressor discharge steam, it is not necessary to prepare a new heating source separately, and heat can be used effectively.

図1をもとに、本発明の実施例1について説明する。図1は本発明の一実施例であるヒートポンプシステムの構成図を示す。図6と重複する機器については同一番号とし、詳細な説明は省略する。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a configuration diagram of a heat pump system according to an embodiment of the present invention. Components identical to those in FIG. 6 are assigned the same numbers, and detailed description thereof is omitted.

供給水30は分岐点30aおよび弁37を通過して蒸発器11に供給される。蒸発器11には外部熱源である排熱10から例えば70℃程度の温水として排熱回収ライン10bを通して熱が供給され、水蒸気(例えば圧力0.02MPa気圧の飽和水蒸気)を発生する。発生した水蒸気は過熱器12,低圧蒸気配管12bを経て初段圧縮機31に流入し昇圧され、それ以降の蒸気配管と各段圧縮機に導かれ順次昇圧されていく。   The feed water 30 is supplied to the evaporator 11 through the branch point 30 a and the valve 37. Heat is supplied to the evaporator 11 from the exhaust heat 10 which is an external heat source through the exhaust heat recovery line 10b as hot water of about 70 ° C., for example, and steam (for example, saturated steam at a pressure of 0.02 MPa pressure) is generated. The generated steam flows into the first-stage compressor 31 through the superheater 12 and the low-pressure steam pipe 12b, and is boosted.

水蒸気は圧縮された場合に温度上昇が大きく高温の過熱状態となる傾向が強い気体である。そのため最終段圧縮機34を出た水蒸気は、吐出圧力に対する蒸気飽和温度よりも数10℃から100℃以上温度の高い過熱蒸気となることがある。本発明ではこの過熱状態となった圧縮機吐出蒸気を過熱器の加熱源に利用する。圧縮機吐出の過熱蒸気は過熱度調整装置50により分流され一部が蒸発器11の上部に位置する過熱器12の熱交換部35bに導かれ、蒸発器11から発生した飽和蒸気に熱を与える。過熱度調整装置50は高温側流体である圧縮機吐出過熱蒸気の流量を調整することにより低温側流体である飽和蒸気に与える熱量を制御する機能を有するもので、図示はしていないが流量制御弁,蒸気温度検出器および設定過熱度になるように流量制御弁をコントロールする演算装置から構成される。熱交換部35bを通過した高温側の過熱蒸気は熱交換部35aの合流部で再度圧縮機吐出過熱蒸気と合流し蒸気配管36b,弁38を介して蒸気を必要とする熱利用施設20へ工業用熱源として供給される。   Water vapor is a gas that, when compressed, has a strong temperature rise and tends to be in a high temperature overheating state. Therefore, the water vapor exiting the final stage compressor 34 may become superheated steam having a temperature of several tens of degrees Celsius to 100 ° C. or higher than the steam saturation temperature with respect to the discharge pressure. In the present invention, the compressor discharge steam in the overheated state is used as a heating source for the superheater. The superheated steam discharged from the compressor is diverted by the superheat degree adjusting device 50, and a part thereof is led to the heat exchanging portion 35 b of the superheater 12 positioned above the evaporator 11 to give heat to the saturated steam generated from the evaporator 11. . The superheat degree adjusting device 50 has a function of controlling the amount of heat given to the saturated steam that is the low temperature side fluid by adjusting the flow rate of the compressor discharge superheated steam that is the high temperature side fluid. It consists of a valve, a steam temperature detector, and an arithmetic unit that controls the flow rate control valve so that the degree of superheat is set. The superheated steam on the high temperature side that has passed through the heat exchanging part 35b is joined again with the superheated steam discharged from the compressor at the joining part of the heat exchanging part 35a, and is supplied to the heat utilization facility 20 that requires steam through the steam pipe 36b and the valve 38. Supplied as a heat source.

図2を用いて蒸発器11の上部に設置する過熱器12の構造例について説明する。図2は、実施例1のヒートポンプシステムの蒸発器11周りの構造図を示す。図2で示した過熱器12は、蒸発器11から発生した蒸気を過熱器の熱交換部35bが取り囲む構造、蒸発器上部を蒸気ジャッケットで覆った構造になっている。このような構造において過熱器の熱交換部35bに高温の過熱蒸気を流すならば、過熱器内側の壁面は、蒸発器11から発生した飽和蒸気の飽和温度以上の壁面に囲まれているので蒸発器11から発生した蒸気が過熱器内部の壁面上で凝縮することを抑制できる。なお、ヒートポンプ装置の起動時等で配管や過熱器が充分に暖まっていない状態で熱交換部35bに過熱蒸気を流した場合、装置の熱容量により熱交換部35b内で過熱蒸気が冷却され凝縮水が発生する状況が考えられる。   The structural example of the superheater 12 installed in the upper part of the evaporator 11 is demonstrated using FIG. FIG. 2 is a structural diagram around the evaporator 11 of the heat pump system according to the first embodiment. The superheater 12 shown in FIG. 2 has a structure in which the steam generated from the evaporator 11 is surrounded by the heat exchanger 35b of the superheater and the upper part of the evaporator is covered with a steam jacket. If high-temperature superheated steam is allowed to flow through the heat exchanger 35b of the superheater in such a structure, the wall surface inside the superheater is surrounded by a wall surface equal to or higher than the saturation temperature of the saturated steam generated from the evaporator 11, and thus evaporates. It can suppress that the vapor | steam generated from the heater 11 condenses on the wall surface inside a superheater. In addition, when the superheated steam is caused to flow through the heat exchanging portion 35b in a state where the pipes and the superheater are not sufficiently heated at the time of starting the heat pump device, the superheated steam is cooled in the heat exchanging portion 35b by the heat capacity of the device, and the condensed water It is possible that a situation occurs.

熱交換部35bに加えられる蒸気は圧縮機吐出蒸気であり供給水30よりも圧力が高いので、弁39をあけることにより熱交換部35b内の凝縮水を排出し供給水に合流させることができる。この操作により凝縮水の保有熱量を蒸発の目的に有効に活用することができる。   Since the steam added to the heat exchange unit 35b is compressor discharge steam and has a higher pressure than the supply water 30, by opening the valve 39, the condensed water in the heat exchange unit 35b can be discharged and merged with the supply water. . By this operation, the amount of heat stored in the condensed water can be effectively utilized for the purpose of evaporation.

一般に飽和蒸気を発生する容器を断熱材で覆ったとしても、周囲の雰囲気温度が蒸気飽和温度よりも低い場合は、内壁面の温度が露点温度以下になる場合があり壁面で凝縮し液滴や液膜を生じる。この液滴や液膜が蒸気に同伴される場合には粗大な液滴になり易い。蒸気中に粗大な液滴を同伴させないためには、壁面を飽和温度以上に維持できる構造を提供することが重要である。実施例1のヒートポンプシステムにおける基本概念は、壁面を飽和温度以上に維持することで、蒸発器で発生した飽和蒸気を凝縮させないことにある。このことが、圧縮機吸気蒸気に粗大な液滴を含ませずに圧縮機に流入させるための要点になる。図2で示した構造は、壁面を飽和温度以上に維持する目的に好適である。過熱器12は過熱器内壁が飽和温度以下とならないように外側から加熱できる構造であれば良く、図2で示した一体型蒸気ジャケットに限定されるものではない。   In general, even if a container that generates saturated steam is covered with a heat insulating material, if the ambient atmosphere temperature is lower than the steam saturation temperature, the temperature of the inner wall surface may be lower than the dew point temperature. A liquid film is formed. When this droplet or liquid film is accompanied by vapor, it tends to be a coarse droplet. In order not to allow coarse droplets to be entrained in the vapor, it is important to provide a structure capable of maintaining the wall surface at the saturation temperature or higher. The basic concept in the heat pump system of the first embodiment is that the saturated vapor generated in the evaporator is not condensed by maintaining the wall surface at the saturation temperature or higher. This is a point for allowing the compressor intake steam to flow into the compressor without including coarse droplets. The structure shown in FIG. 2 is suitable for the purpose of maintaining the wall surface above the saturation temperature. The superheater 12 may be any structure that can be heated from the outside so that the inner wall of the superheater does not fall below the saturation temperature, and is not limited to the integrated steam jacket shown in FIG.

過熱器12により蒸気に与える過熱度ΔTは10℃以下とすることが望ましい。その理由を以下に示す。   The degree of superheat ΔT given to the steam by the superheater 12 is preferably 10 ° C. or less. The reason is as follows.

一般に圧縮機に流入する気体の温度を上昇させると圧縮動力は増加する。そのため液滴流入を抑制するために水蒸気を過熱する場合、圧縮機入口における蒸気温度を高くすると(過熱度を大きくすると)圧縮動力も大きくなる。図7は圧縮機入口蒸気過熱度と圧縮動力の関係を示す。この図では蒸気を10℃過熱した場合は過熱がない場合に比べ圧縮動力が約2%増大し、20℃過熱の場合は約4%、30℃過熱の場合は約6%増大することが示されている。図7に示すようにΔTが小さいほど圧縮動力は低減できるので、ΔTは小さな値が望ましい。   Generally, when the temperature of the gas flowing into the compressor is raised, the compression power increases. For this reason, when the steam is heated to suppress the inflow of the droplets, the compression power increases as the steam temperature at the compressor inlet increases (increases the degree of superheat). FIG. 7 shows the relationship between compressor inlet steam superheat and compression power. This figure shows that when the steam is heated at 10 ° C, the compression power increases by about 2% compared to when there is no overheating, about 4% when heated at 20 ° C, and about 6% when heated at 30 ° C. Has been. As shown in FIG. 7, as ΔT is smaller, the compression power can be reduced. Therefore, it is desirable that ΔT be a small value.

しかしながら、近年、圧縮機吸気に微細な液滴(圧縮機翼にエロージョンを生じさせない程度の微細な液滴)を噴霧し、その液滴が圧縮機内で蒸発する際の気化熱を積極的に利用して圧縮時の気体温度の上昇を抑え、圧縮動力を低減する吸気噴霧冷却技術が開発され実用化が進みつつある。   However, in recent years, fine droplets (fine droplets that do not cause erosion to the compressor blades) are sprayed on the compressor intake, and the heat of vaporization when the droplets evaporate in the compressor is actively used. As a result, intake spray cooling technology that suppresses the increase in gas temperature during compression and reduces the compression power has been developed and put into practical use.

このような状況から、圧縮機の信頼性や耐久性を向上させ、圧縮動力の増加の抑制あるいは圧縮効率を向上させる目的のためには、圧縮機に粗大な液滴が流入しないようにすればよく、微細な液滴はむしろ圧縮動力の低減に望ましいことが分かってきている。したがって、液滴を蒸発させる目的で熱交換器を設置する場合には、どの程度蒸気を過熱するのが適当かを指定するのもポイントである。   Under these circumstances, for the purpose of improving the reliability and durability of the compressor and suppressing the increase in compression power or improving the compression efficiency, it is necessary to prevent coarse droplets from flowing into the compressor. Well, it has been found that fine droplets are rather desirable for reducing compression power. Therefore, when installing a heat exchanger for the purpose of evaporating droplets, it is also important to specify how much steam is superheated.

一方、圧縮機やヒートポンプシステムの特性からある程度の過熱度ΔTを確保しておくのが望ましい要因もある。例えば、圧縮機の吸気口近傍では気体流速は音速程度の大きさとなる。そこでは気体の内部エネルギーが速度エネルギーに変換されるため気体温度は低下し、その低下量は概ね5℃程度である。また、圧縮機間を接続する蒸気配管の自然放熱により蒸気温度が低下することを想定した場合5℃程度の温度低下を見込んでおくことが現実的である。放熱損失は低減することが可能であるが、前述の要因を考慮して双方の和をとりΔTを10℃としておけば蒸気が飽和温度以下に下がることはないものと推定される。したがって、圧縮動力の増加を抑えながら、蒸気の凝縮をさける運用のために過熱器で与える過熱度は10℃以下を想定する。   On the other hand, there is also a factor that it is desirable to ensure a certain degree of superheat ΔT from the characteristics of the compressor and heat pump system. For example, the gas flow velocity is about the speed of sound near the compressor inlet. In this case, since the internal energy of the gas is converted into velocity energy, the gas temperature decreases, and the amount of decrease is about 5 ° C. In addition, it is realistic to expect a temperature decrease of about 5 ° C. when it is assumed that the steam temperature decreases due to natural heat dissipation of the steam pipes connecting the compressors. Although the heat dissipation loss can be reduced, it is presumed that if the sum of the above factors is taken into consideration and ΔT is set to 10 ° C., the steam will not fall below the saturation temperature. Therefore, it is assumed that the degree of superheat provided by the superheater for operation avoiding the condensation of steam while suppressing an increase in compression power is 10 ° C. or less.

なお、過熱器で蒸気を過熱することにより蒸気に同伴されている微細な液滴は一部が蒸発し残りは液滴径が小さくなっている。そのため圧縮機内部で圧縮されながら蒸発し圧縮機吐出温度の上昇を抑える吸気噴霧冷却効果が期待でき、圧縮機初段の動力低減に有効である。   In addition, when the steam is superheated by the superheater, some of the fine droplets accompanying the vapor are evaporated, and the remaining droplet diameter is small. Therefore, an intake spray cooling effect that evaporates while being compressed in the compressor and suppresses an increase in the discharge temperature of the compressor can be expected, which is effective in reducing power in the first stage of the compressor.

次に図3を用いて、本実施例のヒートポンプシステムに用いられる過熱器の別の例を示す。図3は、実施例1のヒートポンプシステムの蒸発器11周りの構造図を示す。この例は、過熱器12の熱源として圧縮機吐出の過熱蒸気を利用せずに、熱源である排熱10から回収された排熱を過熱器の熱交換部35bに供給した例である。この構成は蒸発器11と過熱器12の熱源を共用できるので、構成を単純化することができる。しかし、図2と図3では蒸発器から発生できる蒸気温度,蒸気圧力が異なることに注意が必要である。   Next, another example of the superheater used in the heat pump system of the present embodiment will be described with reference to FIG. FIG. 3 is a structural diagram around the evaporator 11 of the heat pump system according to the first embodiment. In this example, without using the superheated steam discharged from the compressor as the heat source of the superheater 12, the exhaust heat recovered from the exhaust heat 10 as the heat source is supplied to the heat exchanging portion 35b of the superheater. Since this structure can share the heat source of the evaporator 11 and the superheater 12, the structure can be simplified. However, it should be noted that the steam temperature and the steam pressure that can be generated from the evaporator are different between FIGS.

例えば70℃の排温水が排熱回収ライン10bを介して与えられた場合、図2で示した構成では70℃の温度を蒸気発生に利用することが可能だが、図3で示した構成の場合は蒸気過熱に熱を消費してしまうため蒸気発生に利用できる温度は例えば65℃に下がる。低圧水蒸気の場合、温度により飽和蒸気圧力は大きく変化し65℃の飽和蒸気圧は0.25MPa、70℃の飽和蒸気圧は0.31MPaである。仮に蒸気を発生させる熱源温度が5℃下がると、それは圧縮機で0.25MPaから0.31MPaまで圧縮する仕事が余計に必要になることを意味する。排熱から水蒸気を発生させる場合は極力温度を下げずに熱回収することが必要であり、その目的には図3で示した構成よりも図2で示した構成が好ましいといえる。   For example, when exhaust water at 70 ° C. is supplied through the exhaust heat recovery line 10b, the configuration shown in FIG. 2 can use a temperature of 70 ° C. for steam generation, but the configuration shown in FIG. Consumes heat due to steam overheating, so the temperature available for steam generation drops to, for example, 65 ° C. In the case of low-pressure steam, the saturated vapor pressure varies greatly depending on the temperature, the saturated vapor pressure at 65 ° C. is 0.25 MPa, and the saturated vapor pressure at 70 ° C. is 0.31 MPa. If the temperature of the heat source for generating steam is lowered by 5 ° C., this means that an extra work is required to compress from 0.25 MPa to 0.31 MPa with a compressor. When steam is generated from exhaust heat, it is necessary to recover heat without reducing the temperature as much as possible. For that purpose, the configuration shown in FIG. 2 is preferable to the configuration shown in FIG.

図4をもとに、本発明の実施例4について説明する。図4は本発明の一実施例であるヒートポンプシステムの構成図を示す。図1,図6と重複する機器については同一番号とし、詳細な説明は省略する。   A fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a configuration diagram of a heat pump system according to an embodiment of the present invention. Components identical to those in FIGS. 1 and 6 are assigned the same numbers, and detailed description thereof is omitted.

図4で示すヒートポンプシステムは、蒸発器11と圧縮機第一段31を結ぶ低圧蒸気配管12bを過熱器12として利用する構造を有する。この実施例では蒸発器11で生成された蒸気を圧縮機に導く配管である低圧蒸気配管12bを圧縮機吐出蒸気を熱利用施設に供給する配管の一部である過熱器12の熱交換部35bが外側から取り囲む構造となっている。この場合も蒸発器で発生した飽和蒸気は自分よりも温度の高い壁面で囲まれることになるので凝縮の発生を抑制できる。   The heat pump system shown in FIG. 4 has a structure in which the low pressure steam pipe 12b connecting the evaporator 11 and the compressor first stage 31 is used as the superheater 12. In this embodiment, the heat exchange part 35b of the superheater 12 which is a part of the pipe for supplying the steam discharged from the compressor to the heat utilization facility is connected to the low pressure steam pipe 12b which is a pipe for guiding the steam generated in the evaporator 11 to the compressor. Has a structure surrounding from the outside. Also in this case, the saturated vapor generated in the evaporator is surrounded by the wall surface having a temperature higher than that of itself, so that the occurrence of condensation can be suppressed.

図5は実施例2であるヒートポンプシステムの過熱器12の構造図を示す。これは、低圧蒸気配管12bを取り囲む熱交換部35bの構造例を示したものである。図5(a)は低圧蒸気配管12bと圧縮機吐出の過熱蒸気配管である熱交換部35bが同軸の2重配管となっている例、図5(b)は低圧蒸気配管12bの周囲に細い過熱蒸気配管である熱交換部35bが束状になって取り巻いている例を示す。いずれの方式においても配管12bの壁面が飽和温度以上に維持するのに好適である。なお、図1に示した実施例1と図4に示した実施例2とを組み合わせた構造も勿論可能である。その場合も壁面を飽和温度以上に維持するのに好適である。   FIG. 5 is a structural diagram of the superheater 12 of the heat pump system according to the second embodiment. This shows a structural example of the heat exchange part 35b surrounding the low-pressure steam pipe 12b. FIG. 5A shows an example in which the low pressure steam pipe 12b and the heat exchanging portion 35b which is a superheated steam pipe discharged from the compressor are coaxial double pipes, and FIG. 5B is thin around the low pressure steam pipe 12b. An example in which the heat exchanging portion 35b, which is a superheated steam pipe, is surrounded by a bundle. Any method is suitable for maintaining the wall surface of the pipe 12b at a saturation temperature or higher. Of course, a structure in which the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 4 are combined is also possible. In that case as well, it is suitable for maintaining the wall surface above the saturation temperature.

以上説明した本発明の各実施例であるヒートポンプ装置を用い、蒸発器で生成した蒸気を圧縮機に流入させる前に加熱すれば、ドレンの発生を抑え信頼性の低下を抑制した運転が可能である。   If the heat pump apparatus according to each embodiment of the present invention described above is used and the steam generated by the evaporator is heated before flowing into the compressor, operation that suppresses the generation of drain and suppresses the decrease in reliability is possible. is there.

実施例1であるヒートポンプシステムの構成図を示す。The block diagram of the heat pump system which is Example 1 is shown. 実施例1のヒートポンプシステムの蒸発器11周りの構造図を示す。The structural diagram around the evaporator 11 of the heat pump system of Example 1 is shown. 実施例1のヒートポンプシステムの蒸発器11周りの構造図を示す。The structural diagram around the evaporator 11 of the heat pump system of Example 1 is shown. 実施例2であるヒートポンプシステムの構成図を示す。The block diagram of the heat pump system which is Example 2 is shown. 実施例2であるヒートポンプシステムの過熱器12の構造図を示す。The structural diagram of the superheater 12 of the heat pump system which is Example 2 is shown. 比較例であるヒートポンプシステムの構成図を示す。The block diagram of the heat pump system which is a comparative example is shown. 圧縮機入口蒸気過熱度と圧縮動力の関係を示す。The relationship between compressor inlet steam superheat and compression power is shown.

符号の説明Explanation of symbols

1 水蒸気圧縮機システム
2 電動モータ
3 増速ギア
4 ピニオンギア
5 ポンプ
10 排熱
10b 排熱回収ライン
11 蒸発器
12 過熱器
12b 配管
20 熱利用施設
30 供給水
30a,31a,32a,33a 分岐点
31 第一段
31b,32b,33b,36b 蒸気配管
32 第二段
33 第三段
34 第四段
34b 圧縮機吐出配管
35b 熱交換部
37,38,39 弁
41 噴霧冷却装置
41b 給水配管
50 調整装置
DESCRIPTION OF SYMBOLS 1 Steam compressor system 2 Electric motor 3 Speed increase gear 4 Pinion gear 5 Pump 10 Waste heat 10b Waste heat recovery line 11 Evaporator 12 Superheater 12b Pipe 20 Heat utilization facility 30 Supply water 30a, 31a, 32a, 33a Branch point 31 First stage 31b, 32b, 33b, 36b Steam pipe 32 Second stage 33 Third stage 34 Fourth stage 34b Compressor discharge pipe 35b Heat exchange section 37, 38, 39 Valve 41 Spray cooling device 41b Water supply pipe 50 Adjustment device

Claims (8)

熱源からの熱で液水を蒸発させて蒸気を生成する蒸発器と、前記蒸発器で生成された蒸気を圧縮する圧縮機とを備えたヒートポンプ装置において、
前記蒸発器で生成され前記圧縮機に流入する前の蒸気を加熱する過熱装置を備えたことを特徴とするヒートポンプ装置。
In a heat pump apparatus comprising: an evaporator that evaporates liquid water with heat from a heat source to generate steam; and a compressor that compresses the steam generated by the evaporator;
A heat pump device comprising a superheater that heats steam generated by the evaporator and before flowing into the compressor.
請求項1に記載のヒートポンプシステムにおいて、
前記過熱装置で加熱される蒸気の過熱度を調整する調整装置を備えたことを特徴とするヒートポンプ装置。
The heat pump system according to claim 1,
A heat pump device comprising an adjusting device for adjusting the degree of superheat of steam heated by the superheater.
請求項2に記載のヒートポンプシステムであって、
前記過熱装置で加熱される蒸気の過熱度が10℃を超えないよう構成されたことを特徴とするヒートポンプ装置。
The heat pump system according to claim 2,
A heat pump device, characterized in that the degree of superheat of steam heated by the superheater does not exceed 10 ° C.
熱源からの熱で液水を蒸発させて蒸気を生成する蒸発器と、前記蒸発器で生成された蒸気を圧縮する圧縮機とを備えたヒートポンプ装置において、
前記蒸発器で生成された蒸気を、圧縮機吐出蒸気との熱交換により加熱するよう構成したことを特徴とするヒートポンプ装置。
In a heat pump apparatus comprising: an evaporator that evaporates liquid water with heat from a heat source to generate steam; and a compressor that compresses the steam generated by the evaporator;
A heat pump device configured to heat steam generated by the evaporator by heat exchange with compressor discharge steam.
熱源からの熱で液水を蒸発させて蒸気を生成する蒸発器と、前記蒸発器で生成された蒸気を圧縮する圧縮機とを備えたヒートポンプ装置において、
前記蒸発器上部を覆う蒸気ジャケットを有し、前記蒸気ジャケットに圧縮機吐出蒸気を供給させるよう構成したことを特徴とするヒートポンプ装置。
In a heat pump apparatus comprising: an evaporator that evaporates liquid water with heat from a heat source to generate steam; and a compressor that compresses the steam generated by the evaporator;
A heat pump device having a steam jacket covering the upper part of the evaporator, and configured to supply compressor discharge steam to the steam jacket.
請求項5に記載のヒートポンプ装置であって
前記蒸気ジャケット内で凝縮した蒸気を、前記蒸発器の供給水として利用できるよう構成したことを特徴とするヒートポンプ装置。
The heat pump apparatus according to claim 5, wherein the steam condensed in the steam jacket can be used as supply water for the evaporator.
熱源からの熱で液水を蒸発させて蒸気を生成する蒸発器と、前記蒸発器で生成された蒸気を圧縮する圧縮機とを備えたヒートポンプ装置において、
前記蒸発器で生成された蒸気を圧縮機に導く配管を、圧縮機吐出蒸気を熱利用施設に供給する配管で取り囲むよう構成したことを特徴とするヒートポンプ装置。
In a heat pump apparatus comprising: an evaporator that evaporates liquid water with heat from a heat source to generate steam; and a compressor that compresses the steam generated by the evaporator;
A heat pump device, wherein a pipe for guiding the steam generated by the evaporator to a compressor is surrounded by a pipe for supplying a compressor discharge steam to a heat utilization facility.
熱源との熱交換により蒸発器で液水を蒸発させて蒸気を生成し、生成した蒸気を圧縮機で圧縮して熱利用設備に供給するヒートポンプシステムの運転方法であって、
前記蒸発器で生成した蒸気を、前記圧縮機に流入させる前に加熱することを特徴とするヒートポンプ装置の運転方法。
An operation method of a heat pump system in which liquid water is evaporated by an evaporator to generate steam by heat exchange with a heat source, and the generated steam is compressed by a compressor and supplied to a heat utilization facility,
A method of operating a heat pump apparatus, wherein the steam generated by the evaporator is heated before flowing into the compressor.
JP2007278286A 2007-10-26 2007-10-26 Steam generation type heat pump device Pending JP2009103423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278286A JP2009103423A (en) 2007-10-26 2007-10-26 Steam generation type heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278286A JP2009103423A (en) 2007-10-26 2007-10-26 Steam generation type heat pump device

Publications (1)

Publication Number Publication Date
JP2009103423A true JP2009103423A (en) 2009-05-14

Family

ID=40705250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278286A Pending JP2009103423A (en) 2007-10-26 2007-10-26 Steam generation type heat pump device

Country Status (1)

Country Link
JP (1) JP2009103423A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236146A (en) * 2013-06-08 2014-12-24 重庆美的通用制冷设备有限公司 Refrigerating circulation system
CN106642837A (en) * 2016-09-28 2017-05-10 浙江大学 Regenerative refrigerator with built-in liquefier
CN112594980A (en) * 2020-12-18 2021-04-02 北京京仪自动化装备技术有限公司 Refrigerating system and temperature control system
WO2022042457A1 (en) * 2020-08-25 2022-03-03 同济大学 Efficient liquefaction system of regenerative refrigerator using direct flow
CN115822988A (en) * 2023-02-14 2023-03-21 浙江镕达永能压缩机有限公司 Centrifugal compressor and inlet temperature control method of centrifugal compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103862A (en) * 1996-09-30 1998-04-24 Kajima Corp Superheater for water vapor recompression type vacuum drying device
JP2007010243A (en) * 2005-06-30 2007-01-18 Hitachi Ltd Heat pump device, and operating method for heat pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103862A (en) * 1996-09-30 1998-04-24 Kajima Corp Superheater for water vapor recompression type vacuum drying device
JP2007010243A (en) * 2005-06-30 2007-01-18 Hitachi Ltd Heat pump device, and operating method for heat pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236146A (en) * 2013-06-08 2014-12-24 重庆美的通用制冷设备有限公司 Refrigerating circulation system
CN104236146B (en) * 2013-06-08 2016-12-28 重庆美的通用制冷设备有限公司 Cooling cycle system
CN106642837A (en) * 2016-09-28 2017-05-10 浙江大学 Regenerative refrigerator with built-in liquefier
CN106642837B (en) * 2016-09-28 2019-10-15 浙江大学 A kind of philip refrigerator of the built-in liquefier of band
WO2022042457A1 (en) * 2020-08-25 2022-03-03 同济大学 Efficient liquefaction system of regenerative refrigerator using direct flow
CN112594980A (en) * 2020-12-18 2021-04-02 北京京仪自动化装备技术有限公司 Refrigerating system and temperature control system
CN115822988A (en) * 2023-02-14 2023-03-21 浙江镕达永能压缩机有限公司 Centrifugal compressor and inlet temperature control method of centrifugal compressor

Similar Documents

Publication Publication Date Title
JP5151014B2 (en) HEAT PUMP DEVICE AND HEAT PUMP OPERATION METHOD
JP6307076B2 (en) COOLING CIRCUIT, GAS COOLING / DRYING FACILITY, AND METHOD FOR CONTROLLING COOLING CIRCUIT
JP4784263B2 (en) Steam generation system
US8075245B2 (en) Removal of moisture from process gas
JP2007163126A (en) Composite cycle power generation system improved in efficiency
JP5691844B2 (en) Heat pump steam generator
JP2009103423A (en) Steam generation type heat pump device
JP2008039383A (en) Unit provided on cooling device for transcritical operation
JP6188629B2 (en) Binary power generator operation method
JP2017003252A (en) Heat exchange device and heat pump device
JP2015190364A (en) Power generation system
JP2014199047A (en) Geothermal power generation system
JP4971399B2 (en) Steam generator
JP2009103422A (en) Heat pump system, it operating method, and steam evaporator system
JP2010164216A (en) High temperature-type heat pump system
JP2016531263A (en) Heat recovery and improvement method and compressor for use in the method
JP4972708B2 (en) Steam-utilizing plant, operation method of the plant, steam supply device, and steam supply method
JP2008057453A (en) Heat pump system
US20150121871A1 (en) Forced cooling in steam turbine plants
JP5239613B2 (en) Steam generation system
JP2019209249A (en) Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility
US10132542B2 (en) Pressure control for refrigerant system
WO2021181483A1 (en) Supercritical fluid power generation system
JP2009079845A (en) Feed water heater and power generation plant
JP6677063B2 (en) Heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110728

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220