JP2009102541A - Additive for laser marking - Google Patents

Additive for laser marking Download PDF

Info

Publication number
JP2009102541A
JP2009102541A JP2007276631A JP2007276631A JP2009102541A JP 2009102541 A JP2009102541 A JP 2009102541A JP 2007276631 A JP2007276631 A JP 2007276631A JP 2007276631 A JP2007276631 A JP 2007276631A JP 2009102541 A JP2009102541 A JP 2009102541A
Authority
JP
Japan
Prior art keywords
additive
laser marking
aqueous solution
laser
marking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007276631A
Other languages
Japanese (ja)
Other versions
JP5028213B2 (en
Inventor
Shigeru Suzuki
滋 鈴木
Tatsuro Matoda
達郎 的田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomatec Co Ltd
Original Assignee
Tokan Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokan Material Technology Co Ltd filed Critical Tokan Material Technology Co Ltd
Priority to JP2007276631A priority Critical patent/JP5028213B2/en
Publication of JP2009102541A publication Critical patent/JP2009102541A/en
Application granted granted Critical
Publication of JP5028213B2 publication Critical patent/JP5028213B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new additive for laser marking achieving more superior fineness and visibility, particularly capable of imparting good marking characteristic to a resin molded article having an insufficient thickness to which the sufficient marking quality cannot be imparted by a conventional additive. <P>SOLUTION: The additive for the laser marking is constituted by using a complex hydroxide containing Cu and Mo as essential components as a base, and has ≥2 m<SP>2</SP>/g BET specific surface area. The complex hydroxide preferably contains a Lindgrenite structure represented by general formula: Cu<SB>x</SB>(MoO<SB>4</SB>)<SB>y</SB>(OH)<SB>z</SB>(wherein, x, y and z satisfy the relations 1<x/y<3 and 1<x/z<3). The atomic ratio of Cu to Mo is preferably 1<Cu/Mo<3. Especially preferable complex hydroxide contains the Lindgrenite structure represented by Cu<SB>3</SB>(MoO<SB>4</SB>)<SB>2</SB>(OH)<SB>2</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザー光を利用して樹脂成形物等にバーコードやロット番号等の管理情報をマーキングする(即ちレーザーマーキングを行う)為に樹脂成形物に含有せしめる添加剤に関する。  The present invention relates to an additive to be included in a resin molded product in order to mark management information such as a barcode and a lot number on the resin molded product using laser light (that is, to perform laser marking).

本発明は、より詳しくは、従来のレーザーマーキング用添加剤では十分なコントラストや精度を得ることのできないフィルムや、例えば塗料のようなコーティング組成物から形成した薄膜形態の基材に対しても、鮮明且つ高精細なレーザーマーキングを可能にするレーザーマーキング用添加剤、およびその製造方法、さらにそれをレーザーマーキング用添加剤として含む樹脂組成物に関する。  In more detail, the present invention can be applied to a film in which sufficient contrast and accuracy cannot be obtained with conventional additives for laser marking, or a substrate in the form of a thin film formed from a coating composition such as a paint. The present invention relates to an additive for laser marking that enables clear and high-definition laser marking, a manufacturing method thereof, and a resin composition containing the additive as an additive for laser marking.

種々の産業において製品に製造日、賞味期限、バーコード、ロゴマーク、製品番号等の情報をマーキングする事が求められて来ており、現在、主として印刷、エンボッシング、刻印のような方法でなされている。   In various industries, products are required to be marked with information such as date of manufacture, expiry date, barcode, logo mark, product number, etc., and are currently made mainly by methods such as printing, embossing and stamping. Yes.

レーザーマーキングは、レーザー光を利用して基材に直接、文字、数字、商標、バーコード等の印字や、或いは画像を施すマーキング゛である。レーザーマーキングの原理は基材の表面がレーザー光を吸収して物理・化学的変化を誘起されることで非照射部との光学的な差異を形成することによる。   Laser marking is a marking that prints or images characters, numbers, trademarks, barcodes, etc. directly on a substrate using laser light. The principle of laser marking is that the surface of the substrate absorbs laser light and induces a physical / chemical change to form an optical difference from the non-irradiated part.

レーザーマーカを用いたレーザーマーキングは、非接触方式のインクを使用しないマーキング方法である為、以下のような特徴を持つ。即ち、
・ 任意の形状の基材へ、耐摩耗性に優れたマーキングを施すことが出来る。
Laser marking using a laser marker has the following characteristics because it is a marking method that does not use non-contact ink. That is,
-Marking with excellent wear resistance can be applied to any shape of substrate.

・ マーキング速度が速く、自動化や工程管理が容易である。   ・ Marking speed is fast, and automation and process management are easy.

・ 複雑な付帯設備を必要とせず、有機溶剤等の揮発がないため低環境負荷である。   ・ No complicated incidental facilities are required, and there is no volatilization of organic solvents, etc., resulting in low environmental impact.

その為、金属やカ゛ラスに加え、近年では特に樹脂成形物へレーザーマーキングを適用しようとする試みが増えてきており、これまでに電子部品等への製造、ロット番号の印字等に一部実用化されている。   Therefore, in recent years, in addition to metal and glass, there have been increasing attempts to apply laser marking to resin moldings in recent years, and some of them have been put into practical use for manufacturing electronic parts and printing lot numbers. Has been.

しかしながら、ほとんどの主要な樹脂成形材料はレーザー光(典型的にはYAG:Ndによる波長1064nmの近赤外光)の吸収が乏しい。その為、視認性や精細度において十分な品質のマーキングが得られない場合が多く、全く印字できない樹脂も少なくはない。このことはレーザーマーキングを用途拡大していく上で障害となる。   However, most major resin molding materials have poor absorption of laser light (typically near infrared light having a wavelength of 1064 nm by YAG: Nd). For this reason, markings with sufficient quality in terms of visibility and definition are often not obtained, and there are many resins that cannot be printed at all. This is an obstacle to expanding the application of laser marking.

樹脂成形材料におけるレーザーマーキングの視認性を改善する為の公知技術としては、同材料にレーザー光を吸収する種々の添加剤を配合することが知られている。例えば、
特許文献1には、粒径10〜70nmの錫およびアンチモンの混合酸化物の粒子をレーザーマーキング用添加剤として成形材料(基材)に添加することが開示されている。マーキングの原理は、樹脂成形物中の上記粒子がYAG:Ndのレーザー光を吸収すると、これが熱に変換され、添加剤を取り囲む部分が炭化することでレーザー非照射部分とのコントラストを形成するというものである。
As a known technique for improving the visibility of laser marking in a resin molding material, it is known to add various additives that absorb laser light to the material. For example,
Patent Document 1 discloses that tin and antimony mixed oxide particles having a particle diameter of 10 to 70 nm are added to a molding material (base material) as an additive for laser marking. The principle of marking is that when the particles in the resin molding absorb the laser beam of YAG: Nd, this is converted into heat, and the part surrounding the additive is carbonized to form a contrast with the non-irradiated part. Is.

特許文献2には、雲母薄片やSiO2フレーク等の薄片状基質に、アンチモン、砒素、ビスマス、銅、ガリウム、ゲルマニウムまたはそれらの酸化物をドープした酸化錫を被覆した顔料をレーザーマーキング用の添加剤として含む熱可塑性プラスチックが、レーザーマーキング可能であると記載されている。 Patent Document 2 discloses that a pigment coated with tin oxide doped with antimony, arsenic, bismuth, copper, gallium, germanium or their oxide is added to a flaky substrate such as mica flakes or SiO 2 flakes for laser marking. Thermoplastics included as agents are described as being laser-markable.

しかしながら、特許文献1および2の添加剤はいずれもレーザー光の吸収剤として作用するものであり、レーザー非照射部分とのコントラストは、基材中の添加剤周辺部の炭化によるもののみである。従って基材が炭化しにくいものである場合には良好な視認性を有するマーキングが得られない。また、塗料やフィルムのように薄膜状の樹脂成形物にマーキングを施す場合には、炭化させるべき部分の厚みが不足する為、レーザー光の照射部分が熱によりこれを貫通してしまうか、貫通させない為に弱いレーザー出力で印字を施した場合には、黒度が不足し良好な視認性を有するマーキングが得られない問題が生じる。   However, the additives of Patent Documents 1 and 2 both act as laser beam absorbers, and the contrast with the non-laser irradiated part is only due to carbonization of the peripheral part of the additive in the substrate. Therefore, when the substrate is hard to be carbonized, a marking having good visibility cannot be obtained. Also, when marking a thin resin molded product such as paint or film, the thickness of the part to be carbonized is insufficient, so the irradiated part of the laser beam may penetrate through it or penetrate Therefore, when printing is performed with weak laser output, there is a problem that the blackness is insufficient and a marking having good visibility cannot be obtained.

特許文献3には、水酸化銅一燐酸塩または酸化モリブデンを添加した高分子物質がレーザーマーキング可能であると記載され、レーザー光により上記添加剤が有色の生成物に変わることでマーキングを施すと記載されている。このように添加剤そのものがレーザー光により有色の生成物に変化する場合、上記の問題点は回避しうる可能性がある。しかしながら精細な印字はできず、印字の黒度も満足なレベルではない。   Patent Document 3 describes that a polymer substance to which copper hydroxide monophosphate or molybdenum oxide is added can be laser-marked, and when the above-mentioned additive is changed into a colored product by laser light, marking is performed. Are listed. Thus, when the additive itself is changed into a colored product by laser light, the above problem may be avoided. However, fine printing cannot be performed, and the blackness of printing is not satisfactory.

一方、発明者らは、特許文献4において、銅とモリブデンからなる複合酸化物がレーザー光の照射により黒度の高い色調に変色することを見出し開示している。この複合酸化物はレーザー光を良く吸収すると同時に、粒子自身も淡黄色から黒色に変色する為、これを添加剤として含む樹脂成形物はマーキングの黒度、精細性に優れたレーザーマーキングを可能にする。この複合酸化物は実質的に全ての樹脂成形物に対して良好なレーザーマーキングを可能にする。   On the other hand, the inventors have found and disclosed in Patent Document 4 that a complex oxide composed of copper and molybdenum changes color tone with high blackness by laser light irradiation. This composite oxide absorbs laser light well, and at the same time, the particle itself turns from pale yellow to black, so the resin molding containing this as an additive enables laser marking with excellent marking blackness and fineness. To do. This composite oxide enables good laser marking on virtually all resin moldings.

しかしながら、同複合酸化物は製造するには焼成工程を必須とするため微粒子化は困難である。その為、イ)基材へ添加すると、基材中で光を散乱するため外観が変化してしまう。ロ)薄膜状の基材に対しては、黒度の良いマーキングは得られるものの、精細な印字を得にくい、等の問題点がある。これは、添加剤の粒子径が薄膜に対して十分に小さくないことに起因すると考えられる。更に、添加剤粒子自体は淡黄色に呈色しているため、これを樹脂成形物に含有せしめることで成形物そのものを若干ではあるが着色してしまう問題がある。
特表2007-512215号公報 特表平10-500149号公報 特許2947878号公報 特開2005-75674号公報
However, since the composite oxide requires a firing step for production, it is difficult to make fine particles. Therefore, a) When added to the base material, the appearance is changed because light is scattered in the base material. B) For a thin film-like base material, there are problems such as marking with good blackness but difficulty in obtaining fine prints. This is considered due to the fact that the particle size of the additive is not sufficiently small with respect to the thin film. Furthermore, since the additive particles themselves are colored light yellow, there is a problem that the molded product itself is slightly colored by adding it to the resin molded product.
Special Table 2007-512215 JP 10-500149 Japanese Patent No. 2947878 JP 2005-75674 A

本発明の課題は、上記実情に鑑み、より精細且つ視認性に優れる新規レーザーマーキング用添加材を提供することにあり、特に、従来の添加剤では十分なマーキング品質を得がたい、厚みが十分でない樹脂成形物に対しても良好なマーキング特性を与えることの出来るレーザーマーキング用の添加剤を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a novel additive for laser marking that is finer and more excellent in visibility. In particular, it is difficult to obtain sufficient marking quality with a conventional additive, and a resin with insufficient thickness. An object of the present invention is to provide an additive for laser marking that can give good marking characteristics to a molded product.

本発明によるレーザーマーキング用添加剤は、必須成分としてCuとMoを含む複合水酸化物をベースとして構成され、かつBET比表面積が2m2/g以上であることを特徴とするものである。 The additive for laser marking according to the present invention is composed of a composite hydroxide containing Cu and Mo as essential components, and has a BET specific surface area of 2 m 2 / g or more.

必須成分としてCuとMoを含む複合水酸化物は、下記一般式で表されるLindgrenite構造を含むものであることが好ましい。   The composite hydroxide containing Cu and Mo as essential components preferably has a Lindgrenite structure represented by the following general formula.

Cu(MoO4)(OH)
(式中、x、yおよびzは1<x/y<3、1<x/Z<3の関係にある。)
CuとMoの原子比は、1<Cu/Mo<3であることが好ましい。CuとMoの原子比がCu/Mo<1である場合は、下記の製造方法において、実用上十分な収率が得られず、Cu/Mo>3の場合は、基材への着色が強く且つマーキング性能も低下することがある。特に好ましいCuとMoの原子比は、1.2<Cu/Mo<2であり、最も好ましいCuとMoの原子比は、1.4<Cu/Mo<1.7である。
Cu x (MoO 4 ) y (OH) z
(In the formula, x, y and z have a relationship of 1 <x / y <3, 1 <x / Z <3.)
The atomic ratio of Cu and Mo is preferably 1 <Cu / Mo <3. When the atomic ratio of Cu and Mo is Cu / Mo <1, in the following production method, a practically sufficient yield cannot be obtained, and when Cu / Mo> 3, the substrate is strongly colored. In addition, the marking performance may be degraded. A particularly preferable atomic ratio between Cu and Mo is 1.2 <Cu / Mo <2, and a most preferable atomic ratio between Cu and Mo is 1.4 <Cu / Mo <1.7.

特に好ましい複合水酸化物は、下記式で表されるLindgrenite構造を含むものである。  Particularly preferred composite hydroxides include those having a Lindgrenite structure represented by the following formula.

Cu(MoO4)2(OH)2
レーザーマーキング用添加剤のBET比表面積は2m2/g以上、望ましくは10m2/g以上である。
Cu 3 (MoO 4 ) 2 (OH) 2
The BET specific surface area of the laser marking additive is 2 m 2 / g or more, preferably 10 m 2 / g or more.

本発明によるレーザーマーキング用添加剤を製造するには、Cu化合物の水溶液とMo化合物の水溶液を混合して沈殿物を形成する工程と、得られた沈殿物を洗浄する工程を含む製造方法が好ましい。   In order to produce the additive for laser marking according to the present invention, a production method comprising a step of forming a precipitate by mixing an aqueous solution of a Cu compound and an aqueous solution of a Mo compound and a step of washing the obtained precipitate is preferable. .

上記沈殿物形成工程において、Cu化合物の水溶液にMo化合物の水溶液を攪拌下に滴下して沈殿物を形成するか、または、Mo化合物の水溶液にCu化合物の水溶液を攪拌下に滴下して沈殿物を形成することが好ましい。  In the precipitate forming step, an aqueous solution of Mo compound is dropped into an aqueous solution of Cu compound with stirring to form a precipitate, or an aqueous solution of Cu compound is dropped into an aqueous solution of Mo compound with stirring. Is preferably formed.

本発明によるレーザーマーキング用添加剤は、雲母薄片、金属酸化物で被覆された雲母薄片、SiO2フレーク、およびガラスフィラーからなる群から選ばれた基質に被覆せしめた複合材料とし、これをレーザーマーキング用複合材料として使用しても良い。 The additive for laser marking according to the present invention is a composite material coated with a substrate selected from the group consisting of mica flakes, mica flakes coated with metal oxides, SiO 2 flakes, and glass fillers. It may be used as a composite material.

本発明によるレーザーマーキング用添加剤を含むレーザーマーキング可能な樹脂成形材料は、膜厚0.5mm以下のフィルムないしは薄膜の形態のものでも良い。   The resin marking material capable of laser marking containing the additive for laser marking according to the present invention may be in the form of a film or a thin film having a thickness of 0.5 mm or less.

レーザーマーキング用のレーザーとしては、たとえば固体パルス・レーザー、エキシマ・レーザー、YAG:Ndレーザー、およびCO2レーザー等が挙げられ、一般的にはYAG:Ndレーザー、およびCO2レーザーが使用されている。 Examples of laser marking lasers include solid-state pulse lasers, excimer lasers, YAG: Nd lasers, and CO 2 lasers. Generally, YAG: Nd lasers and CO 2 lasers are used. .

以下に本発明について詳細に説明する。   The present invention is described in detail below.

まず、本発明によるレーザーマーキング用添加剤を構成する複合水酸化物について、説明をする。  First, the composite hydroxide constituting the additive for laser marking according to the present invention will be described.

CuとMoを必須とする複合水酸化物は、望ましくは一般式Cu3(MoO4)2(OH)2で表されるLindgrenite構造を有し、且つ比表面積が2m2/g以上、更に望ましくは10m2/g以上である微粒子である。Cu3(MoO4)2(OH)2は水系の液相合成により比較的容易に得ることが出来、その色調は白に近い非常に淡い緑色である。Lindgrenite構造を有するCu3(MoO4)2(OH)2はYAGレーザーやCO2レーザーのレーザー光の波長である近赤外線領域に吸収を有し、且つ近赤外線波長域のレーザー光を吸収することで、淡い緑色から黒度の高い黒色に変色する。後述するように反応条件を選定することでCuとMoの比率の異なる複合水酸化物からなる沈殿物も同様のレーザー光による黒色への変色性を有するが、発色の黒さや粉末色の色調の淡さの面からCu3(MoO4)2(OH)2がより好適に用いることが出来る。基材へ添加した際における基材中での添加剤による光の散乱を減少させ、添加剤の添加による基材の外観の変化を最低限に抑制する為には、比表面積は大きい方が好ましく2m2/g以上、より望ましくは10m2/g以上である。 The composite hydroxide essentially containing Cu and Mo desirably has a Lindgrenite structure represented by the general formula Cu 3 (MoO 4 ) 2 (OH) 2 and has a specific surface area of 2 m 2 / g or more, and more desirably. Are fine particles of 10 m 2 / g or more. Cu 3 (MoO 4 ) 2 (OH) 2 can be obtained relatively easily by aqueous liquid phase synthesis, and the color tone is very light green near white. Cu 3 (MoO 4 ) 2 (OH) 2 with a Lindgrenite structure has absorption in the near infrared region, which is the wavelength of the YAG laser and CO 2 laser, and absorbs laser light in the near infrared wavelength region. The color changes from pale green to black with high blackness. By selecting reaction conditions as described later, precipitates composed of composite hydroxides with different ratios of Cu and Mo have the same discoloration to black by laser light, but the blackness of color development and the color tone of the powder color From the viewpoint of lightness, Cu 3 (MoO 4 ) 2 (OH) 2 can be used more suitably. A larger specific surface area is preferable in order to reduce light scattering due to the additive in the base material when added to the base material and to minimize the change in the appearance of the base material due to the addition of the additive. It is 2 m 2 / g or more, more desirably 10 m 2 / g or more.

本発明による複合水酸化物はCuとMoを必須として含むものであれば、その他の元素を含むものであっても良く、例えばLindgrenite構造を有するCu3(MoO4)2(OH)2中、Cuの一部を他の置換可能な陽イオンで置換したり、Moの一部を他の置換可能な陽イオンで置換しても良い。 The composite hydroxide according to the present invention may contain other elements as long as it contains Cu and Mo as essential components.For example, in Cu 3 (MoO 4 ) 2 (OH) 2 having a Lindgrenite structure, A part of Cu may be replaced with another replaceable cation, or a part of Mo may be replaced with another replaceable cation.

本発明によるCuとMoを必須として含む複合水酸化物は、水系の液相合成によって得ることが出来る。合成の際に薄片状の基質、例えば雲母、タルク、カオリン、SiO2フレーク等の酸化物、あるいはアルミニウム薄片等の金属等を同時に添加することで、これら薄片状の基質にCuとMoを必須とする複合水酸化物を被覆し、それをレーザーマーキング用添加剤として使用することも可能である。 The composite hydroxide containing Cu and Mo as essential components according to the present invention can be obtained by aqueous liquid phase synthesis. During synthesis, flaky substrates, for example, oxides such as mica, talc, kaolin, SiO 2 flakes, or metals such as aluminum flakes, are added simultaneously, so that Cu and Mo are essential to these flaky substrates. It is also possible to coat a composite hydroxide that is used and to use it as an additive for laser marking.

本発明のCuとMoを必須とする複合水酸化物微粒子は、それぞれ所望の濃度に調整したCu水溶液とMo水溶液を攪拌下に混合し、生じた固体生成物を濾取、洗浄、乾燥することで得られる。   The composite hydroxide fine particles essentially containing Cu and Mo according to the present invention are prepared by mixing Cu aqueous solution and Mo aqueous solution adjusted to a desired concentration with stirring, and filtering, washing and drying the resulting solid product. It is obtained by.

Cuの原料は水溶性であれば特に限定されない。例えば塩化銅、硝酸銅、硫酸銅、および酢酸銅等が好適に使用可能である。   The Cu raw material is not particularly limited as long as it is water-soluble. For example, copper chloride, copper nitrate, copper sulfate, copper acetate, and the like can be suitably used.

Moの原料も水溶性であれば特に限定されない。例えばモリブデン酸ナトリウム等が好適に使用可能である。   The raw material of Mo is not particularly limited as long as it is water-soluble. For example, sodium molybdate can be preferably used.

これらCu水溶液とMo水溶液を別々に調製し、CuとMoが所定の比率となるよう、上記水溶液を混合する。Cu水溶液とMo水溶液の濃度は溶解度以下であれば特に限定されないが、比表面積を大きくする為には、水溶液の濃度は低い方が良い。濃度の下限は好ましくは0.01Mであり、これよりも低濃度では生産効率の観点から不利である。混合は攪拌機のような攪拌装置を用いて一方の溶液を攪拌しながら、もう一方の溶液をこれに添加すれば良い。Mo水溶液を攪拌しながら、これにCu水溶液を添加しても、その逆であっても良い。添加は、一括で添加しても良いが、例えば定量ホ゜ンフ゜等を用いて滴下しながら少量ずつ添加しても良い。   These Cu aqueous solution and Mo aqueous solution are prepared separately, and the above aqueous solutions are mixed so that Cu and Mo have a predetermined ratio. The concentration of the Cu aqueous solution and the Mo aqueous solution is not particularly limited as long as it is below the solubility, but in order to increase the specific surface area, the concentration of the aqueous solution should be low. The lower limit of the concentration is preferably 0.01M, and a concentration lower than this is disadvantageous from the viewpoint of production efficiency. Mixing may be performed by adding one solution to the other while stirring one solution using a stirrer such as a stirrer. The Cu aqueous solution may be added to the Mo aqueous solution while stirring, or vice versa. The addition may be carried out all at once, but for example, it may be added little by little while adding dropwise using a quantitative phamp.

攪拌・混合時の水溶液の温度は任意であって良いが、コスト面と比表面積の観点から室温近辺で反応させるのが望ましい。高温で攪拌・混合することは、加熱コストが高くなるだけでなく、Lindgreniteが結晶成長し比表面積の減少につながる。   The temperature of the aqueous solution at the time of stirring and mixing may be arbitrary, but it is desirable to react at around room temperature from the viewpoint of cost and specific surface area. Stirring and mixing at high temperatures not only increases the heating cost, but also causes Lindgrenite to grow and reduce the specific surface area.

このようにして得られた反応生成物を、遠心分離やフィルタープレス等、公知の濾過、洗浄工程を経た後に乾燥することで、CuとMoを必須として含む複合水酸化物を得ることが出来る。   The reaction product thus obtained is dried after passing through known filtration and washing steps such as centrifugation and filter press, whereby a composite hydroxide containing Cu and Mo as essential components can be obtained.

本発明の添加剤は樹脂への分散を良くする為に、例えばシランカップリング材や脂肪酸、シリコーン、およびポリオール等の既知の表面処理材を用いて、表面処理を施しても良い。   In order to improve the dispersion in the resin, the additive of the present invention may be subjected to a surface treatment using a known surface treatment material such as a silane coupling material, fatty acid, silicone, and polyol.

熱可塑性樹脂または熱硬化性樹脂に本発明による添加剤を0.01%以上添加することで、添加剤が加工中に有意なほどに劣化されるような高い加工温度を必要としない、実質的に全ての樹脂組成物に良好なレーザーマーキング特性を付与することができる。   By adding 0.01% or more of the additive according to the present invention to a thermoplastic resin or thermosetting resin, virtually no processing temperature is required so that the additive is significantly degraded during processing. Good resin marking properties can be imparted to the resin composition.

熱可塑性樹脂の例としては、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、アクリロニトリルブタジエンスチレン、ポリアクリルメタクリレート、ポリアミド、ナイロン、ポリアセタール、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルファイド、ポリスルホン、ポリイミド、およびこれらの混合物およびこれらをベースとした共重合体等が挙げられる。   Examples of thermoplastic resins include polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, acrylonitrile butadiene styrene, polyacryl methacrylate, polyamide, nylon, polyacetal, polycarbonate, polybutylene terephthalate, polyethylene Examples thereof include terephthalate, polyphenylene sulfide, polysulfone, polyimide, a mixture thereof, and a copolymer based on these.

熱硬化性樹脂の例としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミドおよびこれらの混合物等が挙げられる。   Examples of thermosetting resins include phenolic resins, epoxy resins, melamine resins, urea resins, unsaturated polyester resins, alkyd resins, polyurethanes, thermosetting polyimides, and mixtures thereof.

本発明による添加剤は、シリコーン等の珪素骨格ポリマーにも適用することが可能である。   The additive according to the present invention can also be applied to silicon skeleton polymers such as silicone.

本発明による添加剤は、任意の形状または大きさに成形された樹脂に適用できる。例えば部材や容器、包装品、電子部品、カード、およびコーティング組成物等が一例として挙げられる。このようにマーキングするべき基材の形状に関する制限は無いが、特に塗料やフィルムのような薄膜形態の基材に対して、既知の添加剤では得られない、精細で黒度に優れたマーキングを施すことを可能にする。   The additive according to the present invention can be applied to a resin molded into an arbitrary shape or size. For example, a member, a container, a packaged product, an electronic component, a card, a coating composition, and the like can be given as examples. There is no restriction on the shape of the base material to be marked in this way, but a fine and excellent blackness marking that cannot be obtained with known additives, especially for thin-film base materials such as paints and films. Makes it possible to apply.

本発明による添加剤は、基材への着色を目的として、無機ないしは有機顔料および染料との併用の形態で基材に添加することが可能である。   The additive according to the present invention can be added to the substrate in the form of a combination with an inorganic or organic pigment and dye for the purpose of coloring the substrate.

無機顔料の例としては、酸化チタン、酸化亜鉛、酸化アンチモン、硫化亜鉛等の白色顔料;酸化マグネシウム、酸化カルシウム等の体質顔料;酸化鉄、群青、紺青、カーボンブラック;チタンイエローやコバルトブルー等の複合酸化物顔料等の着色顔料;オキシ塩化ビスマス、酸化チタン等で被覆された雲母顔料のような高輝性顔料が挙げられる。   Examples of inorganic pigments include white pigments such as titanium oxide, zinc oxide, antimony oxide, and zinc sulfide; extender pigments such as magnesium oxide and calcium oxide; iron oxide, ultramarine blue, bitumen, carbon black; titanium yellow, cobalt blue, etc. Color pigments such as complex oxide pigments; high luster pigments such as mica pigments coated with bismuth oxychloride, titanium oxide and the like.

有機顔料の例としては、アゾ、アゾメチン、メチン、アントラキノン、フタロシアニン、ペリレン、チオインジゴ、キナクリドン、およびキノフタロン顔料等が挙げられる。   Examples of organic pigments include azo, azomethine, methine, anthraquinone, phthalocyanine, perylene, thioindigo, quinacridone, and quinophthalone pigments.

染料の例としては、アントラキノン系、アゾ染料の金属錯体、更にクマリン、ナフタルイミド、キサンテン、チアジン等の蛍光染料が挙げられる。   Examples of the dye include anthraquinone series, metal complexes of azo dyes, and fluorescent dyes such as coumarin, naphthalimide, xanthene, and thiazine.

また、光安定剤や酸化防止剤、難燃化剤、ガラス繊維など樹脂の加工に汎用されている添加剤を用途に応じ併用しても良い。さらに紫外線吸収剤、帯電防止剤、電磁波遮断用添加剤等の既知の添加剤との併用も可能である。   Moreover, you may use together the additive generally used for processing of resin, such as a light stabilizer, antioxidant, a flame retardant, glass fiber, according to a use. Furthermore, it can be used in combination with known additives such as an ultraviolet absorber, an antistatic agent, and an electromagnetic wave shielding additive.

本発明によれば、より精細且つ視認性に優れる新規レーザーマーキング用添加材を提供することができる。特に、本発明によるレーザーマーキング用添加剤は、従来の添加剤では十分なマーキング品質を得がたい、厚みが十分でない樹脂成形物、たとえば、塗膜を初め様々な薄膜型の基材に対しても良好なマーキング特性を与えることができ、塗膜への初期着色が低く、且つレーザー印字後の黒度、印字精度も良好なレーザーマーキングを形成することが出来る。   According to the present invention, it is possible to provide a novel additive for laser marking that is more fine and has excellent visibility. In particular, the additive for laser marking according to the present invention is difficult to obtain sufficient marking quality with conventional additives, and is also good for resin molded products with insufficient thickness, for example, various thin film type substrates such as coating films. Marking characteristics can be imparted, the initial coloration on the coating film is low, and the laser marking with good blackness and printing accuracy after laser printing can be formed.

以下に実施例および比較例を挙げて本発明を具体的に説明する。以下文中の「部」および「%」は特に断りのない限り重量基準である。   The present invention will be specifically described below with reference to examples and comparative examples. In the following text, “part” and “%” are based on weight unless otherwise specified.

<実施例1>
レーザーマーキング用添加剤の作成
モリブデン酸ソーダ二水和物27.3部を蒸留水1000部に加えて溶解した。得られた水溶液に、無水塩化第二銅22.7部と蒸留水1000部からなる水溶液を、室温で攪拌機の回転数500rpmにて攪拌しながら50分間かけて加えた。添加完了後、更に15分間攪拌を行った。得られた懸濁液のpHは4.0であった。その後、懸濁液の濾過を行い、ろ液の電導度が50マイクロシーメンス(μS/cm)となるまでろ物を水洗した。洗浄後のろ物は110℃で12時間乾燥した後、乳鉢にて解砕して、わずかに緑色に呈色した粉末試料を得た。
<Example 1>
Preparation of additive for laser marking 27.3 parts of sodium molybdate dihydrate was added to 1000 parts of distilled water and dissolved. An aqueous solution composed of 22.7 parts of anhydrous cupric chloride and 1000 parts of distilled water was added to the obtained aqueous solution over 50 minutes while stirring at room temperature with a rotating speed of 500 rpm of a stirrer. After completion of the addition, the mixture was further stirred for 15 minutes. The resulting suspension had a pH of 4.0. Thereafter, the suspension was filtered, and the filtrate was washed with water until the electric conductivity of the filtrate reached 50 microsiemens (μS / cm). The washed filtrate was dried at 110 ° C. for 12 hours and then crushed in a mortar to obtain a powder sample slightly colored green.

レーザーマーキング用添加剤の分析
上記の方法で得られた粉末試料の結晶構造を確認するため、粉末X線回折測定装置(理学電機株式会社製、RINT2000 )を用いて測定を行ったところ、同試料は一般式Cu3(MoO4)2(OH)2で表記されるLindgrenite構造を有すると同定された。
Analysis of additive for laser marking In order to confirm the crystal structure of the powder sample obtained by the above method, measurement was performed using a powder X-ray diffractometer (RINT2000, manufactured by Rigaku Corporation). Was identified to have a Lindgrenite structure represented by the general formula Cu 3 (MoO 4 ) 2 (OH) 2 .

更に、この粉末試料を走査電子顕微鏡(日立製作所、S-3000N)に付属するエネルギー分散型X線分析装置(堀場製作所社製、EMAX モデル7021-H)を用いた分析によりCuとMoの原子比を見積もったところ、Cu:Mo=3.4:2.0であった。   Furthermore, this powder sample was analyzed using an energy dispersive X-ray analyzer (EMAX model 7021-H, manufactured by Horiba, Ltd.) attached to a scanning electron microscope (Hitachi, S-3000N). Was estimated to be Cu: Mo = 3.4: 2.0.

粉末試料の比表面積は比表面積測定計(ユアサアイオニクス株式会社製、モノソーブ)にて測定した。比表面積は32.8m2/gであった。 The specific surface area of the powder sample was measured with a specific surface area meter (manufactured by Yuasa Ionics Co., Ltd., Monosorb). The specific surface area was 32.8 m 2 / g.

<実施例2>
モリブデン酸ソーダ二水和物24.2部を蒸留水1000部に加えて溶解した。得られた水溶液に、無水塩化第二銅17.1部と蒸留水1000部からなる水溶液を、室温で攪拌機の回転数500rpmにて攪拌しながら50分間かけて加えた。添加完了後、更に15分間攪拌を行った。
<Example 2>
24.2 parts of sodium molybdate dihydrate was added to 1000 parts of distilled water and dissolved. An aqueous solution composed of 17.1 parts of anhydrous cupric chloride and 1000 parts of distilled water was added to the obtained aqueous solution over 50 minutes while stirring at room temperature at a rotation speed of 500 rpm of a stirrer. After completion of the addition, the mixture was further stirred for 15 minutes.

以下の懸濁液の濾過、洗浄および洗浄後のろ物の乾燥、解砕操作は実施例1と同様の手順で行い、わずかに緑色に呈色した粉末試料を得た。   The following suspension filtration, washing, and drying and crushing operations of the filtrate after washing were performed in the same manner as in Example 1 to obtain a powder sample slightly colored in green.

表1に実施例1と同様の手法で得た、この粉末試料の粉末X線回折測定結果、エネルギー分散型X線分析により見積もったCuとMoの原子比、及び比表面積測定結果を示す。   Table 1 shows the powder X-ray diffraction measurement result of this powder sample obtained by the same method as in Example 1, the atomic ratio of Cu and Mo, and the specific surface area measurement result estimated by energy dispersive X-ray analysis.

<実施例3>
モリブデン酸ソーダ二水和物27.3部を蒸留水1000部に加えて溶解した。得られた水溶液に、無水塩化第二銅22.7部、硝酸亜鉛1.0部、蒸留水1000部からなる水溶液を、室温で攪拌機の回転数500rpmにて攪拌しながら50分間かけて加えた。添加完了後、更に15分間攪拌を行った。得られた懸濁液のpHは4.0であった。
<Example 3>
27.3 parts of sodium molybdate dihydrate was added to 1000 parts of distilled water and dissolved. An aqueous solution consisting of 22.7 parts of anhydrous cupric chloride, 1.0 part of zinc nitrate, and 1000 parts of distilled water was added to the obtained aqueous solution over 50 minutes while stirring at room temperature with a stirring speed of 500 rpm. After completion of the addition, the mixture was further stirred for 15 minutes. The resulting suspension had a pH of 4.0.

以下の懸濁液の濾過、洗浄および洗浄後のろ物の乾燥、解砕操作は実施例1と同様の手順で行い、わずかに緑色に呈色した粉末試料を得た。   The following suspension filtration, washing, and drying and crushing operations of the filtrate after washing were performed in the same manner as in Example 1 to obtain a powder sample slightly colored in green.

表1に実施例1と同様の手法で得た、この粉末試料の粉末X線回折測定結果、エネルギー分散型X線分析により見積もったCuとMoの原子比、及び比表面積測定結果を示す。   Table 1 shows the powder X-ray diffraction measurement result of this powder sample obtained by the same method as in Example 1, the atomic ratio of Cu and Mo, and the specific surface area measurement result estimated by energy dispersive X-ray analysis.

<実施例4>
モリブデン酸ソーダ二水和物27.3部を蒸留水1000部に加えて溶解した。得られた水溶液に、無水塩化第二銅22.7部と蒸留水1000部からなる水溶液を、室温で攪拌機の回転数500rpmにて攪拌しながら1分間かけて加えた。以降は実施例1と同様の手法を行い、わずかに緑色に呈色した粉末試料を得た。
<Example 4>
27.3 parts of sodium molybdate dihydrate was added to 1000 parts of distilled water and dissolved. An aqueous solution composed of 22.7 parts of anhydrous cupric chloride and 1000 parts of distilled water was added to the obtained aqueous solution over 1 minute while stirring at room temperature with a rotating speed of 500 rpm. Thereafter, the same procedure as in Example 1 was performed to obtain a powder sample slightly colored green.

表1に実施例1と同様の手法で得た、この粉末試料の粉末X線回折測定結果、エネルギー分散型X線分析により見積もったCuとMoの原子比、及び比表面積測定結果を示す。   Table 1 shows the powder X-ray diffraction measurement result of this powder sample obtained by the same method as in Example 1, the atomic ratio of Cu and Mo, and the specific surface area measurement result estimated by energy dispersive X-ray analysis.

<実施例5>
無水塩化第二銅22.7部を蒸留水1000部に加えて溶解した。得られた水溶液に、モリブデン酸ソーダ二水和物27.3部と蒸留水1000部からなる水溶液を、室温で攪拌機の回転数500rpmにて攪拌しながら50分間かけて加えた。以降は実施例1と同様の手法を行い、わずかに緑色に呈色した粉末試料を得た。
<Example 5>
22.7 parts of anhydrous cupric chloride was added to 1000 parts of distilled water and dissolved. An aqueous solution consisting of 27.3 parts of sodium molybdate dihydrate and 1000 parts of distilled water was added to the obtained aqueous solution over 50 minutes while stirring at room temperature with a rotation speed of 500 rpm. Thereafter, the same procedure as in Example 1 was performed to obtain a powder sample slightly colored green.

表1に実施例1と同様の手法で得た、この粉末試料の粉末X線回折測定結果、エネルギー分散型X線分析により見積もったCuとMoの原子比、及び比表面積測定結果を示す。   Table 1 shows the powder X-ray diffraction measurement result of this powder sample obtained by the same method as in Example 1, the atomic ratio of Cu and Mo, and the specific surface area measurement result estimated by energy dispersive X-ray analysis.

<実施例6>
モリブデン酸ソーダ二水和物13.8部を1500部の蒸留水に加えて溶解した。得られた水溶液に、1〜15μm(平均粒子径6.4μm)の微粒子雲母粉120部を懸濁させた。この懸濁液を攪拌機の回転数500rpmにて攪拌しながら、無水塩化第二銅8.6部と蒸留水1000部からなる水溶液を、25分間かけて加えた。添加完了後、更に15分間攪拌を行った。得られた懸濁液のpHは4.6であった。以降は実施例1と同様の手法を行い、ごくわずかに緑色に呈色した粉末試料を得た。
<Example 6>
13.8 parts of sodium molybdate dihydrate was dissolved in 1500 parts of distilled water. In the obtained aqueous solution, 120 parts of fine mica powder having a particle size of 1 to 15 μm (average particle diameter of 6.4 μm) was suspended. While this suspension was stirred at a rotation speed of 500 rpm, an aqueous solution consisting of 8.6 parts of anhydrous cupric chloride and 1000 parts of distilled water was added over 25 minutes. After completion of the addition, the mixture was further stirred for 15 minutes. The pH of the obtained suspension was 4.6. Thereafter, the same procedure as in Example 1 was performed to obtain a powder sample that was very slightly colored green.

表1に実施例1と同様の手法で得た、この粉末試料の粉末X線回折測定結果、エネルギー分散型X線分析により見積もったCuとMoの原子比、及び比表面積測定結果を示す。   Table 1 shows the powder X-ray diffraction measurement result of this powder sample obtained by the same method as in Example 1, the atomic ratio of Cu and Mo, and the specific surface area measurement result estimated by energy dispersive X-ray analysis.

<比較例1>
モリブデン酸ソーダ二水和物27.3部を蒸留水1000部に加えて溶解し、この水溶液を金属塩水溶液1とした。別途、無水塩化第二銅22.7部と蒸留水1000部からなる水溶液(これを金属塩水溶液2とした)を調製し、また苛性ソーダ100部と蒸留水500部からなる水溶液(アルカリ水溶液)を調製した。
<Comparative Example 1>
Sodium molybdate dihydrate (27.3 parts) was added to 1000 parts of distilled water and dissolved, and this aqueous solution was designated as metal salt aqueous solution 1. Separately, an aqueous solution consisting of 22.7 parts of anhydrous cupric chloride and 1000 parts of distilled water (this was referred to as metal salt aqueous solution 2) was prepared, and an aqueous solution (alkaline aqueous solution) consisting of 100 parts of caustic soda and 500 parts of distilled water was prepared. .

次いで、金属塩水溶液1に金属塩水溶液2およびアルカリ水溶液を金属塩水溶液1のpHを8に保ったまま、同時に滴下した。この操作を、攪拌機の回転数500rpmにて液を攪拌しながら、50分間かけて行った。添加完了後、更に15分間攪拌を行った。以降は実施例1と同様の手法を行い、青緑色に呈色した粉末試料を得た。   Next, the metal salt aqueous solution 2 and the alkali aqueous solution were simultaneously added dropwise to the metal salt aqueous solution 1 while maintaining the pH of the metal salt aqueous solution 1 at 8. This operation was performed for 50 minutes while stirring the liquid at a rotation speed of 500 rpm of the stirrer. After completion of the addition, the mixture was further stirred for 15 minutes. Thereafter, the same procedure as in Example 1 was performed to obtain a powder sample colored blue-green.

表1に実施例1と同様の手法で得た、この粉末試料の粉末X線回折測定結果、エネルギー分散型X線分析により見積もったCuとMoの原子比、及び比表面積測定結果を示す。   Table 1 shows the powder X-ray diffraction measurement result of this powder sample obtained by the same method as in Example 1, the atomic ratio of Cu and Mo, and the specific surface area measurement result estimated by energy dispersive X-ray analysis.

<比較例2>
モリブデン酸ソーダ二水和物27.3部を蒸留水1000部に加えて溶解した。得られた水溶液に、無水塩化第二銅22.7部と蒸留水1000部からなる水溶液を、攪拌機の回転数500rpmにて攪拌しながら50分間かけて加えた。添加完了後、この懸濁液を80℃に加熱し、8時間攪拌を保持した。得られた懸濁液のpHは4.0であった。以降は実施例1と同様の手法を行い、緑色に呈色した粉末試料を得た。
<Comparative Example 2>
27.3 parts of sodium molybdate dihydrate was added to 1000 parts of distilled water and dissolved. An aqueous solution composed of 22.7 parts of anhydrous cupric chloride and 1000 parts of distilled water was added to the obtained aqueous solution over 50 minutes while stirring at a rotation speed of 500 rpm of a stirrer. After the addition was complete, the suspension was heated to 80 ° C. and kept stirring for 8 hours. The resulting suspension had a pH of 4.0. Thereafter, the same procedure as in Example 1 was performed to obtain a green colored powder sample.

表1に実施例1と同様の手法で得た、この粉末試料の粉末X線回折測定結果、エネルギー分散型X線分析により見積もったCuとMoの原子比、及び比表面積測定結果を示す。   Table 1 shows the powder X-ray diffraction measurement result of this powder sample obtained by the same method as in Example 1, the atomic ratio of Cu and Mo, and the specific surface area measurement result estimated by energy dispersive X-ray analysis.

性能評価試験
実施例および比較例で得られた粉末試料並びに参考例の既存レーザーマーキング用添加剤に対し、下記の方法で、顔料特性およびレーザーマーキング特性を評価した。得られた結果を表1にまとめて示す。
Performance Evaluation Test The pigment characteristics and laser marking characteristics were evaluated by the following methods for the powder samples obtained in Examples and Comparative Examples and the existing laser marking additives in Reference Examples. The obtained results are summarized in Table 1.


(1)基材への着色(着色力)
アクリル樹脂に、酸化チタン:上記粉末試料=10:1(重量比)の配合物を11PHR(樹脂100部に対する添加剤の部数)で分散させた。この組成物をOHPフィルム上に、アプリケーターにて150μmの厚みで展色し、着色力を分光光度計(大日精化工業社製、カラコムC)にて測色した。

(1) Coloring to the substrate (coloring power)
In the acrylic resin, a mixture of titanium oxide: powder sample = 10: 1 (weight ratio) was dispersed at 11 PHR (parts of additive relative to 100 parts of resin). This composition was developed on an OHP film with an applicator to a thickness of 150 μm, and the coloring power was measured with a spectrophotometer (Dai-Ni Seika Kogyo Co., Ltd., Karakom C).

基材への着色:塗膜作製時の着色度合いを下記の基準で評価した。    Coloring on the substrate: The degree of coloring during coating film preparation was evaluated according to the following criteria.

×非常に濃い着色、
△薄い着色、
○ほとんど着色なし

(2)レーザーマーキング特性
(1)にて作成した塗膜に対して、YAG:Ndレーザー(日本電気社製、SL475K)を照射し、白色の塗膜を約20mm×20mmの黒く塗りつぶされた正方形が得られるようにマーキングした。レーザー照射条件は、レーザー励起電流11A、送り速度800mm/秒、Q―sw周波数5kHzとした。
× Very dark coloring,
△ light coloring,
○ Almost no coloring

(2) Laser marking characteristics
The coating film created in (1) is irradiated with a YAG: Nd laser (SL475K, manufactured by NEC Corporation), and the white coating film is marked so as to obtain a black square of about 20 mm x 20 mm. did. The laser irradiation conditions were a laser excitation current of 11 A, a feed rate of 800 mm / second, and a Q-sw frequency of 5 kHz.

マーキング部分を分光光度計により測色し、その際のL*値より黒度を得た。   The marking portion was measured with a spectrophotometer, and the blackness was obtained from the L * value at that time.

また、同様のレーザー照射条件により、黒色の文字をマーキングし、マーキング箇所を顕微鏡により観察して印字の精細性およびマーキング箇所の塗膜の透け(マーキングによる塗膜の劣化や飛散の状況)を下記の基準で評価した。   In addition, under the same laser irradiation conditions, black characters are marked, and the marking location is observed with a microscope, and the fineness of printing and the transparency of the coating at the marking location (degradation and scattering of the coating due to marking) are as follows: Evaluation based on the criteria.

印字の精細性
×印字不可、
△印字かすれ、
○印字良、
◎繊細な印字
塗膜の透け:マーキングによる塗膜の劣化や飛散の状況
×透けあり、
○透けなし

Figure 2009102541
注)参考例1の添加剤は、一般的に印字黒度が高いCu-Mo系レーザーマーキング用添加剤(東罐マテリアル・テクノロジー株式会社製42-903A)である。 Fineness of printing × Printing not possible,
△ The print is faint,
○ Good printing,
◎ Delicate printing Coating film transparency: Deterioration and scattering of coating film due to marking × Transparent
○ No sheer
Figure 2009102541
Note) The additive of Reference Example 1 is a Cu-Mo laser marking additive (42-903A manufactured by Toago Material Technology Co., Ltd.), which generally has high printing blackness.

黒度は、参考例1の黒度を100とする指数で表記した。   The blackness was expressed as an index with the blackness of Reference Example 1 as 100.

以上の結果からわかるように、実施例1〜6で得た粉末試料は、既存添加剤(参考例1)と比較して、塗膜への着色性が低く、且つレーザー印字後の黒度、印字精度も良好であった。従って本発明の目的とするレーザーマーキング用添加剤として、好適に使用することが出来る。 As can be seen from the above results, the powder samples obtained in Examples 1 to 6 are less colored than the existing additive (Reference Example 1), and the blackness after laser printing, The printing accuracy was also good. Therefore, it can be suitably used as an additive for laser marking which is an object of the present invention.

Claims (8)

必須成分としてCuとMoを含む複合水酸化物をベースとして構成され、かつBET比表面積が2m2/g以上であることを特徴とする、樹脂成形物のレーザーマーキング用添加剤。 An additive for laser marking of resin moldings, which is composed of a composite hydroxide containing Cu and Mo as essential components and has a BET specific surface area of 2 m 2 / g or more. 複合水酸化物が、下記一般式で表されるLindgrenite構造を含むものであることを特徴とする、請求項1記載のレーザーマーキング用添加剤。
Cu(MoO4)(OH)
(式中、x、yおよびzは1<x/y<3、1<x/Z<3の関係にある。)
The additive for laser marking according to claim 1, wherein the composite hydroxide contains a Lindgrenite structure represented by the following general formula.
Cu x (MoO 4 ) y (OH) z
(In the formula, x, y and z have a relationship of 1 <x / y <3, 1 <x / Z <3.)
複合水酸化物が、下記式で表されるLindgrenite構造を含むものであることを特徴とする、請求項2記載のレーザーマーキング用添加剤。
Cu3(MoO4)2(OH)2
The additive for laser marking according to claim 2, wherein the composite hydroxide includes a Lindgrenite structure represented by the following formula.
Cu 3 (MoO 4 ) 2 (OH) 2
請求項1〜3のいずれかに記載のレーザーマーキング用添加剤が、雲母薄片、金属酸化物で被覆された雲母薄片、SiO2フレーク、およびガラスフィラーからなる群から選ばれた基質に被覆されていることを特徴とするレーザーマーキング用複合材料。 The additive for laser marking according to any one of claims 1 to 3 is coated on a substrate selected from the group consisting of mica flakes, mica flakes coated with a metal oxide, SiO 2 flakes, and glass fillers. A composite material for laser marking characterized by comprising: 請求項1〜3のいずれかに記載のレーザーマーキング用添加剤を製造する方法であって、Cu化合物の水溶液とMo化合物の水溶液を混合して沈殿物を形成する工程と、得られた沈殿物を洗浄する工程を含むことを特徴とする、樹脂成形物のレーザーマーキング用添加剤の製造方法。 A method for producing an additive for laser marking according to any one of claims 1 to 3, wherein an aqueous solution of Cu compound and an aqueous solution of Mo compound are mixed to form a precipitate, and the obtained precipitate The manufacturing method of the additive for laser marking of the resin molding characterized by including the process of wash | cleaning. 沈殿物形成工程において、Cu化合物の水溶液にMo化合物の水溶液を攪拌条件下で滴下して沈殿物を形成するか、または、Mo化合物の水溶液にCu化合物の水溶液を攪拌条件下で滴下して沈殿物を形成することを特徴とする請求項5記載の樹脂成形物のレーザーマーキング用添加剤の製造方法。 In the precipitate formation step, a Mo compound aqueous solution is dropped into the Cu compound aqueous solution under stirring conditions to form a precipitate, or a Cu compound aqueous solution is dropped into the Mo compound aqueous solution under stirring conditions to precipitate. The method for producing an additive for laser marking of a resin molded product according to claim 5, wherein the product is formed. 請求項1〜3のいずれかに記載のレーザーマーキング用添加剤、または請求項4記載のレーザーマーキング用複合材料を含むレーザーマーキング可能な樹脂成形材料。 The resin molding material which can be laser-marked containing the additive for laser markings in any one of Claims 1-3, or the composite material for laser markings of Claim 4. 形態が膜厚0.5mm以下のフィルムないしは薄膜であることを特徴とすることを特徴とする、請求項7記載の樹脂成形材料。 8. The resin molding material according to claim 7, wherein the form is a film or a thin film having a film thickness of 0.5 mm or less.
JP2007276631A 2007-10-24 2007-10-24 Additive for laser marking Expired - Fee Related JP5028213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276631A JP5028213B2 (en) 2007-10-24 2007-10-24 Additive for laser marking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276631A JP5028213B2 (en) 2007-10-24 2007-10-24 Additive for laser marking

Publications (2)

Publication Number Publication Date
JP2009102541A true JP2009102541A (en) 2009-05-14
JP5028213B2 JP5028213B2 (en) 2012-09-19

Family

ID=40704559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276631A Expired - Fee Related JP5028213B2 (en) 2007-10-24 2007-10-24 Additive for laser marking

Country Status (1)

Country Link
JP (1) JP5028213B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042070A1 (en) 2012-09-14 2014-03-20 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition, resin molded article, and method for producing resin molded article having plated layer attached thereto
JPWO2014091949A1 (en) * 2012-12-13 2017-01-05 東罐マテリアル・テクノロジー株式会社 Laser marking ink
US9881714B2 (en) 2014-06-19 2018-01-30 Saint-Gobain Performance Plastics Corporation Laser-markable insulation material for wire or cable assemblies
US10256009B2 (en) 2014-06-19 2019-04-09 Saint-Gobain Performance Plastics Corporation Laser-markable insulation material for wire or cable assemblies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105246638B (en) 2013-05-20 2017-01-25 东罐材料科技株式会社 Bismuth oxide-based additive for laser marking

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075667A (en) * 2003-08-29 2005-03-24 Tokan Material Technology Co Ltd Laser-markable compound oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075667A (en) * 2003-08-29 2005-03-24 Tokan Material Technology Co Ltd Laser-markable compound oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042070A1 (en) 2012-09-14 2014-03-20 三菱エンジニアリングプラスチックス株式会社 Thermoplastic resin composition, resin molded article, and method for producing resin molded article having plated layer attached thereto
JPWO2014091949A1 (en) * 2012-12-13 2017-01-05 東罐マテリアル・テクノロジー株式会社 Laser marking ink
US9881714B2 (en) 2014-06-19 2018-01-30 Saint-Gobain Performance Plastics Corporation Laser-markable insulation material for wire or cable assemblies
US10256009B2 (en) 2014-06-19 2019-04-09 Saint-Gobain Performance Plastics Corporation Laser-markable insulation material for wire or cable assemblies

Also Published As

Publication number Publication date
JP5028213B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP1377522B1 (en) Additive for yag laser marking
JP5586466B2 (en) Laser sensitive coating composition
JP7317914B2 (en) LASER MARKABLE POLYMERS AND COATINGS
US8778494B2 (en) Pigment for laser marking
JP6421117B2 (en) Additive for bismuth oxide laser marking
CN109963702B (en) Additives for laser-markable and laser-weldable polymer materials
JP5028213B2 (en) Additive for laser marking
US10344145B2 (en) Laser-markable and laser-weldable polymeric materials
JP2010095396A (en) Bismuth oxide-based additive for laser marking and production method of the same
WO2017047736A1 (en) Near-infrared-curable ink composition, near-infrared-cured film, and photoshaping method
KR20170098873A (en) Laser-markable and laser-weldable polymer materials
DE10146653B4 (en) Toner for optical fixing and imaging device using the same
JP7394788B2 (en) Laser additives and their use in polymeric materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5028213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees