JP2009101898A - 倒立車輪型移動体、及びその制御方法 - Google Patents

倒立車輪型移動体、及びその制御方法 Download PDF

Info

Publication number
JP2009101898A
JP2009101898A JP2007276049A JP2007276049A JP2009101898A JP 2009101898 A JP2009101898 A JP 2009101898A JP 2007276049 A JP2007276049 A JP 2007276049A JP 2007276049 A JP2007276049 A JP 2007276049A JP 2009101898 A JP2009101898 A JP 2009101898A
Authority
JP
Japan
Prior art keywords
moving body
wheel
control mode
control
inverted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007276049A
Other languages
English (en)
Inventor
Yoshiyuki Senba
快之 仙波
Hideki Kajima
日出輝 梶間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007276049A priority Critical patent/JP2009101898A/ja
Publication of JP2009101898A publication Critical patent/JP2009101898A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】操作性を向上することができる倒立車両型移動体、及びその制御方法を提供する。
【解決手段】本発明の一態様にかかる倒立車輪型移動体は、右駆動輪18、左駆動輪20を回転駆動するモータ34、36と、スイングアーム17、19を介してマウント26、28に対して回動可能に支持された搭乗席74と、搭乗席74を駆動する搭乗席駆動モータ70と、を備えている。制御部80は、モータ34、36とともに搭乗席駆動モータ70を駆動させる第1の制御モードと、搭乗席駆動モータ70の駆動を停止し、モータ34、36を駆動させる第2の制御モードと、を切換えることができる。
【選択図】 図2

Description

本発明は倒立車輪型移動体、及びその制御方法に関する。
倒立二輪車両などの倒立車輪型移動体は、通常、左右の駆動輪を駆動して安定状態を維持するように重心位置を修正しつつ、移動を行なうように制御している。さらに、倒立状態を安定させるため、車輪上方に設けられた慣性体を駆動する構成が開示されている(特許文献1)。この倒立車輪型移動体では、走行中に、慣性体をスライド移動させている。これにより、重心位置が車軸の鉛直線上に速やかに移動するため、倒立を安定させることができる。
特開2006−205839号公報
しかしながら、倒立車輪型移動体では、以下に示す問題点がある。倒立車輪型移動体の使用では、移動体に外力が加えられることがある。この場合、運搬のことを考えると、外力に倣って移動することが適している。一方、周囲に障害物などがあるときは、外力が与えられても、その場から移動して欲しくない。すなわち、(1)外力を利用して加速することが好ましい場合と、(2)障害物との衝突を避けるため、速やかに倒立を安定させ、その場での倒立を維持することが好ましい場合と、がある。しかしながら、従来の倒立車輪型移動体では、上記の2つの場合の制御を両立することが困難であり、状況に応じた制御をすることがないという問題点がある。
本発明は、かかる課題を解決するためになされたものであり、状況に応じた制御を可能とする倒立車輪型移動体、及びその制御方法を提供することを目的とする。
本発明の第1の態様にかかる倒立車輪型移動体は、車輪を回転可能に支持する車台と、前記車輪を回転駆動する第1の駆動部と、支持部材を介して前記車台に対して回動可能に支持された車体部と、前記車体部を駆動する第2の駆動部と、前記第1及び第2の駆動部を制御する制御部とを備える倒立車輪型移動体であって、前記制御部が、前記第1の駆動部とともに前記第2の駆動部を駆動させて、前記倒立車輪型移動体を倒立させつつ移動させる第1の制御モードと、前記第2の駆動部の駆動を停止し、前記第1の駆動部を駆動させて、前記倒立車輪型移動体を倒立させつつ移動させる第2の制御モードと、を切換え可能であることを特徴とするものである。これにより、状況に応じた制御を行うことができる。
本発明の第2の態様にかかる倒立車輪型移動体は、前記第1の制御モードと前記第2の制御モードとの切換えが、センサから出力に応じて行われることを特徴とするものである。これにより、適切に制御モードを切換えることができ、状況に応じて適切な制御を行うことができる。
本発明の第3の態様にかかる倒立車輪型移動体は、上記の倒立車輪型移動体であって、前記制御部が、前記センサからの出力に応じて、前記車体部が急激に移動しているか否かを判定し、前記車体部が急激に移動していると判定された場合に、前記第1の制御モードから前記第2の制御モードに切換えられることを特徴とするものである。これにより、適切に制御モードを切換えることができ、状況に応じて適切な制御を行うことができる。
本発明の第4の態様にかかる倒立車輪型移動体は、上記の倒立車輪型移動体であって、前記第1の制御モードと前記第2の制御モードとの切換えが、手動式スイッチによって行われることを特徴とするものである。これにより、簡便に制御モードを切換えることができ、状況に応じて適切な制御を行うことができる。
本発明の第5の態様にかかる倒立車輪型移動体の制御方法は、車輪を回転可能に支持する車台と、前記車輪を回転駆動する第1の駆動部と、支持部材を介して前記車台に対して回動可能に支持された車体部と、前記車体部を駆動する第2の駆動部と、前記第1の駆動部と前記第2の駆動部とを制御する制御部とを備える倒立車輪型移動体の制御方法であって、前記第1の駆動部とともに前記第2の駆動部を駆動させて、前記倒立車輪型移動体を倒立させつつ移動させる第1の制御モードで制御するステップと、前記第2の駆動部の駆動を停止して、前記第1の駆動部を駆動させて、前記倒立車輪型移動体を倒立させつつ移動させる第2の制御モードで制御するステップと、前記第1の制御モードと前記第2の制御モードとを切換えるステップと、を備えるものである。これにより、状況に応じた制御を行うことができる。
本発明の第6の態様にかかる倒立車輪型移動体の制御方法は、上記の制御方法であって、前記第1の制御モードと前記第2の制御モードとの切換えが、センサから出力に応じて行われることを特徴とするものである。これにより、適切に制御モードを切換えることができ、状況に応じて適切な制御を行うことができる。
本発明の第7の態様にかかる倒立車輪型移動体の制御方法は、上記の制御方法であって、前記センサからの出力に応じて、前記車体部が急激に移動しているか否かを判定し、
前記車体部が急激に移動していると判定された場合に、前記第1の制御モードから前記第2の制御モードに切換えられることを特徴とするものである。これにより、適切に制御モードを切換えることができ、状況に応じて適切な制御を行うことができる。
本発明の第8態様にかかる倒立車輪型移動体の制御方法は、上記の制御方法であって、前記第1の制御モードと前記第2の制御モードとの切換えが、手動式スイッチによって行われることを特徴とするものである。これにより、簡便に制御モードを切換えることができ、状況に応じて適切な制御を行うことができる。
本発明は、状況に応じた制御を可能とする倒立車輪型移動体、及びその制御方法を提供することを目的とする。
発明の実施の形態1.
本実施の形態にかかる移動体は倒立振子制御によって移動する倒立車輪型移動体である。移動体は、地面に接地した車輪を駆動することによって、所定の位置まで移動する。さらに、ジャイロセンサ等からの出力に応じて車輪を駆動することによって、倒立状態を維持することができる。また、移動体は、倒立状態を維持したまま、操作者が操作する操作量に応じて移動する。
図1及び図2を用いて、本実施の形態にかかる移動体100の構成について説明する。図1は移動体100の構成を模式的に示す側面図であり、図2は移動体100の構成を模式的に示す正面図である。
図2に示されるように、移動体100は、倒立車輪型の移動体(走行体)であり、右駆動輪18と、左駆動輪20と、右スイングアーム17と、左スイングアーム19と、車体12と、を備えている。車体12は、右駆動輪18、及び左駆動輪20の上方に配置された移動体100の上体部の一部である。ここで、移動体100の進行方向(図2の紙面と垂直方向)を前後方向とし、水平面において前後方向に垂直な方向を左右方向(横方向)とする。よって、図2は、進行方向前側から移動体100を見た図であり、図1は、左側から移動体100を見た図である。
走行時において、右スイングアーム17、及び左スイングアーム19は、車高を調整する。さらに、一方、又は両方のスイングアームを駆動して、車体12の地面に対する左右の傾斜角度を調整する。例えば、水平な地面を走行中に、右駆動輪18のみが段差に乗り上げたり、地面が右上がりの傾斜面に変わったりしたとする。この場合、右駆動輪18が左駆動輪20よりも高くなる。このため、右スイングアーム17の関節を駆動して右駆動輪18を車体12の方向により近づけるようにする。これにより、右駆動輪18が高くなった分を吸収でき、横方向(左右方向)において車体12を水平にすることができる。
右スイングアーム17側端側には右マウント26が固定され、車軸30を介して右駆動輪18を回転可能に支持する。右駆動輪18は、車軸30を介して右輪駆動モータ34の回転軸C1に固定されている。右輪駆動モータ34は、右マウント26内に固定され、車輪用駆動部(アクチュエータ)として機能する。
左スイングアーム19の側端側には左マウント28が固定され、車軸32を介して左駆動輪20を回転可能に支持する。左駆動輪20は、車軸32を介して左輪駆動モータ36の回転軸C2に固定されている。左輪駆動モータ36は、左マウント28内に固定され、車輪用駆動部(アクチュエータ)として機能する。右駆動輪18と左駆動輪20は、地面と接地し、略同軸上で回転する一対の車輪である。右駆動輪18と左駆動輪20が、回転することによって、移動体100が移動する。また、右輪駆動モータ34、及び左輪駆動モータ36が車輪を駆動させる駆動輪モータとなる。右マウント26、及び左マウント28が左右の駆動輪を回転可能に支持する車台となる。
右輪駆動モータ34及び左輪駆動モータ36は例えば、サーボモータである。尚、車輪用アクチュエータは、電気的なモータに限らず、空圧、油圧を使用したアクチュエータでもよい。なお、以下の説明において、右駆動輪18と左駆動輪20をまとめて、駆動輪と呼ぶこともある。
また、右マウント26は、右輪エンコーダ52を備えている。右輪エンコーダ52は、右駆動輪18の回転量としての回転角を検出する。左マウント28は、左輪エンコーダ54を備えている。左輪エンコーダ54は、左駆動輪20の回転量としての回転角を検出する。
右スイングアーム17は、右上リンク21と、右スイング軸62と、右スイングアーム駆動モータ60を有している。左スイングアーム19は、左上リンク22と、左スイング軸66と、左スイングアーム駆動モータ64を有している。車体12の下部には、右上リンク21及び左上リンク22が固定されている。右上リンク21には、右スイングアーム駆動モータ60が固定され、右スイング軸62を介して、回転軸C4回りに、右スイングアーム17を駆動する。左スイング軸66には、左スイングアーム駆動モータ64が固定され、左スイング軸66を介して、回転軸C5周りに左スイングアーム19を駆動する。このように、右スイングアーム17には、回転軸C4回りに回転する回転関節が設けられ、左スイングアーム19には、回転軸C5回りに回転する回転関節が設けられている。右スイングアーム17及び左スイングアーム19に設けられた関節をスイングアーム関節とする。
車体12には、搭乗席駆動モータ70、ラックアンドピニオン72、ジャイロセンサ48、及び搭乗席74が取り付けられている。また、車体12には、対向して、右上リンク21及び左上リンク22が取り付けられている。
車体12の中央近傍には、ラックアンドピニオン72が設けられている。ラックアンドピニオンのラックは、前後方向に沿って設けられている。ラックアンドピニオン72によって、搭乗席74が支持されている。即ち、搭乗席74は、ラックアンドピニオン72を介して車体12に取り付けられている。搭乗席74は、搭乗者が座ることができる椅子の形状を有する。
車体12の上部には、搭乗席駆動モータ70が固定されている。搭乗席74と搭乗席駆動モータ70は、ラックアンドピニオン72によって連結されている。搭乗席駆動モータ70は、回転軸C3回りに回転する。これにより、ラックアンドピニオン72のピニオンに回転力が加えられる。搭乗席駆動モータ70の回転運動は、ラックアンドピニオン72によって、直線運動に変換される。すなわち、搭乗席駆動モータ70を駆動すると、車体12に対する搭乗席74の位置が前後にスライドする。このとき、搭乗席74と搭乗者又は搭乗物との合成重心位置が、車体12に対して前後に変化する。なお、車体12に対して、搭乗席74と搭乗者又は搭乗物との合成重心位置を変化させる手段としては、スライド機構の他に、回転軸機構、旋回機構などで実現することも可能である。また、搭乗席駆動モータ70の動力をギアやベルトやプーリなどを介して、搭乗席74に伝達してもよい。ここで、搭乗席駆動モータ70によって前後に移動する構成全体を車体部77とする。車体部77には、搭乗席74や操作モジュール46等が含まれる。もちろん、車体12を駆動するアクチュエータを備える場合は、車体部77に車体12も含まれる。また、搭乗席駆動モータ70には、スライド位置を計測するためのエンコーダ(図示せず)が設けられている。
回転軸C3は回転軸C1及びC2と平行であり、回転軸C1及びC2の上方に位置する。回転軸C3と回転軸C1との間に右スイングアーム17が設けられ、回転軸C3と回転軸C2との間に左スイングアーム19が設けられている。右スイングアーム駆動モータ60は、右スイングアーム17を回転軸C4回りに回転させ、左スイングアーム駆動モータ64は、左スイングアーム19を回転軸C5回りに回転させる。通常の走行時には、回転軸C1〜回転軸C5は水平になっている。
さらに、移動体100には、転倒を防止するために、2つの補助輪51が設けられている。補助輪51は、補助輪支持ブロック55に対して回転可能に支持されている。そして、補助輪支持ブロック55は車体12に取り付けられている。ここでは、一方の補助輪51は、駆動輪の前方側に配置され、他方の補助輪51は駆動輪の後方側に配置されている。補助輪51は、従動輪であり、移動体100の移動にしたがって回転する。
通常の走行を開始するときには、スイングアーム関節を伸ばすことによって、補助輪51を離地させる。すなわち、車体12が上方に移動するように、スイングアーム関節を移動して、補助輪51を上方に移動させる。停止状態では、スイングアーム関節を縮めることによって、補助輪51を接地させる。すなわち、スイングアーム関節を屈曲させていくことで、車体12が地面に近づき、補助輪51が下方に移動する。このように、補助輪51を上下に移動させることで、補助輪51が接地した接地状態と、離地して二輪で走行する離地状態とを切換えることができる。このように、移動体100は、立ち上がり時にスイングアームを使って、4輪の接地状態から2輪状態の離地状態へと移行していく。
一方の補助輪51の回転軸は、回転軸C1、C2よりも前側上方にあり、他方の補助輪51の回転軸は、回転軸C1,C2よりも後側上方にある。すなわち、補助輪51の一方は、駆動輪の車軸よりも前方に配置され、他方は、駆動輪の車軸よりも後方に配置される。これにより、移動体100が前後に転倒するのを防止することができる。なお、補助輪以外の転倒防止部材によって、転倒を防止してもよい。例えば、前後方向に突出したストッパなどで転倒を防止することができる。
車体12には、バッテリーモジュール44と、センサ58が収納されている。センサ58は、例えば、光学式の障害物検知センサであり、移動体100の前方に障害物を検知すると、検知信号を出力する。また、センサ58は、障害物センサ以外のセンサであってもよい。例えば、センサ58として、加速度センサを用いることも可能である。もちろん、センサ58として、2以上のセンサが用いられていてもよい。センサ58は移動体100の状態に応じて変化する変化量を検出する。バッテリーモジュール44は、センサ58、ジャイロセンサ48、右輪駆動モータ34、左輪駆動モータ36、右スイングアーム駆動モータ60、左スイングアーム駆動モータ64、搭乗席駆動モータ70、及び制御部80等に対して電力を供給する。
車体12上には、ジャイロセンサ48が設けられている。ジャイロセンサ48は、車体12の傾斜角に対する角速度を検出する。ここで、車体12の傾斜角は、移動体100の重心位置が車軸30、32の鉛直上方に伸びる軸からの傾斜度合いであり、例えば移動体100の進行方向前方に車体12が傾斜している場合を「正」とし、移動体100の進行方向後方に車体12が傾斜している場合を「負」として表わす。したがって、車体12が水平になっている状態では、傾斜角度が0°になる。そして、通常の走行時には、傾斜角度の制御目標値が0°なっている。この制御目標値に追従するように、フィードバック制御されている。また、前後方向における傾斜角度を移動体100の姿勢の傾斜角度とする。
また、進行方向の前後方向に加えて、左右方向の傾斜角速度はロール、ピッチ、ヨーの3軸のジャイロセンサ48を用いて測定される。このように、ジャイロセンサ48は、車体12の傾斜角の変化を、車体12の傾斜角速度として測定する。もちろん、ジャイロセンサ48は他の箇所に取り付けられていてもよい。ジャイロセンサ48で測定された傾斜角速度は、移動体100の姿勢の変化に応じて変化する。即ち、傾斜角速度は、車軸の位置に対する車体12の重心位置に応じて変化する変化量である。従って、外乱などによって、姿勢の傾斜角度が急激に変化すると、傾斜角速度の値が大きくなる。
搭乗席74の側面には、操作モジュール46が設けられている。操作モジュール46には、操作レバー(図示せず)及びブレーキレバー(図示せず)が設けられている。操作レバーは、搭乗者が移動体100の走行速度や走行方向を調整するための操作部材である、搭乗者は、操作レバーの操作量を調整することによって移動体100の移動速度を調整することができる。また、搭乗者は、操作レバーの操作方向を調整することによって移動体100の移動方向を指定することができる。移動体100は、操作レバーに加えられた操作に応じて、前進、停止、後退、左折、右折、左旋回、右旋回することができる。搭乗者がブレーキレバーを倒すことによって、移動体100を制動することができる。移動体100の進行方向は、水平面内において、車軸30、32と垂直な方向になる。また、操作モジュール46には、制御モードを切換えるスイッチが設けられている。
さらに、搭乗席74の背もたれ部分には、制御部80が実装されている。制御部80は、搭乗者が操作モジュール46に対して行なった操作に追従して、右輪駆動モータ34及び左輪駆動モータ36を制御し、移動体100の走行(移動)を制御する。制御部80は、操作モジュールでの操作に応じて、右輪駆動モータ34及び左輪駆動モータ36を制御する。これにより、操作モジュール46での操作に応じた加速度、速度指令値で右輪駆動モータ34及び左輪駆動モータ36が駆動する。
制御部80は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信用のインターフェースなどを有し、移動体100の各種動作を制御する。そして、この制御部80は、例えばROMに格納された制御プログラムに従って各種の制御を実行する。制御部80は、操作モジュール46での操作に応じて、所望の加速度、及び目標速度になるように、また、移動体100が倒立を維持するように、ロバスト制御、状態フィードバック制御、PID制御などの周知のフィードバック制御により、右輪駆動モータ34及び左輪駆動モータ36を制御する。これにより、移動体100が、操作モジュール46での操作に応じて加減速しながら走行する。
すなわち、操作モジュール46は、搭乗者の操作によって与えられた操作量を取得し、この操作量を操作信号として、制御部80に出力する。そして、制御部80は、操作信号に基づいて、移動体100の目標加速度や、目標速度を算出し、これに追従するように、移動体100をフィードバック制御する。これにより、移動体100を倒立させつつ、移動させることができる。
また、制御部80は、右輪駆動モータ34、左輪駆動モータ36、右スイングアーム駆動モータ60、左スイングアーム駆動モータ64、及び搭乗席駆動モータ70を制御する。ここで、搭乗席駆動モータ70が右輪駆動モータ34及び左輪駆動モータ36と協調して動作するよう、制御部80が制御を行う。すなわち、倒立を安定させるように、駆動輪を回転駆動するとともに搭乗席74をスライド移動させる。これにより、車体12の傾斜角度が小さくなり、倒立を安定させることができる。このようにして、搭乗席駆動モータ70が右スイングアーム駆動モータ60、左スイングアーム駆動モータ64、及び搭乗席駆動モータ70と協調して動作する。
さらに、制御部80は、第1の制御モードである停止モードと第2の制御モードである運搬モードとを切換える。停止モードでは、移動体100がその場で停止するように、搭乗席駆動モータ70を、左スイングアーム駆動モータ64、及び搭乗席駆動モータ70と協調して駆動するようにする。一方、運搬モードでは、搭乗席駆動モータ70の駆動を停止して、右スイングアーム駆動モータ60、左スイングアーム駆動モータ64、及び搭乗席駆動モータ70のみによって倒立を維持する。すなわち、運搬モードでは、搭乗席駆動モータ70による搭乗席74のスライド移動を禁止する。本実施の形態では、運搬モードと、その場停止モードとを操作モジュール46に設けられている手動式スイッチによって切換える構成としてる。例えば、スイッチをONすることにより、その場停止モードになり、スイッチをOFFすることにより、運搬モードになる。
次に、その場停止モードと運搬モードでの移動体100の動作の違いについて、図3を用いて説明する。移動体100の構成を模式的に示す側面図である。図3(a)、及び(b)には、その場停止モードでの移動体100の動作が示され、図3(c)及び(d)には運搬モードでの移動体100の動作が示されている。図3では、右側が移動体100の進行方向の前方になっている。また、図3(b)、及び図3(d)では移動前後の移動体100が示されている。
図3では、右駆動輪18及び左駆動輪20を駆動輪78として示している。また、図3(a)及び図3(b)では、車体部77をスライド移動させる機構をスライド機構68として示し、スイングアームに設けられた回転関節をスイングアーム関節67として示している。したがって、搭乗席駆動モータ70及びラックアンドピニオンなどを含むスライド機構68を駆動することで、車体12に対して車体部77が前後にスライドする。さらに、車体部77と車体12を合わせて上体部76としている。したがって、スイングアームによって支持されている構成全体が上体部76となる。また、運搬モードでは、スライド機構68を使用しないため、図3(c)、及び図3(d)では、これらを省略して図示している。
まず、スライド機構68を動作させる、その場停止モードについて説明する。図3(a)に示すように、スイングアーム関節67がある程度伸びており、補助輪51が離地した離地状態となっている。そして、その場で停止している状態で、例えば、車体12や上体部76に外力が加わると、移動体100の姿勢が傾く。図3(a)では、後方から外力が加わっているため、車体部77が前傾する。すると、図3(b)に示すように、上体部76の姿勢が矢印の方向に変化する。駆動輪78のモータだけでなく、搭乗席駆動モータ70が駆動して、車体部77が後方に移動する。これにより、上体部76の重心位置が、速やかに車軸の鉛直線上に移動して、速やかに停止する。図3(b)に示すように、移動体100の移動量を小さくすることができる。すなわち、傾斜角度を0°に回復して安定に倒立するために必要な移動距離を小さくすることができる。
次に、搭乗席駆動モータ70の動作を停止する、運搬モードについて、説明する。図3(c)に示すように、スイングアーム関節67がある程度伸びており、補助輪51が離地した状態となっている。このとき、上記と同様に、移動体100に外力が加わると、図3(d)のように、移動体100が前傾する。運搬モードでは、スライド機構68が停止しているので、駆動輪78の駆動のみで、倒立状態の維持が行われる。従って、その場停止モードよりも、上体部76の重心位置が車軸の鉛直線上に移動するまで時間がかかり、移動量が大きくなる(図3(d)参照)。すなわち、外力によって傾斜した姿勢が、スライド機構68の駆動によって打ち消す方向に変化しない。このため、前傾姿勢が元の姿勢に戻るまでの時間が長くなる。駆動輪の回転角度が大きくして、傾斜角度を0°に回復する。このように、運搬モードでは、外力を利用した加速が可能になり、速やかに移動することができる。すなわち、力に倣って移動体100が移動するため、速やかに運搬することができる。
運搬モードでは、外力を利用して加速することができるため、速やかな移動が可能になる。よって、利便性を向上することができる。一方、その場停止モードでは、スライド機構68が駆動することによって、倒立を安定させることができる。このように、その場停止モードと運搬モードとを切換えることによって、状況に応じて、適切な制御が可能になる。また、手動式スイッチを用いることで、簡便な切換が可能になる。よって、利便性を向上することができる。
次に、上記の制御を行う制御部80の構成について図4を用いて説明する。図4は、制御部80を含む制御系の構成を示すブロック図である。図4に示すように、制御部80は、スイングアーム制御部81と、駆動輪・スライド協調制御部82とを備えている。また、センサ類83は、移動体100に設けられている各種センサを示すものであり、例えば、ジャイロセンサ48、右輪エンコーダ52、左輪エンコーダ54、センサ58等を含んでいる。そして、制御部80は、倒立制御計算を行い、制御目標値を算出する。そして、制御目標値と現在値との偏差を求める。尚、現在値は、例えば、センサ類83からの出力に基づいて算出することができる。そして、この偏差に所定のフィードバックゲインを乗じて、フィードバック制御を行う。
また、移動体100には、各モータを駆動制御するアンプが設けられている。ここで、右輪駆動モータ34、左輪駆動モータ36、右スイングアーム駆動モータ60、左スイングアーム駆動モータ64、搭乗席駆動モータ70に設けられているアンプをそれぞれ、アンプ34a、アンプ36a、アンプ60a、アンプ64a、アンプ70aとする。各アンプは、制御部80からの制御信号に基づいて動作する。制御部80は、搭乗席駆動モータ70のアンプ70aにスライド速度やスライド位置やスライド力に応じた制御信号を出力する。また、モータ34、36のアンプ34a、36aに車輪トルクに応じた制御信号を出力する。
スイングアーム制御部81は、右スイングアーム駆動モータ60、及び左スイングアーム駆動モータ64を制御する。例えば、スイングアーム制御部81は制御信号を出力して、スイングアームが伸縮するようにスイングアーム関節67を駆動する。これにより、補助輪51が接地している接地状態と、離地している離地状態とを切換えることができる。また、傾斜面を走行するときは、ジャイロセンサ48などの出力に基づいて、制御信号を出力する。これにより、傾斜面の角度が吸収され、車体12が水平になる。スイングアーム制御部81からの制御信号は、アンプ60a、64aを介して、右スイングアーム駆動モータ60、左スイングアーム駆動モータ64に入力され、右スイングアーム駆動モータ60、左スイングアーム駆動モータ64が駆動する。なお、スイングアーム関節の回転角を検出するエンコーダを設けて、フィードバック制御してもよい。すなわち、スイングアーム関節67の関節角度や関節角速度に応じてフィードバック制御することができる。
駆動輪・スライド協調制御部82は、右輪駆動モータ34、左輪駆動モータ36、及び搭乗席駆動モータ70を協調して制御する。すなわち、駆動輪・スライド協調制御部82は、右輪駆動モータ34、左輪駆動モータ36、及び搭乗席駆動モータ70に対する制御目標値を算出する。例えば、姿勢の傾斜角度、姿勢の傾斜角速度、並びに駆動輪の回転速度、及び搭乗席74のスライド速度が制御目標値として算出される。車体12の傾斜角速度は、ジャイロセンサ48で測定される。そして、傾斜角速度を積分することによって、車体12の傾斜角度が求まる。例えば、倒立走行時には、姿勢の目標傾斜角度が0°になるようにフィードバック制御する。また、その場で停止させる場合は、目標傾斜角速度が0になるようにフィードバック制御する。
また、駆動輪78の回転速度は、右輪エンコーダ52、及び左輪エンコーダ54の出力によって、求めることができる。スライド機構68のスライド速度は、搭乗席駆動モータ70に設けられているエンコーダの出力により求めることができる。また、スライド機構68は、搭乗席駆動モータ70の回転トルクにより求めることができる。そして、これらの制御目標値と、現在値との偏差に適切なフィードバックゲインをかけることで、フィードバック制御が行われる。もちろん、駆動輪・スライド協調制御部82による、右輪駆動モータ34、左輪駆動モータ36、及び搭乗席駆動モータ70の協調制御は、上記の制御に限られるものではない。
次に本実施の形態にかかる移動体100の制御方法について、図5を用いて説明する。図5は、本実施の制御方法を示すフローチャートである。まず、倒立制御計算を行う(ステップS101)。ここでは、駆動輪とスライドを協調させて動作させるための計算を行う。これにより、駆動輪のモータ、及び搭乗席駆動モータ70等を駆動するための制御目標値が算出される。制御目標値としては、姿勢の傾斜角度及び傾斜角速度、並びに駆動の回転速度、スライド速度の4つが算出される。そして、これらの制御目標値と、現在値との偏差に適切なフィードバックゲインをかけることで、フィードバック制御が行われる。
次にスイッチ判定を行い(ステップS102)、スイッチがONかOFFかを判定する(ステップS103)。スイッチがONの場合、スライド機構68を使用して、駆動輪78、及びスライドを駆動する(ステップS104)。すなわち、その場停止モードとなり、モータ34、36だけでなく、搭乗席駆動モータ70を駆動して、協調制御を行う。これにより、スライド機構68が重心位置を前後に移動させるため、倒立が速やかに安定する。そして、ステップS101で算出した制御目標値に追従するように、制御される。一方、スイッチがONでない場合、駆動輪のみを駆動する(ステップS105)。すなわち、運搬モードとなり、搭乗席駆動モータ70を駆動させず、駆動輪モータのみを駆動させて、倒立を維持する。ここでは、ステップS101で算出した制御目標値に追従するように、制御されるが、スライド機構68は動作しない。目標位置に収束したか否かを判定する(ステップS106)。例えば、スイングアーム関節67が目標角度になり、移動体100が操作モジュール46からの入力に応じた目標位置や目標速度になったか否かを判定する。目的位置に収束した場合は、制御を停止し、収束していない場合は、上記の処理を繰り返す。
ステップS105の運搬モードでは、スライド機構68を駆動せずに、駆動輪78のみを駆動している。外力を利用した加速することができるため、速やかな移動が可能になる。よって、利便性を向上することができる。一方、ステップS104のその場停止モードでは、駆動輪78だけでなくスライド機構68を駆動することによって、倒立を安定させることができる。このように、その場停止モードと運搬モードとを切換えることによって、状況に応じて、適切な制御が可能になる。例えば、周辺に障害物が多い状況では、その場停止モードとし、周辺に障害物が少なく速やかに運搬したい状況では、運搬モードとする。また、手動式スイッチを用いることで、適切で簡便な切換が可能になる。よって、利便性を向上することができる。
発明の実施の形態2.
本実施の形態にかかる移動体100では、センサからの出力に応じて、その場停止モードと運搬モードとの切換えが行われる。なお、移動体100の全体構成については実施の形態1と同様であるため、説明を省略する。
本実施の形態では、ジャイロセンサ48で測定された傾斜角速度に基づいて、制御モードを切換えている。具体的には、傾斜角速度がしきい値を越えた場合、その場停止モードとなる。大きな外力が与えられ、傾斜角速度が大きくなった場合は、搭乗席駆動モータ70が駆動する。よって、安定した倒立状態に速やかに移行することができる。一方、傾斜角速度がしきい値を越えなかった場合、運搬モードになる。小さな外力が与えられ、傾斜角速度がしきい値を越えなかった場合は、搭乗席駆動モータ70が駆動しない。よって、速やかに加速することができる。
次に、本実施の形態にかかる移動体100の制御について、図6〜図8を用いて説明する。図6は、本実施の形態にかかる制御方法を示すフローチャートである。なお、図6の点線で囲まれたステップS202,及びS203以外は、実施の形態1での制御と同様である。図7及び図8は、時間と傾斜角速度の関係を示すグラフである。図7、及び図8では、横軸が時間を示し、縦軸が傾斜角速度を示している。図7は、その場停止モードのグラフであり、図8は、運搬モードのグラフである。なお、実施の形態1と同様の内容については、適宜説明を省略する。
まず、実施の形態1と同様に、倒立制御計算を行う(ステップS201)。これにより、制御目標値が算出される。次に、スライド使用判定を行い(ステップS202)、測定した傾斜角速度がしきい値を越えたか否かを判定する(ステップS203)。ここでは、図7及び図8の点線で示されるしきい値を傾斜角速度が越えているかが判定される。
図7に示すように、傾斜角速度がしきい値を越えている場合は、スライド機構68を使用して、駆動輪78、及びスライドを駆動する(ステップS204)。すなわち、その場停止モードとなり、モータ34.36だけでなく、搭乗席駆動モータ70を駆動して、協調制御を行う。これにより、傾斜角度が減少していく。一方、図8に示すように、傾斜角速度がしきい値を越えていない場合は、駆動輪のみを駆動する(ステップS205)。すなわち、運搬モードとなり、搭乗席駆動モータ70を駆動させず、モータ34、36のみを駆動させて、倒立を維持する。そして、目標位置に収束したか否かを判定する(ステップS206)。目的位置に収束した場合は、制御を終了し、収束していない場合は、上記の処理を繰り返す。したがって、その場停止モードの後に、傾斜角速度がしきい値を越えなくなったら、運搬モードに移行して、駆動輪78のみを駆動する。
運搬モードでは、外力を利用して加速することができるため、速やかな移動が可能になる。よって、利便性を向上することができる。一方、停止モードでは、スライド機構が駆動することによって、倒立を安定させることができる。このように、その場停止モードと運搬モードとを切換えることによって、状況に応じて、適切な制御が可能になる。また、傾斜角速度に応じて切換えを行うことで、適切な切換が可能になる。外力が大きい場合には、速やかに倒立を安定させることができ、外力が小さい場合には、速やかに加速することができる。よって、適切な制御が可能となり、利便性を向上することができる。
なお、上記の説明では、制御モードの切換をジャイロセンサ48からの出力に応じて、行ったが、ジャイロセンサ48以外のセンサからのセンサ出力に応じて切換を行ってもよい。この場合、センサ類83からの出力に応じて、搭乗席74が急激に移動するか否かを判定する。急激に移動すると判定された場合は、その場停止モードとして、速やかに倒立を安定させる。一方、急激に移動していないと判定された場合は、運搬モードとして、速やかに加速する。
例えば、センサ58に含まれている加速度センサで加速度を測定して、その加速度に応じて制御モードを切換えることが可能である。この場合、加速度がしきい値を越えた場合、その場停止モードに切換え、加速度がしきい値を越えない場合、運搬モードに切換える。さらには、加速度計を3軸加速度計として、地面と垂直方向の加速度や地面と平行方向の加速度に基づいて、制御モードを切換えてもよい。もちろん、複数のセンサからの出力に基づいて、制御モードを切換えることも可能である。例えば、1つのセンサからのセンサ出力がしきい値を越えたら、制御モードを切換えるようにすることが可能である。
このように、制御部80は、加速度や傾斜角速度をしきい値と比較して、搭乗席74が急激に移動しているか否かを判定する。加速度や傾斜角速度がしきい値を越えると、制御部80は、急激に移動していると判定する。急激に移動している場合は、倒立が不安定になるおそれがあるため、その場停止モードで制御して、速やかに倒立を安定させる。これにより、転倒を防ぐことができる。一方、急激に移動していないと判定した場合、倒立状態を安定させやすい。すなわち、駆動輪78の駆動のみでも安定させることができるため、運搬モードで運搬可能であると判断する。そして、スライド機構68を停止して、速やかに加速させる。このように制御することで、適切な制御モードの切換が可能となる。このように、制御モードを切換えるために用いるセンサは、移動体100が急激に移動したか否かを判別することできるセンサであることが好ましい。さらには、移動体100に加えられた外力の大きさによって、制御モードを切換えてもよい。
本実施の形態では、2輪型の移動体100について説明したが、駆動輪の数は、これに限られるものではない。1輪型の移動体でもよく、3以上の駆動輪を有する移動体であってもよい。もちろん、スイングアームを構成するアームの本数は、2本でも、3本以上でもよい。搭乗席74を駆動する関節は、直動関節に限られるものではなく、例えば、回動関節であってもよい。この場合、回動関節は、搭乗席74を前後方向に回動させて、搭乗席74及び搭乗者の重心位置を変化させる。また、前方への移動に限らず、後方への移動も同様に制御することができる。
上記の例では、操作者が移動体100に搭乗しているものとして説明したが、これに限るものではない。例えば、遠隔で操縦を行なう移動体に対しても適用することができる。さらに、上記の説明では、搭乗席74を有する移動体100について説明したが、物体運搬用の移動台車であってもよい。もちろん、移動ロボットなどのその他の移動体であってもよい。
本発明の実施の形態1にかかる移動体の構成を示す側面図である。 本発明の実施の形態1にかかる移動体の構成を示す正面図である。 本発明の実施の形態1にかかる移動体の姿勢を説明するための側面図である。 本発明の実施の形態1にかかる移動体の制御系の構成を示すブロック図である 本発明の実施の形態1にかかる移動体の制御方法を示すフローチャートである。 本発明の実施の形態2にかかる移動体の制御方法を示すフローチャートである。 本発明の実施の形態2において、その場停止モードにおける時間と傾斜角速度の関係を示すグラフである。 本発明の実施の形態2において、運搬モードにおける時間と傾斜角速度の関係を示すグラフである。
符号の説明
12 車体、17 右スイングアーム、19 左スイングアーム、
18 右駆動輪、20 左駆動輪、21 右上リンク、22 左上リンク、
26 右マウント、28 左マウント、
30 車軸、32 車軸、34 右輪駆動モータ、36 左輪駆動モータ、
41 本体部、42 操作レバー、43 操作角センサ、44 バッテリモジュール、
46 操作モジュール、48 ジャイロセンサ、51 補助輪、
52 右輪エンコーダ、54 左輪エンコーダ、55 補助輪支持ブロック、
58 センサ、60 右スイングアーム駆動モータ、62 右スイング軸
64 左スイングアーム駆動モータ、66 左スイング軸
67 スイングアーム関節、68 スライド機構、
70 搭乗席駆動モータ、72 ラックアンドピニオン、74 搭乗席、
76 上体部、77 車体部、78 駆動輪、
80 制御部、81 スイングアーム制御部、82 駆動輪・スライド協調制御部、
83 センサ類、100 移動体、

Claims (8)

  1. 車輪を回転可能に支持する車台と、
    前記車輪を回転駆動する第1の駆動部と、
    支持部材を介して前記車台に対して回動可能に支持された車体部と、
    前記車体部を駆動する第2の駆動部と、
    前記第1及び第2の駆動部を制御する制御部と、を備える倒立車輪型移動体であって、
    前記制御部が、
    前記第1の駆動部とともに前記第2の駆動部を駆動させて、前記倒立車輪型移動体を倒立させつつ移動させる第1の制御モードと、
    前記第2の駆動部の駆動を停止し、前記第1の駆動部を駆動させて、前記倒立車輪型移動体を倒立させつつ移動させる第2の制御モードと、
    を切換え可能であることを特徴とする倒立車輪型移動体。
  2. 前記第1の制御モードと前記第2の制御モードとの切換えが、センサから出力に応じて行われることを特徴とする請求項1に記載の倒立車輪型移動体。
  3. 前記制御部が、前記センサからの出力に応じて、前記車体部が急激に移動しているか否かを判定し、
    前記車体部が急激に移動していると判定された場合に、前記第1の制御モードから前記第2の制御モードに切換えられることを特徴とする請求項1、又は2に記載の倒立車輪型移動体。
  4. 前記第1の制御モードと前記第2の制御モードとの切換えが、手動式スイッチによって行われることを特徴とする請求項1乃至3のいずれか1項に記載の倒立車輪型移動体。
  5. 車輪を回転可能に支持する車台と、
    前記車輪を回転駆動する第1の駆動部と、
    支持部材を介して前記車台に対して回動可能に支持された車体部と、
    前記車体部を駆動する第2の駆動部と、
    前記第1の駆動部と前記第2の駆動部とを制御する制御部とを備える倒立車輪型移動体の制御方法であって、
    前記第1の駆動部とともに前記第2の駆動部を駆動させて、前記倒立車輪型移動体を倒立させつつ移動させる第1の制御モードで制御するステップと、
    前記第2の駆動部の駆動を停止して、前記第1の駆動部を駆動させて、前記倒立車輪型移動体を倒立させつつ移動させる第2の制御モードで制御するステップと、
    前記第1の制御モードと前記第2の制御モードとを切換えるステップと、を備える倒立車輪型移動体の制御方法。
  6. 前記第1の制御モードと前記第2の制御モードとの切換えが、センサから出力に応じて行われることを特徴とする請求項5に記載の倒立車輪型移動体。
  7. 前記センサからの出力に応じて、前記車体部が急激に移動しているか否かを判定し、
    前記車体部が急激に移動していると判定された場合に、前記第1の制御モードから前記第2の制御モードに切換えられることを特徴とする請求項5、又は6に記載の倒立車輪型移動体。
  8. 前記第1の制御モードと前記第2の制御モードとの切換えが、手動式スイッチによって行われることを特徴とする請求項1に記載の倒立車輪型移動体。
JP2007276049A 2007-10-24 2007-10-24 倒立車輪型移動体、及びその制御方法 Pending JP2009101898A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276049A JP2009101898A (ja) 2007-10-24 2007-10-24 倒立車輪型移動体、及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276049A JP2009101898A (ja) 2007-10-24 2007-10-24 倒立車輪型移動体、及びその制御方法

Publications (1)

Publication Number Publication Date
JP2009101898A true JP2009101898A (ja) 2009-05-14

Family

ID=40704122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276049A Pending JP2009101898A (ja) 2007-10-24 2007-10-24 倒立車輪型移動体、及びその制御方法

Country Status (1)

Country Link
JP (1) JP2009101898A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010130179A1 (zh) * 2009-05-15 2010-11-18 北京工业大学 一种柔性两轮自平衡机器人***及其运动控制方法
JP2011000924A (ja) * 2009-06-17 2011-01-06 Toyota Motor Corp 移動体、これを含むシステム、移動体の動作方法、及びプログラム
JP2011063230A (ja) * 2009-09-18 2011-03-31 Honda Motor Co Ltd 倒立振子型車両
JP2012006489A (ja) * 2010-06-25 2012-01-12 Equos Research Co Ltd 車両
CN103192394A (zh) * 2013-04-18 2013-07-10 哈尔滨工业大学 基于两轮自平衡重力感应控制的机器人控制***
JP2017019058A (ja) * 2015-07-13 2017-01-26 セイコーエプソン株式会社 ロボット制御装置、ロボットおよびロボットシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010130179A1 (zh) * 2009-05-15 2010-11-18 北京工业大学 一种柔性两轮自平衡机器人***及其运动控制方法
JP2011000924A (ja) * 2009-06-17 2011-01-06 Toyota Motor Corp 移動体、これを含むシステム、移動体の動作方法、及びプログラム
JP2011063230A (ja) * 2009-09-18 2011-03-31 Honda Motor Co Ltd 倒立振子型車両
JP2012006489A (ja) * 2010-06-25 2012-01-12 Equos Research Co Ltd 車両
CN103192394A (zh) * 2013-04-18 2013-07-10 哈尔滨工业大学 基于两轮自平衡重力感应控制的机器人控制***
JP2017019058A (ja) * 2015-07-13 2017-01-26 セイコーエプソン株式会社 ロボット制御装置、ロボットおよびロボットシステム

Similar Documents

Publication Publication Date Title
JP4605204B2 (ja) 倒立振子型移動体、及びその制御方法
JP4735598B2 (ja) 倒立車輪型移動体、及びその制御方法
JP4470988B2 (ja) 倒立車輪型移動体、及びその制御方法
JP4867823B2 (ja) 倒立車輪型移動体、及びその制御方法
JP4957769B2 (ja) 走行装置及びその制御方法
JP4240114B2 (ja) 走行装置
JP4872276B2 (ja) 走行体
US8738259B2 (en) Movable body, travel device, and movable body control method
WO2007088944A1 (ja) 平行二輪倒立振子型の走行体
CN102341298A (zh) 倒立二轮装置及其控制方法以及控制程序
US9317039B2 (en) Inverted pendulum type vehicle
JP2009101898A (ja) 倒立車輪型移動体、及びその制御方法
JP2009101484A (ja) 倒立走行ロボット及びその制御方法
JP2009101899A (ja) 倒立車輪型移動体、及びその制御方法
JP2008263676A (ja) 自走車とその制御装置及び制御方法
JP2009101897A (ja) 倒立車輪型移動体、及びその制御方法
JP2008230548A (ja) 倒立振子型移動体、及びその制御方法
JP5182401B2 (ja) 走行装置及びその制御方法
JP2009035157A (ja) 倒立車輪型移動体、及びその制御方法
WO2010035324A1 (ja) 自走車とその制御装置及び制御方法
JP2006334729A (ja) 倒立振り子型台車ロボットとその制御方法
JP2009101817A (ja) 倒立車輪型移動体及びその制御方法
JP4766159B2 (ja) 倒立振子型移動体、及びその制御方法
JP4888451B2 (ja) 同軸二輪車及びその制御方法
JP5092683B2 (ja) 倒立車輪型移動体及びその制御方法