JP2009099282A - Fitting type connector - Google Patents

Fitting type connector Download PDF

Info

Publication number
JP2009099282A
JP2009099282A JP2007267173A JP2007267173A JP2009099282A JP 2009099282 A JP2009099282 A JP 2009099282A JP 2007267173 A JP2007267173 A JP 2007267173A JP 2007267173 A JP2007267173 A JP 2007267173A JP 2009099282 A JP2009099282 A JP 2009099282A
Authority
JP
Japan
Prior art keywords
layer
alloy
test
base material
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007267173A
Other languages
Japanese (ja)
Inventor
Yasushi Masago
靖 真砂
Hiroshi Sakamoto
浩 坂本
Yukio Sugishita
幸男 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007267173A priority Critical patent/JP2009099282A/en
Publication of JP2009099282A publication Critical patent/JP2009099282A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce friction coefficient and improve minute slide wear resistance in a fitting type connector consisting of a female terminal and a male terminal manufactured from a plate material with a surface covered layer in which a Cu-Sn alloy layer and an Sn layer are formed in this order on a surface of copper or copper alloy mother material. <P>SOLUTION: Regarding either one or both of the female terminal and the male terminal, the plate material with the surface covered layer is used of which reflow processing is carried out on its surface, and in which the average thickness of the Cu-Sn alloy layer 6 is 0.1 to 3.0 μm, Cu content is 20 to 70 at%, the average thickness of the Sn layer 7 is 0.2 to 5.0 μm, one part of the Cu-Sn alloy layer is exposed onto a material surface, and the exposed area ratio is 3 to 75%. Simultaneously, a coating film in which fluorine-based resin particulates and fluorine-based oil are mixed is adhered at least to the surface of a contact part of the male terminal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、メス端子とオス端子からなる嵌合型コネクタに関する。   The present invention relates to a fitting connector composed of a female terminal and a male terminal.

特許文献1には、電気的信頼性が高く(低接触抵抗)、摩擦係数が低く、嵌合型コネクタ用端子として好適な接続部品用導電材料が記載されている。特許文献1の発明では、通常の銅合金板条より表面粗さを大きくした銅合金板条を母材として用い、母材表面にNiめっき層、Cuめっき層及びSnめっき層をこの順に、又はCuめっき層及びSnめっき層をこの順に、あるいはSnめっき層のみを形成し、Snめっき層をリフロー処理して、Cuめっき層とSnめっき層から、あるいは銅合金母材とSnめっき層からCu−Sn合金層を形成するとともに、リフロー処理により平滑化したSnめっき層の間からCu−Sn合金層の一部を表面に露出させる(母材表面に形成された凹凸の凸の部分でCu−Sn合金層の一部が露出する)。   Patent Document 1 describes a conductive material for connection parts that has high electrical reliability (low contact resistance), a low coefficient of friction, and is suitable as a fitting connector terminal. In the invention of Patent Document 1, a copper alloy strip having a surface roughness larger than that of a normal copper alloy strip is used as a base material, and a Ni plating layer, a Cu plating layer, and a Sn plating layer are formed on the base material surface in this order, or The Cu plating layer and the Sn plating layer are formed in this order or only the Sn plating layer, and the Sn plating layer is subjected to reflow treatment. From the Cu plating layer and the Sn plating layer, or from the copper alloy base material and the Sn plating layer, Cu- A part of the Cu-Sn alloy layer is exposed to the surface from between the Sn plating layer smoothed by the reflow process while forming the Sn alloy layer (Cu-Sn at the convex and concave portions formed on the surface of the base material) Part of the alloy layer is exposed).

特許文献1においてリフロー処理後に形成された接続部品用導電材料は、表面被覆層として、Cu−Sn合金層及びSn層、又はNi層(3.0μm以下)、Cu−Sn合金層及びSn層をこの順に有し、場合によっては母材表面とCu−Sn合金層の間、又はNi層とCu−Sn合金層の間にCu層が残留している。特許文献1では、Cu−Sn合金層の表面露出面積率が3〜75%、平均の厚さが0.1〜3.0μm、Cu含有量が20〜70at%、Sn層の平均の厚さが0.2〜5.0μmと規定され、母材表面について少なくとも一方向の算術平均粗さRaが0.15μm以上で、全ての方向の算術平均粗さRaが4.0μm以下が望ましく、Cu−Sn合金層の表面露出間隔について少なくとも一方向において0.01〜0.5mmが望ましいことが記載されている。   The conductive material for connecting parts formed after the reflow process in Patent Document 1 includes a Cu—Sn alloy layer and a Sn layer, or a Ni layer (3.0 μm or less), a Cu—Sn alloy layer, and a Sn layer as a surface coating layer. In some cases, the Cu layer remains between the base material surface and the Cu—Sn alloy layer or between the Ni layer and the Cu—Sn alloy layer. In Patent Document 1, the surface exposed area ratio of the Cu—Sn alloy layer is 3 to 75%, the average thickness is 0.1 to 3.0 μm, the Cu content is 20 to 70 at%, and the average thickness of the Sn layer. Is preferably 0.2 to 5.0 μm, the arithmetic average roughness Ra in at least one direction is preferably 0.15 μm or more and the arithmetic average roughness Ra in all directions is preferably 4.0 μm or less on the surface of the base material. It is described that the surface exposure interval of the Sn alloy layer is preferably 0.01 to 0.5 mm in at least one direction.

特許文献2には、特許文献1の下位概念に相当する接続部品用導電材料及びその製造方法が記載されている。そのめっき層構成及びリフロー処理後の被覆層構成自体は、特許文献1のものと同じであり、リフロー処理により平滑化したSn層の間からCu−Sn合金層の一部が表面に露出している。
特許文献2においてリフロー処理後に形成された接続部品用導電材料は、表面被覆層のうちCu−Sn合金層の表面露出面積率が3〜75%、平均の厚さが0.2〜3.0μm、Cu含有量が20〜70at%、Sn層の平均厚さが0.2〜5.0μm、材料表面の少なくとも一方向の算術平均粗さRaが0.15μm以上で、全ての方向の算術平均粗さRaが3.0μm以下と規定され、母材表面について少なくとも一方向の算術平均粗さRaが0.3μm以上で、全ての方向の算術平均粗さRaが4.0μm以下が望ましく、さらにCu−Sn合金層の表面露出間隔について少なくとも一方向において0.01〜0.5mmが望ましいことが記載されている。
Patent Document 2 describes a conductive material for connecting parts corresponding to the subordinate concept of Patent Document 1 and a method for manufacturing the same. The plating layer structure and the coating layer structure itself after the reflow treatment are the same as those of Patent Document 1, and a part of the Cu-Sn alloy layer is exposed on the surface from between the Sn layers smoothed by the reflow treatment. Yes.
In the conductive material for connecting parts formed after the reflow process in Patent Document 2, the surface exposed area ratio of the Cu—Sn alloy layer in the surface coating layer is 3 to 75%, and the average thickness is 0.2 to 3.0 μm. The Cu content is 20 to 70 at%, the average thickness of the Sn layer is 0.2 to 5.0 μm, the arithmetic average roughness Ra in at least one direction of the material surface is 0.15 μm or more, and the arithmetic average in all directions The roughness Ra is defined as 3.0 μm or less, the arithmetic average roughness Ra in at least one direction on the base material surface is 0.3 μm or more, and the arithmetic average roughness Ra in all directions is preferably 4.0 μm or less. It is described that the surface exposure interval of the Cu—Sn alloy layer is preferably 0.01 to 0.5 mm in at least one direction.

さらに、本出願人は、基本的に特許文献1,2の技術思想を継承しながら、同時に耐微摺動摩耗性を改善した接続部品用導電材料に関する発明を特許出願した(特願2007−22206号)。この出願において、めっき層構成及びリフロー処理後の被覆層構成自体は、特許文献1,2のものと基本的に同じであるが、この出願は特許文献1,2と異なり、リフロー処理により平滑化したSn層の間からCu−Sn合金層が表面に露出していない場合を含み得る。
なお、微摺動摩耗とは、特に接圧力の小さい小型端子において生じやすく、例えば自動車電装部品の嵌合型コネクタであれば、主として通電時の熱膨張・収縮及び使用時の振動により、オス/メス端子の接触部が微摺動を起こし、これが繰り返されることで接触抵抗が異常増大する現象である。この現象は微摺動の繰り返しにより接触部のSn層が摩耗し、Sn酸化物が接触部間に堆積して引き起こされると考えられている。
Furthermore, the present applicant has applied for a patent for an invention relating to a conductive material for connecting parts, which basically has inherited the technical ideas of Patent Documents 1 and 2 and simultaneously improved the resistance to fine sliding wear (Japanese Patent Application No. 2007-22206). issue). In this application, the plating layer configuration and the coating layer configuration itself after reflow processing are basically the same as those in Patent Documents 1 and 2, but this application is different from Patent Documents 1 and 2, and is smoothed by reflow processing. The case where the Cu-Sn alloy layer is not exposed to the surface from between the Sn layers formed may be included.
Note that microsliding wear is likely to occur particularly in small terminals with low contact pressure. For example, in the case of a fitting connector for an automobile electrical component, the male / female is mainly caused by thermal expansion / contraction during energization and vibration during use. This is a phenomenon in which the contact resistance of the female terminal is slightly increased and the contact resistance is abnormally increased by repeating the sliding. This phenomenon is considered to be caused by the Sn layer at the contact portion being worn by repeated fine sliding, and Sn oxide being deposited between the contact portions.

この出願においてリフロー処理後に形成された接続部品用導電材料は、表面被覆層のうちNi層の平均の厚さが3.0μm以下(0μmを含む)、Cu−Sn合金層の平均の厚さが0.2〜3.0μm、材料の垂直断面におけるSn層の最小内接円の直径[D1]が0.2μm以下、最大内接円の直径[D2]が1.2〜20μm、材料の最表点とCu−Sn合金層の最表点との高度差[y]が0.2μm以下と規定され、さらに[D1]が0μmのとき(Cu−Sn合金層が一部露出しているとき)、材料表面におけるCu−Sn合金層の最大内接円の直径[D3]が150μm以下又は/及び材料表面におけるSn層の最大内接円直径[D4]が300μm以下が望ましいことが記載されている。なお、この出願に記載された接続部品用導電材料は、リフロー処理後にSn層の一部としてSnめっき層(平均の厚さは0.2μm以下)を形成したものを含み、その場合も[D1]、[D2]、[y]に関する規定は上記と同じである。
この出願において、母材の表面粗さは少なくとも一方向の算術平均粗さRaが0.4μm以上で、全ての方向の算術平均粗さRaが4.0μm以下が望ましく、さらに前記一方向における凹凸の平均間隔Smが0.01〜0.5mmが望ましく、さらに前記一方向における最大高さRyが2.0〜20μmが望ましいことが記載されている。
In the conductive material for connection parts formed after the reflow treatment in this application, the average thickness of the Ni layer in the surface coating layer is 3.0 μm or less (including 0 μm), and the average thickness of the Cu—Sn alloy layer is 0.2 to 3.0 μm, the diameter [D1] of the minimum inscribed circle of the Sn layer in the vertical cross section of the material is 0.2 μm or less, the diameter [D2] of the maximum inscribed circle is 1.2 to 20 μm, When the height difference [y] between the surface point and the outermost surface point of the Cu—Sn alloy layer is specified to be 0.2 μm or less, and [D1] is 0 μm (when the Cu—Sn alloy layer is partially exposed) ), The maximum inscribed circle diameter [D3] of the Cu—Sn alloy layer on the material surface is preferably 150 μm or less, and / or the maximum inscribed circle diameter [D4] of the Sn layer on the material surface is preferably 300 μm or less. Yes. In addition, the conductive material for connecting parts described in this application includes a material in which an Sn plating layer (average thickness is 0.2 μm or less) is formed as a part of the Sn layer after the reflow treatment. ], [D2], and [y] are the same as above.
In this application, the surface roughness of the base material is preferably at least an arithmetic average roughness Ra in one direction of 0.4 μm or more, and an arithmetic average roughness Ra in all directions of 4.0 μm or less. The average distance Sm is preferably 0.01 to 0.5 mm, and the maximum height Ry in the one direction is preferably 2.0 to 20 μm.

一方、特許文献3には、Snめっきされた銅合金からなる導電性基材表面にフッ素系樹脂微粒子とフッ素系油が塗布されたコネクタ接点材料が記載されている。特許文献3によれば、フッ素系樹脂微粒子とフッ素系油が混合した塗膜をコネクタの嵌合部に付着させることにより、該部にフッ素系樹脂微粒子が分散付着し、これにより摩擦係数が下がり、また該部にフッ素系樹脂微粒子が付着していない部分があることにより、オス/メス端子間の低い接触抵抗(初期値)が確保される。特許文献4にはより具体的に、塗膜厚みが0.2〜0.5μm、フッ素系樹脂微粒子とフッ素系油の合計量に対するフッ素系樹脂微粒子の割合が20〜40質量%が望ましいことが記載されている。なお、特許文献4において塗膜厚み0.2〜0.5μmは、同文献の実施例をみると、フッ素系樹脂微粒子とフッ素系油の塗布量として略100〜1000mg/mに相当し、フッ素系樹脂微粒子の付着量として略20〜400mg/mに相当する。 On the other hand, Patent Document 3 describes a connector contact material in which fluorine-based resin fine particles and fluorine-based oil are applied to the surface of a conductive substrate made of a Sn-plated copper alloy. According to Patent Document 3, when a coating film in which fluorine resin fine particles and fluorine oil are mixed is attached to the fitting portion of the connector, the fluorine resin fine particles are dispersed and attached to the connector, thereby reducing the friction coefficient. In addition, since there is a portion where the fluororesin fine particles are not attached to the portion, a low contact resistance (initial value) between the male / female terminals is ensured. More specifically, in Patent Document 4, it is desirable that the coating film thickness is 0.2 to 0.5 μm, and the ratio of the fluorine resin fine particles to the total amount of the fluorine resin fine particles and the fluorine oil is 20 to 40% by mass. Are listed. In Patent Document 4, the coating film thickness of 0.2 to 0.5 μm corresponds to about 100 to 1000 mg / m 2 as the coating amount of the fluorine resin fine particles and the fluorine oil when the examples of the document are viewed. This corresponds to approximately 20 to 400 mg / m 2 as the adhesion amount of the fluororesin fine particles.

特許文献3,4によれば、フッ素系樹脂微粒子の種類はパーフルオロポリエーテル系であり、PTFE(ポリテトラフルオロエチレン)が最も一般的であり、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、ETFE(テトラフルオロエチレン・エチレン重合体)、PCTTE(ポリクロロトリフルオロエチレン)、ECTFE(クロロトリフルオロエチレン・エチレン共重合体)、PVDF(ポリビニリデンフルオライド)、PVF(ポリビニルフルオライド)も同様に使用できることが記載され、フッ素系油の種類はパーフルオロポリエーテル系オイルであり、PFPE(パーフルオロアルキルポリエーテル)が具体的に記載されている。
特許文献3,4によれば、フッ素系樹脂微粒子の粒径は十分の数μm〜数十μmが望ましく、具体的な市販品として粒径0.2〜20μmのものが挙げられ、特許文献4の実施例では粒径10μmまでのものが用いられている。
According to Patent Documents 3 and 4, the type of fluororesin fine particles is perfluoropolyether, PTFE (polytetrafluoroethylene) is the most common, and PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer). Coalescence), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), ETFE (tetrafluoroethylene / ethylene polymer), PCTTE (polychlorotrifluoroethylene), ECTFE (chlorotrifluoroethylene / ethylene copolymer), It is described that PVDF (polyvinylidene fluoride) and PVF (polyvinyl fluoride) can be used in the same manner. The type of fluorine-based oil is perfluoropolyether-based oil, and PFPE (perfluoroalkyl polyether) is specifically described. Record It is.
According to Patent Documents 3 and 4, the particle diameter of the fluororesin fine particles is preferably a few μm to several tens μm, and specific commercial products include those having a particle diameter of 0.2 to 20 μm. In this example, a particle size of up to 10 μm is used.

特開2006−77307号公報JP 2006-77307 A 特開2006−183068号公報JP 2006-183068 A 特開2005−19103号公報Japanese Patent Laid-Open No. 2005-19103 特開2006−173059号公報JP 2006-173059 A

特許文献1,2に記載された接続部品用導電材料は、最表層にSn層があり、かつ硬度の高いCu−Sn合金層が材料表面に一部露出している(特に特許文献2ではCu−Sn合金層が一部突出している)ため、高温信頼性が高い(高温長時間保持後の接触抵抗が低い)と同時に従来材に比べて摩擦係数が改善され、嵌合型コネクタ用材料として好適である。また、特願2007−22206号に記載された接続部品用導電材料は、最表層にSn層があり、かつ硬度の高いCu−Sn合金層が材料表面に一部露出し又は露出せずに薄いSn層により覆われ、高温信頼性が高く、従来材に比べて摩擦係数が改善され、さらに耐微摺動摩耗性が従来材に比べて改善され、特に小型の嵌合型コネクタ材料として好適である。
特許文献3,4に記載されたコネクタ接点材料は、オス/メス端子の接触部にフッ素系樹脂微粒子が付着することにより、初期接触抵抗値の上昇を招くことなく、摩擦係数が改善され、嵌合型コネクタ用材料として好適である。なお、特許文献3,4にはコネクタ接点材料の高温信頼性及び耐微摺動摩耗性についての開示はなされていない。
The conductive materials for connecting parts described in Patent Documents 1 and 2 have an Sn layer as the outermost layer, and a Cu-Sn alloy layer with high hardness is partially exposed on the material surface (particularly, in Patent Document 2, Cu -Sn alloy layer partly protrudes), high temperature reliability (low contact resistance after holding at high temperature for a long time) and improved friction coefficient compared to conventional materials Is preferred. In addition, the conductive material for connecting parts described in Japanese Patent Application No. 2007-22206 has a Sn layer on the outermost layer, and a Cu-Sn alloy layer having high hardness is partially exposed or not exposed on the material surface. Covered by Sn layer, high temperature reliability is high, friction coefficient is improved compared to conventional material, and fine sliding wear resistance is improved compared to conventional material, especially suitable as a small mating connector material is there.
The connector contact materials described in Patent Documents 3 and 4 are improved in friction coefficient without causing an increase in initial contact resistance value due to adhesion of fluorine resin fine particles to the contact portion of the male / female terminal. It is suitable as a material for a combined type connector. Patent Documents 3 and 4 do not disclose high-temperature reliability and fine sliding wear resistance of connector contact materials.

このように特許文献1〜4及び特願2007−22206号には、それぞれ嵌合型コネクタ用として好適な導電材料が記載されているが、例えば自動車において嵌合型コネクタのさらなる多極化及び小型軽量化の進展が望まれており、そのため低挿入力化(低摩擦係数)及び耐微摺動摩耗性のさらに大幅な改善が熱望されている。
本発明は、このような現状に鑑みてなされたもので、メス端子とオス端子からなる嵌合型コネクタにおいて、特許文献1〜4及び特願2007−22206号に記載された発明の技術思想を踏襲しつつ、低摩擦係数及び耐微摺動摩耗性について、これらの発明の開示を越える大幅な改善を実現することを目的とする。
As described above, Patent Documents 1 to 4 and Japanese Patent Application No. 2007-22206 describe conductive materials suitable for fitting connectors, respectively. For example, in automobiles, the fitting connector is further multipolarized and reduced in size and weight. Therefore, there is a strong demand for further reduction in insertion force (low coefficient of friction) and fine sliding wear resistance.
The present invention has been made in view of such a situation, and in the fitting type connector composed of a female terminal and a male terminal, the technical ideas of the inventions described in Patent Documents 1 to 4 and Japanese Patent Application No. 2007-22206 are described. The objective is to achieve a significant improvement over the disclosure of these inventions regarding the low coefficient of friction and the resistance to fine sliding wear while following.

本発明に係る嵌合型コネクタは、銅又は銅合金母材の最表面にSn層を有する表面被覆層付板材から製造されたメス端子とオス端子からなり、少なくともオス端子の接触部の表面にフッ素系樹脂微粒子とフッ素系油が混合した塗膜が付着したもので、メス端子とオス端子のいずれか一方又は双方の表面被覆層付板材が,下記[発明を実施するための最良の形態]の欄に記載した(1)〜(3)の構成を有する。なお、一般的にメス端子の内部にはオス端子との接圧を確保するために板ばねが形成されており、さらに接触信頼性(電気的信頼性)を得るために、オス端子との接触部(接点部)にはインデントやリブなどの突起が形成されている。また、オス端子の接触部(接点部)はメス端子にスムーズに挿入させるため一般に面である。
本発明に係る嵌合型コネクタにおいて、フッ素系樹脂微粒子とフッ素系油が混合した塗膜は特許文献3,4に記載されたものがそのまま利用できる。また、下記(1)〜(3)に記載された表面被覆層付板材は、それぞれ特許文献1、特許文献2及び特願2007−22206号に記載された材料がそのまま利用できる。この塗膜と表面被覆層付板材の双方を組み合わせることにより、それぞれ単独の発明では想定できないほど、摩擦係数及び耐微摺動摩耗性について顕著な改善がなされる。特にオス端子とメス端子の双方の接触部の表面に前記塗膜が付着している場合、摩擦係数及び耐微摺動摩耗性がさらに劇的に改善される。
The fitting type connector according to the present invention comprises a female terminal and a male terminal manufactured from a plate material with a surface coating layer having an Sn layer on the outermost surface of copper or a copper alloy base material, and at least on the surface of the contact portion of the male terminal. A coating film containing a mixture of fluorine resin fine particles and fluorine oil is attached, and either or both of the female terminal and the male terminal are provided with the following surface covering layer-attached plate material [the best mode for carrying out the invention] (1) to (3) described in the column. In general, a leaf spring is formed inside the female terminal to ensure contact pressure with the male terminal, and contact with the male terminal is required to obtain contact reliability (electrical reliability). Projections such as indents and ribs are formed on the part (contact part). In addition, the contact portion (contact portion) of the male terminal is generally a surface for smooth insertion into the female terminal.
In the fitting connector according to the present invention, those described in Patent Documents 3 and 4 can be used as they are for the coating film in which the fluorine resin fine particles and the fluorine oil are mixed. Moreover, the material described in patent document 1, patent document 2, and Japanese Patent Application No. 2007-22206 can respectively be utilized for the board | plate material with a surface coating layer described in following (1)-(3). By combining both the coating film and the plate material with a surface coating layer, the friction coefficient and the fine sliding wear resistance are remarkably improved so as not to be assumed in each invention. In particular, when the coating film adheres to the surface of the contact portion of both the male terminal and the female terminal, the friction coefficient and the resistance to fine sliding wear are further dramatically improved.

本発明によれば、メス端子とオス端子からなる嵌合型コネクタにおいて、摩擦係数及び耐微摺動摩耗性を顕著に改善し、コネクタの低挿入力化による多極化及び小型軽量化の要請に応えることができる。また、本発明に係る嵌合型コネクタは、初期接触抵抗及び高温長時間保持後の接触抵抗が低く保たれる。   According to the present invention, in a fitting connector composed of a female terminal and a male terminal, the friction coefficient and the fine sliding wear resistance are remarkably improved, and the demand for multipolarization and reduction in size and weight by reducing the insertion force of the connector is met. be able to. In addition, the fitting connector according to the present invention keeps the initial contact resistance and the contact resistance after being kept at a high temperature for a long time.

本発明において、メス端子とオス端子のいずれか一方又は双方の表面被覆層付板材は次の構成を有する。
(1)母材の表面にCu−Sn合金層とSn層がこの順に形成され、その材料表面はリフロー処理されていて、前記Cu−Sn合金層の平均の厚さが0.1〜3.0μm、かつCu含有量が20〜70at%、前記Sn層の平均の厚さが0.2〜5.0μmであり、前記Cu−Sn合金層の一部が材料表面に露出しその露出面積率が3〜75%である。この場合、前記母材の表面は、少なくとも一方向の算術平均粗さRaが0.15μm以上で、全ての方向の算術平均粗さRaが4.0μm以下であることが望ましい。
(2)母材の表面にCu−Sn合金層とSn層がこの順に形成され、その材料表面はリフロー処理されていて、前記Cu−Sn合金層の平均の厚さが0.2〜3.0μm、かつCu含有量が20〜70at%、前記Sn層の平均の厚さが0.2〜5.0μmであり、その表面粗さが、少なくとも一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが3.0μm以下であり、前記Cu−Sn合金層の一部が材料表面に露出しその露出面積率が3〜75%である。この場合、表面被覆層付板材の表面は、少なくとも一方向における平均の表面露出間隔が0.01〜0.5mmであることが望ましい。
(3)母材の表面にCu−Sn合金層とSn層がこの順に形成され、その材料表面はリフロー処理されていて、前記Cu−Sn合金層の平均の厚さが0.2〜3.0μmであり、板材表面に対する垂直断面において、前記Sn層の最小内接円の直径[D1]が0.2μm以下、前記Sn層の最大内接円の直径[D2]が1.2〜20μm、材料の最表点と前記Cu−Sn合金層の最表点との高度差[y]が0.2μm以下である。この場合、前記Sn層の一部として、リフロー処理後にさらにSnめっき層が形成されていてもよい。
In this invention, the board | plate material with a surface coating layer of either one or both of a female terminal and a male terminal has the following structure.
(1) A Cu—Sn alloy layer and a Sn layer are formed in this order on the surface of the base material, the material surface is reflowed, and the average thickness of the Cu—Sn alloy layer is 0.1-3. 0 μm, the Cu content is 20 to 70 at%, the average thickness of the Sn layer is 0.2 to 5.0 μm, a part of the Cu—Sn alloy layer is exposed on the material surface, and the exposed area ratio Is 3 to 75%. In this case, it is desirable that the surface of the base material has an arithmetic average roughness Ra in at least one direction of 0.15 μm or more and an arithmetic average roughness Ra in all directions of 4.0 μm or less.
(2) A Cu—Sn alloy layer and an Sn layer are formed in this order on the surface of the base material, the material surface is reflowed, and the average thickness of the Cu—Sn alloy layer is 0.2-3. 0 μm, Cu content is 20 to 70 at%, the average thickness of the Sn layer is 0.2 to 5.0 μm, and the surface roughness is arithmetic average roughness Ra in at least one direction is 0.15 μm. Thus, the arithmetic average roughness Ra in all directions is 3.0 μm or less, a part of the Cu—Sn alloy layer is exposed on the material surface, and the exposed area ratio is 3 to 75%. In this case, it is desirable that the surface of the plate with a surface coating layer has an average surface exposure interval of 0.01 to 0.5 mm in at least one direction.
(3) A Cu—Sn alloy layer and an Sn layer are formed in this order on the surface of the base material, the material surface is reflowed, and the average thickness of the Cu—Sn alloy layer is 0.2-3. The diameter [D1] of the minimum inscribed circle of the Sn layer is 0.2 μm or less, and the diameter [D2] of the maximum inscribed circle of the Sn layer is 1.2 to 20 μm in a vertical cross section with respect to the plate material surface. The height difference [y] between the outermost point of the material and the outermost point of the Cu—Sn alloy layer is 0.2 μm or less. In this case, an Sn plating layer may be further formed as a part of the Sn layer after the reflow process.

上記(1)〜(3)の構成において、表面被覆層付板材は、表面被覆層としてCu−Sn合金層の下にCu層を有してもよく、表面被覆層として母材とCu−Sn合金層の間にNi層を有してもよく、後者の場合さらにNi層とCu−Sn合金層の間にCu層を有してもよい。Cu層を有する場合、その平均の厚さは1.0μm以下が望ましく、Ni層を含む場合、その平均の厚さは3.0μm以下が望ましく、Ni層の下にさらに0.01〜1.0μmのCu下地層を有していてもよい。これらの点も特許文献1,2及び特願2007−22206号に記載されている。   In the configurations of (1) to (3) above, the surface covering layer-attached plate material may have a Cu layer under the Cu—Sn alloy layer as the surface covering layer, and the base material and Cu—Sn as the surface covering layer. A Ni layer may be provided between the alloy layers, and in the latter case, a Cu layer may be further provided between the Ni layer and the Cu—Sn alloy layer. When the Cu layer is included, the average thickness is desirably 1.0 μm or less, and when the Ni layer is included, the average thickness is desirably 3.0 μm or less, and further 0.01 to 1. You may have 0 micrometer Cu base layer. These points are also described in Patent Documents 1 and 2 and Japanese Patent Application No. 2007-22206.

前期特許文献1,2及び特願2007−22206号に記載されているとおり、Sn層、Cu層及びNi層は、それぞれSn、Cu、Ni金属のほか、Sn合金、Cu合金及びNi合金を含む。
Sn層がSn合金からなる場合、Sn合金のSn以外の構成成分としては、Pb、Bi、Zn、Ag、Cuなどが挙げられる。Pbについては50質量%未満、他の元素については10質量%未満が望ましい。
Cu層には、母材に含まれる成分元素等が少量混入していてもよい。また、Cu層がCu合金からなる場合、Cu合金のCu以外の構成成分としてはSn、Zn等が挙げられる。Snの場合は50質量%未満、他の元素については5質量%未満が望ましい。
Ni層には、母材に含まれる成分元素等が少量混入していてもよい。また、Ni層がNi合金からなる場合、Ni合金のNi以外の構成成分としては、Cu、P、Coなどが挙げられる。Cuについては40質量%以下、P、Coについては10質量%以下が望ましい。
なお、リフロー処理前に母材表面に形成するCuめっき層、Snめっき層及びNiめっき層についても、それぞれCu、Sn、Ni金属のほか、Cu合金、Sn合金及びNi合金を含む。Niめっき層、Cuめっき層及びSnめっき層が、それぞれNi合金、Cu合金及びSn合金からなる場合、上記Ni層、Cu層及びSn層に関して説明した各合金を用いることができる。
As described in the prior patent documents 1 and 2 and Japanese Patent Application No. 2007-22206, the Sn layer, the Cu layer, and the Ni layer include Sn alloy, Cu alloy, and Ni alloy in addition to Sn, Cu, and Ni metal, respectively. .
When the Sn layer is made of an Sn alloy, examples of constituents other than Sn of the Sn alloy include Pb, Bi, Zn, Ag, and Cu. Pb is preferably less than 50% by mass, and other elements are preferably less than 10% by mass.
The Cu layer may contain a small amount of component elements contained in the base material. When the Cu layer is made of a Cu alloy, examples of constituent components other than Cu of the Cu alloy include Sn and Zn. In the case of Sn, less than 50% by mass, and for other elements, less than 5% by mass is desirable.
A small amount of component elements contained in the base material may be mixed in the Ni layer. Further, when the Ni layer is made of a Ni alloy, Cu, P, Co and the like can be cited as constituent components other than Ni of the Ni alloy. For Cu, 40% by mass or less, and for P and Co, 10% by mass or less are desirable.
Note that the Cu plating layer, Sn plating layer, and Ni plating layer formed on the surface of the base material before the reflow treatment also include Cu alloy, Sn alloy, and Ni alloy in addition to Cu, Sn, and Ni metal, respectively. When the Ni plating layer, the Cu plating layer, and the Sn plating layer are made of a Ni alloy, a Cu alloy, and a Sn alloy, respectively, the respective alloys described with respect to the Ni layer, the Cu layer, and the Sn layer can be used.

表面被覆層付板材として、オス/メス端子の一方は、母材表面にCu−Sn合金層とSn層をこの順に有する従来型の表面被覆層付板材を用いることができる。従来型とは、表面に粗化処理を行っていない母材を用いた表面被覆層付板材であり、通常、母材表面の算術平均粗さRaが0.15μmよりかなり小さく、最表面全面がほぼ均一な厚さのSn層により覆われている。例えば特開2004−68026号公報、特開2003−151668号公報、特開2002−298963号公報、特開2002−226982号公報、特開平11−135226号公報、特開平10−60666号公報等に、Cu又はCu合金母材の表面に、必要に応じてNi下地めっき層を形成し、その上にCuめっき層とSnめっき層をこの順に形成した後、リフロー処理し、Cu−Sn合金層及びSn層をこの順に形成した導電材料が記載されているが、これらをそのまま利用できる。
従来型の表面被覆層付板材において、Cu−Sn合金層の下にCu層が残留しない方が望ましく、Ni層の下にさらにCu下地層があってもよい。各被覆層の平均の厚さ及びCu−Sn合金層のCu含有量は例えば前記(1)〜(3)とほぼ同じでよい。望ましくは、例えばSn層が0.1〜2μm、Cu−Sn合金層が0.1〜1.0μm、そのCu含有量が35〜75at%、残留Cu層が1.0μm以下、Ni層が0.1〜1.0μm、Cu下地層が0.01〜1.0μmである。
As the plate material with a surface coating layer, one of the male / female terminals can use a conventional plate material with a surface coating layer having a Cu—Sn alloy layer and an Sn layer in this order on the surface of the base material. The conventional type is a plate with a surface coating layer using a base material whose surface has not been roughened. Usually, the arithmetic mean roughness Ra of the base material surface is considerably smaller than 0.15 μm, and the entire outermost surface is The Sn layer is covered with a substantially uniform thickness. For example, in JP-A-2004-68026, JP-A-2003-151668, JP-A-2002-298963, JP-A-2002-226882, JP-A-11-135226, JP-A-10-60666, etc. A Ni undercoat layer is formed on the surface of the Cu or Cu alloy base material as necessary, and a Cu plating layer and a Sn plating layer are formed thereon in this order, followed by a reflow treatment, and a Cu-Sn alloy layer and Although the conductive material which formed Sn layer in this order is indicated, these can be used as they are.
In the conventional plate with a surface coating layer, it is desirable that the Cu layer does not remain under the Cu—Sn alloy layer, and a Cu underlayer may further exist under the Ni layer. The average thickness of each coating layer and the Cu content of the Cu—Sn alloy layer may be substantially the same as, for example, the above (1) to (3). Desirably, for example, the Sn layer is 0.1 to 2 μm, the Cu—Sn alloy layer is 0.1 to 1.0 μm, the Cu content is 35 to 75 at%, the residual Cu layer is 1.0 μm or less, and the Ni layer is 0 0.1 to 1.0 μm and the Cu underlayer is 0.01 to 1.0 μm.

フッ素系樹脂微粒子とフッ素系油が混合した塗膜は、フッ素系樹脂微粒子とフッ素系油とを所定の混合割合として溶剤に希釈・分散させて表面被覆層付板材の表面に塗布し、溶剤を揮発させることにより形成することができる。なお、塗布は浸漬、スプレー、バーコーター等公知の手段を用いることができ、また、端子のプレス成形後、端子成形前、被覆層形成後等の適宜のタイミングで行うことができる。使用する溶剤は、導電性基材やフッ素系樹脂微粒子とフッ素系油に悪影響が無く、常温での揮発性が良く、フッ素系樹脂微粒子とフッ素系油との希釈・分散性が良く、更には不燃性や作業性、安全性などの諸点からは、市販のフッ素系溶剤(洗浄剤、希釈剤)が好ましい。但し、地球環境面からの規制対象である特定フロン系ではない市販のフッ素系溶剤、例えば、旭硝子株式会社製アサヒクリンAK−225(ジクロロペンタフルオロプロパン)、あるいはHFE(ハイドロフルオロエーテル)などの改良された(特定フロン系代替え)種々のフッ素系溶剤が適宜使用できる。これらの点は、前記特許文献4にも記載されている。   The coating film in which fluorine resin fine particles and fluorine oil are mixed is applied to the surface of the plate material with the surface coating layer by diluting and dispersing fluorine resin fine particles and fluorine oil in a solvent at a predetermined mixing ratio. It can be formed by volatilization. In addition, application | coating can use well-known means, such as immersion, a spray, a bar coater, and can be performed at appropriate timings, such as after terminal press molding, before terminal molding, and after coating layer formation. The solvent used does not adversely affect the conductive substrate, fluorine resin fine particles and fluorine oil, has good volatility at room temperature, has good dilution and dispersibility between fluorine resin fine particles and fluorine oil, and From various points such as nonflammability, workability, and safety, commercially available fluorinated solvents (detergents and diluents) are preferable. However, improvement of commercially available fluorine-based solvents that are not subject to specific fluorocarbons, which are subject to global environmental regulations, such as Asahi Clin AK-225 (dichloropentafluoropropane) or HFE (hydrofluoroether) manufactured by Asahi Glass Co., Ltd. Various fluorine-based solvents that have been used (substitute for specific chlorofluorocarbons) can be used as appropriate. These points are also described in Patent Document 4.

[特願2007−22206号についての追加説明]
特願2007−22206号に記載された接続部品用導電材料についてはすでに要点を説明したが、特願2007−22206号が現時点で未公開であるため、ここでは念のため、特願2007−22206号に記載された接続部品用導電材料について追加説明し、あわせてその製造方法と、当該接続部品用導電材料がこれまで述べた作用効果(低摩擦係数、電気的信頼性及び耐微摺動摩耗性)を奏することを実証する実施例について、特願2007−22206号から引用して記載する。
[Additional explanation about Japanese Patent Application No. 2007-22206]
The main points of the conductive material for connecting parts described in Japanese Patent Application No. 2007-22206 have already been described. However, since Japanese Patent Application No. 2007-22206 has not yet been disclosed, the Japanese Patent Application No. 2007-22206 is here just in case. The conductive material for connecting parts described in this issue is additionally explained, together with its manufacturing method and the effects of the conductive material for connecting parts described so far (low friction coefficient, electrical reliability and anti-sliding wear resistance) An example demonstrating that the present invention exhibits the characteristics will be described with reference to Japanese Patent Application No. 2007-22206.

特願2007−22206号に記載された製造方法は、技術思想的には特許文献1,2と共通するが、Cu−Sn合金層を露出させる場合とさせない場合の両方を含む。
特願2007−22206号に記載された製造方法の具体的形態を示すと、母材の表面粗さは少なくとも一方向の算術平均粗さRaが0.4μm以上で、全ての方向の算術平均粗さRaが4.0μm以下が望ましく、さらに望ましくは前記一方向において算出された凹凸の平均間隔Smが0.01〜0.5mmであり、さらにさらに望ましくは前記一方向における最大高さRyが2.0〜20μmであり、各めっき層の平均の厚さについては、Niめっき層が3.0μm以下、Cuめっき層が0.1〜1.5μm、Snめっき層が0.4〜8.0μmが望ましいとされている。必要に応じてリフロー処理後にさらにSnめっき層を薄く(0.2μm以下)形成することができる。
The manufacturing method described in Japanese Patent Application No. 2007-22206 is common to Patent Documents 1 and 2 in terms of technical idea, but includes both cases where the Cu—Sn alloy layer is exposed and not exposed.
When showing a specific form of the manufacturing method described in Japanese Patent Application No. 2007-22206, the surface roughness of the base material is an arithmetic average roughness Ra of 0.4 μm or more in at least one direction, and an arithmetic average roughness in all directions. The thickness Ra is preferably 4.0 μm or less, more preferably the average interval Sm between the irregularities calculated in the one direction is 0.01 to 0.5 mm, and still more preferably the maximum height Ry in the one direction is 2. The average thickness of each plating layer is 3.0 μm or less for the Ni plating layer, 0.1 to 1.5 μm for the Cu plating layer, and 0.4 to 8.0 μm for the Sn plating layer. Is preferred. If necessary, an Sn plating layer can be further thinly formed (0.2 μm or less) after the reflow treatment.

これにより得られた表面被覆層は、Ni層の平均の厚さが3.0μm以下、Cu−Sn合金被覆層の平均の厚さが0.2〜3.0μm、材料の垂直断面におけるSn層(リフロー処理後にSnめっきを行う場合、そのSnめっき層を含む)の最小内接円の直径[D1]が0.2μm以下、最大内接円の直径[D2]が1.2〜20μm、材料の最表点とCu−Sn合金層の最表点との高度差[y]が0.2μm以下と規定されている。さらに[D1]が0μmのとき(すなわちCu−Sn合金層が露出しているとき)、材料表面におけるCu−Sn合金層の最大内接円の直径[D3]が150μm以下又は/及び材料表面におけるSn層の最大内接円直径[D4]が300μm以下が望ましく、リフロー処理後にCu層が残留する場合、その平均の厚さが1.0μm以下が望ましいとされている。   The surface coating layer thus obtained has an average thickness of the Ni layer of 3.0 μm or less, an average thickness of the Cu—Sn alloy coating layer of 0.2 to 3.0 μm, and an Sn layer in the vertical cross section of the material. The diameter [D1] of the smallest inscribed circle of Sn (when Sn plating is performed after the reflow treatment is included) is 0.2 μm or less, the diameter [D2] of the largest inscribed circle is 1.2 to 20 μm, The height difference [y] between the outermost point and the outermost point of the Cu—Sn alloy layer is defined as 0.2 μm or less. Further, when [D1] is 0 μm (that is, when the Cu—Sn alloy layer is exposed), the diameter [D3] of the maximum inscribed circle of the Cu—Sn alloy layer on the material surface is 150 μm or less or / and on the material surface The maximum inscribed circle diameter [D4] of the Sn layer is desirably 300 μm or less, and when the Cu layer remains after the reflow process, the average thickness is desirably 1.0 μm or less.

図1は上記[D1]、[D2]及び[y]を説明する図であり、図1(a)は、図1(b)に示す材料1の断面1a(材料表面1bに対する垂直断面、材料表面1bが粗いときは母材の中立面2(板厚の中心を通る面)に対する垂直断面)の表面近傍を拡大して模式的に示す。この例では、母材3の表面にNi層4、Cu層5、Cu−Sn合金層6及びSn層7が形成されている。
[D1]は、図1(a)において材料1の表面とCu−Sn合金層6の間に描ける最小の内接円の直径であり、[D2]は最大の内接円の直径であり、[y]は、材料1の表面の中立面2から最も離れた箇所(材料1の最表点)1Aの高さ(中立面2からの高さ)と、Cu−Sn合金層6の表面の中立面2から最も離れた箇所(Cu−Sn合金層6の最表点)6Aの高さ(中立面2からの高さ)の差である。
また、図2は上記[D3]、[D4]を説明する図であり、材料1の表面を模式的に示す。該表面はCu−Sn合金層6とSn層7により構成され、[D3]はSn層7に囲まれた最大の内接円の直径であり、[D4]はCu−Sn合金層6に囲まれた最大の内接円の直径である。
FIG. 1 is a diagram for explaining the above [D1], [D2] and [y], and FIG. 1 (a) is a cross-sectional view 1a of the material 1 shown in FIG. When the surface 1b is rough, the vicinity of the surface of the neutral surface 2 (a vertical cross section with respect to the surface passing through the center of the plate thickness) of the base material is enlarged and schematically shown. In this example, a Ni layer 4, a Cu layer 5, a Cu—Sn alloy layer 6 and a Sn layer 7 are formed on the surface of the base material 3.
[D1] is the diameter of the smallest inscribed circle that can be drawn between the surface of the material 1 and the Cu—Sn alloy layer 6 in FIG. 1A, and [D2] is the diameter of the largest inscribed circle, [Y] is the height (the height from the neutral surface 2) of the portion 1 A that is farthest from the neutral surface 2 of the surface of the material 1 (the height from the neutral surface 2), and the Cu—Sn alloy layer 6. This is the difference in the height (height from the neutral plane 2) of the portion 6A farthest from the surface neutral plane 2 (the outermost point of the Cu-Sn alloy layer 6).
FIG. 2 is a diagram for explaining the above [D3] and [D4], and schematically shows the surface of the material 1. The surface is constituted by the Cu—Sn alloy layer 6 and the Sn layer 7, [D 3] is the diameter of the largest inscribed circle surrounded by the Sn layer 7, and [D 4] is surrounded by the Cu—Sn alloy layer 6. The diameter of the largest inscribed circle.

特願2007−22206号には、上記の各パラメータの限定理由について次のように記載されている。
(1)Ni層は、母材構成元素の材料表面への拡散を抑制し、さらにCu−Sn合金層の成長を抑制してSn層の消耗を防止するため、高温長時間使用後も、また亜硫酸ガス腐食雰囲気下においても接触抵抗の上昇を抑制するとともに、良好なはんだ濡れ性を得るのに役立つ。しかし、Ni層の平均の厚さが0.1μm未満の場合には、Ni層中のピット欠陥が増加することなどにより、上記効果を充分に発揮できなくなる。ただし、特に上記効果を必要としない場合は、Ni層の平均の厚さは0.1μm未満でもよく、なくてもよい。一方、Ni層はある程度まで厚くなると上記効果が飽和し、厚くし過ぎると生産性や経済性が悪くなる。従ってNi層の平均の厚さは、3.0μm以下(0μmを含む)、望ましくは0.1〜3.0μmとする。より望ましくは0.2〜2.0μmである。
なお、Ni層を形成する場合、母材とNi層の間に下地Cu層(Cu下地めっき層)を形成してもよい。Cu下地めっきは母材表面の欠陥(ピット等)や析出物等を覆ってNiめっきの付きを改善しNiめっきの信頼性を高めるためのものであり、このCu下地めっき自体、従来から行われている。下地Cu層の厚さは0.01〜1μmが望ましい。
Japanese Patent Application No. 2007-22206 describes the reasons for limiting each of the above parameters as follows.
(1) The Ni layer suppresses the diffusion of the matrix constituent elements to the material surface, and further suppresses the growth of the Cu—Sn alloy layer to prevent the Sn layer from being consumed. While suppressing the increase in contact resistance even in a sulfurous acid gas corrosive atmosphere, it helps to obtain good solder wettability. However, when the average thickness of the Ni layer is less than 0.1 μm, the above effect cannot be sufficiently exhibited due to an increase in pit defects in the Ni layer. However, when the above effect is not particularly required, the average thickness of the Ni layer may or may not be less than 0.1 μm. On the other hand, when the Ni layer is thickened to some extent, the above effects are saturated, and when it is too thick, productivity and economic efficiency are deteriorated. Therefore, the average thickness of the Ni layer is 3.0 μm or less (including 0 μm), preferably 0.1 to 3.0 μm. More desirably, the thickness is 0.2 to 2.0 μm.
When forming the Ni layer, a base Cu layer (Cu base plating layer) may be formed between the base material and the Ni layer. Cu base plating covers defects (pits, etc.) and precipitates on the surface of the base material to improve the adhesion of Ni plating and increase the reliability of Ni plating. This Cu base plating itself has been performed conventionally. ing. The thickness of the underlying Cu layer is preferably 0.01 to 1 μm.

(2)Cu層はなくてもよいが、Ni層を形成した場合、Ni層中のNiの材料表面への拡散及びCu−Sn合金層への過度の拡散を効果的に抑制するのに役立つ。特に本発明(特願2007−22206号)のようにSn層が部分的に薄い又は無い場合においては、高温長時間使用後も電気抵抗が非常に高いNi酸化物の材料表面への堆積を抑制するため、接触抵抗の上昇を長期間抑制するのに効果的であり、亜硫酸ガス耐食性の向上効果もある。しかし、Cu層は厚くなりすぎるとCu−Sn合金層の成長を抑制することが困難となり、Sn層の消耗を防止する効果が減少する。また、Cu層は厚くなりすぎるとCu層とCu−Sn合金層の間に、熱拡散や経時などによりボイドが生成し耐熱剥離性が低下するほか、生産性や経済性も悪くなる。従って、Cu層の平均の厚さは1.0μm以下に規定する。より望ましくは0.5μm以下である。 (2) The Cu layer may be omitted, but when the Ni layer is formed, it helps to effectively suppress the diffusion of Ni in the Ni layer to the material surface and the excessive diffusion to the Cu-Sn alloy layer. . In particular, when the Sn layer is partially thin or absent as in the present invention (Japanese Patent Application No. 2007-22206), the deposition of Ni oxide having a very high electric resistance even after use at high temperature for a long time is suppressed. Therefore, it is effective for suppressing an increase in contact resistance for a long period of time, and also has an effect of improving the sulfurous acid gas corrosion resistance. However, if the Cu layer becomes too thick, it becomes difficult to suppress the growth of the Cu—Sn alloy layer, and the effect of preventing the consumption of the Sn layer is reduced. On the other hand, if the Cu layer becomes too thick, voids are generated between the Cu layer and the Cu—Sn alloy layer due to thermal diffusion, aging, and the like, and the heat-resistant peelability is lowered, and productivity and economy are also deteriorated. Therefore, the average thickness of the Cu layer is specified to be 1.0 μm or less. More desirably, it is 0.5 μm or less.

(3)Cu−Sn合金層はSn層を形成するSn又はSn合金に比べて非常に硬い。従って、本発明(特願2007−22206号)のように、[D1]が0.2μm以下、かつ[y]が0.2μm以下である場合には、端子挿抜の際にSn層の掘り起こしによる変形抵抗や凝着をせん断するせん断抵抗を抑制でき、摩擦係数を非常に低くすることができる。また、端子挿抜や振動環境下などにおける電気接点部の摺動・微摺動の際に、接圧力を硬いCu−Sn合金層で受けてSn層同士の接触面積を低減できるため、微摺動によるSn層の摩耗や酸化も減少する。さらに、Ni層を形成した場合、Cu−Sn合金層はNi層中のNiの材料表面への拡散を抑制するのに役立つ。しかし、Cu−Sn合金層の平均の厚さが0.2μm未満では、特に本発明(特願2007−22206号)のようにSn層が部分的に薄い又は無い場合においては、高温酸化などの熱拡散による材料表面のNi酸化物量などが多くなり、接触抵抗を増加させ易く、また耐食性も劣化することから、電気的接続の信頼性を維持することが困難となる。一方、3.0μmを超える場合には、生産性や経済性が悪くなる。従って、Cu−Sn合金層の平均の厚さを0.2〜3.0μmに規定する。より望ましくは0.3〜2.0μmである。 (3) The Cu—Sn alloy layer is very hard compared to Sn or Sn alloy forming the Sn layer. Therefore, as in the present invention (Japanese Patent Application No. 2007-22206), when [D1] is 0.2 μm or less and [y] is 0.2 μm or less, the Sn layer is dug during terminal insertion / extraction. Deformation resistance and shear resistance that shears adhesion can be suppressed, and the friction coefficient can be made extremely low. Also, when sliding or fine sliding the electrical contact part under terminal insertion / extraction or vibration environment, the contact pressure is received by a hard Cu-Sn alloy layer and the contact area between the Sn layers can be reduced. As a result, the wear and oxidation of the Sn layer are also reduced. Furthermore, when the Ni layer is formed, the Cu—Sn alloy layer helps to suppress diffusion of Ni in the Ni layer to the material surface. However, when the average thickness of the Cu—Sn alloy layer is less than 0.2 μm, particularly when the Sn layer is partially thin or not as in the present invention (Japanese Patent Application No. 2007-22206), high temperature oxidation or the like Since the amount of Ni oxide on the surface of the material due to thermal diffusion increases, the contact resistance is likely to increase, and the corrosion resistance also deteriorates, making it difficult to maintain the reliability of electrical connection. On the other hand, when it exceeds 3.0 micrometers, productivity and economical efficiency will worsen. Therefore, the average thickness of the Cu—Sn alloy layer is specified to be 0.2 to 3.0 μm. More desirably, the thickness is 0.3 to 2.0 μm.

(4)Sn層の最小内接円の直径[D1]が0.2μmを超える場合、端子挿抜の際にSn層の掘り起こしによる変形抵抗や凝着をせん断するせん断抵抗が増加して摩擦係数を低くすることが困難となり、また微摺動によるSn層の摩耗や酸化も増加して接触抵抗増大を抑制することが困難となる。従って、[D1]を0.2μm以下と規定する。より望ましくは0.15μm以下である。
(5)Sn層の最大内接円の直径[D2](図1参照)が1.2μm未満の場合、熱拡散や経時などによるSn層の消耗で、より早期にSn層が消滅するため、耐熱性や耐食性の向上効果が低くなり、同時にSn層の量が多くないため、はんだ濡れ性を確保することが困難となる。一方、[D2]が20μmを超える場合には、機械的性質に悪影響を及ぼす場合が生じ、生産性や経済性も悪くなる。従って、[D2]を1.2〜20μmと規定する。より望ましくは1.5〜10μmである。
(4) When the diameter [D1] of the minimum inscribed circle of the Sn layer exceeds 0.2 μm, the deformation resistance due to the excavation of the Sn layer and the shear resistance that shears the adhesion increase when inserting and removing the terminal, and the friction coefficient is increased. It becomes difficult to lower the thickness, and the wear and oxidation of the Sn layer due to fine sliding also increase, making it difficult to suppress an increase in contact resistance. Therefore, [D1] is defined as 0.2 μm or less. More desirably, it is 0.15 μm or less.
(5) When the diameter [D2] (see FIG. 1) of the maximum inscribed circle of the Sn layer is less than 1.2 μm, the Sn layer disappears earlier due to the consumption of the Sn layer due to thermal diffusion or aging. The effect of improving heat resistance and corrosion resistance is reduced, and at the same time, the amount of the Sn layer is not large, so that it is difficult to ensure solder wettability. On the other hand, when [D2] exceeds 20 μm, the mechanical properties may be adversely affected, resulting in poor productivity and economy. Therefore, [D2] is defined as 1.2 to 20 μm. More desirably, the thickness is 1.5 to 10 μm.

(6)材料の最表点とCu−Sn合金層の最表点との高度差[y]が0.2μmを超える場合、端子挿抜の際にSn層の掘り起こしによる変形抵抗や凝着をせん断するせん断抵抗が増加して摩擦係数を低くすることが困難となり、また微摺動によるSn層の摩耗や酸化も増加して、接触抵抗増大を抑制することが困難となる。従って、[y]を0.2μm以下と規定する。より望ましくは、0.15μm以下である。
(7)Sn層の最小内接円の直径[D1]が0μm(材料の表面にCu−Sn合金層が一部露出)のとき、材料の表面においてCu−Sn合金層の最大内接円の直径[D3](図2参照)が150μm以下であることが望ましい。[D3]が150μmを超える場合、特に小型の嵌合型端子の電気接点部などにおいてはCu−Sn合金層の接触のみとなる場合があるため、耐熱性や耐食性の劣化を抑制する効果が低くなり、はんだ濡れ性を確保することが困難となる場合が生じてくる。より望ましくは、100μm以下である。
(8)Sn層の最小内接円の直径[D1]が0μmであるとき、Sn層の最大内接円直径[D4]が300μm以下であることが望ましい。[D4]が300μmを超える場合、Sn層同士の接触面積が増加し、Sn層の掘り起こしによる変形抵抗や凝着をせん断するせん断抵抗が増加して摩擦係数を低減する効果が低くなる場合がある。また微摺動によるSn層の摩耗や酸化も増加して、接触抵抗が増加する場合が生じてくる。より望ましくは、200μm以下である。
(6) When the height difference [y] between the outermost point of the material and the outermost point of the Cu—Sn alloy layer exceeds 0.2 μm, the deformation resistance and adhesion due to the excavation of the Sn layer are sheared when inserting and removing the terminal. It is difficult to lower the friction coefficient by increasing the shear resistance, and the wear and oxidation of the Sn layer due to fine sliding also increase, making it difficult to suppress the increase in contact resistance. Therefore, [y] is defined as 0.2 μm or less. More desirably, it is 0.15 μm or less.
(7) When the diameter [D1] of the minimum inscribed circle of the Sn layer is 0 μm (the Cu—Sn alloy layer is partially exposed on the surface of the material), the maximum inscribed circle of the Cu—Sn alloy layer on the surface of the material The diameter [D3] (see FIG. 2) is desirably 150 μm or less. When [D3] exceeds 150 μm, there is a case where only the contact of the Cu—Sn alloy layer may be caused particularly in an electric contact portion of a small fitting type terminal, etc., so that the effect of suppressing deterioration in heat resistance and corrosion resistance is low. Thus, it may be difficult to ensure solder wettability. More desirably, it is 100 μm or less.
(8) When the diameter [D1] of the minimum inscribed circle of the Sn layer is 0 μm, the maximum inscribed circle diameter [D4] of the Sn layer is desirably 300 μm or less. When [D4] exceeds 300 μm, the contact area between the Sn layers increases, the deformation resistance due to the digging of the Sn layer and the shear resistance that shears the adhesion increase, and the effect of reducing the friction coefficient may be reduced. . In addition, wear and oxidation of the Sn layer due to fine sliding increase, and the contact resistance may increase. More desirably, it is 200 μm or less.

(9)母材の表面粗さは、少なくとも一方向において算術平均粗さRaが0.4μm以上で、かつ全ての方向において算術平均粗さRaが4.0μm以下の表面粗さとすることが望ましい。どの方向でもRaが0.4μm未満の場合、めっき厚やリフロー条件を調整しても、本願(特願2007−22206号)の規定(特に[D2])を満たすことが困難であり、Raが4.0μmを越えるとSnの溶融流動性を悪化させる。
望ましくは、前記一方向における凹凸の平均間隔Smが0.01〜0.5mmであることであり、0.01mm未満では本願(特願2007−22206号)の規定(特に[D2])を満たすことが困難な場合があり、0.5mmを越えると[D3]、[D4]が規定範囲外になる可能性が高まる。さらに望ましくは、前記一方向における最大高さRyが2.0〜20μmである。この範囲外では、本願(特願2007−22206号)の規定(特に[D2])を満たすことが困難な場合がある。
(9) The surface roughness of the base material is desirably a surface roughness having an arithmetic average roughness Ra of 0.4 μm or more in at least one direction and an arithmetic average roughness Ra of 4.0 μm or less in all directions. . If Ra is less than 0.4 μm in any direction, even if the plating thickness and reflow conditions are adjusted, it is difficult to satisfy the specification (particularly [D2]) of this application (Japanese Patent Application No. 2007-22206). If it exceeds 4.0 μm, the melt fluidity of Sn is deteriorated.
Desirably, the average interval Sm of the unevenness in the one direction is 0.01 to 0.5 mm, and if it is less than 0.01 mm, the specification (particularly [D2]) of the present application (Japanese Patent Application No. 2007-22206) is satisfied. When the thickness exceeds 0.5 mm, there is a high possibility that [D3] and [D4] will be outside the specified range. More preferably, the maximum height Ry in the one direction is 2.0 to 20 μm. Outside this range, it may be difficult to satisfy the specification (particularly [D2]) of the present application (Japanese Patent Application No. 2007-22206).

特願2007−22206号には、次のような実施例が記載されている。
[試験材の作製]
作製した試験材No.1〜31の製造工程概要を、表1及び表2に示す。
母材には、Cu中に1.8質量%のNi、0.40質量%のSi、0.10質量%のSn、1.1質量%のZnを含有するCu合金板を用い、圧延の際にショットブラストなどにより粗面化したワークロールを使用して表面粗化処理を行い(あるいは行わずに)、ビッカース硬さ200、厚さ0.25mmで、各々の表面粗さを有する母材に仕上げた。なお、母材の表面粗さは、実施例の試験材No.1〜18及び比較例の試験材No.19〜22,24,25は、Ra、Sm及びRyが前述の望ましい範囲内であり、比較例の試験材No.23は、Ra及びSmが望ましい範囲内であるが、Ryが下限値未満であり、従来例の試験材No.26〜31は、Ra及びRyが望ましい範囲の下限値未満である。
続いて、母材の表面に、Niめっきを施し(あるいは施さず)、Cuめっきを施し(あるいは施さず)、次いでSnめっきを施し、リフロー処理を行った後、フッ化水素アンモニウム水溶液浸漬処理を行い(あるいは行わずに)、Snめっきを再度施した(あるいは施さなかった)。
Japanese Patent Application No. 2007-22206 describes the following examples.
[Production of test materials]
The prepared test material No. Tables 1 and 2 show the outline of the manufacturing steps 1 to 31.
As a base material, a Cu alloy plate containing 1.8% by mass of Ni, 0.40% by mass of Si, 0.10% by mass of Sn and 1.1% by mass of Zn in Cu is used. A base material having a surface roughness of Vickers hardness of 200 and a thickness of 0.25 mm, with or without surface roughening using a work roll roughened by shot blasting or the like. Finished. The surface roughness of the base material is the test material No. in the examples. 1-18 and the test material No. of a comparative example. In Nos. 19 to 22, 24, and 25, Ra, Sm, and Ry are within the above-described desirable ranges. 23, Ra and Sm are within the desired range, but Ry is less than the lower limit value. 26-31 is less than the lower limit of the range where Ra and Ry are desirable.
Subsequently, the surface of the base material is subjected to Ni plating (or not), Cu plating (or not), Sn plating, reflow treatment, and ammonium hydrogen fluoride aqueous solution immersion treatment. Performed (or not performed), and Sn plating was performed again (or not performed).

Figure 2009099282
Figure 2009099282

Figure 2009099282
Figure 2009099282

作製した試験材のNi層、Cu層及びCu−Sn合金層の平均の厚さ、材料の垂直断面における被覆層形態([D1]、[D2]、[y])、及び材料表面における被覆層形態([D3]、[D4])を、下記要領で測定した。その結果を、表3及び表4に示す。   Average thickness of Ni layer, Cu layer and Cu-Sn alloy layer of the prepared test material, coating layer form ([D1], [D2], [y]) in the vertical cross section of the material, and coating layer on the material surface The form ([D3], [D4]) was measured as follows. The results are shown in Tables 3 and 4.

[Ni層、Cu層及びCu−Sn合金層の平均の厚さ測定方法]
ミクロトーム法にて加工した試験材の断面に、必要に応じてアルゴンイオンエッチングを行い、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析処理により、Ni層、Cu層及びCu−Sn合金層の平均の厚さを各々算出した。なお、測定断面は、表面粗化処理の際に行った圧延方向に直角な方向の垂直断面とした。
[Average thickness measurement method of Ni layer, Cu layer and Cu-Sn alloy layer]
The cross section of the test material processed by the microtome method is subjected to argon ion etching if necessary, and observed using an SEM (scanning electron microscope) equipped with an EDX (energy dispersive X-ray spectrometer). The average thicknesses of the Ni layer, the Cu layer, and the Cu—Sn alloy layer were calculated from the density of the resulting composition image (excluding contrast such as dirt and scratches) by image analysis processing. The measurement cross section was a vertical cross section perpendicular to the rolling direction performed during the surface roughening treatment.

[材料の表面に対する垂直断面の形態測定方法]
ミクロトーム法にて加工した試験材の断面に、必要に応じてアルゴンイオンエッチングを行い、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析処理により、[D1]、[D2]及び[y]を各々算出した。なお、測定断面は、表面粗化処理の際に行った圧延方向に直角な方向の垂直断面である。
[材料の表面の形態測定方法]
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析処理により、Cu−Sn合金層の最大内接円の直径[D3]及びSn層の最大内接円直径[D4]を各々算出した。
[Method for measuring the shape of the vertical cross section of the material surface]
The cross section of the test material processed by the microtome method is subjected to argon ion etching if necessary, and observed using an SEM (scanning electron microscope) equipped with an EDX (energy dispersive X-ray spectrometer). [D1], [D2], and [y] were calculated from the density of the obtained composition image (excluding contrast such as dirt and scratches) by image analysis processing. The measurement cross section is a vertical cross section in a direction perpendicular to the rolling direction performed during the surface roughening treatment.
[Method for measuring surface morphology of material]
The surface of the test material is observed using an SEM (scanning electron microscope) equipped with an EDX (energy dispersive X-ray spectrometer), and the resulting composition image is shaded (excluding contrast such as dirt and scratches). Then, the maximum inscribed circle diameter [D3] of the Cu—Sn alloy layer and the maximum inscribed circle diameter [D4] of the Sn layer were respectively calculated by image analysis processing.

Figure 2009099282
Figure 2009099282

Figure 2009099282
Figure 2009099282

また、得られた試験材について、摩擦係数評価試験、微摺動摩耗試験時の接触抵抗評価試験、高温放置試験後の接触抵抗評価試験、耐熱剥離試験、亜硫酸ガス腐食試験後の接触抵抗評価試験及び鉛フリーはんだ濡れ試験及び鉛フリーはんだ濡れ試験を、下記の要領で行った。その結果を、表5及び表6に示す。   In addition, for the obtained test materials, friction coefficient evaluation test, contact resistance evaluation test during fine sliding wear test, contact resistance evaluation test after high temperature standing test, heat-resistant peeling test, contact resistance evaluation test after sulfite gas corrosion test The lead-free solder wetting test and the lead-free solder wetting test were performed as follows. The results are shown in Tables 5 and 6.

[摩擦係数評価試験]
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図3に示すような装置を用いて評価した。まず、各々の試験材No.1〜31から切り出した板材のオス試験片11を水平な台12に固定し、その上に試験材No.31から切り出した半球加工材(内径をφ1.5mmとした)のメス試験片13をおいて被覆層同士を接触させた。続いて、メス試験片13に3.0Nの荷重(錘14)をかけてオス試験片11を押さえ、横型荷重測定器(アイコーエンジニアリング株式会社;Model−2152)を用いて、オス試験片11を水平方向に引っ張り(摺動速度を80mm/minとした)、摺動距離5mmまでの最大摩擦力F(単位:N)を測定した。摩擦係数を下記式(1)により求めた。なお、15はロードセル、矢印は摺動方向である。
摩擦係数=F/3.0 …(1)
[Friction coefficient evaluation test]
The shape of the indented portion of the electrical contact in the fitting type connecting part was simulated and evaluated using an apparatus as shown in FIG. First, each test material No. A male test piece 11 of a plate material cut out from 1 to 31 is fixed to a horizontal base 12, and a test material No. The coating layers were brought into contact with each other by placing a female test piece 13 of a hemispherical workpiece cut out from 31 (with an inner diameter of φ1.5 mm). Subsequently, a load of 3.0 N (weight 14) is applied to the female test piece 13, the male test piece 11 is pressed, and the male test piece 11 is attached using a horizontal load measuring device (Aiko Engineering Co., Ltd .; Model-2152). The sample was pulled in the horizontal direction (sliding speed was 80 mm / min), and the maximum frictional force F (unit: N) up to a sliding distance of 5 mm was measured. The coefficient of friction was determined by the following formula (1). In addition, 15 is a load cell and the arrow is a sliding direction.
Friction coefficient = F / 3.0 (1)

[微摺動摩耗試験時の接触抵抗評価試験]
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図4に示すような摺動試験機(株式会社山崎精機研究所;CRS−B1050CHO)を用いて評価した。まず、試験材No.31から切り出した板材のオス試験片16を水平な台17に固定し、その上に各々の試験材No.1〜31から切り出した半球加工材(内径をφ1.5mmとした)のメス試験片18をおいて被覆層同士を接触させた。続いて、メス試験片18に2.0Nの荷重(錘19)をかけてオス試験片16を押さえ、オス試験片16とメス試験片18の間に定電流を印加し、ステッピングモータ20を用いてオス試験片16を水平方向に摺動させ(摺動距離を50μm、摺動周波数を1.0Hzとした)、摺動回数1000回までの最大接触抵抗を四端子法により、開放電圧20mV、電流10mAの条件にて測定した。なお、矢印は摺動方向である。
[Contact resistance evaluation test during fine sliding wear test]
The shape of the indented portion of the electrical contact in the fitting-type connecting part was simulated and evaluated using a sliding tester (Yamazaki Seiki Laboratories; CRS-B1050CHO) as shown in FIG. First, test material No. A male test piece 16 of a plate material cut out from 31 is fixed to a horizontal base 17, and each test material No. The coating layers were brought into contact with each other by placing a female test piece 18 of a hemispherical workpiece cut out from 1 to 31 (with an inner diameter of φ1.5 mm). Subsequently, a 2.0 N load (weight 19) is applied to the female test piece 18 to hold the male test piece 16, a constant current is applied between the male test piece 16 and the female test piece 18, and the stepping motor 20 is used. Then, the male test piece 16 is slid in the horizontal direction (sliding distance is 50 μm, sliding frequency is 1.0 Hz), and the maximum contact resistance up to 1000 times of sliding is determined by the four-terminal method using an open voltage of 20 mV, The measurement was performed under the condition of a current of 10 mA. The arrow indicates the sliding direction.

[高温放置試験後の接触抵抗評価試験]
各々の試験材No.1〜31から切り出した板材の試験片に対して、大気中にて175℃×1000hrの熱処理を行った後、接触抵抗を四端子法により測定した(Auプローブを水平方向に摺動させ、荷重を3.0N、摺動距離を0.30mm、摺動速度を1.0mm/min、開放電圧20mV、電流10mAの条件にて測定した)。
[耐熱剥離試験]
各々の試験材No.1〜31から切り出した板材の試験片に対して、90°曲げ(曲げ半径を0.7mmとした)を行い、大気中にて175℃×1000hrの熱処理を行った後、曲げ戻しを行い、被覆層の剥離の有無を外観評価した。
[Contact resistance evaluation test after high-temperature storage test]
Each test material No. The plate specimens cut out from 1 to 31 were subjected to heat treatment at 175 ° C. × 1000 hr in the air, and then contact resistance was measured by the four-terminal method (the Au probe was slid in the horizontal direction, the load Was measured under the conditions of 3.0 N, a sliding distance of 0.30 mm, a sliding speed of 1.0 mm / min, an open-circuit voltage of 20 mV, and a current of 10 mA).
[Heat-resistant peel test]
Each test material No. The test pieces of the plate material cut out from 1 to 31 were bent by 90 ° (bending radius was set to 0.7 mm), subjected to heat treatment at 175 ° C. × 1000 hr in the atmosphere, then bent back, The appearance of the coating layer was evaluated for the presence or absence of peeling.

[亜硫酸ガス腐食試験後の接触抵抗評価試験]
まず、各々の試験材No.1〜31から切り出した板材の試験片に対して、亜硫酸ガス濃度25ppm、温度35℃、湿度75%RH、時間96hrの亜硫酸ガス腐食試験を行った後、接触抵抗を四端子法により測定した(Auプローブを水平方向に摺動させ、荷重を3.0N、摺動距離を0.30mm、摺動速度を1.0mm/min、開放電圧20mV、電流10mAの条件にて測定した)。
[Contact resistance evaluation test after sulfurous acid gas corrosion test]
First, each test material No. After performing a sulfurous acid gas corrosion test on a test piece of a plate material cut out from 1 to 31, a sulfurous acid gas concentration of 25 ppm, a temperature of 35 ° C., a humidity of 75% RH, and a time of 96 hours, the contact resistance was measured by a four-terminal method ( The Au probe was slid in the horizontal direction, and the load was 3.0 N, the sliding distance was 0.30 mm, the sliding speed was 1.0 mm / min, the open-circuit voltage was 20 mV, and the current was 10 mA.

[鉛フリーはんだ濡れ試験]
各々の試験材No.1〜31から切り出した板材の試験片に対して、非活性フラックスを1秒間浸漬塗布した後、メニスコグラフ法にてゼロクロスタイムと最大濡れ応力を測定した(255℃のSn−3.0Ag−0.5Cuはんだに浸漬させ、浸漬速度を25mm/sec、浸漬深さを12mm、浸漬時間を5.0secの条件にて測定した)。また、上記はんだ浸漬後の試験片について、はんだ濡れ不良の有無を外観評価した。
[Lead-free solder wetting test]
Each test material No. After the inactive flux was dip-applied for 1 second to the test piece of the plate material cut out from 1 to 31, the zero cross time and the maximum wet stress were measured by the meniscograph method (255 ° C. Sn-3.0Ag-0. It was immersed in 5Cu solder, and the immersion speed was measured at 25 mm / sec, the immersion depth was 12 mm, and the immersion time was 5.0 sec). Further, the appearance of the test pieces after the solder immersion was evaluated for the presence or absence of solder wettability.

Figure 2009099282
Figure 2009099282

Figure 2009099282
Figure 2009099282

表3及び表5に示すように、試験材No.1〜14は、被覆層構成(各被覆層厚さと[D1]、[D2],[y])に関して本発明(特願2007−22206号)の規定を満たし、摩擦係数が低く、微摺動摩耗試験時の接触抵抗、高温放置試験後の接触抵抗、耐熱剥離試験後の外観、亜硫酸ガス腐食試験後の接触抵抗、鉛フリーはんだ濡れ性のいずれについても、優れた特性を示した。ただし、[D1]=0において[D3]又は/及び[D4]が本発明(特願2007−22206号)の規定を越えるNo.12〜14は、それぞれ1又は複数の特性のレベルが他の試験材に比べ相対的に低い。
試験材No.15〜18は、Ni層の平均厚さが0.1μm未満の例であり、被覆層構成(各被覆層厚さと[D1]、[D2],[y])に関して本発明(特願2007−22206号)の規定を満たし、いずれも摩擦係数が低く、微摺動摩耗試験時の接触抵抗が比較的低い。
As shown in Table 3 and Table 5, the test material No. Nos. 1 to 14 satisfy the provisions of the present invention (Japanese Patent Application No. 2007-22206) with respect to the coating layer configuration (each coating layer thickness and [D1], [D2], [y]), have a low coefficient of friction, and perform fine sliding Excellent characteristics were exhibited in all of the contact resistance during the wear test, the contact resistance after the high temperature standing test, the appearance after the heat-resistant peeling test, the contact resistance after the sulfurous acid gas corrosion test, and the lead-free solder wettability. However, when [D1] = 0, [D3] or / and [D4] is No. exceeding the provisions of the present invention (Japanese Patent Application No. 2007-22206). Nos. 12 to 14 each have a relatively low level of one or more characteristics compared to other test materials.
Test material No. Nos. 15 to 18 are examples in which the average thickness of the Ni layer is less than 0.1 μm, and the present invention (Japanese Patent Application No. 2007-) regarding the coating layer structure (each coating layer thickness and [D1], [D2], [y]). No. 22206), all of which have a low coefficient of friction and a relatively low contact resistance during a fine sliding wear test.

試験材No.19〜25は、Cu層及びCu−Sn合金層のいずれかの平均の厚さが本発明(特願2007−22206号)の規定を満たさず、又はNi層の平均の厚さが望ましい範囲外であり、又は「D1」、[D2]及び[y]のいずれかが特願2007−22206号の規定を満たさず、それに応じていずれか1つ又は複数の特性が劣る。
なお、試験材No.21は、Niめっき後Cuめっきを施さずに作製した試験材であり、Cu−Sn合金層でなくNi−Sn合金層が形成されたため、高温放置試験後の接触抵抗、亜硫酸ガス腐食試験後の接触抵抗が高い。
Test material No. In Nos. 19 to 25, the average thickness of any one of the Cu layer and the Cu—Sn alloy layer does not satisfy the provisions of the present invention (Japanese Patent Application No. 2007-22206), or the average thickness of the Ni layer is outside the desired range. Or any of “D1”, [D2] and [y] does not satisfy the provisions of Japanese Patent Application No. 2007-22206, and any one or more of the characteristics are inferior accordingly.
The test material No. No. 21 is a test material prepared without applying Cu plating after Ni plating, and since a Ni—Sn alloy layer was formed instead of a Cu—Sn alloy layer, contact resistance after a high temperature standing test, and after a sulfurous acid gas corrosion test High contact resistance.

試験材No.26〜31は、母材の表面粗化処理を行わずに作製した試験材であり、本発明(特願2007−22206号)の規定のいずれか1又は2以上を満たさず、そのため、いずれか1又は2以上の特性が劣る。
なお、試験材No.26はNiめっきが施されず、長時間のリフロー処理でSn被覆層が全て消滅した試験材であり、試験材No.27は長時間のリフロー処理でSn被覆層の大部分が消滅した試験材であり、試験材No.28はNiめっき及びCuめっきが施されず、試験材No.31はNiめっきが施されていない。
Test material No. Nos. 26 to 31 are test materials prepared without subjecting the surface of the base material to roughening, and do not satisfy any one or more of the provisions of the present invention (Japanese Patent Application No. 2007-22206). One or more properties are inferior.
The test material No. No. 26 is a test material in which Ni plating is not applied and the Sn coating layer is completely disappeared by a long reflow process. No. 27 is a test material in which most of the Sn coating layer disappeared after a long reflow treatment. No. 28 is not subjected to Ni plating or Cu plating, and the test material No. 31 is not plated with Ni.

以下、本発明の実施例について説明する。
[Cu合金母材の作製]
母材にはCu−0.8質量%Ni−1.2質量%Sn−0.07質量%PのCu合金板を用い、圧延の際にショットブラストなどにより粗面化したワークロールを使用して表面粗化処理を行い、又は行わずに、表7に示す表面粗さを有する厚さ0.25mmの母材に仕上げた。表7に示す母材の表面粗さは下記要領で測定した。その結果を表7に示す。なお、表面粗化処理を行った母材のRyは特願2007−22206号において好ましいとされた範囲内であった。
[Cu合金母材の表面粗さ測定方法]
接触式表面粗さ計(株式会社東京精密;サーフコム1400)を用いて、JIS B0601−1994に基づいて測定した。表面粗さ測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さを4.0mm、測定速度を0.3mm/s、及び触針先端半径を5μmRとした。表面粗さ測定方向は、表面粗化処理の際に行った圧延方向に直角な方向(表面粗さが最も大きく出る方向)とした。
Examples of the present invention will be described below.
[Preparation of Cu alloy base material]
For the base material, a Cu alloy plate of Cu-0.8 mass% Ni-1.2 mass% Sn-0.07 mass% P was used, and a work roll roughened by shot blasting or the like was used during rolling. With or without surface roughening treatment, a base material having a surface roughness shown in Table 7 and having a thickness of 0.25 mm was finished. The surface roughness of the base material shown in Table 7 was measured as follows. The results are shown in Table 7. Note that the Ry of the base material subjected to the surface roughening treatment was within the range considered preferable in Japanese Patent Application No. 2007-22206.
[Method for measuring surface roughness of Cu alloy base material]
It measured based on JISB0601-1994 using the contact-type surface roughness meter (Tokyo Seimitsu; Surfcom 1400). The surface roughness measurement conditions were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, a measurement speed of 0.3 mm / s, and a stylus tip radius of 5 μmR. The surface roughness measurement direction was a direction perpendicular to the rolling direction performed during the surface roughening treatment (the direction in which the surface roughness is maximized).

Figure 2009099282
Figure 2009099282

さらに、表面粗化処理を行わなかった母材についてCuめっき及びSnめっきを施し、表面粗化処理を行った母材についてNiめっき、Cuめっき及びSnめっきを施した後、それぞれ280℃で10秒間のリフロー処理を行って、表7に示す表面被覆層付板材A,Bを得た。また、表面被覆層付板材Bの一部についてフッ化水素アンモニウム水溶液浸漬処理を行って表面酸化物被膜を除去した後、厚さ0.1μmのSnめっきを再度施し、これにより表7に示す表面被覆層付板材Cを得た。
表面被覆層付板材の表面被覆層(Ni層、Cu層、Cu−Sn合金層、Sn層)の平均の厚さ、Cu−Sn合金層のCu含有量、露出面積率、露出間隔、板材の垂直断面における被覆層形態([D1]、[D2]、[y])及び材料表面における被覆層形態([D3]、[D4])を、下記要領で測定した。また、材料表面の表面粗さを母材の表面粗さと同じ前記方法で測定した。その結果を表7に合わせて示す。なお、Cu−Sn合金層のCu含有量はいずれも55at%であった。表面被覆層付板材B,Cの[D3]、[D4]については特願2007−22206号において好ましいとされた範囲内であった。
Further, the base material not subjected to the surface roughening treatment was subjected to Cu plating and Sn plating, and the base material subjected to the surface roughening treatment was subjected to Ni plating, Cu plating and Sn plating, and then each at 280 ° C. for 10 seconds. The plate materials A and B with a surface coating layer shown in Table 7 were obtained. Further, after removing the surface oxide film by performing immersion treatment with an aqueous solution of ammonium hydrogen fluoride on a part of the plate material B with the surface coating layer, Sn plating with a thickness of 0.1 μm was applied again, whereby the surface shown in Table 7 was obtained. The board | plate material C with a coating layer was obtained.
The average thickness of the surface coating layer (Ni layer, Cu layer, Cu—Sn alloy layer, Sn layer) of the surface coating layer-attached plate material, Cu content of Cu—Sn alloy layer, exposed area ratio, exposure interval, The covering layer form ([D1], [D2], [y]) in the vertical cross section and the covering layer form ([D3], [D4]) on the material surface were measured as follows. Further, the surface roughness of the material surface was measured by the same method as that of the base material. The results are also shown in Table 7. Note that the Cu content of the Cu—Sn alloy layer was 55 at%. [D3] and [D4] of the plate materials B and C with the surface coating layer were within the range preferred in Japanese Patent Application No. 2007-22206.

[Sn被覆層の平均の厚さ測定方法]
蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のSn被覆層の膜厚とCu−Sn合金被覆層に含有されるSn成分の膜厚の和を測定した。その後、p-ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。再度、蛍光X線膜厚計を用いて、Cu−Sn合金被覆層に含有されるSn成分の膜厚を測定した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。得られたSn被覆層の膜厚とCu−Sn合金被覆層に含有されるSn成分の膜厚の和から、Cu−Sn合金被覆層に含有されるSn成分の膜厚を差し引くことにより、Sn被覆層の平均の厚さを算出した。
[Method for measuring average thickness of Sn coating layer]
The sum of the film thickness of the Sn coating layer of the test material and the film thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). Then, it was immersed for 10 minutes in the aqueous solution which uses p-nitrophenol and caustic soda as components, and the Sn coating layer was removed. Again, the film thickness of the Sn component contained in the Cu—Sn alloy coating layer was measured using a fluorescent X-ray film thickness meter. The measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was φ0.5 mm. By subtracting the film thickness of the Sn component contained in the Cu-Sn alloy coating layer from the sum of the film thickness of the obtained Sn coating layer and the film thickness of the Sn component contained in the Cu-Sn alloy coating layer, Sn The average thickness of the coating layer was calculated.

[Ni層、Cu層、Cu−Sn合金層の平均の厚さ測定方法]
ミクロトーム法にて加工した試験材の断面に、アルゴンイオンエッチングを行い、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析処理により、Ni層、Cu層及びCu−Sn合金層の平均の厚さを算出した。なお、測定断面は、表面粗化処理の際に行った圧延方向に直角な方向の垂直断面とした。
[Cu−Sn合金層のCu含有量測定方法]
試験材をp-ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn被覆層を除去した。その後、EDX(エネルギー分散型X線分光分析器)を用いて、Cu−Sn合金被覆層のCu含有量を定量分析により求めた。
[Average thickness measurement method of Ni layer, Cu layer, Cu-Sn alloy layer]
A cross-section of the test material processed by the microtome method was subjected to argon ion etching, and observed using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer), and the resulting composition image The average thicknesses of the Ni layer, the Cu layer, and the Cu—Sn alloy layer were calculated by image analysis processing from the shades (excluding contrast such as dirt and scratches). The measurement cross section was a vertical cross section perpendicular to the rolling direction performed during the surface roughening treatment.
[Method for measuring Cu content of Cu-Sn alloy layer]
The test material was immersed in an aqueous solution containing p-nitrophenol and caustic soda as components for 10 minutes to remove the Sn coating layer. Thereafter, the Cu content of the Cu—Sn alloy coating layer was determined by quantitative analysis using EDX (energy dispersive X-ray spectrometer).

[Cu−Sn合金層の材料表面露出面積率測定方法]
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析によりCu−Sn合金層の材料表面露出面積率を測定した。
[Cu−Sn合金層の平均の材料表面露出間隔測定方法]
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察し、得られた組成像から、材料表面に引いた直線を横切るCu−Sn合金層の平均の幅(前記直線に沿った長さ)とSn層の平均の幅を足した値の平均を求めることにより、Cu−Sn合金層の平均の材料表面露出間隔を測定した。測定方向(引いた直線の方向)は、表面粗化処理の際に行った圧延方向に直角な方向とした。
[Measuring Method of Material Surface Exposed Area Ratio of Cu-Sn Alloy Layer]
The surface of the test material was observed at a magnification of 200 using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer), and the resulting composition image was shaded (dirt, scratches, etc.). The ratio of the exposed surface area of the Cu—Sn alloy layer was measured by image analysis.
[Measuring Method for Average Surface Exposure of Cu-Sn Alloy Layer]
The surface of the test material was observed at a magnification of 200 times using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer), and was drawn on the material surface from the obtained composition image. The average material surface exposure of the Cu-Sn alloy layer is obtained by calculating the average of the value obtained by adding the average width (length along the straight line) of the Cu-Sn alloy layer crossing the straight line and the average width of the Sn layer. The interval was measured. The measurement direction (the direction of the drawn straight line) was a direction perpendicular to the rolling direction performed during the surface roughening treatment.

[材料の表面に対する垂直断面の形態測定方法]
ミクロトーム法にて加工した試験材の断面に、必要に応じてアルゴンイオンエッチングを行い、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析処理により、[D1]、[D2]及び[y]を各々算出した。なお、測定断面は、表面粗化処理の際に行った圧延方向に直角な方向の垂直断面である。
[材料の表面の形態測定方法]
試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析処理により、Cu−Sn合金被覆層の最大内接円の直径[D3]及びSn被覆層の最大内接円直径[D4]を各々算出した。
[Method for measuring the shape of the vertical cross section of the material surface]
The cross section of the test material processed by the microtome method is subjected to argon ion etching if necessary, and observed using an SEM (scanning electron microscope) equipped with an EDX (energy dispersive X-ray spectrometer). [D1], [D2], and [y] were calculated from the density of the obtained composition image (excluding contrast such as dirt and scratches) by image analysis processing. The measurement cross section is a vertical cross section in a direction perpendicular to the rolling direction performed during the surface roughening treatment.
[Method for measuring surface morphology of material]
The surface of the test material is observed using an SEM (scanning electron microscope) equipped with an EDX (energy dispersive X-ray spectrometer), and the resulting composition image is shaded (excluding contrast such as dirt and scratches). Then, the maximum inscribed circle diameter [D3] of the Cu—Sn alloy coating layer and the maximum inscribed circle diameter [D4] of the Sn coating layer were calculated by image analysis processing.

得られた表面被覆層付板材A,B,Cからオス試験片及びメス試験片を形成して種々のオス/メス試験片の組み合わせを作り、フッ素系樹脂微粒子とフッ素系油を溶剤に分散、希釈し、各試験片に塗布し(又は塗布せず)、塗布後溶剤を揮発させて塗膜を形成した。この試験片を用いて摩擦係数評価試験、微摺動摩耗試験時の接触抵抗評価試験、初期接触抵抗評価試験(オス側のみ)、及び高温放置後の接触抵抗評価試験(オス側のみ)を下記要領で行った。その結果を表8に示す。
なお、フッ素系樹脂微粒子は平均粒径0.2μmのPTFE(ポリテトラフルオロエチレン)粒子、フッ素系油はPFPE(パーフルオロアルキルポリエーテル)、微粒子の割合を20質量%として溶剤に分散、希釈した。塗膜形成後、特許文献4に記載された方法で塗膜厚さを測定し、その測定値から概算して、全ての試験片において塗膜の付着量約120mg/m、うち微粒子の付着量が約27mg/mという結果を得た。
Forming male test pieces and female test pieces from the obtained plate materials A, B, and C with the surface coating layer to make various combinations of male / female test pieces, and dispersing fluorine resin fine particles and fluorine oil in a solvent, It was diluted and applied to each test piece (or not applied), and after application, the solvent was volatilized to form a coating film. Using this test piece, the following friction coefficient evaluation test, contact resistance evaluation test during fine sliding wear test, initial contact resistance evaluation test (male side only), and contact resistance evaluation test after standing at high temperature (male side only) I went there. The results are shown in Table 8.
Fluorine resin fine particles were dispersed and diluted in a solvent with PTFE (polytetrafluoroethylene) particles having an average particle size of 0.2 μm, fluorine oil was PFPE (perfluoroalkyl polyether), and the proportion of fine particles was 20% by mass. . After the coating film was formed, the thickness of the coating film was measured by the method described in Patent Document 4, and estimated from the measured value, the coating amount of the coating film was about 120 mg / m 2 , of which fine particles were deposited. The result was an amount of about 27 mg / m 2 .

[摩擦係数評価試験]
嵌合型コネクタにおける電気接点のインデント部の形状を模擬し、図3に示すような装置を用いて評価した。オス端子を模した板材のオス試験片11を水平な台12に固定し、その上にメス端子を模して半球加工(内径をφ1.5mmとした)したメス試験片13をおいて被覆層同士を接触させた。続いて、メス試験片13に3.0Nの荷重(錘14)をかけてオス試験片11を押さえ、横型荷重測定器(アイコーエンジニアリング株式会社;Model−2152)を用いて、オス試験片11を水平方向に引っ張り(摺動速度を80mm/minとした)、摺動距離5mmまでの最大摩擦力F(単位:N)を測定した。摩擦係数を下記式(1)により求めた。なお、15はロードセル、矢印は摺動方向である。
摩擦係数=F/3.0 …(1)
[Friction coefficient evaluation test]
The shape of the indented portion of the electrical contact in the fitting type connector was simulated and evaluated using an apparatus as shown in FIG. A male test piece 11 of a plate material imitating a male terminal is fixed to a horizontal base 12, and a female test piece 13 that has been hemispherically processed (inner diameter is set to φ1.5 mm) on the female terminal is placed on the male test piece 11. They were brought into contact with each other. Subsequently, a load of 3.0 N (weight 14) is applied to the female test piece 13, the male test piece 11 is pressed, and the male test piece 11 is attached using a horizontal load measuring device (Aiko Engineering Co., Ltd .; Model-2152). The sample was pulled in the horizontal direction (sliding speed was 80 mm / min), and the maximum frictional force F (unit: N) up to a sliding distance of 5 mm was measured. The coefficient of friction was determined by the following formula (1). In addition, 15 is a load cell and the arrow is a sliding direction.
Friction coefficient = F / 3.0 (1)

[微摺動摩耗試験時の接触抵抗評価試験]
嵌合型接続部品における電気接点のインデント部の形状を模擬し、図4に示すような摺動試験機(株式会社山崎精機研究所;CRS−B1050CHO)を用いて評価した。まず、オス端子を模した板材のオス試験片16を水平な台17に固定し、その上にメス端子を模して半球加工(内径をφ1.5mmとした)したメス試験片18をおいて被覆層同士を接触させた。続いて、メス試験片18に2.0Nの荷重(錘19)をかけてオス試験片16を押さえ、オス試験片16とメス試験片18の間に定電流を印加し、ステッピングモータ20を用いてオス試験片16を水平方向に摺動させ(摺動距離を50μm、摺動周波数を1.0Hzとした)、摺動回数3000回までの接触抵抗を四端子法により、開放電圧20mV、電流10mAの条件にて連続的に測定した。なお、矢印は摺動方向である。
[Contact resistance evaluation test during fine sliding wear test]
The shape of the indented portion of the electrical contact in the fitting-type connecting part was simulated and evaluated using a sliding tester (Yamazaki Seiki Laboratories; CRS-B1050CHO) as shown in FIG. First, a male test piece 16 of a plate material that imitates a male terminal is fixed to a horizontal base 17, and a female test piece 18 that has been hemispherically processed (with an inner diameter of φ1.5 mm) is imitated thereon. The coating layers were brought into contact with each other. Subsequently, a 2.0 N load (weight 19) is applied to the female test piece 18 to hold the male test piece 16, a constant current is applied between the male test piece 16 and the female test piece 18, and the stepping motor 20 is used. Then, the male test piece 16 is slid in the horizontal direction (sliding distance is 50 μm, sliding frequency is 1.0 Hz), and the contact resistance up to 3000 times of sliding is determined by the four-terminal method using an open voltage of 20 mV, current The measurement was continuously performed under the condition of 10 mA. The arrow indicates the sliding direction.

[初期及び高温放置後の接触抵抗評価試験]
各試験材(No.1〜16のオス側のみ)に対し、熱処理前及び大気中にて160℃×120hrの熱処理を行った後、接触抵抗を四端子法により、開放電圧20mV、電流10mA、無摺動の条件にて測定した。
[Initial and high temperature contact resistance evaluation test]
For each test material (only the male side of Nos. 1 to 16), after heat treatment before heat treatment and in the atmosphere at 160 ° C. × 120 hr, the contact resistance was determined by a four-terminal method using an open-circuit voltage of 20 mV, a current of 10 mA, Measurement was performed under non-sliding conditions.

図5〜7に、試験No.1,10,13における振動回数−接触抵抗のグラフを示す。
試験No.1は、オス/メス試験片とも従来型の板材Aを用い、かつオス/メス試験片ともに表面に塗膜を形成していない例で、振動回数が増加するにつれて接触抵抗が急速に上昇し、振動回数40回で接触抵抗がピークを付け、以後次第に接触抵抗が低下した後、振動回数300回の前後でしばらく接触抵抗が1mΩ以下に低下し、さらに振動回数が増加すると接触抵抗が再び上昇している。なお、確定的とはいえないが、最初の接触抵抗の上昇はSn摩耗粉(酸化物)が接点部に堆積したため、続く接触抵抗の低下はCu−Sn合金層が露出したため、接触抵抗が1mΩ以下に低下したのは母材のCuが露出したため、接触抵抗が再び上昇するのは接点部にCu摩耗粉(酸化物)が堆積したためと推測される。
5 to 7 show the test numbers. The graph of the vibration frequency-contact resistance in 1,10,13 is shown.
Test No. 1 is an example in which a conventional plate material A is used for both the male / female test pieces and no coating film is formed on the surface of both the male / female test pieces. The contact resistance rapidly increases as the number of vibrations increases. After the contact resistance peaked at 40 vibrations, the contact resistance gradually decreased thereafter, and then the contact resistance decreased to 1 mΩ or less for a while before and after 300 vibrations, and the contact resistance increased again as the number of vibrations increased. ing. Although not deterministic, the first increase in contact resistance was caused by the deposition of Sn wear powder (oxide) at the contact portion, and the subsequent decrease in contact resistance was caused by the exposure of the Cu-Sn alloy layer, resulting in a contact resistance of 1 mΩ. It is estimated that the reason why the contact resistance is increased again is that Cu wear powder (oxide) is deposited on the contact portion because the base material Cu is exposed.

これに対し、試験No.10は、オス試験片は従来型の板材A、メス試験片は改良型の板材Bを用い、かつオス/メス試験片ともに表面に塗膜を形成した例であり、最初の接触抵抗の上昇がなく(1mΩ以下)、振動回数が300回を超えて以降も接触抵抗の上昇が微少である。
また、試験No.13は、オス/メス試験片とも改良型の板材Bを用い、かつオス試験片の表面に塗膜を形成し、メス試験片の表面に塗膜を形成していない例であり、最初の接触抵抗の上昇がない点で試験No.10に類似するが、振動回数が300回を超えて以降の接触抵抗の上昇が試験No.1に類似している。
In contrast, test no. 10 is an example in which a conventional plate material A is used for the male test piece, an improved type plate material B is used for the female test piece, and a coating film is formed on the surface of both the male / female test pieces. (1 mΩ or less), and the increase in contact resistance is slight even after the number of vibrations exceeds 300.
In addition, Test No. 13 is an example in which the improved plate material B is used for both the male / female test pieces, a coating film is formed on the surface of the male test piece, and no coating film is formed on the surface of the female test piece. Test No. 3 in that there is no increase in resistance. Although the increase in contact resistance after the number of vibrations exceeds 300 times is similar to Test No. Similar to 1.

Figure 2009099282
Figure 2009099282

試験No.1〜16について上記振動回数−接触抵抗のグラフを作成し、振動回数0〜300回の領域(A領域)での接触抵抗のピーク値及びそのときの振動回数を求め、かつ振動回数301〜3000回の領域(B領域)での接触抵抗のピーク値(最大値)及びそのときの振動回数を求め、これを微摺動摩耗特性として表8に示している。なお、このような表示方式としたのは、A,B2つの領域における接触抵抗のピーク値(ピークの有無を含めて)に各試験例の特性がよく表されていると考えたからである。
また、摩擦係数については、試験No.1を基準とし、摩擦係数が試験No.1に比べてどれだけ低減したかを表8に示した。
Test No. A graph of the number of vibrations-contact resistance is created for 1 to 16, the peak value of the contact resistance in the region (A region) where the number of vibrations is 0 to 300, and the number of vibrations at that time are obtained. The peak value (maximum value) of the contact resistance in the first rotation region (B region) and the number of vibrations at that time were obtained, and these are shown in Table 8 as the fine sliding wear characteristics. The reason why such a display method is used is that it is considered that the characteristics of each test example are well represented in the peak values of contact resistance (including the presence or absence of peaks) in the two regions A and B.
For the friction coefficient, test no. 1 as a reference and the coefficient of friction is test No. 1. Table 8 shows the amount of reduction compared to 1.

表8の微摺動摩耗特性をみると、試験No.2〜6,8,9,11,12は、A領域において接触抵抗が増加し、ピーク値が現れている点で試験No.1に類似している。特に試験No.3〜6,8,9,12については,B領域において接触抵抗が大きく増加し、この点でも試験No.1に類似している。摩擦係数低減率については、オス/メス試験片の両方を改良型の板材Bを用いたNo.11,12以外は50%に達していない。   Looking at the fine sliding wear characteristics in Table 8, the test No. Nos. 2-6, 8, 9, 11, and 12 show that the contact resistance increased in the A region and the peak value appeared in Test No. Similar to 1. In particular, test no. For Nos. 3 to 6, 8, 9, and 12, the contact resistance greatly increased in the B region. Similar to 1. Regarding the coefficient of friction reduction, both male / female test pieces were No. using the improved plate material B. Other than 11 and 12, it has not reached 50%.

一方、試験No.7,14,16は試験No.10に類似し、A領域において接触抵抗が上昇せず、B領域でも接触抵抗の上昇がわずかであり、他の試験例に比べて効果が劇的に現れている。また、試験No.7,10,14,16の摩擦係数低減率をみると、いずれも50%を超え、初期及び高温長時間試験後の接触抵抗も低い。
試験No.15は試験No.13に類似し、B領域では接触抵抗の上昇がみられるが、A領域において接触抵抗が上昇せず、その点で他の試験例に比べて効果が顕著に表れている。また、試験No.13,15の摩擦係数低減率をみると、いずれも50%を超え、初期及び高温長時間試験後の接触抵抗も低い。
On the other hand, test no. 7, 14, and 16 are test Nos. Similar to 10, the contact resistance does not increase in the A region, and the contact resistance increases only slightly in the B region, and the effect appears dramatically compared to other test examples. In addition, Test No. Looking at the friction coefficient reduction rates of 7, 10, 14, and 16, all exceeded 50%, and the contact resistance after the initial and high-temperature long-time tests was low.
Test No. 15 is a test No. 15; Similar to 13, the contact resistance is increased in the B region, but the contact resistance is not increased in the A region, and the effect is remarkably exhibited as compared with the other test examples. In addition, Test No. Looking at the friction coefficient reduction rates of 13 and 15, both exceeded 50%, and the contact resistance after the initial and high-temperature long-time tests was also low.

特願2007−22206号に記載された導電材料の垂直断面に表れる被覆層構造を模式的に示す図である。It is a figure which shows typically the coating layer structure which appears in the vertical cross section of the electrically-conductive material described in Japanese Patent Application No. 2007-22206. 特願2007−22206号に記載された導電材料の表面に表れる被覆層構造を模式的に示す図である。It is a figure which shows typically the coating layer structure which appears on the surface of the electrically-conductive material described in Japanese Patent Application No. 2007-22206. 特願2007−22206号の実施例で用いられた摩擦係数測定治具の概念図である。It is a conceptual diagram of the friction coefficient measurement jig | tool used by the Example of Japanese Patent Application No. 2007-22206. 特願2007−22206号の実施例で用いられた微摺動摩耗測定治具の概念図である。It is a conceptual diagram of the fine sliding wear measuring jig used in the example of Japanese Patent Application No. 2007-22206. 実施例の試験No.1の振動回数−接触抵抗のグラフである。Test No. of Example 1 is a graph of the number of vibrations of 1-contact resistance. 実施例の試験No.10の振動回数−接触抵抗のグラフである。Test No. of Example 10 is a graph of the number of vibrations of 10-contact resistance. 実施例の試験No.13の振動回数−接触抵抗のグラフである。Test No. of Example 13 is a graph of the number of vibrations of 13-contact resistance.

符号の説明Explanation of symbols

3 母材
4 Ni層
5 Cu層
6 Cu−Sn合金層
7 Sn層
3 Base material 4 Ni layer 5 Cu layer 6 Cu-Sn alloy layer 7 Sn layer

Claims (10)

銅又は銅合金母材の表面にCu−Sn合金層とSn層がこの順に形成された表面被覆層付板材から製造されたメス端子とオス端子からなる嵌合型コネクタにおいて、少なくともオス端子の接触部の表面にフッ素系樹脂微粒子とフッ素系油が混合した塗膜が付着し、かつメス端子とオス端子のいずれか一方又は双方の表面被覆層付板材は、母材の表面にCu−Sn合金層とSn層がこの順に形成され、その材料表面はリフロー処理されていて、前記Cu−Sn合金層の平均の厚さが0.1〜3.0μm、かつCu含有量が20〜70at%、前記Sn層の平均の厚さが0.2〜5.0μmであり、前記Cu−Sn合金層の一部が材料表面に露出しその露出面積率が3〜75%であることを特徴とする嵌合型コネクタ。 In a fitting type connector comprising a female terminal and a male terminal manufactured from a plate with a surface coating layer in which a Cu-Sn alloy layer and a Sn layer are formed in this order on the surface of a copper or copper alloy base material, at least contact of a male terminal A coating film in which fluorine resin fine particles and fluorine oil are mixed adheres to the surface of the part, and either or both of the female terminal and the male terminal are coated with a Cu-Sn alloy on the surface of the base material. Layer and Sn layer are formed in this order, the material surface is reflowed, the average thickness of the Cu-Sn alloy layer is 0.1-3.0 μm, and the Cu content is 20-70 at%, The average thickness of the Sn layer is 0.2 to 5.0 μm, a part of the Cu—Sn alloy layer is exposed on the material surface, and the exposed area ratio is 3 to 75%. Mating type connector. 前記母材の表面は、少なくとも一方向の算術平均粗さRaが0.15μm以上で、全ての方向の算術平均粗さRaが4.0μm以下であることを特徴とする請求項1に記載された嵌合型コネクタ。 2. The surface of the base material according to claim 1, wherein the arithmetic average roughness Ra in at least one direction is 0.15 μm or more and the arithmetic average roughness Ra in all directions is 4.0 μm or less. Mating connector. 銅又は銅合金母材の表面にCu−Sn合金層とSn層がこの順に形成された表面被覆層付板材から製造されたメス端子とオス端子からなる嵌合型コネクタにおいて、少なくともオス端子の接触部の表面にフッ素系樹脂微粒子とフッ素系油が混合した塗膜が付着し、かつメス端子とオス端子のいずれか一方又は双方の表面被覆層付板材は、母材の表面にCu−Sn合金層とSn層がこの順に形成され、その材料表面はリフロー処理されていて、前記Cu−Sn合金層の平均の厚さが0.2〜3.0μm、かつCu含有量が20〜70at%、前記Sn層の平均の厚さが0.2〜5.0μmであり、その表面粗さが、少なくとも一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが3.0μm以下であり、前記Cu−Sn合金層の一部が材料表面に露出しその露出面積率が3〜75%であることを特徴とする嵌合型コネクタ。 In a fitting type connector comprising a female terminal and a male terminal manufactured from a plate with a surface coating layer in which a Cu-Sn alloy layer and a Sn layer are formed in this order on the surface of a copper or copper alloy base material, at least contact of a male terminal A coating film in which fluorine resin fine particles and fluorine oil are mixed adheres to the surface of the part, and either or both of the female terminal and the male terminal are coated with a Cu-Sn alloy on the surface of the base material. Layer and Sn layer are formed in this order, the material surface is reflow-treated, the average thickness of the Cu-Sn alloy layer is 0.2 to 3.0 μm, and the Cu content is 20 to 70 at%, The average thickness of the Sn layer is 0.2 to 5.0 μm, the surface roughness is an arithmetic average roughness Ra in at least one direction of 0.15 μm or more, and an arithmetic average roughness Ra in all directions. Is less than 3.0μm Mating connector part of the Cu-Sn alloy layer is the exposed area ratio was exposed on the surface of the material is characterized in that it is a 3-75%. 前記表面被覆層付板材の表面は、少なくとも一方向における平均の表面露出間隔が0.01〜0.5mmであることを特徴とする請求項3に記載された嵌合型コネクタ。 4. The fitting connector according to claim 3, wherein an average surface exposure interval in at least one direction is 0.01 to 0.5 mm on the surface of the surface covering layer-attached plate member. 銅又は銅合金母材の表面にCu−Sn合金層とSn層がこの順に形成された表面被覆層付板材から製造されたメス端子とオス端子からなる嵌合型コネクタにおいて、少なくともオス端子の接触部の表面にフッ素系樹脂微粒子とフッ素系油が混合した塗膜が付着し、かつメス端子とオス端子のいずれか一方又は双方の表面被覆層付板材は、母材の表面にCu−Sn合金層とSn層がこの順に形成され、その材料表面はリフロー処理されていて、前記Cu−Sn合金層の平均の厚さが0.2〜3.0μmであり、板材表面に対する垂直断面において、前記Sn層の最小内接円の直径[D1]が0.2μm以下、前記Sn層の最大内接円の直径[D2]が1.2〜20μm、材料の最表点と前記Cu−Sn合金層の最表点との高度差[y]が0.2μm以下であることを特徴とする嵌合型コネクタ。 In a fitting type connector comprising a female terminal and a male terminal manufactured from a plate with a surface coating layer in which a Cu-Sn alloy layer and a Sn layer are formed in this order on the surface of a copper or copper alloy base material, at least contact of a male terminal A coating film in which fluorine resin fine particles and fluorine oil are mixed adheres to the surface of the part, and either or both of the female terminal and the male terminal are coated with a Cu-Sn alloy on the surface of the base material. Layer and Sn layer are formed in this order, the surface of the material is reflowed, and the average thickness of the Cu-Sn alloy layer is 0.2 to 3.0 μm. The diameter [D1] of the smallest inscribed circle of the Sn layer is 0.2 μm or less, the diameter [D2] of the largest inscribed circle of the Sn layer is 1.2 to 20 μm, the outermost point of the material and the Cu—Sn alloy layer The difference in height [y] from the outermost point is 0.2μ Mating connector, characterized in that at most. 前記Sn層の一部として、リフロー処理後にさらにSnめっき層が形成されていることを特徴とする請求項5に記載された嵌合型コネクタ。 6. The fitting connector according to claim 5, wherein an Sn plating layer is further formed as a part of the Sn layer after the reflow process. オス端子とメス端子の双方の接触部の表面に前記塗膜が付着していることを特徴とする請求項1〜6のいずれかに記載された嵌合形コネクタ。 The fitting connector according to any one of claims 1 to 6, wherein the coating film is attached to the surfaces of the contact portions of both the male terminal and the female terminal. 前記被覆層付板材は、表面被覆層として前記Cu−Sn合金層の下にCu層を有することを特徴とする請求項1〜7のいずれかに記載された嵌合型コネクタ。 The fitting type connector according to any one of claims 1 to 7, wherein the plate material with a covering layer has a Cu layer under the Cu-Sn alloy layer as a surface covering layer. 前記被覆層付板材は、表面被覆層として前記母材とCu−Sn合金層の間にNi層を有することを特徴とする請求項1〜7のいずれかに記載された嵌合型コネクタ。 The fitting type connector according to any one of claims 1 to 7, wherein the plate material with a covering layer has a Ni layer between the base material and the Cu-Sn alloy layer as a surface covering layer. 前記被覆層付板材は、表面被覆層として前記Ni層とCu−Sn合金層の間にCu層を有することを特徴とする請求項9に記載された嵌合型コネクタ。 The fitting type connector according to claim 9, wherein the plate material with a covering layer has a Cu layer between the Ni layer and the Cu—Sn alloy layer as a surface covering layer.
JP2007267173A 2007-10-12 2007-10-12 Fitting type connector Pending JP2009099282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267173A JP2009099282A (en) 2007-10-12 2007-10-12 Fitting type connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267173A JP2009099282A (en) 2007-10-12 2007-10-12 Fitting type connector

Publications (1)

Publication Number Publication Date
JP2009099282A true JP2009099282A (en) 2009-05-07

Family

ID=40702129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267173A Pending JP2009099282A (en) 2007-10-12 2007-10-12 Fitting type connector

Country Status (1)

Country Link
JP (1) JP2009099282A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042860A (en) * 2009-08-24 2011-03-03 Kobe Steel Ltd Tin plated copper or copper alloy material for connecting component used for connection with aluminum conductive member
JP2011157588A (en) * 2010-01-29 2011-08-18 Kobe Steel Ltd Tin-plated copper alloy sheet material for fitting type terminal, and method for producing the same
JP2011204617A (en) * 2010-03-26 2011-10-13 Kobe Steel Ltd Copper alloy for component for connection and conductive material
JP2011210479A (en) * 2010-03-29 2011-10-20 Kobe Steel Ltd Copper or copper alloy plate material with sn plating for fitting type terminal
WO2014034460A1 (en) * 2012-08-31 2014-03-06 株式会社オートネットワーク技術研究所 Plated terminal for connector, and terminal pair
CN105189823A (en) * 2013-04-30 2015-12-23 第一电子工业株式会社 Electronic component
KR20160139054A (en) * 2012-10-04 2016-12-06 제이엑스금속주식회사 Metal material for use in electronic component, and method for producing same
CN112840064A (en) * 2018-10-17 2021-05-25 株式会社神户制钢所 Copper or copper alloy strip with surface coating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171917U (en) * 1987-04-28 1988-11-09
JPH0822858A (en) * 1994-07-06 1996-01-23 Fuji Electric Co Ltd Reducing method for sliding resistance of switching apparatus sliding component
JP2001203021A (en) * 2000-01-20 2001-07-27 Auto Network Gijutsu Kenkyusho:Kk Insertion-fitting connecting terminal
JP2006077307A (en) * 2004-09-10 2006-03-23 Kobe Steel Ltd Electrically conductive material for connecting parts and production method therefor
JP2006173059A (en) * 2004-12-20 2006-06-29 Kobe Steel Ltd Material for contact of connector
JP2006183068A (en) * 2004-12-27 2006-07-13 Kobe Steel Ltd Conductive material for connecting part and method for manufacturing the conductive material
JP2007258156A (en) * 2006-02-27 2007-10-04 Kobe Steel Ltd Conductive material for connection component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171917U (en) * 1987-04-28 1988-11-09
JPH0822858A (en) * 1994-07-06 1996-01-23 Fuji Electric Co Ltd Reducing method for sliding resistance of switching apparatus sliding component
JP2001203021A (en) * 2000-01-20 2001-07-27 Auto Network Gijutsu Kenkyusho:Kk Insertion-fitting connecting terminal
JP2006077307A (en) * 2004-09-10 2006-03-23 Kobe Steel Ltd Electrically conductive material for connecting parts and production method therefor
JP2006173059A (en) * 2004-12-20 2006-06-29 Kobe Steel Ltd Material for contact of connector
JP2006183068A (en) * 2004-12-27 2006-07-13 Kobe Steel Ltd Conductive material for connecting part and method for manufacturing the conductive material
JP2007258156A (en) * 2006-02-27 2007-10-04 Kobe Steel Ltd Conductive material for connection component

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042860A (en) * 2009-08-24 2011-03-03 Kobe Steel Ltd Tin plated copper or copper alloy material for connecting component used for connection with aluminum conductive member
JP2011157588A (en) * 2010-01-29 2011-08-18 Kobe Steel Ltd Tin-plated copper alloy sheet material for fitting type terminal, and method for producing the same
JP2011204617A (en) * 2010-03-26 2011-10-13 Kobe Steel Ltd Copper alloy for component for connection and conductive material
JP2011210479A (en) * 2010-03-29 2011-10-20 Kobe Steel Ltd Copper or copper alloy plate material with sn plating for fitting type terminal
US20150236439A1 (en) * 2012-08-31 2015-08-20 Autonetworks Technologies, Ltd. Plated terminal for connector, and terminal pair
CN104604036A (en) * 2012-08-31 2015-05-06 株式会社自动网络技术研究所 Plated terminal for connector, and terminal pair
WO2014034460A1 (en) * 2012-08-31 2014-03-06 株式会社オートネットワーク技術研究所 Plated terminal for connector, and terminal pair
JPWO2014034460A1 (en) * 2012-08-31 2016-08-08 株式会社オートネットワーク技術研究所 Plated terminals and terminal pairs for connectors
KR20160139054A (en) * 2012-10-04 2016-12-06 제이엑스금속주식회사 Metal material for use in electronic component, and method for producing same
KR102011186B1 (en) 2012-10-04 2019-08-14 제이엑스금속주식회사 Metal material for use in electronic component, and method for producing same
CN105189823A (en) * 2013-04-30 2015-12-23 第一电子工业株式会社 Electronic component
EP2993253A4 (en) * 2013-04-30 2017-01-04 DDK Ltd. Electronic component
US9705221B2 (en) 2013-04-30 2017-07-11 Ddk Ltd. Electronic component
KR101788688B1 (en) * 2013-04-30 2017-10-20 다이이치 덴시 고교 가부시키가이샤 Electronic component
CN112840064A (en) * 2018-10-17 2021-05-25 株式会社神户制钢所 Copper or copper alloy strip with surface coating

Similar Documents

Publication Publication Date Title
JP4024244B2 (en) Conductive material for connecting parts and method for manufacturing the same
JP4771970B2 (en) Conductive material for connecting parts
JP5138827B1 (en) Metal materials for electronic parts, connector terminals, connectors and electronic parts using the same
KR101162849B1 (en) Sn-plated copper or sn-plated copper alloy having excellent heat resistance and manufacturing method thereof
JP5464792B2 (en) Method for manufacturing mating connector terminal
JP5005420B2 (en) Mating connector terminal and manufacturing method thereof
US8076582B2 (en) Terminal for engaging type connector
JP5284526B1 (en) Metal material for electronic parts and method for producing the same
JP2009099282A (en) Fitting type connector
JP5968668B2 (en) Metal materials for electronic parts
EP1788585A1 (en) Conductive material for connecting part and method for manufacturing the conductive material
TWI620835B (en) Tin-plated copper alloy terminal material and manufacturing method thereof
US9748683B2 (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP2009052076A (en) Conductive material for connecting component, and method for manufacturing the same
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
JP5419594B2 (en) Copper or copper alloy material with tin plating for connection parts used for connection with aluminum conductive members
WO2017110859A1 (en) Conductive material for connection component
JP2015045058A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP5298233B2 (en) Metal material for electronic parts and method for producing the same
KR20190093520A (en) Surface treatment of metallic material for burn in test socket, connector for burn in test socket using surface treatment of metallic material, and burn in test socket
JP5975903B2 (en) Mating connector terminal
JP2015045053A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045042A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045051A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045057A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Effective date: 20120807

Free format text: JAPANESE INTERMEDIATE CODE: A02