JP2009102730A - Method for producing electroless plated resin particle - Google Patents

Method for producing electroless plated resin particle Download PDF

Info

Publication number
JP2009102730A
JP2009102730A JP2008241156A JP2008241156A JP2009102730A JP 2009102730 A JP2009102730 A JP 2009102730A JP 2008241156 A JP2008241156 A JP 2008241156A JP 2008241156 A JP2008241156 A JP 2008241156A JP 2009102730 A JP2009102730 A JP 2009102730A
Authority
JP
Japan
Prior art keywords
resin particles
resin
particles
metal film
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008241156A
Other languages
Japanese (ja)
Other versions
JP5446191B2 (en
Inventor
Toyoki Ito
豊樹 伊藤
Kunihiko Akai
邦彦 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008241156A priority Critical patent/JP5446191B2/en
Publication of JP2009102730A publication Critical patent/JP2009102730A/en
Application granted granted Critical
Publication of JP5446191B2 publication Critical patent/JP5446191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing electroless plated resin particles which improves the dispersibility of particles in a treatment liquid without using chromic acid and permanganic acid having large environmental loads, and can produce electroless plated resin particles in which the particles perfectly covered with a plating metal film are sufficiently much, and the adhesion between the resin particles and the plating metal film is excellent. <P>SOLUTION: The method for producing electroless plated resin particles comprises: a hydrophilizing step where in a liquid containing peroxide, metal ions and resin particles, the surfaces of the resin particles are hydrophilized; a catalyst imparting step where using a catalyst whose pH is 2 to 12, the catalyst is imparted to the surfaces of the resin particles; and a metal film forming step where a metal film is formed on the surfaces of the resin particles by electroless plating. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、無電解めっき樹脂粒子の製造方法に関する。   The present invention relates to a method for producing electroless plated resin particles.

液晶ディスプレイ(LCD)パネルのITO電極と駆動用LSIとの接続、LSIチップと回路基板との接続、及び、微細パターン電極間の接続など、電子機器類の微小部位間の電気的接続のために、導電性材料として異方導電性フィルムが用いられている。近年、電極間の狭ピッチ化により異方導電性フィルムで用いられる導電性粒子の特性がより重要になってきた。導電性粒子は、異方導電性フィルムの適用分野に応じて、金属粒子と無電解めっき樹脂粒子とに分類される。このうち無電解めっき樹脂粒子は、めっき金属皮膜により導電性が提供され、芯となる樹脂により柔軟性が提供される。そのため、異方導電性フィルムでは、導電性粒子として無電解めっき樹脂粒子が用いられることが多い。   For electrical connection between minute parts of electronic equipment such as connection between ITO electrode of LCD panel and driving LSI, connection between LSI chip and circuit board, and connection between fine pattern electrodes An anisotropic conductive film is used as the conductive material. In recent years, the characteristics of conductive particles used in anisotropic conductive films have become more important due to the narrow pitch between electrodes. The conductive particles are classified into metal particles and electroless plating resin particles according to the application field of the anisotropic conductive film. Among these, the electroless plating resin particles are provided with conductivity by the plated metal film, and are provided with flexibility by the core resin. Therefore, in an anisotropic conductive film, electroless plating resin particles are often used as conductive particles.

無電解めっき樹脂粒子を異方導電性フィルムや導電ペーストを始めとする導電性材料の導電性粒子として用いる場合、無電解めっき樹脂粒子には、(1)めっき金属皮膜で完全に覆われている粒子が十分に多いこと、(2)樹脂粒子とめっき金属皮膜との密着性が十分に高いこと、が要求される。   When electroless plating resin particles are used as conductive particles of conductive materials such as anisotropic conductive films and conductive pastes, the electroless plating resin particles are completely covered with (1) a plating metal film. It is required that the number of particles is sufficiently large, and (2) the adhesion between the resin particles and the plated metal film is sufficiently high.

上記(1)の要求を満たすためには、樹脂粒子を無電解めっき処理する際、処理液中における被めっき物である樹脂粒子同士の凝集が少なく、分散性が良好であることが必要である。処理液中における樹脂粒子の分散性が悪く、凝集が多い場合は、樹脂粒子同士が接触している部分がめっきされなくなり、めっき金属皮膜で完全に覆われている粒子が少なく、樹脂が一部分露出した無電解めっき樹脂粒子が多発して、導電性材料に用いた場合に良好な導電性を得ることが困難となる。   In order to satisfy the above requirement (1), when resin particles are subjected to electroless plating treatment, it is necessary that the resin particles, which are the objects to be plated, in the treatment liquid are less aggregated and have good dispersibility. . If the dispersibility of the resin particles in the treatment liquid is poor and there is a lot of aggregation, the parts where the resin particles are in contact with each other will not be plated, and there will be few particles completely covered with the plated metal film, and the resin will be partially exposed When the electroless plating resin particles are used frequently, it becomes difficult to obtain good conductivity when used as a conductive material.

また、上記(2)の要求を満たすためには、樹脂粒子を親水化することが考えられる。一般に前処理を含めて、無電解めっきは水系で処理するため、樹脂粒子表面が疎水性である場合、樹脂粒子とめっき金属皮膜との密着性が十分に得られない傾向がある。この密着性が低いと、異方導電性フィルムや導電ペーストを始めとする導電性材料の製造工程中に、樹脂粒子とめっき金属皮膜とが分離してしまい、良好な導電性を有する導電性材料を得ることが困難となる。したがって、無電解めっき前処理における樹脂粒子の表面処理は重要であり、樹脂粒子を凝集させずに分散性を向上させ、表面を親水化させる処理を施すことが望まれる。   In order to satisfy the requirement (2), it is conceivable to make the resin particles hydrophilic. In general, since electroless plating including a pretreatment is performed in an aqueous system, when the resin particle surface is hydrophobic, there is a tendency that sufficient adhesion between the resin particles and the plated metal film cannot be obtained. If this adhesion is low, the resin particles and the plated metal film are separated during the manufacturing process of conductive materials such as anisotropic conductive films and conductive pastes, and the conductive material has good conductivity. It becomes difficult to obtain. Accordingly, the surface treatment of the resin particles in the electroless plating pretreatment is important, and it is desired to perform a treatment for improving the dispersibility without agglomerating the resin particles and making the surface hydrophilic.

めっき金属皮膜と被めっき物との密着性を高める手段として、従来、クロム酸、クロム酸−硫酸、過マンガン酸などの強力な酸化剤を用いて被めっき物の前処理を行う手段が知られている。しかし、これらの酸化剤は環境負荷が大きいという不都合がある。また、これらの酸化剤は過激な条件下で樹脂粒子をエッチング処理するので、樹脂粒子によっては溶解、凝集、脆化、機械的強度の低下が発生するなどの問題がある。   As a means for improving the adhesion between the plating metal film and the object to be plated, a means for pre-treating the object to be plated using a strong oxidizing agent such as chromic acid, chromic acid-sulfuric acid or permanganic acid has been known. ing. However, these oxidizing agents have the disadvantage that the environmental burden is large. Moreover, since these oxidizing agents etch the resin particles under extreme conditions, there are problems such as dissolution, aggregation, embrittlement, and reduction in mechanical strength depending on the resin particles.

また、塩酸、硫酸などの強酸、水酸化ナトリウム、水酸化カリウムなどの強アルカリ溶液などを用いて被めっき物の前処理を行うことにより、めっき金属皮膜と被めっき物との密着性を高める方法も一般的である。しかし、樹脂粒子によってはこれらの強酸、強アルカリに対して過剰に変質するものがあり、表面に脆弱層を形成して逆に密着性が低くなることも多く、密着性向上が困難な場合がある。また、酸化剤と同様、樹脂粒子の溶解、凝集が発生する問題がある。   Also, a method for improving the adhesion between the plated metal film and the object to be plated by pretreatment of the object to be plated using a strong acid such as hydrochloric acid or sulfuric acid, or a strong alkali solution such as sodium hydroxide or potassium hydroxide. Is also common. However, some resin particles may be excessively denatured with respect to these strong acids and strong alkalis, and a weak layer is often formed on the surface, resulting in lower adhesion, which makes it difficult to improve adhesion. is there. In addition, like the oxidizing agent, there is a problem that the resin particles are dissolved and aggregated.

もちろん、これらの前処理工程は必ずしも必須の工程ではなく、上記の酸化剤、強酸、強アルカリに弱い樹脂粒子では、これらの工程を省略して、樹脂粒子の表面に触媒を付与する工程(触媒付与工程)を行うことも可能である。しかし、そうすると、上述した(1)めっき金属皮膜で完全に覆われている粒子が十分に多いこと、及び、(2)樹脂粒子とめっき金属皮膜の密着性が十分に高いこと、という特性を満たさない無電解めっき樹脂粒子が形成されることが多い。   Of course, these pretreatment steps are not necessarily essential steps. In the case of resin particles that are weak against the oxidant, strong acid, and strong alkali, a step of applying a catalyst to the surface of the resin particles by omitting these steps (catalyst) (Applying step) can also be performed. However, in this case, the above-mentioned characteristics (1) that the particles completely covered with the plated metal film are sufficiently large and (2) the adhesion between the resin particles and the plated metal film are sufficiently high are satisfied. Often electroless plated resin particles are formed.

また、プラズマやコロナ放電などを用いた乾式法で樹脂粒子を親水化する方法が知られている。しかし、この方法では、高価な装置が必要であったり、一般的に真空中で行わなければならないため、取り扱いにくく生産性が悪いなどという問題がある。   Also known is a method of hydrophilizing resin particles by a dry method using plasma or corona discharge. However, this method has a problem that it is difficult to handle and the productivity is low because an expensive apparatus is required or the process is generally performed in a vacuum.

そこで、樹脂粒子と光触媒である酸化チタン粉末とを液体に懸濁させた状態下に紫外線を照射して、樹脂粒子の表面を親水化させる方法が提案されている(特許文献1参照)。しかし、この方法では、親水化処理後に酸化チタン粉末を完全に取り除くことができず、最終的に無電解めっき樹脂粒子中に異物として酸化チタンが残留してしまうという問題がある。   Therefore, a method has been proposed in which the surface of the resin particles is hydrophilized by irradiating the resin particles and titanium oxide powder, which is a photocatalyst, in a liquid suspension with ultraviolet rays (see Patent Document 1). However, this method has a problem in that the titanium oxide powder cannot be completely removed after the hydrophilization treatment, and titanium oxide remains as a foreign substance in the electroless plating resin particles.

また、酸化チタンが残留するという問題を改善した方法として、樹脂粒子と光触媒である酸化亜鉛粉末とを液体に懸濁させた状態下に紫外線を照射し、樹脂粒子の表面を親水化させた後、触媒付与工程の前又は後に強酸又は強アルカリ処理して酸化亜鉛粉末を溶解して除去する方法が提案されている(特許文献2参照)。しかし、この方法では、光触媒を強酸、強アルカリで溶解、除去させるため、上述したように、強酸、強アルカリに弱い樹脂粒子では凝集、密着性低下の問題が生じる。また、弱酸、弱アルカリでは不要となった光触媒を完全に除去できず、無電解めっき樹脂粒子に異物として残留してしまう恐れがある。   In addition, as a method of improving the problem that titanium oxide remains, after the resin particles and zinc oxide powder as a photocatalyst are suspended in a liquid, the surface of the resin particles is hydrophilized by irradiating ultraviolet rays. A method of dissolving and removing zinc oxide powder by a strong acid or strong alkali treatment before or after the catalyst application step has been proposed (see Patent Document 2). However, in this method, since the photocatalyst is dissolved and removed with a strong acid and a strong alkali, as described above, the resin particles weak against the strong acid and the strong alkali have problems of aggregation and lowering of adhesion. Further, the photocatalyst that is no longer necessary with a weak acid or a weak alkali cannot be completely removed, and may remain as a foreign substance in the electroless plating resin particles.

また、別の方法として、触媒核と化学結合をすることが可能な基を有する化合物を、水素結合によって、非導電性物質(被めっき物)表面に吸着させる方法が提案されている(特許文献3参照)。しかし、特許文献3には、被めっき物が板状体のようなバルクのみ記載されており、無電解めっき樹脂粒子を製造することに関する記載はない。すなわち、バルクにはない樹脂粒子特有の特性である凝集、分散性に与える影響については考慮されていない。そして、特許文献3では、触媒核と化学結合をすることが可能な基を有する化合物として、少なくとも1分子中に2以上のアミノ基を有する化合物(以下、ポリアミノ化合物)が示されているが、このような化合物を用いると、処理液中の粒子同士が凝集して分散性が悪くなり、得られた無電解めっき樹脂粒子は、導電性粒子として良好な導電性を有していないことが分かった。したがって、樹脂粒子同士を凝集させずに分散性を向上させ、樹脂粒子とめっき金属皮膜との密着性を良好にさせる処理が望まれる。   Further, as another method, a method has been proposed in which a compound having a group capable of chemically bonding with a catalyst nucleus is adsorbed on the surface of a non-conductive substance (to-be-plated) by hydrogen bonding (Patent Document). 3). However, Patent Document 3 describes only a bulk such as a plate-like object to be plated, and there is no description regarding manufacturing electroless plating resin particles. That is, no consideration is given to the influence on aggregation and dispersibility, which is a characteristic characteristic of resin particles not in the bulk. And in patent document 3, although the compound (henceforth a polyamino compound) which has two or more amino groups in at least 1 molecule as a compound which has a group which can carry out a chemical bond with a catalyst nucleus is shown, When such a compound is used, it is understood that the particles in the treatment liquid aggregate to deteriorate dispersibility, and the obtained electroless plating resin particles do not have good conductivity as conductive particles. It was. Therefore, a treatment that improves the dispersibility without aggregating the resin particles and improves the adhesion between the resin particles and the plated metal film is desired.

特開2006−241499号公報JP 2006-241499 A 特開2007−146253号公報JP 2007-146253 A 特開2006−77289号公報JP 2006-77289 A

本発明は、このような状況に鑑みてなされたものであり、めっき金属皮膜で完全に覆われている粒子が十分に多く、樹脂粒子とめっき金属皮膜との密着性が優れた無電解めっき樹脂粒子を製造することができる無電解めっき樹脂粒子の製造方法を提供することを課題とする   The present invention has been made in view of such a situation, and there are sufficiently many particles completely covered with a plating metal film, and an electroless plating resin having excellent adhesion between the resin particles and the plating metal film. An object of the present invention is to provide a method for producing electroless plating resin particles capable of producing particles.

上記目的を達成するために、本発明は、過酸化物、金属イオン及び樹脂粒子を含む液中で上記樹脂粒子の表面を親水化させる親水化処理工程と、pHが2以上12以下の触媒を用いて上記樹脂粒子の表面に触媒を付与する触媒付与工程と、無電解めっきにより上記樹脂粒子の表面に金属皮膜を形成する金属皮膜形成工程と、を有する無電解めっき樹脂粒子の製造方法を提供する。   In order to achieve the above object, the present invention comprises a hydrophilization treatment step for hydrophilizing the surface of the resin particles in a liquid containing peroxide, metal ions and resin particles, and a catalyst having a pH of 2 or more and 12 or less. Provided is a method for producing electroless plated resin particles comprising: a catalyst applying step for applying a catalyst to the surface of the resin particles, and a metal film forming step for forming a metal film on the surface of the resin particles by electroless plating. To do.

本発明の無電解めっき樹脂粒子の製造方法によれば、上述した親水化処理工程、触媒付与工程及び金属皮膜形成工程を経ることにより、各工程において処理液中の樹脂粒子の分散性を向上させることができ、めっき金属皮膜で完全に覆われている粒子が十分に多く、樹脂粒子とめっき金属皮膜との密着性が優れた無電解めっき樹脂粒子を効率的に製造することができる。また、本発明の無電解めっき樹脂粒子の製造方法によれば、環境負荷が大きいクロム酸や過マンガン酸などを用いることなく、樹脂粒子とめっき金属皮膜との優れた密着性を得ることができる。   According to the method for producing electroless plating resin particles of the present invention, the dispersibility of the resin particles in the treatment liquid is improved in each step by passing through the above-described hydrophilization treatment step, catalyst application step, and metal film formation step. Electroless plating resin particles having a sufficiently large number of particles that are completely covered with the plating metal film and having excellent adhesion between the resin particles and the plating metal film can be efficiently produced. In addition, according to the method for producing electroless plated resin particles of the present invention, excellent adhesion between the resin particles and the plated metal film can be obtained without using chromic acid or permanganic acid, which have a large environmental load. .

また、本発明の無電解めっき樹脂粒子の製造方法において、上記親水化処理工程は、上記過酸化物を含む溶液に上記樹脂粒子を分散させた後、上記金属イオンを供給する化合物を加えることで、上記樹脂粒子の表面を親水化させる工程であることが好ましい。また、上記親水化処理工程は、上記過酸化物と上記金属イオンとを含む溶液に上記樹脂粒子を分散させることで、上記樹脂粒子の表面を親水化させる工程であることも好ましい。   Further, in the method for producing electroless plating resin particles of the present invention, the hydrophilic treatment step includes dispersing the resin particles in a solution containing the peroxide and then adding a compound that supplies the metal ions. The step of hydrophilizing the surface of the resin particles is preferable. The hydrophilic treatment step is preferably a step of hydrophilizing the surface of the resin particles by dispersing the resin particles in a solution containing the peroxide and the metal ions.

これらの方法で親水化処理工程を行うことにより、樹脂粒子を効果的に親水化することができる。そのため、各工程において処理液中での樹脂粒子の分散性をより十分に向上させることができるとともに、樹脂粒子とめっき金属皮膜との密着性をより優れたものとすることができる。   By performing the hydrophilization treatment step by these methods, the resin particles can be effectively hydrophilized. Therefore, the dispersibility of the resin particles in the treatment liquid can be more sufficiently improved in each step, and the adhesion between the resin particles and the plated metal film can be further improved.

また、本発明の無電解めっき樹脂粒子の製造方法において、上記過酸化物は、過酸化水素であることが好ましい。過酸化物として過酸化水素を用いることで、親水化処理工程において樹脂粒子の表面に水酸基を効果的に付与して親水性を高めることができる。そのため、各工程において処理液中での樹脂粒子の分散性をより十分に向上させることができるとともに、樹脂粒子とめっき金属皮膜との密着性をより優れたものとすることができる。   In the method for producing electroless plated resin particles of the present invention, the peroxide is preferably hydrogen peroxide. By using hydrogen peroxide as the peroxide, it is possible to effectively impart a hydroxyl group to the surface of the resin particles in the hydrophilic treatment step to increase hydrophilicity. Therefore, the dispersibility of the resin particles in the treatment liquid can be more sufficiently improved in each step, and the adhesion between the resin particles and the plated metal film can be further improved.

更に、本発明の無電解めっき樹脂粒子の製造方法において、上記金属イオンは、鉄イオンであることが好ましい。鉄イオンは、複数の価数を持つ金属イオンであり、樹脂粒子の表面に水酸基等の極性基を付与する反応を発生させやすく、樹脂粒子の親水性をより向上させることができる。そのため、各工程において処理液中での樹脂粒子の分散性をより十分に向上させることができるとともに、樹脂粒子とめっき金属皮膜との密着性をより優れたものとすることができる。   Furthermore, in the method for producing electroless plated resin particles of the present invention, the metal ions are preferably iron ions. An iron ion is a metal ion having a plurality of valences, and can easily generate a reaction for imparting a polar group such as a hydroxyl group to the surface of the resin particle, thereby further improving the hydrophilicity of the resin particle. Therefore, the dispersibility of the resin particles in the treatment liquid can be more sufficiently improved in each step, and the adhesion between the resin particles and the plated metal film can be further improved.

また更に、本発明の無電解めっき樹脂粒子の製造方法において、上記pHが2以上12以下の触媒は、アルカリ触媒であることが好ましい。   Furthermore, in the method for producing electroless plated resin particles of the present invention, the catalyst having a pH of 2 or more and 12 or less is preferably an alkali catalyst.

本発明によれば、めっき金属皮膜で完全に覆われている粒子が十分に多く、樹脂粒子とめっき金属皮膜との密着性が優れた無電解めっき樹脂粒子を製造することができる無電解めっき樹脂粒子の製造方法を提供することができる。本発明の無電解めっき樹脂粒子の製造方法によって得られる無電解めっき樹脂粒子は、異方導電性フィルム、導電ペーストを始めとする導電性材料に必要な特性を十分に満たすため、それらの導電性材料に好適に用いられる。   According to the present invention, an electroless plating resin capable of producing electroless plating resin particles having a sufficiently large number of particles completely covered with a plating metal film and having excellent adhesion between the resin particles and the plating metal film. A method for producing particles can be provided. The electroless plated resin particles obtained by the method for producing electroless plated resin particles of the present invention sufficiently satisfy the characteristics required for conductive materials such as anisotropic conductive films and conductive pastes. It is suitably used for materials.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の無電解めっき樹脂粒子の製造方法は、過酸化物、金属イオン及び樹脂粒子を含む液中で上記樹脂粒子の表面を親水化させる親水化処理工程と、pHが2以上12以下の触媒を用いて上記樹脂粒子の表面に触媒を付与する触媒付与工程と、無電解めっきにより上記樹脂粒子の表面に金属皮膜を形成する金属皮膜形成工程と、を有する方法である。以下、各工程について詳細に説明する。   The method for producing electroless plating resin particles of the present invention comprises a hydrophilization treatment step for hydrophilizing the surface of the resin particles in a liquid containing peroxide, metal ions and resin particles, and a catalyst having a pH of 2 or more and 12 or less. And a metal film forming step of forming a metal film on the surface of the resin particles by electroless plating. Hereinafter, each step will be described in detail.

親水化処理工程は、過酸化物、金属イオン及び樹脂粒子を含む液中で上記樹脂粒子の表面を親水化させる工程である。一般に前処理を含めて、無電解めっきは水系で処理するため、樹脂粒子表面が疎水性である場合、樹脂粒子とめっき金属皮膜との密着性が悪く、樹脂粒子を親水化させることで密着性が向上する。このことから、樹脂粒子表面が疎水性であるか親水性であるかに関わらず、密着性向上の観点から親水化処理を行うことが好ましい。ここで親水化とは、樹脂粒子の表面に極性基を付与することであり、攪拌による分散手段で、樹脂粒子の凝集による沈殿、浮遊物がなくなり、樹脂粒子が液体に懸濁して分散していることを目視で確認できる状態をいう。極性基としては、例えば、水酸基、カルボニル基、カルボキシル基などが挙げられるが、導入のし易さの点で水酸基が好ましい。   The hydrophilization treatment step is a step of hydrophilizing the surface of the resin particles in a liquid containing peroxide, metal ions, and resin particles. In general, electroless plating, including pretreatment, is performed in an aqueous system, so if the resin particle surface is hydrophobic, the adhesion between the resin particles and the plated metal film is poor, and the adhesion is achieved by making the resin particles hydrophilic. Will improve. For this reason, it is preferable to perform a hydrophilization treatment from the viewpoint of improving adhesion, regardless of whether the resin particle surface is hydrophobic or hydrophilic. Hydrophilization here refers to imparting a polar group to the surface of the resin particles. The dispersion means by stirring eliminates precipitation and suspension due to aggregation of the resin particles, and the resin particles are suspended and dispersed in a liquid. It means a state where it can be confirmed visually. Examples of the polar group include a hydroxyl group, a carbonyl group, and a carboxyl group, and a hydroxyl group is preferable in terms of ease of introduction.

樹脂粒子の表面に水酸基を付与して樹脂粒子を親水化させるには、例えば、過酸化物を含む溶液に樹脂粒子を分散させ、そこに、金属イオンを供給する化合物を投入する工程によって達成することができる。この工程を行うと、樹脂粒子表面が親水化されるだけでなく、この親水化処理で使用した金属イオンが樹脂粒子表面に付着する。金属イオンを供給する化合物としては特に限定はないが、例えば、金属イオンを含む塩やその水和物又はその溶液が好ましい。ただし、親水化処理工程において、各成分の投入順序は必ずしも上記の順序である必要はなく、過酸化物と金属イオンとを含む溶液に、樹脂粒子を加えて分散させても良い。また、溶液中には、過酸化物及び金属イオン以外に、必要に応じて錯化剤、還元剤、界面活性剤などを入れることもできる。   Giving a hydroxyl group to the surface of the resin particle to make the resin particle hydrophilic is achieved, for example, by dispersing the resin particle in a solution containing a peroxide and adding a compound that supplies metal ions to the resin particle. be able to. When this step is performed, not only the surface of the resin particles is hydrophilized, but also the metal ions used in the hydrophilization treatment adhere to the surface of the resin particles. Although there is no limitation in particular as a compound which supplies a metal ion, For example, the salt containing a metal ion, its hydrate, or its solution is preferable. However, in the hydrophilization treatment step, the order of adding the components is not necessarily the order described above, and the resin particles may be added and dispersed in a solution containing peroxide and metal ions. In addition to peroxides and metal ions, a complexing agent, a reducing agent, a surfactant, and the like can be added to the solution as necessary.

過酸化物としては、例えば、過酸化水素、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシドなどが挙げられる。これらの中でも、過酸化水素が好ましい。   Examples of the peroxide include hydrogen peroxide, t-butyl hydroperoxide, cumene hydroperoxide, and the like. Among these, hydrogen peroxide is preferable.

また、金属イオンとしては、例えば、鉄イオン、銅イオン、ニッケルイオン、コバルトイオン、チタンイオン、亜鉛イオン、マンガンイオン、アルミニウムイオン等が挙げられる。その中でも、金属イオンとしては、複数の価数を持つ金属イオンであることが好ましく、鉄イオン又は銅イオンであることがより好ましく、鉄イオンであることが特に好ましい。   Examples of metal ions include iron ions, copper ions, nickel ions, cobalt ions, titanium ions, zinc ions, manganese ions, and aluminum ions. Among them, the metal ion is preferably a metal ion having a plurality of valences, more preferably an iron ion or a copper ion, and particularly preferably an iron ion.

溶媒は、樹脂粒子を溶解、凝集させないものであれば特に限定はないが、例えば、水、水溶性有機溶媒、これらの混合溶媒などが挙げられる。水溶性有機溶媒は樹脂粒子を溶解、凝集させないものであれば特に限定はないが、例えば、メタノール、エタノール、ブタノール、2−プロパノール、アセトニトリルなどが挙げられる。   The solvent is not particularly limited as long as it does not dissolve or aggregate the resin particles, and examples thereof include water, water-soluble organic solvents, and mixed solvents thereof. The water-soluble organic solvent is not particularly limited as long as it does not dissolve and aggregate the resin particles, and examples thereof include methanol, ethanol, butanol, 2-propanol, and acetonitrile.

錯化剤としては、例えば、EDTA、2,2’−ビピリジル、エチレンジアミンなどが挙げられる。還元剤としては、例えば、アスコルビン酸塩、ヒドロキシアミン塩などが挙げられる。界面活性剤は、樹脂粒子の分散性を低下させない限り、陽イオン性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよい。   Examples of the complexing agent include EDTA, 2,2'-bipyridyl, ethylenediamine, and the like. Examples of the reducing agent include ascorbate and hydroxyamine salt. The surfactant may be any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant as long as the dispersibility of the resin particles is not lowered.

樹脂粒子の表面に水酸基を付与する反応としては、フェントン反応、ハーバー・ワイス反応として知られているものが好ましい。この反応について、金属イオンが鉄イオンであり、過酸化物が過酸化水素である場合を例にして説明する。すなわち、この反応は、下記の反応式(1)〜(6)に示すように、鉄イオン(Fe2+)の触媒作用により過酸化水素がヒドロキシラジカル(・OH)に分解され(フェントン反応)、これにより発生したヒドロキシラジカルが樹脂粒子表面と反応することで、水酸基を樹脂粒子の表面に付与することができるというものである。なお、フェントン反応で生じた3価の鉄イオン(Fe3+)は、スーパーオキシド(・O )により還元され、2価の鉄イオン(Fe2+)に戻る(ハーバー・ワイス反応)。 As the reaction for imparting a hydroxyl group to the surface of the resin particles, those known as Fenton reaction and Harbor-Weiss reaction are preferable. This reaction will be described by taking as an example the case where the metal ions are iron ions and the peroxide is hydrogen peroxide. That is, as shown in the following reaction formulas (1) to (6), hydrogen peroxide is decomposed into hydroxy radicals ( .OH ) by the catalytic action of iron ions (Fe 2+ ) (Fenton reaction), The hydroxyl radicals generated thereby react with the surface of the resin particles, whereby hydroxyl groups can be imparted to the surface of the resin particles. The trivalent iron ions (Fe 3+ ) generated by the Fenton reaction are reduced by superoxide (.O 2 ) and returned to divalent iron ions (Fe 2+ ) (Haber-Weiss reaction).

+ Fe2+ −−→ ・OH + OH + Fe3+ (1)
Fe2+ + ・OH −−→ Fe3+ + OH (2)
+ ・OH −−→ ・OH + HO (3)
Fe2+ + ・OH −−→ Fe3+ + HO (4)
・OH −−→ ・O + H (5)
・O + Fe3+ −−→ O + Fe2+ (6)
H 2 O 2 + Fe 2+ - → · OH + OH - + Fe 3+ (1)
Fe 2+ + OH −− → Fe 3+ + OH (2)
H 2 O 2 + .OH −− → O 2 H + H 2 O (3)
Fe 2+ + .O 2 H −− → Fe 3+ + HO 2 (4)
・ O 2 H −− → ・ O 2 + H + (5)
・ O 2 + Fe 3+ −− → O 2 + Fe 2+ (6)

したがって、過酸化物を含む溶液としては過酸化水素を含む水溶液が好ましい。また、金属イオンとしては鉄イオンが好ましく、第一鉄イオンが特に好ましい。さらに第一鉄イオンを供給する化合物としては特に限定はないが、例えば、塩化第一鉄、硝酸第一鉄、硫酸第一鉄などの第一鉄イオンを含む塩やその水和物又はその溶液が好ましい。   Therefore, the solution containing peroxide is preferably an aqueous solution containing hydrogen peroxide. Moreover, as a metal ion, an iron ion is preferable and a ferrous ion is especially preferable. Further, the compound that supplies ferrous ions is not particularly limited. For example, salts containing ferrous ions such as ferrous chloride, ferrous nitrate, and ferrous sulfate, hydrates thereof, or solutions thereof. Is preferred.

親水化処理工程において、過酸化物、金属イオン及び樹脂粒子を含む液中の過酸化物の濃度は、1〜300g/Lであることが好ましく、10〜150g/Lであることが特に好ましい。また、上記液中の金属イオンの濃度は、0.01〜10g/Lであることが好ましく、0.1〜1g/Lであることが特に好ましい。また、上記液中の樹脂粒子の濃度は、過酸化物濃度と金属イオン濃度に依存するが、0.1〜500g/Lであることが好ましく、10〜100g/Lであることが特に好ましい。また、過酸化物、金属イオン及び樹脂粒子を含む液のpHは2以上12以下に調整することが好ましく、pHを2以上4以下に調整することがより好ましい。   In the hydrophilization treatment step, the concentration of peroxide in the liquid containing peroxide, metal ions and resin particles is preferably 1 to 300 g / L, and particularly preferably 10 to 150 g / L. Moreover, it is preferable that the density | concentration of the metal ion in the said liquid is 0.01-10 g / L, and it is especially preferable that it is 0.1-1 g / L. Moreover, although the density | concentration of the resin particle in the said liquid depends on a peroxide density | concentration and a metal ion density | concentration, it is preferable that it is 0.1-500 g / L, and it is especially preferable that it is 10-100 g / L. Moreover, it is preferable to adjust pH of the liquid containing a peroxide, a metal ion, and a resin particle to 2-12, and it is more preferable to adjust pH to 2-4.

また、親水化処理を行う際の処理温度は、0〜90℃であることが好ましく、10〜80℃であることが特に好ましい。親水化処理を行う際の処理時間は、過酸化物濃度、金属イオン濃度、温度、樹脂粒子の濃度に依存するが、1分〜1日間であることが好ましく、5分〜6時間であることが特に好ましい。   Moreover, it is preferable that the process temperature at the time of performing a hydrophilic treatment is 0-90 degreeC, and it is especially preferable that it is 10-80 degreeC. The treatment time for the hydrophilization treatment depends on the peroxide concentration, metal ion concentration, temperature, and resin particle concentration, but is preferably 1 minute to 1 day, and 5 minutes to 6 hours. Is particularly preferred.

本発明の特徴として、pHが2未満の強酸や、pHが12を超えた強アルカリを使用することなく、無電解めっき樹脂粒子を製造可能であるという点が挙げられる。このため、耐薬品性が弱く、強酸、強アルカリ処理によって、表面に脆弱層を形成しやすい樹脂粒子、又は溶解、凝集しやすい樹脂粒子でも、好適に使用可能である。もちろん、本発明で使用可能な樹脂粒子は、このような耐薬品性の弱い、強酸、強アルカリに対して変質しやすい樹脂粒子に限られることはない。   A feature of the present invention is that electroless plating resin particles can be produced without using a strong acid having a pH of less than 2 or a strong alkali having a pH of more than 12. For this reason, resin particles having low chemical resistance and easily forming a fragile layer on the surface by a strong acid or strong alkali treatment, or resin particles that are easily dissolved or aggregated can be suitably used. Of course, the resin particles that can be used in the present invention are not limited to the resin particles that are weak in chemical resistance and easily deteriorated with respect to strong acids and strong alkalis.

樹脂粒子としては、例えば、アクリロニトリル−スチレン共重合体樹脂、アクリロニトリル−ブタジエン−スチレン三元共重合体樹脂、アクリロニトリル樹脂、アセトグアナミン樹脂、アミノ樹脂、アルキッド樹脂、ウレタン樹脂、エチレンプロピレンエラストマー樹脂、エチレン−メタクリル酸コポリマー樹脂、エポキシ樹脂、キシレン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、スチレン−アクリロニトリル共重合体樹脂、スチレン−ブタジエンゴム樹脂、スチレン系樹脂、ニトリルゴム樹脂、ニトリル樹脂、フェノールホルムアルデヒド樹脂、フェノール樹脂、ブタジエン樹脂、ブチルゴム樹脂、ベンゾグアナミンホルムアルデヒド樹脂、ベンゾグアナミン樹脂、ポリアクリルアミド樹脂、ポリアクリルニトリル樹脂、ポリアクリル酸エステル樹脂、ポリアクリレート樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリイソブチレン樹脂、ポリイソプレン樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレングリコール樹脂、ポリエチレンテレフタレート樹脂、ポリエチレン樹脂、ポリオキシメチレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ポリテトラフルオロエチレン樹脂、ポリビニルアルコール樹脂、ポリビニルエーテル樹脂、ポリビニルピリジン樹脂、ポリビニルピロリドン樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイド樹脂、ポリブタジエン樹脂、ポリブチレンテレフタレート樹脂、ポリブテン樹脂、ポリプロピレングリコール樹脂、ポリプロピレン樹脂、ポリベンズイミダゾール樹脂、ポリメチルメタアクリレート樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、メラミンホルムアルデヒド樹脂、メラミン樹脂、含フッ素樹脂、尿素ホルムアルデヒド樹脂、尿素樹脂、不飽和ポリエステル樹脂、芳香族ポリエステル樹脂などからなる樹脂粒子が挙げられる。これらの中でも、アクリル系の樹脂、スチレン系の樹脂からなる粒子が好ましい。   Examples of the resin particles include acrylonitrile-styrene copolymer resin, acrylonitrile-butadiene-styrene terpolymer resin, acrylonitrile resin, acetoguanamine resin, amino resin, alkyd resin, urethane resin, ethylene propylene elastomer resin, ethylene- Methacrylic acid copolymer resin, epoxy resin, xylene resin, diallyl phthalate resin, silicone resin, styrene-acrylonitrile copolymer resin, styrene-butadiene rubber resin, styrene resin, nitrile rubber resin, nitrile resin, phenol formaldehyde resin, phenol resin, Butadiene resin, butyl rubber resin, benzoguanamine formaldehyde resin, benzoguanamine resin, polyacrylamide resin, polyacrylonitrile resin, polyacrylic resin Luric ester resin, polyacrylate resin, polyacetal resin, polyamide resin, polyisobutylene resin, polyisoprene resin, polyimide resin, polyurethane resin, polyester resin, polyethylene glycol resin, polyethylene terephthalate resin, polyethylene resin, polyoxymethylene resin, polycarbonate resin , Polystyrene resin, polysulfone resin, polytetrafluoroethylene resin, polyvinyl alcohol resin, polyvinyl ether resin, polyvinyl pyridine resin, polyvinyl pyrrolidone resin, polyvinyl butyral resin, polyvinyl formal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polybutadiene resin, polybutylene Terephthalate resin, polybutene resin, polypropylene glycol Resin, polypropylene resin, polybenzimidazole resin, polymethyl methacrylate resin, polyvinylidene chloride resin, polyvinyl chloride resin, polyvinyl acetate resin, melamine formaldehyde resin, melamine resin, fluorine-containing resin, urea formaldehyde resin, urea resin, Examples thereof include resin particles made of unsaturated polyester resin, aromatic polyester resin, and the like. Among these, particles made of acrylic resin and styrene resin are preferable.

樹脂粒子の平均粒径は、1〜30μmであることが好ましく、3〜5μmであることがより好ましい。平均粒径は、電子顕微鏡写真により任意の20個の樹脂粒子を観察し、それらの粒径の平均をとることにより求めることができる。   The average particle diameter of the resin particles is preferably 1 to 30 μm, and more preferably 3 to 5 μm. The average particle diameter can be determined by observing 20 arbitrary resin particles with an electron micrograph and taking the average of the particle diameters.

上記の親水化処理工程で樹脂粒子の表面を親水化させた後、触媒付与工程を行う。触媒付与工程は、樹脂粒子の表面に次工程で行う無電解めっきの起点となりうる触媒を付与する工程である。触媒としては一般に貴金属が使用され、貴金属イオンを樹脂粒子の表面に捕捉させた後、貴金属イオンを還元して、樹脂粒子の表面に貴金属を付与させる。貴金属としては、例えば、パラジウム、銀、白金などが挙げられるが、パラジウムが特に好ましい。   After hydrophilizing the surface of the resin particles in the hydrophilic treatment step, a catalyst application step is performed. A catalyst provision process is a process of providing the catalyst which can become the starting point of the electroless plating performed at the next process on the surface of a resin particle. As the catalyst, a noble metal is generally used. After the noble metal ion is captured on the surface of the resin particle, the noble metal ion is reduced to impart the noble metal to the surface of the resin particle. Examples of the noble metal include palladium, silver, platinum and the like, and palladium is particularly preferable.

触媒付与方法としては、pHが2以上12以下の触媒を使用する限り、特に制限されないが、例えば、樹脂粒子を2価の錫イオンを含む溶液に浸漬した後、パラジウムイオンなどの貴金属イオンを含む溶液に浸漬する方法、樹脂粒子をパラジウムイオンなどの貴金属イオン単体を含む溶液に浸漬した後、還元剤でパラジウムなどの貴金属に還元する方法、樹脂粒子をパラジウム錯体などの貴金属錯体を含む溶液に浸漬した後、還元剤でパラジウムなどの貴金属に還元する方法が挙げられる。しかし、触媒付与方法として、樹脂粒子を2価の錫イオンとパラジウムイオンなどの貴金属イオンとを含む混合1液型の酸性触媒溶液に浸漬した後、pHが2未満の強酸又はpHが12を超えた強アルカリで活性化する方法は、樹脂粒子の表面に脆弱層を形成しやすく、樹脂粒子とめっき金属皮膜の密着性が悪くなること、又は樹脂粒子が溶解、凝集しやすくなるために、めっき金属皮膜で完全に覆われている粒子が少なくなることが理由で好ましくない。   The catalyst application method is not particularly limited as long as a catalyst having a pH of 2 or more and 12 or less is used. For example, after the resin particles are immersed in a solution containing divalent tin ions, noble metal ions such as palladium ions are contained. A method of immersing in a solution, a method of immersing a resin particle in a solution containing a single noble metal ion such as palladium ion, and then reducing the resin particle to a noble metal such as palladium with a reducing agent, a method of immersing a resin particle in a solution containing a noble metal complex such as a palladium complex Then, a method of reducing to a noble metal such as palladium with a reducing agent can be mentioned. However, as a catalyst providing method, after immersing the resin particles in a mixed one-component acidic catalyst solution containing divalent tin ions and noble metal ions such as palladium ions, a strong acid having a pH of less than 2 or a pH exceeding 12 The method of activating with strong alkali tends to form a fragile layer on the surface of the resin particles, and the adhesion between the resin particles and the plated metal film is deteriorated, or the resin particles are likely to dissolve and aggregate. This is not preferable because the number of particles completely covered with the metal film is reduced.

これらの中でも、パラジウム錯体を含む溶液はアルカリ触媒として市販されており、触媒付与工程における触媒としては、このようなアルカリ触媒(アルカリキャタリスト、アルカリシーダ)を使用することが好ましい。通常、アルカリ触媒としては、パラジウムイオンとアミノ系錯化剤とからなるパラジウム錯体を含んだpHが9以上12以下の弱アルカリ溶液が好ましく用いられる。パラジウム錯体は、パラジウムイオン単体よりも親水化された樹脂粒子表面との吸着が良好であることと、弱アルカリであるため、耐薬品性が弱く、強酸、強アルカリに対して変質しやすい樹脂粒子に対しても、溶解、凝集が発生することなく使用できることが好ましい理由である。   Among these, a solution containing a palladium complex is commercially available as an alkali catalyst, and it is preferable to use such an alkali catalyst (alkali catalyst, alkali seeder) as a catalyst in the catalyst application step. Usually, a weak alkaline solution having a pH of 9 or more and 12 or less containing a palladium complex composed of palladium ions and an amino complexing agent is preferably used as the alkali catalyst. Palladium complex is a resin particle that has better adsorption to the surface of resin particles that are made more hydrophilic than palladium ion alone, and is weakly alkaline, so it has poor chemical resistance and is easily altered by strong acids and strong alkalis. On the other hand, it is preferable that it can be used without causing dissolution or aggregation.

パラジウムイオンを供給する化合物としては、例えば、塩化パラジウム、硫酸パラジウム、硝酸パラジウムなどが挙げられるが、アルカリ触媒では硫酸パラジウムが好適に用いられる。アルカリ触媒で使用するアミノ系錯化剤としては、パラジウム錯体の形成しやすさとアルカリ水溶液によく溶ける点で2−アミノピリジンが好ましい。還元剤としては、パラジウムイオン単体の場合、パラジウム錯体の場合のいずれの場合でも、例えば、次亜リン酸ナトリウム、水素化ほう素ナトリウム、水素化ほう素カリウム、ジメチルアミンボラン、ヒドラジン、ホルマリンなどを用いることができるが、樹脂粒子が変質しにくい中性領域で使用可能な次亜リン酸ナトリウムとジメチルアミンボランが好ましい。   Examples of the compound that supplies palladium ions include palladium chloride, palladium sulfate, palladium nitrate, and the like. For alkali catalysts, palladium sulfate is preferably used. As the amino complexing agent used in the alkali catalyst, 2-aminopyridine is preferable in that it easily forms a palladium complex and dissolves well in an aqueous alkali solution. As the reducing agent, in the case of palladium ion alone or palladium complex, for example, sodium hypophosphite, sodium borohydride, potassium borohydride, dimethylamine borane, hydrazine, formalin, etc. Although it can be used, sodium hypophosphite and dimethylamine borane which can be used in a neutral region where the resin particles hardly change in quality are preferable.

本発明においてアルカリ触媒を使用した触媒付与工程は、親水化処理した後の樹脂粒子をアルカリ触媒溶液に浸漬して、通常10〜80℃、好ましくは20〜50℃の温度で行う。   In the present invention, the catalyst application step using an alkali catalyst is performed at a temperature of usually 10 to 80 ° C., preferably 20 to 50 ° C. by immersing the resin particles after the hydrophilic treatment in an alkali catalyst solution.

アルカリ触媒溶液におけるパラジウム錯体の濃度は、硫酸パラジウム等のパラジウムイオンを供給する化合物の濃度、及び2−アミノピリジン等のアミノ系錯化剤の濃度に依存し、パラジウム錯体の濃度と樹脂粒子の濃度によって樹脂粒子表面のパラジウム付与量が変化する。各濃度は、樹脂粒子表面のパラジウム付与量が、通常0.005〜1μg/cm、好ましくは0.01〜0.1μg/cmとなるように調整することが好ましい。還元剤の濃度は、上記パラジウム付与量を還元可能な必要最低限の濃度で良く、全て還元可能な濃度であることが好ましい。 The concentration of the palladium complex in the alkali catalyst solution depends on the concentration of the compound supplying palladium ions such as palladium sulfate and the concentration of the amino complexing agent such as 2-aminopyridine, and the concentration of the palladium complex and the concentration of the resin particles. As a result, the amount of palladium applied on the surface of the resin particles changes. Each concentration of palladium application amount of the resin particle surface, typically 0.005~1μg / cm 2, it is preferable that preferably adjusted to a 0.01~0.1μg / cm 2. The concentration of the reducing agent may be a minimum necessary concentration that can reduce the palladium application amount, and is preferably a concentration that can be reduced.

次いで、上記工程を経て得られた樹脂粒子表面に、公知の無電解めっきによって、金属被膜を形成させる金属皮膜形成工程を行う。金属皮膜としては、例えば、ニッケル、銅、金、銀及びそれらの合金又は金属化合物から選択される材料からなる皮膜が挙げられる。これらの中でも、ニッケル−リン皮膜、又は、ニッケル−リン皮膜の上に更に金皮膜を形成したものが良好な導電性が得られる点でより好ましい。   Subsequently, the metal film formation process which forms a metal film on the resin particle surface obtained through the said process by well-known electroless plating is performed. Examples of the metal film include a film made of a material selected from nickel, copper, gold, silver and alloys or metal compounds thereof. Among these, a nickel-phosphorus film or a film in which a gold film is further formed on the nickel-phosphorus film is more preferable in that good conductivity can be obtained.

上記の各工程を経ることによって、めっき金属皮膜で完全に覆われている粒子が十分に多く、樹脂粒子とめっき金属皮膜との密着性が十分に高い無電解めっき樹脂粒子が得られる。すなわち、この無電解めっき樹脂粒子は、導電性粒子として良好な導電性を有する。無電解めっき樹脂粒子の芯は樹脂で構成されているため、樹脂特有の弾力性を有する。したがって、このように処理して得られた無電解めっき樹脂粒子を異方導電性フィルム、導電ペーストに用いると、接続不良などの問題が生じにくい、良好な異方導電性フィルム、導電ペーストが得られる。   By passing through each of the above steps, electroless plated resin particles having a sufficiently large number of particles completely covered with the plated metal film and sufficiently high adhesion between the resin particles and the plated metal film can be obtained. That is, the electroless plating resin particles have good conductivity as conductive particles. Since the core of the electroless plating resin particle is made of resin, it has elasticity specific to the resin. Therefore, when the electroless plating resin particles obtained in this way are used in anisotropic conductive films and conductive pastes, good anisotropic conductive films and conductive pastes are obtained that are less likely to cause problems such as poor connection. It is done.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1]
(親水化処理工程)
樹脂粒子として、平均粒径4μmのポリアクリル酸エステル樹脂粒子を準備した。30%過酸化水素水(和光純薬工業株式会社製)100mL/Lを含む水溶液に、アクリル系樹脂粒子が50g/Lになるように分散させた後、塩化第一鉄4水和物(和光純薬工業株式会社製)を0.5g/Lになるように投入し、pH2.5の下、室温で1時間攪拌した。その後、吸引ろ過し、水洗して、親水化処理された樹脂粒子を得た。
[Example 1]
(Hydrophilic treatment process)
As the resin particles, polyacrylic ester resin particles having an average particle diameter of 4 μm were prepared. After dispersing acrylic resin particles in an aqueous solution containing 30% hydrogen peroxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) 100 mL / L so that the acrylic resin particles become 50 g / L, ferrous chloride tetrahydrate (WA Was added at 0.5 g / L, and the mixture was stirred at room temperature for 1 hour under pH 2.5. Then, it filtered by suction and washed with water, and obtained the resin particle by which the hydrophilic treatment was carried out.

(触媒付与工程)
親水化処理された樹脂粒子を、パラジウムイオン−アミノ系錯化剤混合1液型のアルカリ触媒(アトテックジャパン社製のアクチベータネオガント834(商品名)の原液を40mL/Lに希釈し、pH10.5に調整した水溶液)に35℃で10分間浸漬して、パラジウム錯体を樹脂粒子表面に吸着させた後、吸引ろ過し、水洗した。その後、再び樹脂粒子を水に懸濁させて、ジメチルアミンボランを0.1g/Lになるように投入して樹脂粒子表面のパラジウム錯体を還元し、パラジウムが表面に担持された樹脂粒子の懸濁液を得た。
(Catalyst application process)
The hydrophilized resin particles were diluted with a palladium ion-amino complexing agent mixed one-component alkaline catalyst (activator Neogant 834 (trade name) manufactured by Atotech Japan Co., Ltd.) to 40 mL / L to a pH of 10. The aqueous solution adjusted to 5) was immersed at 35 ° C. for 10 minutes to adsorb the palladium complex on the surface of the resin particles, and then suction filtered and washed with water. Thereafter, the resin particles are suspended again in water, and dimethylamine borane is added at a concentration of 0.1 g / L to reduce the palladium complex on the surface of the resin particles. A turbid liquid was obtained.

(無電解めっき工程)
触媒付与工程後、滴下法にて無電解Ni−Pめっきを行った。すなわち、上記懸濁液を、80℃まで加温し、無電解Ni−Pめっき液(日立化成工業株式会社製、商品名:NIPS−100)を定量ポンプを通して徐々に滴下した。めっき時間は60分間であった。これにより、樹脂粒子の表面にNi−P皮膜(めっき金属皮膜)を形成した。その後、吸引ろ過、水洗、吸引ろ過、及び、乾燥を順次行い、無電解Ni−Pめっき樹脂粒子を得た。
(Electroless plating process)
After the catalyst application step, electroless Ni-P plating was performed by a dropping method. That is, the suspension was heated to 80 ° C., and an electroless Ni—P plating solution (manufactured by Hitachi Chemical Co., Ltd., trade name: NIPS-100) was gradually added dropwise through a metering pump. The plating time was 60 minutes. Thereby, a Ni-P film (plated metal film) was formed on the surface of the resin particles. Thereafter, suction filtration, washing with water, suction filtration, and drying were sequentially performed to obtain electroless Ni—P plated resin particles.

(解砕処理工程及び粒子評価)
次に、得られた無電解Ni−Pめっき樹脂粒子をジェットミルで解砕圧力0.1MPaの条件で解砕処理した。この解砕処理後の粒子を電子顕微鏡で観察し、写真撮影した。写真は1枚につき1000個の粒子が写るように倍率を調整し、1枚ごとに撮影場所を変えながら10枚撮影した。これらの写真10枚(全粒子数=10000個)に対し、めっき金属皮膜で完全に覆われていない粒子の数とめっき片の数を調べた。解砕処理前に凝集が多い場合、めっき金属皮膜で完全に覆われていない、樹脂が一部分露出した無電解めっき樹脂粒子が多くなる。また、樹脂粒子とめっき金属皮膜との密着性が悪い場合、解砕処理でめっきが剥れ、解砕処理後の粒子にめっき片が多量に混入する。このため、解砕処理後の粒子を電子顕微鏡で観察して、めっき金属皮膜で完全に覆われていない粒子の数が少なく(めっき金属皮膜で完全に覆われている粒子が多く)、めっき片が少なければ、処理液中の粒子の分散性が良好で、樹脂粒子とめっき金属皮膜の密着性が優れていると判断できる。評価結果を表1に示す。
(Crushing process and particle evaluation)
Next, the obtained electroless Ni—P plated resin particles were pulverized with a jet mill under a pulverization pressure of 0.1 MPa. The crushed particles were observed with an electron microscope and photographed. The magnification was adjusted so that 1000 particles were photographed for each photograph, and 10 photographs were taken while changing the photographing location for each photograph. For these 10 photographs (total number of particles = 10000), the number of particles not completely covered with the plated metal film and the number of plated pieces were examined. When there is much aggregation before the crushing treatment, electroless plating resin particles that are not completely covered with the plating metal film and in which the resin is partially exposed increase. Further, when the adhesion between the resin particles and the plated metal film is poor, the plating is peeled off by the crushing treatment, and a large amount of plated pieces are mixed into the particles after the crushing treatment. For this reason, the particles after pulverization treatment are observed with an electron microscope, and the number of particles not completely covered with the plating metal film is small (many particles are completely covered with the plating metal film). If there is little, dispersibility of the particle | grains in a process liquid is favorable, and it can be judged that the adhesiveness of a resin particle and a plating metal film is excellent. The evaluation results are shown in Table 1.

[実施例2]
親水化処理工程において、30%過酸化水素水の濃度を200mL/Lにした以外は、実施例1と同様に処理して、無電解Ni−Pめっき樹脂粒子を得た。実施例1と同様に解砕処理工程後の粒子を評価した。結果を表1に示す。
[Example 2]
In the hydrophilic treatment step, electroless Ni—P plated resin particles were obtained in the same manner as in Example 1 except that the concentration of 30% hydrogen peroxide water was 200 mL / L. The particles after the crushing treatment step were evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例3]
樹脂粒子として、平均粒径5μmのポリスチレン樹脂粒子を用いた以外は、実施例1と同様にして、無電解Ni−Pめっき樹脂粒子を得た。実施例1と同様に解砕処理工程後の粒子を評価した。結果を表1に示す。
[Example 3]
Electroless Ni—P plated resin particles were obtained in the same manner as in Example 1 except that polystyrene resin particles having an average particle diameter of 5 μm were used as the resin particles. The particles after the crushing treatment step were evaluated in the same manner as in Example 1. The results are shown in Table 1.

[実施例4]
親水化処理工程において、30%過酸化水素水(和光純薬工業株式会社製)100mL/Lを含む水溶液に、塩化第一鉄4水和物(和光純薬工業株式会社製)を0.5g/Lになるように投入した後、樹脂粒子を50g/Lになるように分散させ、室温で1時間攪拌した。それ以外は、実施例1と同様に処理して、無電解Ni−Pめっき樹脂粒子を得た。実施例1と同様に解砕処理工程後の粒子を評価した。結果を表1に示す。
[Example 4]
In the hydrophilization treatment step, 0.5 g of ferrous chloride tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is added to an aqueous solution containing 100 mL / L of 30% hydrogen peroxide water (manufactured by Wako Pure Chemical Industries, Ltd.). / L was then added, and the resin particles were dispersed to 50 g / L and stirred at room temperature for 1 hour. Other than that was processed like Example 1, and the electroless Ni-P plating resin particle was obtained. The particles after the crushing treatment step were evaluated in the same manner as in Example 1. The results are shown in Table 1.

[比較例1]
親水化処理工程を行わなかった以外は、実施例1と同様にして、無電解Ni−Pめっき樹脂粒子を得た。実施例1と同様に解砕処理工程後の粒子を評価した。結果を表1に示す。
[Comparative Example 1]
Electroless Ni-P plated resin particles were obtained in the same manner as in Example 1 except that the hydrophilic treatment step was not performed. The particles after the crushing treatment step were evaluated in the same manner as in Example 1. The results are shown in Table 1.

[比較例2]
触媒付与工程において、親水化処理された樹脂粒子を、SnCl−PdCl混合1液型の酸性触媒溶液(日立化成工業株式会社製の「HS−202B」(商品名)30mL/L、pH0.5未満の酸性溶液)に30℃で10分間浸漬した後、10%硫酸の強酸性水溶液に浸漬してSnを溶解、除去してPdを活性化した。それ以外は、実施例1と同様にして、無電解Ni−Pめっき樹脂粒子を得た。実施例1と同様に解砕処理工程後の粒子を評価した。結果を表1に示す。
[Comparative Example 2]
In the catalyst application step, the hydrophilized resin particles were mixed with SnCl 2 —PdCl 2 mixed one-part acidic catalyst solution (“HS-202B” (trade name) manufactured by Hitachi Chemical Co., Ltd.) 30 mL / L, pH 0. And then dipped in a strongly acidic aqueous solution of 10% sulfuric acid to dissolve and remove Sn to activate Pd. Other than that was carried out similarly to Example 1, and obtained the electroless Ni-P plating resin particle. The particles after the crushing treatment step were evaluated in the same manner as in Example 1. The results are shown in Table 1.

Figure 2009102730
Figure 2009102730

表1に示したように、各実施例で得られた無電解めっき樹脂粒子は、分散性が良好で、めっき金属皮膜で完全に覆われていない粒子の数が少なかった。また、めっき片も少なく、樹脂粒子とめっき金属皮膜との密着性が優れていた。これに対して、比較例1及び2で得られた無電解めっき樹脂粒子は、分散性が悪く、めっき金属皮膜で完全に覆われていない粒子の数が多かった。また、めっき片も多く、樹脂粒子とめっき金属皮膜との密着性が悪い結果となった。以上から、本発明によって得られる無電解めっき樹脂粒子は、異方導電性フィルム、導電ペーストを始めとする導電性材料に必要な特性を満たすことが分かった。
As shown in Table 1, the electroless plating resin particles obtained in each example had good dispersibility, and the number of particles not completely covered with the plating metal film was small. Moreover, there were few plating pieces and the adhesiveness of the resin particle and the plating metal film was excellent. In contrast, the electroless plated resin particles obtained in Comparative Examples 1 and 2 had poor dispersibility, and there were many particles that were not completely covered with the plated metal film. In addition, there were many plated pieces, and the adhesion between the resin particles and the plated metal film was poor. From the above, it was found that the electroless plating resin particles obtained by the present invention satisfy the characteristics required for conductive materials including anisotropic conductive films and conductive pastes.

Claims (6)

過酸化物、金属イオン及び樹脂粒子を含む液中で前記樹脂粒子の表面を親水化させる親水化処理工程と、
pHが2以上12以下の触媒を用いて前記樹脂粒子の表面に触媒を付与する触媒付与工程と、
無電解めっきにより前記樹脂粒子の表面に金属皮膜を形成する金属皮膜形成工程と、
を有する無電解めっき樹脂粒子の製造方法。
A hydrophilization treatment step of hydrophilizing the surface of the resin particles in a liquid containing peroxide, metal ions and resin particles;
a catalyst application step of applying a catalyst to the surface of the resin particles using a catalyst having a pH of 2 or more and 12 or less;
A metal film forming step of forming a metal film on the surface of the resin particles by electroless plating;
The manufacturing method of the electroless-plating resin particle which has this.
前記親水化処理工程は、前記過酸化物を含む溶液に前記樹脂粒子を分散させた後、前記金属イオンを供給する化合物を加えることで、前記樹脂粒子の表面を親水化させる工程である、請求項1記載の無電解めっき樹脂粒子の製造方法。   The hydrophilization treatment step is a step of hydrophilizing the surface of the resin particles by adding a compound that supplies the metal ions after the resin particles are dispersed in the solution containing the peroxide. Item 2. A method for producing electroless plated resin particles according to Item 1. 前記親水化処理工程は、前記過酸化物と前記金属イオンとを含む溶液に前記樹脂粒子を分散させることで、前記樹脂粒子の表面を親水化させる工程である、請求項1記載の無電解めっき樹脂粒子の製造方法。   The electroless plating according to claim 1, wherein the hydrophilic treatment step is a step of hydrophilizing the surface of the resin particles by dispersing the resin particles in a solution containing the peroxide and the metal ions. A method for producing resin particles. 前記過酸化物が過酸化水素である、請求項1〜3のいずれか一項に記載の無電解めっき樹脂粒子の製造方法。   The method for producing electroless plated resin particles according to any one of claims 1 to 3, wherein the peroxide is hydrogen peroxide. 前記金属イオンが鉄イオンである、請求項1〜4のいずれか一項に記載の無電解めっき樹脂粒子の製造方法。   The method for producing electroless plated resin particles according to any one of claims 1 to 4, wherein the metal ions are iron ions. 前記pHが2以上12以下の触媒がアルカリ触媒である、請求項1〜5のいずれか一項に記載の無電解めっき樹脂粒子の製造方法。
The method for producing electroless plated resin particles according to any one of claims 1 to 5, wherein the catalyst having a pH of 2 or more and 12 or less is an alkali catalyst.
JP2008241156A 2007-10-02 2008-09-19 Method for producing electroless plating resin particles Active JP5446191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241156A JP5446191B2 (en) 2007-10-02 2008-09-19 Method for producing electroless plating resin particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007258636 2007-10-02
JP2007258636 2007-10-02
JP2008241156A JP5446191B2 (en) 2007-10-02 2008-09-19 Method for producing electroless plating resin particles

Publications (2)

Publication Number Publication Date
JP2009102730A true JP2009102730A (en) 2009-05-14
JP5446191B2 JP5446191B2 (en) 2014-03-19

Family

ID=40704706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241156A Active JP5446191B2 (en) 2007-10-02 2008-09-19 Method for producing electroless plating resin particles

Country Status (1)

Country Link
JP (1) JP5446191B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513726A (en) * 2009-12-10 2013-04-22 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for preparing a metallized polymer substrate
CN114016008A (en) * 2021-10-27 2022-02-08 东北电力大学 Chemical plating Ni-P-PTFE-TiO2Composite nano-coating and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165019A (en) * 2002-11-13 2004-06-10 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2006077289A (en) * 2004-09-09 2006-03-23 Ebara Udylite Kk Pretreatment method for electroless plating, and pretreatment liquid used therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165019A (en) * 2002-11-13 2004-06-10 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2006077289A (en) * 2004-09-09 2006-03-23 Ebara Udylite Kk Pretreatment method for electroless plating, and pretreatment liquid used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513726A (en) * 2009-12-10 2013-04-22 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Method for preparing a metallized polymer substrate
CN114016008A (en) * 2021-10-27 2022-02-08 东北电力大学 Chemical plating Ni-P-PTFE-TiO2Composite nano-coating and preparation method thereof
CN114016008B (en) * 2021-10-27 2023-08-29 东北电力大学 Electroless Ni-P-PTFE-TiO plating 2 Composite nano-coating and preparation method thereof

Also Published As

Publication number Publication date
JP5446191B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
TWI557270B (en) Catalyst for nonelectrolytic plating, metal coating film using the same, and method for manufacturing the same
TWI629374B (en) Method of electroless plating
JP5947284B2 (en) Method for coating surface of substrate made of non-metallic material using copper layer
TW201319310A (en) Stable catalysts for electroless metallization
EP2604722B1 (en) Stabilized silver catalysts and methods
CN108796475A (en) Plating coating catalyst and method
JP2002322565A (en) Method for reutilizing activating solution of metallic nanoparticle in electroless plating process
JP2014088618A (en) Method for electroless plating and solution used for the same
TWI419996B (en) Conductive electroless plating powder and its manufacturing method
CN107868947B (en) Activating solution, preparation method thereof and palladium-free activated chemical nickel plating method
JP5446191B2 (en) Method for producing electroless plating resin particles
JP3871653B2 (en) Method for producing conductive fine particles
JP2017110296A (en) Environmentally friendly stable catalyst for electroless metalization of printed circuit board and through-hole
KR101898470B1 (en) Environmentally friendly stable catalysts for electroless metallization of printed circuit boards and through-holes
TWI608124B (en) A method for no-silane electroless plating of metal using high adhesive catalyst and the product therefrom
CN105209660A (en) Method for coating of carbon nanomaterials
JP2003193247A (en) Pretreatment method for electroless plating material
CN103276375B (en) Plating coating catalyst and method
US9451707B2 (en) Stabilized silver catalysts and methods
JP6029047B2 (en) Manufacturing method of conductive material
JP2006241499A (en) Method for producing powder electroless-plated with electroconductive substance
JP2004131800A (en) Conductive electroless plating powder and method for manufacturing the same
KR100446203B1 (en) method for preparation of conductive ultra fine particles
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
KR20080095047A (en) Manufacturing method of conductive ball using eletroless plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R151 Written notification of patent or utility model registration

Ref document number: 5446191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350