JP2009099662A - High-temperature sensor - Google Patents

High-temperature sensor Download PDF

Info

Publication number
JP2009099662A
JP2009099662A JP2007267731A JP2007267731A JP2009099662A JP 2009099662 A JP2009099662 A JP 2009099662A JP 2007267731 A JP2007267731 A JP 2007267731A JP 2007267731 A JP2007267731 A JP 2007267731A JP 2009099662 A JP2009099662 A JP 2009099662A
Authority
JP
Japan
Prior art keywords
insulator
sheath
lead wires
temperature sensor
thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007267731A
Other languages
Japanese (ja)
Inventor
Tomohiro Yamamura
友宏 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OIZUMI SEISAKUSHO KK
Ohizumi Mfg Co Ltd
Original Assignee
OIZUMI SEISAKUSHO KK
Ohizumi Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OIZUMI SEISAKUSHO KK, Ohizumi Mfg Co Ltd filed Critical OIZUMI SEISAKUSHO KK
Priority to JP2007267731A priority Critical patent/JP2009099662A/en
Publication of JP2009099662A publication Critical patent/JP2009099662A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost of a high-temperature sensor. <P>SOLUTION: The high-temperature sensor has a combination of a thermistor element assembly 1, lead wires 3, an insulator 4, and a sheath 7. The thermistor element assembly is a chip type element having electrodes 2 formed on both surfaces, the lead wires 3 are welded to surfaces of the electrodes 2, and surfaces including weld zones of the lead wires 3 are coated with an inorganic coat material. The lead wires 3 are heat-resisting wires selected between iron/chromium-based and stainless-steel-based wires, and are inserted into the insulator 4. The insulator 4 is a two-hole tube made of alumina, and serves as a holder for the sensor to isolate the lead wires 3 and 3 from each other. The sheath 7 covers the thermistor element assembly 1 and is inserted into the insulator 4. The gap between the coating of thermistor element assembly 1 and the sheath 7, and the gap between the sheath 7 and insulator 4, are filled with solidified materials of an inorganic filler 6, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、本発明は、少なくとも1000℃までの高温下においても安定した電気的特性を維持しうる温度センサ、特にNTCサーミスタセンサに関する。   The present invention relates to a temperature sensor, particularly an NTC thermistor sensor, which can maintain stable electrical characteristics even at high temperatures up to at least 1000 ° C.

1000℃の高温域までの温度範囲にわたって温度検知が可能な温度センサの利用分野が広いことから、従来よりサーミスタ素体材料や電極材料の開発が種々行われてきた。特許文献1には、高温用センサ素体材料として(Mn・Cr)Oスピネルの粉末と、YOの粉末との混合原料粉末を加熱焼成して両者を反応させ、(MnxCry)Oスピネル(0<x、y<=2、x+y=3)とY(Cr+Mn)Oペロブスカイトとを用いたサーミスタが記載されている。 Since the field of application of temperature sensors capable of detecting temperature over a temperature range up to a high temperature range of 1000 ° C. is wide, various thermistor body materials and electrode materials have been developed conventionally. In Patent Document 1, as a high-temperature sensor element material, a mixed raw material powder of (Mn · Cr) O 4 spinel powder and YO 3 powder is heated and fired to react both, and (MnxCry) O 4 spinel. A thermistor using (0 <x, y <= 2, x + y = 3) and Y (Cr + Mn) O 4 perovskite is described.

電極材料に関しては、1000℃の高温に耐えられるものであれば、必ずしも限定されるものではないが、従来の高温用センサでは、ほとんどのものについて、特許文献2にも視られるように高価なPt(白金)が使用されていた。また、サーミスタ素体の電極から引き出すリード線にも耐熱性を必要とすることから、やはり高価なPt合金線(Pt/Rh、Pt/Ir線)が使用されていた。   The electrode material is not necessarily limited as long as it can withstand a high temperature of 1000 ° C., but most conventional high-temperature sensors are expensive Pt as seen in Patent Document 2. (Platinum) was used. In addition, since lead wires drawn from the electrodes of the thermistor body also need heat resistance, expensive Pt alloy wires (Pt / Rh, Pt / Ir wires) have also been used.

ところで、高温用センサを実現するためには、素体チップ、電極、リード線の材料だけでなく、温度センサのホルダについても当然1000℃の高温に耐える耐熱構造でなければならない。従来、温度センサのホルダには、特許文献3のようにMIケーブルが用いられ、素体チップを封入したキャップをMIケーブルに溶接することによってセンサのホルダを組立てていた。   By the way, in order to realize a high-temperature sensor, not only the material of the element chip, electrode, and lead wire, but also the holder of the temperature sensor must naturally have a heat resistant structure that can withstand a high temperature of 1000 ° C. Conventionally, as a temperature sensor holder, an MI cable is used as in Patent Document 3, and a sensor holder is assembled by welding a cap enclosing an element chip to the MI cable.

MIケーブルは、周知のように主としてシース熱電対に用いられていたケーブルであり、金属保護管(2穴管)中に、金属心線と無機絶縁材(高純度のマグネシア、ベリリア、シリカ、アルミナ等)を充填し、一体化されたものである。   As is well known, the MI cable is a cable mainly used for a sheathed thermocouple. In a metal protective tube (2-hole tube), a metal core wire and an inorganic insulating material (high-purity magnesia, beryllia, silica, alumina) are used. Etc.) and are integrated.

市販のMIケーブルは直径約2mmの太さのため、冷間で引落し減径加工を行ない、固溶化熱処理される。極細のシース熱電対では、外径0.1mmのものが製造可能であるとされている。MIケーブルの金属心線がニクロム線の場合には、シースヒータケーブルとなり、また、金属心線に耐熱線を用いることによって高温用センサのホルダに利用していたのである。   Since a commercially available MI cable has a thickness of about 2 mm in diameter, it is cold-drawn and subjected to a diameter reduction process, followed by a solution heat treatment. It is said that an ultra-thin sheath thermocouple having an outer diameter of 0.1 mm can be manufactured. When the metal core wire of the MI cable is a nichrome wire, it becomes a sheathed heater cable, and by using a heat-resistant wire as the metal core wire, it is used as a holder for a high temperature sensor.

ところが、MIケーブルは高価であり、所望の太さのセンサホルダに組立てるには、金属心線を挿し込んだ2穴管を所望の太さに圧延するといった厄介な処理工程が必要であり、製造コストが高くつくという問題がある。
特開平10−70011 特開2005−294653 特開2006−90746
However, the MI cable is expensive, and in order to assemble the sensor holder with a desired thickness, a troublesome processing step such as rolling the 2-hole tube into which the metal core wire is inserted to the desired thickness is required. There is a problem that the cost is high.
JP 10-70011 A JP 2005-294653 A JP 2006-90746 A

解決しようとする問題点は、温度センサのホルダにMIケーブルを使用するときには、加工に多くの工数を要し、製品のコスト高になるという点である。   The problem to be solved is that when an MI cable is used for the holder of the temperature sensor, a lot of man-hours are required for processing, resulting in an increase in the cost of the product.

本発明は、高価なMIケーブルやPt合金線を用いることなく、1000℃までの高温環境下での使用が可能としたことを最も主要な特徴とする。   The main feature of the present invention is that it can be used in a high temperature environment up to 1000 ° C. without using expensive MI cables or Pt alloy wires.

本発明による温度センサは、リード線に鉄・クロム系及びステンレス系の何れかから選ばれた耐熱性を有する線を用い、ホルダには、アルミナ製の2穴管の絶縁碍子を用い、しかもリード線はサーミスタ素体は、電極に溶接するため、加工、組立は容易であり、高価なMIケーブルやPt合金線を用いる従来の温度センサに比べて製造コストは大幅に低減できるという利点がある。   The temperature sensor according to the present invention uses a heat-resistant wire selected from iron, chromium, and stainless steel for the lead wire, and uses a 2-hole insulator made of alumina for the holder, and the lead Since the thermistor body of the wire is welded to the electrode, it is easy to process and assemble, and has the advantage that the manufacturing cost can be greatly reduced compared to the conventional temperature sensor using an expensive MI cable or Pt alloy wire.

1000℃までの環境下で使用するという目的を高価なMIケーブルやPt合金線を用いることなく、しかも簡単な構造によって実現した。   The purpose of using in an environment up to 1000 ° C. has been realized with a simple structure without using expensive MI cables or Pt alloy wires.

以下に本発明による高温用センサの実施例を図によって説明する。図1(b)において、本発明による高温用センサは、サーミスタ素体1と、リード線3,3と、絶縁碍子4と、鞘7との組合せからなっている。サーミスタ素体1は、両面に電極2,2が形成されたチップ型の素子であり、各電極面2にはそれぞれリード線3がレーザ溶接され、リード線3の溶接部分を含んで表面が無機コート5にてコートされている。   Embodiments of the high-temperature sensor according to the present invention will be described below with reference to the drawings. In FIG. 1B, the high-temperature sensor according to the present invention includes a combination of a thermistor body 1, lead wires 3 and 3, an insulator 4 and a sheath 7. The thermistor body 1 is a chip-type element in which electrodes 2 and 2 are formed on both surfaces. Lead wires 3 are laser-welded to the electrode surfaces 2 and the surface including the welded portion of the lead wires 3 is inorganic. Coated with coat 5.

リード線3は、耐熱性を有する線であり、この実施例においては、耐熱性を有する鉄・クロム系の線を用いたが、鉄・クロム系の線に限らず、耐熱性を有するステンレス系の線を用いることができる。リード線3は、サーミスタ素体の各電極から平行に伸びて絶縁碍子4に挿し込まれている。絶縁碍子4は、アルミナ製の2穴管であり、センサのホルダとして前記サーミスタ素体1から伸びる2本のリード線3,3を各穴内に受け入れて両リード線3,3互いに隔離するものである。   The lead wire 3 is a wire having heat resistance. In this embodiment, the iron / chromium wire having heat resistance is used. However, the lead wire 3 is not limited to the iron / chromium wire, and the heat resistant stainless steel wire. Can be used. The lead wire 3 extends in parallel from each electrode of the thermistor body and is inserted into the insulator 4. The insulator 4 is a two-hole tube made of alumina, and receives two lead wires 3, 3 extending from the thermistor element body 1 as a sensor holder in each hole and isolates the lead wires 3, 3 from each other. is there.

鞘7は、砲弾型のステンレスキャップであり、サーミスタ素体1を覆い、前記絶縁碍子4に挿し込まれる。なお、サーミスタ素体1の無機コート5と鞘7との間に形成される隙間及び鞘7と絶縁碍子4との間の隙間は絶縁無機材料6の固化物で埋められる。   The sheath 7 is a shell type stainless steel cap, covers the thermistor body 1 and is inserted into the insulator 4. The gap formed between the inorganic coat 5 and the sheath 7 of the thermistor body 1 and the gap between the sheath 7 and the insulator 4 are filled with a solidified material of the insulating inorganic material 6.

この実施例に用いたサーミスタ素体は、Y/Cr/Mnの3成分系のサーミスタ組成物であるが、Y/Cr/Mnの3成分系のサーミスタ組成物の粉末に、さらに添加物として定量のCaとAlとを加えて焼成したものを用いることが望ましい。たとえば、CaとAlとの添加量をいずれも2モルに設定し、Y/Cr/Mnの3成分系組成物の構成比をY:80モルに対し、Cr:8〜10モル、Mn:10〜12モルの範囲でその配合割合を設定し、その配合物を仮焼きし、さらにその粉砕物を1600℃で1時間焼成することによって得られたサーミスタ素体について、1000℃で30分間放置した後、△R250℃の状態に保持したときには、その抵抗変化率は0〜−3%の範囲に抑えられることが実験によって確かめられている。   The thermistor body used in this example is a ternary thermistor composition of Y / Cr / Mn, but is further quantified as an additive to the powder of the ternary thermistor composition of Y / Cr / Mn. It is desirable to use a product obtained by adding Ca and Al and baking. For example, the addition amount of Ca and Al is both set to 2 mol, and the composition ratio of the ternary composition of Y / Cr / Mn is 8:10 mol for Cr: 8-10 mol, Mn: 10 The thermistor body obtained by setting the blending ratio in a range of ˜12 mol, calcining the blend, and further firing the pulverized product at 1600 ° C. for 1 hour was left at 1000 ° C. for 30 minutes. Later, it was confirmed by experiments that the rate of change in resistance can be suppressed to a range of 0 to -3% when the temperature is kept at ΔR250 ° C.

また、電極材料には、バインダとしてサーミスタペーストにPdペーストを混合して作られた電極ペーストを用い、これをサーミスタ素体のウェハの面に塗布して焼成することによって1000℃の高温にも耐えることができ、必ずしも高価な白金を使用する必要はない。   Further, as the electrode material, an electrode paste made by mixing a thermistor paste and a Pd paste as a binder is used, and this is applied to the surface of the thermistor body wafer and fired to withstand a high temperature of 1000 ° C. It is not necessary to use expensive platinum.

次に本発明による高温用センサの組立工程を順を追って説明する。この実施例に用いたサーミスタ素体1は、高温耐熱性に優れたY/Cr/Mn系サーミスタチップの両面に耐熱性に優れたPd電極が施されたものである。図1(a)において、まず、サーミスタ素体1の電極2、2の面にFe/Cr系の耐熱性リード線3,3をレーザー溶接する。次に、コート材にSiO/Al系無機コート5を用い、リード線3の一部を含んでサーミスタ素体1の表面をコートし、950℃の温度下に10分間曝して無機コート5をサーミスタ素体1に焼き付けた。 Next, the assembly process of the high temperature sensor according to the present invention will be described in order. The thermistor body 1 used in this example is a Y / Cr / Mn-based thermistor chip with excellent high-temperature heat resistance provided with Pd electrodes with excellent heat resistance on both sides. In FIG. 1A, first, Fe / Cr heat-resistant lead wires 3 and 3 are laser-welded to the surfaces of the electrodes 2 and 2 of the thermistor body 1. Next, a SiO 2 / Al 2 O 3 inorganic coating 5 is used as a coating material, the surface of the thermistor body 1 is coated including a part of the lead wire 3, and exposed to a temperature of 950 ° C. for 10 minutes to be inorganic The coat 5 was baked on the thermistor body 1.

一方、絶縁碍子4としてステンレス系の耐熱性2穴管(SUS310S)を用意し、その一端開口から各穴内にサーミスタ素体1の各電極2,2に溶接された2本のリード線3,3を個別に挿し込み、各先端を絶縁碍子4の他端開口から引き出し、絶縁碍子4内で両リード線3,3間を互いに隔離した。   On the other hand, a stainless steel heat-resistant two-hole tube (SUS310S) is prepared as the insulator 4, and two lead wires 3, 3 welded to the electrodes 2, 2 of the thermistor element body 1 into the holes from one end opening thereof. Were inserted individually, and each tip was pulled out from the other end opening of the insulator 4, and the lead wires 3 and 3 were separated from each other in the insulator 4.

鞘7として砲弾型のステンレスキャップ(SUS310S)を用意し、その鞘7内に絶縁無機材料6(SiO/Al)を充填してコートされたサーミスタ素体1をかぶせ、絶縁碍子4の一部を鞘7内に挿し込んだ。 A shell-shaped stainless steel cap (SUS310S) is prepared as the sheath 7, and the sheath 7 is covered with the thermistor body 1 coated with the insulating inorganic material 6 (SiO 2 / Al 2 O 3 ) and coated, and the insulator 4 A part of was inserted into the sheath 7.

これによって、サーミスタ素体1の無機コート5と鞘7との間に形成される隙間及び鞘7と絶縁碍子4との間に形成される隙間は、絶縁無機材料6で埋められた。次いで、この組立体を950℃の高温下に約10分間曝し、絶縁無機材料6を硬化させ、本発明による高温用センサを得た。   As a result, the gap formed between the inorganic coat 5 and the sheath 7 of the thermistor body 1 and the gap formed between the sheath 7 and the insulator 4 were filled with the insulating inorganic material 6. Next, this assembly was exposed to a high temperature of 950 ° C. for about 10 minutes to cure the insulating inorganic material 6 to obtain a high-temperature sensor according to the present invention.

次に上記一連の処理によって得られた高温用センサについて、以下の要領で耐熱試験を行った。耐熱試験として、1000℃の温度下に放置したときの抵抗変化率を測定した。測定は、上記一連の処理を得て得られた同じ構造の高温用センサ3個について行った。実験結果を図2の実験1〜3に示す。いずれの実験においても、1000℃の高温下に1000時間放置した状態抵抗変化率の大きさは、最大−2%の範囲内に抑えられ、しかも実験結果では、1000時間を経過後においては、誤差の大きさが改善される傾向が見られた。   Next, the high temperature sensor obtained by the above series of treatments was subjected to a heat resistance test in the following manner. As a heat resistance test, the rate of change in resistance when measured at a temperature of 1000 ° C. was measured. The measurement was performed on three high-temperature sensors having the same structure obtained by obtaining the above series of processes. Experimental results are shown in Experiments 1 to 3 in FIG. In any of the experiments, the state resistance change rate after being allowed to stand at a high temperature of 1000 ° C. for 1000 hours is suppressed to a maximum of −2%, and the experimental results show that an error occurs after 1000 hours. There was a tendency for the size of the to improve.

本発明によれば、1000℃の高温下に1000時間放置した状態での抵抗変化率の大きさが最大−2%の範囲内に収められることから、少なくとも、1000℃までの高温条件の下で使用できることが立証された。   According to the present invention, since the magnitude of the resistance change rate when left at a high temperature of 1000 ° C. for 1000 hours is within the range of −2% at the maximum, at least under a high temperature condition up to 1000 ° C. It was proved that it can be used.

本発明は、特に高温使用時における抵抗変化率が小さく、安定性に優れるため、特に長時間高温に曝される条件、例えば自動車用排気ガス温度測定のほか、ガス給湯器、ボイラ、ストーブ等の火炎温度の測定、オープンレンジ内の温度センサなどとして広く活用できる。   The present invention has a particularly low resistance change rate at high temperature use and excellent stability, so that it is particularly exposed to high temperatures for a long time, such as measurement of exhaust gas temperature for automobiles, gas water heaters, boilers, stoves, etc. Can be widely used as a flame temperature measurement, temperature sensor in open range, etc.

(a)は、本発明による高温用センサの組立途中の状態を示す図、(b)は組立てられたセンサの断面図である。(A) is a figure which shows the state in the middle of the assembly of the high temperature sensor by this invention, (b) is sectional drawing of the assembled sensor. 実施例に得られた高温用センサの抵抗変化率−温度特性図である。It is a resistance change rate-temperature characteristic figure of the sensor for high temperature obtained in the Example.

符号の説明Explanation of symbols

1 サーミスタ素体
2 電極
3 リード線
4 絶縁碍子
5 無機コート
6 絶縁無機材料
7 鞘
DESCRIPTION OF SYMBOLS 1 Thermistor body 2 Electrode 3 Lead wire 4 Insulator 5 Inorganic coating 6 Insulating inorganic material 7 Sheath

Claims (1)

サーミスタ素体と、リード線と、絶縁碍子と、鞘との組合せを有する高温用センサであって、
サーミスタ素体は、両面に電極が形成されたチップ型の素子であり、各電極面にはそれぞれリード線が溶接され、リード線の溶接部分を含んで表面が無機コート材にてコートされ、
リード線は、鉄・クロム系及びステンレス系の何れかから選ばれた耐熱性を有する線であり、サーミスタ素体の各電極から平行に伸びて絶縁碍子に挿し込まれ、
絶縁碍子は、アルミナ製の2穴管であり、センサのホルダとして前記サーミスタ素体から伸びる2本のリード線を各穴内に受け入れて互いに隔離するものであり、
鞘は、砲弾型のステンレスキャップであり、サーミスタ素体を覆い、前記絶縁碍子に挿し込まれたものであり、サーミスタ素体のコートと鞘間の隙間及び鞘と絶縁碍子との間の隙間は無機充填材の固化物で埋められているものであることを特徴とする高温用センサ。
A high-temperature sensor having a combination of a thermistor body, a lead wire, an insulator, and a sheath,
The thermistor body is a chip-type element in which electrodes are formed on both surfaces, and lead wires are welded to each electrode surface, and the surface including the welded portion of the lead wires is coated with an inorganic coating material,
The lead wire is a wire having heat resistance selected from any of iron, chromium and stainless steel, and extends in parallel from each electrode of the thermistor body and is inserted into an insulator.
The insulator is a two-hole tube made of alumina, and receives two lead wires extending from the thermistor element body as a sensor holder in each hole and separates them from each other.
The sheath is a shell type stainless steel cap, covers the thermistor body, and is inserted into the insulator, and the gap between the coat of the thermistor body and the sheath and between the sheath and the insulator is A high temperature sensor characterized by being filled with a solidified inorganic filler.
JP2007267731A 2007-10-15 2007-10-15 High-temperature sensor Pending JP2009099662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267731A JP2009099662A (en) 2007-10-15 2007-10-15 High-temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267731A JP2009099662A (en) 2007-10-15 2007-10-15 High-temperature sensor

Publications (1)

Publication Number Publication Date
JP2009099662A true JP2009099662A (en) 2009-05-07

Family

ID=40702413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267731A Pending JP2009099662A (en) 2007-10-15 2007-10-15 High-temperature sensor

Country Status (1)

Country Link
JP (1) JP2009099662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102032A (en) * 2011-11-08 2013-05-23 Honda Motor Co Ltd Glass sealing type thermistor and method for manufacturing the same
JP2013211437A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Thermistor element and manufacturing method of the same
CN108940738A (en) * 2018-08-20 2018-12-07 扬州德宝电器科技有限公司 A kind of full-automatic glue-dropping machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298002A (en) * 1991-03-27 1992-10-21 Taiyo Yuden Co Ltd Resin-sealed thermistor
JPH07159250A (en) * 1993-12-03 1995-06-23 Matsushita Electric Ind Co Ltd Temperatupe detector
JPH08261846A (en) * 1995-03-27 1996-10-11 Matsushita Electric Ind Co Ltd Thermistor-type temperature sensor for high temperature
JPH0969417A (en) * 1995-08-31 1997-03-11 Matsushita Electric Ind Co Ltd Temperature sensor and manufacture thereof
JP2000097781A (en) * 1998-07-24 2000-04-07 Denso Corp Temperature sensor and manufacture thereof
JP2002289407A (en) * 2001-03-23 2002-10-04 Denso Corp Temperature sensor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298002A (en) * 1991-03-27 1992-10-21 Taiyo Yuden Co Ltd Resin-sealed thermistor
JPH07159250A (en) * 1993-12-03 1995-06-23 Matsushita Electric Ind Co Ltd Temperatupe detector
JPH08261846A (en) * 1995-03-27 1996-10-11 Matsushita Electric Ind Co Ltd Thermistor-type temperature sensor for high temperature
JPH0969417A (en) * 1995-08-31 1997-03-11 Matsushita Electric Ind Co Ltd Temperature sensor and manufacture thereof
JP2000097781A (en) * 1998-07-24 2000-04-07 Denso Corp Temperature sensor and manufacture thereof
JP2002289407A (en) * 2001-03-23 2002-10-04 Denso Corp Temperature sensor and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102032A (en) * 2011-11-08 2013-05-23 Honda Motor Co Ltd Glass sealing type thermistor and method for manufacturing the same
JP2013211437A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Thermistor element and manufacturing method of the same
CN108940738A (en) * 2018-08-20 2018-12-07 扬州德宝电器科技有限公司 A kind of full-automatic glue-dropping machine
CN108940738B (en) * 2018-08-20 2023-12-29 赛尔特安(无锡)电子有限公司 Full-automatic dispensing machine

Similar Documents

Publication Publication Date Title
WO2011136193A1 (en) Temperature sensor comprising temperature sensing element
US8419275B2 (en) Temperature sensor and temperature sensor system
JP5437304B2 (en) TEMPERATURE SENSOR ELEMENT, ITS MANUFACTURING METHOD, AND TEMPERATURE SENSOR
CN104541139B (en) For measuring high temperature contact type infrared temperature sensor, hot equipment and gas extraction system
JP3819537B2 (en) Electrical resistance temperature sensor
WO2013072961A1 (en) Temperature sensor and apparatus
JP5059332B2 (en) THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT
JP2009099662A (en) High-temperature sensor
JP3306427B2 (en) Sheath structure
JP3806434B2 (en) Thermistor for high temperature
JP5346867B2 (en) Thermistor element and temperature sensor
JP4203346B2 (en) Manufacturing method of temperature sensor
JP2011038720A (en) Glow plug
US10764968B2 (en) Heater and glow plug including the same
JP6279284B2 (en) Temperature sensor
JP4990072B2 (en) Thermistor for high temperature
US6241865B1 (en) Sensor for the measurement of gas concentrations
KR102479167B1 (en) Flame rod
JP7042087B2 (en) Temperature sensor
JP2010270981A (en) Glow plug and method of manufacturing the same
JP3138070U (en) Tubular furnace
KR102449907B1 (en) A manufacturing method of temperature sensor using measure of exhaust gas
JP6725653B2 (en) Heater and glow plug equipped with the same
JP2010272805A (en) Thermistor element and method of manufacturing the same
JP6300401B2 (en) Thermistor element and temperature sensor using thermistor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101013

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120412

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Effective date: 20120810

Free format text: JAPANESE INTERMEDIATE CODE: A02