JP2009098432A - Device for converting laminated multi-channel optical path and method of manufacturing the same - Google Patents

Device for converting laminated multi-channel optical path and method of manufacturing the same Download PDF

Info

Publication number
JP2009098432A
JP2009098432A JP2007270127A JP2007270127A JP2009098432A JP 2009098432 A JP2009098432 A JP 2009098432A JP 2007270127 A JP2007270127 A JP 2007270127A JP 2007270127 A JP2007270127 A JP 2007270127A JP 2009098432 A JP2009098432 A JP 2009098432A
Authority
JP
Japan
Prior art keywords
substrate
groove
grooves
optical path
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007270127A
Other languages
Japanese (ja)
Inventor
Yuji Yamamoto
雄二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2007270127A priority Critical patent/JP2009098432A/en
Publication of JP2009098432A publication Critical patent/JP2009098432A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable device for converting multi-channel optical path of low loss for converting a plurality of optical paths using a mirror, and to provide a simple manufacturing method. <P>SOLUTION: In the method of manufacturing the device for converting multi-channel optical path consisting of a plurality of vertical waveguides, a plurality of horizontal waveguides, and a mirror formed at the intersection of them, grooves are formed in parallel with a transparent substrate; the substrate is cut perpendicularly to the grooves; the face having the grooves is butted on a transparent substrate end face of a width substantially the same as the cut width, and resin for a core is filled into the formed holes to provide the vertical waveguides. Also, the device for converting multi-channel optical path manufactured by the manufacturing method is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、チップ間、ボード間の光インターコネクションの間を効率的に接続するために必要な、光回路の進行方向を変換する多チャンネル光路変換素子において、損失が少なく信頼性の高い多チャネルの光路変換素子、及びその有効な作製方法に関する。   The present invention relates to a multi-channel optical path conversion element for converting the traveling direction of an optical circuit, which is necessary to efficiently connect between chips and between optical interconnections between boards. The present invention relates to an optical path conversion element and an effective manufacturing method thereof.

情報量の増大、処理速度の高速化にともない、メタル配線では対応できない状況が予想され、光を用いた光インターコネクションの開発が進められている。これらの普及には低価格化と量産化が要望されており、取り扱いの容易な樹脂製光導波路がその有力な構成部材として開発されている。 導波路用の樹脂材料としては、フッ素化ポリイミド樹脂、エポキシ系樹脂、アクリル系樹脂、シリコーン樹脂等が用いられる。光インターコネクションを安価に効率よく生産するためには光インターコネクションに使われるLD、PD等の半導体素子を平面実装できることが重要である。そのためには水平方向の樹脂製光導波路の光軸を急激に曲げる光路変換の技術、特に、2〜16チャンネルなどの、複数の光信号をパラレルに送受信することが出来る様々な多チャネルの光路変換素子が必要とされている。これらの光路変換素子では損失が少なく、チャンネル間で特性の揃った、かつコア同士の位置関係が維持されていることが求められている。特にコア同士の位置関係の維持はデバイス特性に直接影響するためその精度は±2.5μm以下にすることが求められている。   As the amount of information increases and the processing speed increases, it is expected that metal wiring will not be able to cope with it, and the development of optical interconnection using light is being promoted. For these spreads, low cost and mass production are demanded, and a resin optical waveguide that is easy to handle has been developed as an effective component. As the resin material for the waveguide, fluorinated polyimide resin, epoxy resin, acrylic resin, silicone resin, or the like is used. In order to efficiently and inexpensively produce optical interconnections, it is important that semiconductor elements such as LDs and PDs used for optical interconnections can be mounted on a plane. To that end, optical path conversion technology that sharply bends the optical axis of the horizontal resin optical waveguide, especially various multi-channel optical path conversion capable of transmitting and receiving a plurality of optical signals in parallel such as 2 to 16 channels. A device is needed. These optical path conversion elements are required to have little loss, have uniform characteristics between channels, and maintain the positional relationship between cores. In particular, maintaining the positional relationship between the cores directly affects the device characteristics, so that the accuracy is required to be ± 2.5 μm or less.

既存技術では、光路変換部品として、片端に傾斜端面を有し、かつ前記傾斜端面の傾斜角及び傾斜端面における光導波路コアのサイズ、配置等が概ね等しい一対の光導波路の傾斜端面同士を対向させ、この傾斜端面における光導波路のコアが概ね一致するように前記傾斜端面同士を接続し、前記一対の光導波路が概ねV字型に固定され、前記V字型の光導波路の頂部を除去してコアを所定の位置まで露出させて反射面が設けられたものを所定の間隔で並列に積層し、コアより屈折率の低い物質で覆って作製する多チャネル光路変換部品が提案されている(特許文献1参照)。   In the existing technology, as the optical path conversion component, the inclined end faces of a pair of optical waveguides having an inclined end face at one end and the inclination angle of the inclined end face and the size and arrangement of the optical waveguide cores at the inclined end faces are made to face each other. The inclined end faces are connected to each other so that the cores of the optical waveguides at the inclined end faces are substantially coincident with each other, the pair of optical waveguides are fixed in a substantially V shape, and the top of the V shaped optical waveguide is removed. A multi-channel optical path conversion component has been proposed in which a core is exposed to a predetermined position and a reflection surface is provided, which are laminated in parallel at a predetermined interval and covered with a material having a refractive index lower than that of the core (patent) Reference 1).

また、多チャンネルの光路変換部品として、直交する光導波路が形成された同形の基板同士を光軸が所定の相対位置をとるように貼り合わせ、その後直交する光導波路部にミラーを形成する方法が提案されている(特許文献2参照)。   In addition, as a multi-channel optical path conversion component, there is a method in which identical substrates on which orthogonal optical waveguides are formed are bonded together so that the optical axes take a predetermined relative position, and then a mirror is formed on the orthogonal optical waveguide portions. It has been proposed (see Patent Document 2).

さらに、光部品と光配線との光結合が良く、かつ製造が容易な構造を持つ光配線層、及びその光配線層を用いた光・電気配線基板として、支持体の上に剥離膜を形成し、剥離膜の上にコアとクラッドからなる光配線層を形成し、光配線層に垂直な孔をレーザーによって開け、孔をコア材と同じ材料で埋め、コアを作り、両コアが交差している部分にダイシングにより溝を入れてミラーを形成し、剥離液に漬け、支持体から光配線層を剥がし、所望の光配線層を作る方法が提案されている(特許文献3参照)。
特開2001−194540号公報 特開2003−315578号公報 特開2000−304953号公報
In addition, an optical wiring layer with a structure that facilitates optical coupling between optical components and optical wiring and is easy to manufacture, and a release film is formed on the support as an optical / electrical wiring board using the optical wiring layer Then, an optical wiring layer consisting of a core and a clad is formed on the release film, a hole perpendicular to the optical wiring layer is opened with a laser, the hole is filled with the same material as the core material, a core is formed, and both cores intersect. A method of forming a desired optical wiring layer by forming a mirror by dicing into a portion where the mirror is formed, immersing it in a stripping solution, peeling off the optical wiring layer from the support, has been proposed (see Patent Document 3).
JP 2001-194540 A JP 2003-315578 A JP 2000-304953 A

前述した特開2001−194540号公報による作製方法では、傾斜面の合った導波路を作製する工程、これらを張り合わせる工程など精密な作業を必要とし工程が複雑であり、水平導波路と垂直導波路を別々に作製することで垂直導波路と水平導波路の位置ずれが起こりやすく、損失が増大する恐れがある。   In the manufacturing method disclosed in Japanese Patent Laid-Open No. 2001-194540 described above, a precise process such as a process of manufacturing a waveguide with inclined surfaces and a process of bonding them together is complicated, and the process is complicated. If the waveguides are separately manufactured, the vertical waveguide and the horizontal waveguide are likely to be misaligned, and the loss may increase.

また、特開2003−315578号公報による作製方法では、導波路が形成された基板同士を貼り合わせる工程が精密な作業を必要とし、デバイスとして必要な±2.5μm以下の精度を維持することが困難であり、位置ずれが起こりやすく、チャンネル間の損失変化が増大する恐れがある。   Moreover, in the manufacturing method by Unexamined-Japanese-Patent No. 2003-315578, the process of bonding the board | substrates in which the waveguide was formed requires a precise operation | work, and the precision of ± 2.5 micrometers or less required as a device is maintained. It is difficult, misalignment is likely to occur, and loss change between channels may increase.

さらに、特開2000−304953号公報による作製方法では、交差構造を作製した後にダイシングにより溝を入れてミラーを形成するために、交差部の接続精度は高いものの、剥離液による剥離によって光配線基板に湾曲や変形が生じるため高い寸法精度の光配線層を得ることが難しい。   Further, in the manufacturing method according to Japanese Patent Application Laid-Open No. 2000-304953, since the mirror is formed by dicing after forming the cross structure, the optical wiring board is formed by peeling with a peeling liquid, although the connection accuracy of the crossing portion is high. Therefore, it is difficult to obtain an optical wiring layer with high dimensional accuracy.

また、レーザーによる孔開けは使用するレーザーの種類により差があるが、時間が掛かったり、テーパーが付いたり、孔の周りに付着物が付く等の不具合がある。また、そもそも孔開け位置を100mmφ基板全面に渡り±2.5μmの精度で制御するのは非常に困難である。   In addition, although there are differences in the drilling with a laser depending on the type of laser to be used, there are problems such as taking time, tapering, and deposits around the hole. In the first place, it is very difficult to control the drilling position with an accuracy of ± 2.5 μm over the entire surface of the 100 mmφ substrate.

本発明は、複数の垂直導波路と複数の水平導波路とその交差部に形成されたミラーからなる多チャンネル光路変換素子において、透明基板に平行に溝を形成し基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板端面に溝が形成された面を突き合わせ形成される孔にコア用樹脂が充填され、垂直導波路としたことを特徴とする、多チャンネル光路変換素子の作製方法である。   The present invention relates to a multi-channel optical path conversion element comprising a plurality of vertical waveguides, a plurality of horizontal waveguides, and mirrors formed at the intersections thereof, wherein grooves are formed in parallel to the transparent substrate, and the substrate is cut perpendicular to the grooves. Fabrication of a multi-channel optical path conversion element characterized in that a core waveguide is filled in a hole formed by abutting a face having a groove formed on the end face of a transparent substrate having a thickness substantially the same as the cut width to form a vertical waveguide Is the method.

また、透明基板に平行に溝を形成し、該溝にコア用樹脂を所望の厚さ充填しその上にクラッド用樹脂を充填し基板表面を平滑にし、基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板端面に溝が形成された面を突き合わせ接着し垂直導波路としたことを特徴とする、上記の多チャンネル光路変換素子の作製方法である。   Also, a groove is formed in parallel to the transparent substrate, the core resin is filled to a desired thickness, and a clad resin is filled thereon to smooth the substrate surface, and the substrate is cut perpendicularly to the groove and cut. A method for producing the multi-channel optical path conversion element as described above, characterized in that a vertical waveguide is formed by abutting and bonding a surface having a groove formed on an end surface of a transparent substrate having substantially the same thickness as the width.

また、透明基板に平行に溝を形成し基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板端面に溝が形成された面を突き合わせ、溝及び突き合わせ面にコア用樹脂を注入し硬化させ垂直導波路としたことを特徴とする、上記の多チャンネル光路変換素子の作製方法である。   Also, a groove is formed in parallel with the transparent substrate, the substrate is cut perpendicular to the groove, the surface on which the groove is formed is abutted on the end surface of the transparent substrate having the same thickness as the cut width, and the core resin is injected into the groove and the abutting surface This is a method for producing the multi-channel optical path conversion element described above, characterized in that it is cured and formed into a vertical waveguide.

また、透明基板に平行に溝を形成し、該溝にコア用樹脂を充填し基板表面を平滑にし、基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板端面に溝が形成された面を突き合わせ接着し垂直導波路とした上記の多チャンネル光路変換素子の作製方法である。   Also, a groove is formed in parallel to the transparent substrate, the core resin is filled into the groove, the substrate surface is smoothed, the substrate is cut perpendicular to the groove, and a groove is formed on the end surface of the transparent substrate having substantially the same thickness as the cut width. This is a method of manufacturing the multi-channel optical path conversion element as described above, in which the formed surfaces are butted and bonded to form a vertical waveguide.

また、透明基板に平行に溝を形成し、基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板に前記溝と同一ピッチで溝を形成し、該透明基板端面に前記透明基板の溝の面を突き合わせ、溝及び突き合わせ面にコア用樹脂を注入硬化し垂直導波路としたことを特徴とする、上記の多チャンネル光路変換素子の作製方法である。   Further, grooves are formed in parallel with the transparent substrate, the substrate is cut perpendicular to the grooves, grooves are formed at the same pitch as the grooves on the transparent substrate having the same thickness as the cut width, and the transparent substrate is formed on the transparent substrate end face. This is a method for producing a multi-channel optical path conversion element, characterized in that the groove surfaces are butted and a core resin is injected and cured into the grooves and the butted surfaces to form a vertical waveguide.

また、透明基板に平行に溝を形成し、該溝にコア用樹脂を充填し基板表面を平滑にし、基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板に前記溝と同一ピッチで溝を形成し、該溝にコア用樹脂を充填し基板表面を平滑にし、基板を溝と垂直にカットし、該透明基板端面に前記透明基板の溝の面を両方の溝位置が一致するように突き合わせ接着し垂直導波路としたことを特徴とする、上記の多チャンネル光路変換素子の作製方法である。   Also, a groove is formed in parallel to the transparent substrate, the core resin is filled in the groove, the substrate surface is smoothed, the substrate is cut perpendicular to the groove, and the transparent substrate having the same thickness as the cut width is the same as the groove. Grooves are formed at a pitch, the core resin is filled into the grooves, the substrate surface is smoothed, the substrate is cut perpendicular to the grooves, and the groove surface of the transparent substrate is aligned with the end surface of the transparent substrate. Thus, the multi-channel optical path conversion element manufacturing method described above is characterized in that a vertical waveguide is formed by butt-bonding.

さらに、上記の垂直導波路を用い、水平導波路を多層にしたことを特徴とする、多層多チャンネル光路変換素子の作製方法である。   Furthermore, the present invention provides a method for producing a multilayer multi-channel optical path conversion element, characterized in that the vertical waveguide is used and the horizontal waveguide is multilayered.

さらにまた、上記の垂直導波路を用い、基板表面に電極及びマーカーを形成したことを特徴とする、上記の多チャンネル光路変換素子の作製方法である。   Furthermore, the present invention provides a method for producing the multi-channel optical path conversion element described above, wherein electrodes and markers are formed on the substrate surface using the vertical waveguide.

さらに、上記の作製方法によって作製されたことを特徴とする多チャンネル光路変換素子である。   Furthermore, it is a multichannel optical path conversion element manufactured by the above manufacturing method.

基板に±2.5μmの位置精度で多数個の孔を開けることは技術的に非常に難しい。ドリルによる孔開けではテーパーの少ない孔が開けられるが、多数個の孔を±2.5μmの位置精度で開けることは非常に困難であり、また時間を要し実用的ではない。湿式エッチングではフォトリソグラフィーによりレジストパターンを高精度に形成できるため、孔位置を高精度に形成することは可能である。しかし、孔形状が半球状の孔になり真っ直ぐなアスペクト比の大きな孔を開けることは出来ない。サンドブラスト法でも同様にフォトリソグラフィーによりレジストパターンを高精度に形成できるため、孔位置を高精度に形成することは可能であるが、孔形状はテーパーが付きアスペクト比の大きな孔を開けることが出来ない。その他ドライエッチングでは孔形成時間が長くテーパーも発生する。レーザーでは孔周辺の汚れやテーパー等があり、テーパーの少ないアスペクト比の大きな形状の整った孔を開けることは非常に困難である。   It is technically very difficult to make a large number of holes in a substrate with a positional accuracy of ± 2.5 μm. Holes with a small taper can be made by drilling, but it is very difficult to make a large number of holes with a positional accuracy of ± 2.5 μm, and it is time consuming and impractical. In wet etching, a resist pattern can be formed with high accuracy by photolithography, so that the hole positions can be formed with high accuracy. However, the hole shape becomes a hemispherical hole, and a straight hole with a large aspect ratio cannot be formed. Similarly, the resist pattern can be formed with high precision by photolithography even in the sandblast method, so the hole position can be formed with high precision, but the hole shape is tapered and it is impossible to open a hole with a large aspect ratio. . In other dry etching, the hole formation time is long and the taper is generated. With laser, there are dirt around the hole, taper, etc., and it is very difficult to open a well-shaped hole with a small aspect ratio with little taper.

本発明では基板に平行に溝を形成し、基板を溝と垂直に短冊状にカットし、カット幅と略同じ厚みの基板端面に溝が形成された面を突き合わすことにより、アスペクト比の大きな位置精度の高い垂直導波路用孔を形成することが出来き、垂直導波路長の長い光路変換素子が容易に作成できる。また、溝あるいは孔に樹脂を充填しコアとし、溝あるいは孔を形成した基板をクラッドとすることにより、従来のようにクラッド用の孔を基板に開け、クラッド材を充填し、該クラッドにコア用の孔を開け、該孔にコアを充填する方法に比べ工程が大幅に短くなり、作製コストが低減できる。   In the present invention, a groove is formed in parallel with the substrate, the substrate is cut into a strip shape perpendicular to the groove, and the surface on which the groove is formed is abutted with the substrate end surface having a thickness substantially the same as the cut width, thereby increasing the aspect ratio. A vertical waveguide hole with high positional accuracy can be formed, and an optical path conversion element having a long vertical waveguide length can be easily formed. Also, a groove or hole is filled with a resin to form a core, and a substrate on which the groove or hole is formed is used as a clad, so that a clad hole is formed in the substrate as in the prior art, and a clad material is filled. Compared with the method of opening a hole for filling and filling the hole with the core, the process is significantly shortened, and the production cost can be reduced.

以下、本発明の水平導波路が1層の多チャンネル光路変換素子作製法の1例について詳述する。多層の多チャンネル光路変換素子についても同様な工程を用いることにより作製できる。   Hereinafter, an example of a method for producing a multi-channel optical path conversion element having a single horizontal waveguide according to the present invention will be described in detail. A multilayer multi-channel optical path conversion element can also be manufactured by using the same process.

図1は本発明の多チャンネル光路変換素子作製工程を説明する図である。多チャンネル光路変換素子は以下のような工程で作製される。   FIG. 1 is a diagram for explaining a multi-channel optical path conversion element manufacturing process according to the present invention. The multi-channel optical path conversion element is manufactured by the following process.

(a) 平板状の透明基板に所定のピッチの所定の幅、深さの平行な溝をダイサーで形成する。溝の断面形状は矩形あるいは矩形に近いものが望ましいが、U字形でもよい。ピッチは250μmが通常よく使用されるが、125μmやその他のピッチでも良い。マルチモードの光を使用する場合は、溝の幅、深さは数十μmである。その最適な値は入射条件や出射条件により異なる。基板としては透明製の高いガラスや樹脂が使用できる。耐熱性を要求される用途ではガラスや耐熱性に富むエポキシ樹脂等が適している。この基板を次に接着する基板厚さに略等しい幅で溝と垂直方向に完全カットする。この溝が垂直導波路用の溝になる。カット幅は次に接着する基板の厚さに等しいことが望ましいが、異なる場合は接着後表面の段差をなくすために研削研磨を行い、表面を平坦にする等の平坦化処理が損失を下げるためには必要になる。   (a) A parallel groove having a predetermined width and a predetermined width is formed on a flat transparent substrate with a dicer. The cross-sectional shape of the groove is preferably rectangular or nearly rectangular, but may be U-shaped. The pitch is usually 250 μm, but 125 μm or other pitches may be used. When multimode light is used, the width and depth of the groove are several tens of μm. The optimum value varies depending on the incident condition and the emission condition. Transparent high glass or resin can be used as the substrate. For applications requiring heat resistance, glass or epoxy resin with high heat resistance is suitable. This substrate is completely cut in the direction perpendicular to the groove with a width substantially equal to the thickness of the substrate to be subsequently bonded. This groove becomes a groove for a vertical waveguide. It is desirable that the cut width is equal to the thickness of the substrate to be bonded next, but if it is different, the surface is flattened by grinding and polishing to eliminate the step on the surface after bonding, and the surface is flattened to reduce loss. Is needed.

(b) カットした溝付き短冊3を示す。   (b) A cut grooved strip 3 is shown.

(c) 平板状の透明基板に水平導波路用の溝をダイサーで形成する。ピッチ、溝幅、深さは垂直導波路用溝と同じである。次にこの基板を略水平導波路の長さに等しい幅で溝と垂直に完全カットする。   (c) A horizontal waveguide groove is formed on a flat transparent substrate with a dicer. The pitch, groove width, and depth are the same as the vertical waveguide groove. The substrate is then completely cut perpendicular to the groove with a width approximately equal to the length of the horizontal waveguide.

(d) カットした短冊6を示す。   (d) The cut strip 6 is shown.

(e) 次に短冊3を短冊6に接着する。短冊3の溝が形成された面を短冊6の端面にそれぞれの溝位置が一致するように接着する。接着はコア充填用紫外線硬化樹脂で行い、コア充填と短冊同士の接着を同時に行うのが効率的であるが、溝をそれぞれ事前に樹脂で充填しておき、はみ出した樹脂を研削研磨で除き表面を平坦にし、両者を接着剤で接着することも可能である。接着剤は透明性が高く、基板の屈折率に近いものが好ましい。コア用樹脂はエポキシやシリコーン等の耐熱性の高い樹脂が耐熱性を要求される用途には適しているが、耐熱性をそれほど要求されない用途にはアクリル系の樹脂も使用できる。樹脂の屈折率は入射出射の接続の条件により最適屈折率が異なる。通常はクラッドとなる基板の屈折率と樹脂の屈折率から計算した開口数(NA)が0.2から0.3となる屈折率の樹脂を使用するのが好ましい。また、導波路用の細い溝に効率よく充填する場合には、充填時の樹脂粘度が0.1〜10Pa・s(1〜100ポイズ)程度であることが望ましい。短冊の接着は接着剤を用いるのが簡便であるが、熱圧着等の方法も可能である。垂直導波路用溝が形成された短冊3を水平導波路用溝が形成された短冊6に接着する方法を上に示したが、垂直導波路用溝が形成された短冊3に溝を形成していない短冊を接着し、その後ダイサーで水平導波路用溝を形成することも可能である。   (e) Next, the strip 3 is bonded to the strip 6. The surface of the strip 3 where the grooves are formed is bonded to the end surface of the strip 6 so that the respective groove positions coincide. Adhesion is performed with UV-curing resin for core filling, and it is efficient to perform core filling and adhesion between strips at the same time, but the grooves are filled with resin in advance, and the protruding resin is removed by grinding and polishing. It is also possible to flatten the surfaces and bond them with an adhesive. The adhesive is preferably highly transparent and close to the refractive index of the substrate. The core resin is suitable for applications where high heat resistance such as epoxy and silicone is required for heat resistance, but acrylic resin can also be used for applications where heat resistance is not so required. As for the refractive index of the resin, the optimum refractive index varies depending on the connection conditions of incident and outgoing. Usually, it is preferable to use a resin having a refractive index such that the numerical aperture (NA) calculated from the refractive index of the substrate serving as the cladding and the refractive index of the resin is 0.2 to 0.3. In addition, when the narrow groove for the waveguide is efficiently filled, it is desirable that the resin viscosity at the time of filling is about 0.1 to 10 Pa · s (1 to 100 poise). It is convenient to use an adhesive for adhering the strips, but a method such as thermocompression bonding is also possible. The method for adhering the strip 3 formed with the vertical waveguide groove to the strip 6 formed with the horizontal waveguide groove is shown above. However, the strip 3 is formed with the vertical waveguide groove. It is also possible to bond the strips that have not been formed, and then to form a horizontal waveguide groove with a dicer.

(f) (e)において樹脂が盛り上がっている場合は研削、研磨等により基板上面を平坦にし、この面に透明基板を接着する。接着は接着剤に依るのが簡便である。接着剤は透明性が高く、屈折率が基板の屈折率に近いものが適している。紫外線硬化接着剤が硬化時間が短く効率的であるが、光熱併用型や熱硬化型の接着剤でも良い。   (f) If the resin is raised in (e), the upper surface of the substrate is flattened by grinding, polishing, etc., and the transparent substrate is bonded to this surface. Adhesion is easily based on an adhesive. An adhesive having high transparency and a refractive index close to that of the substrate is suitable. The UV curable adhesive is effective with a short curing time, but it may be a photothermal combination type or thermosetting type adhesive.

(g) 水平導波路のクラッドを形成するため、透明基板を接着する代わりに、水平導波路用溝を深めに形成しておき、樹脂充填後所定のコア高さになるようにダイサー等で不要部分を除去し、該部に屈折率が基板に近い透明樹脂を充填しクラッドを形成しても良い。   (g) Instead of adhering a transparent substrate to form a horizontal waveguide clad, the horizontal waveguide groove is formed deeper and is not necessary with a dicer or the like so that it reaches the predetermined core height after resin filling. The clad may be formed by removing the portion and filling the portion with a transparent resin having a refractive index close to that of the substrate.

(h) 次に水平導波路と垂直導波路の交差部に斜面が来るようにV溝を形成する。斜面に反射率の高い反射膜を形成するため、斜面の研磨や斜面へのコーティング膜塗布により表面粗さを小さくし、スパタリングや真空蒸着等により反射率の高い金属や誘電体多層膜を成膜し、ミラーを形成する。ミラー形成後V溝は樹脂等で埋める方が信頼性の点から望ましい。   (h) Next, a V-groove is formed so that an inclined surface comes to the intersection of the horizontal waveguide and the vertical waveguide. In order to form a highly reflective film on the slope, the surface roughness is reduced by polishing the slope and applying a coating film on the slope, and a highly reflective metal or dielectric multilayer film is formed by sputtering or vacuum deposition. And forming a mirror. From the viewpoint of reliability, it is desirable to fill the V groove with a resin after forming the mirror.

ミラーと反対側の面にスパッタリングや真空蒸着による金属の成膜とフォトリソグラフィーによるパターニングにより電極を形成し、その上に半田バンプを形成し光素子をボンディングすることにより光素子付き光路変換素子を作製することが出来る。   An electrode is formed on the surface opposite to the mirror by forming a metal film by sputtering or vacuum deposition and patterning by photolithography, forming a solder bump on it and bonding the optical element to produce an optical path conversion element with an optical element. I can do it.

上記の例は導波路がL字の例を示したが、図2に示す導波路がU字のものや図3に示すクランク状のものへの応用も可能である。また図4に示す水平導波路2層品の作製も可能であり、水平導波路がさらに多層のものも可能である。   In the above example, the waveguide has an L shape. However, the waveguide shown in FIG. 2 can be applied to a U shape or a crank shape as shown in FIG. Also, a two-layer product of the horizontal waveguide shown in FIG. 4 can be manufactured, and a horizontal waveguide having a multilayer structure is also possible.

水平導波路が多層になる光路変換素子の作製に於いては、1層目基板と2層目基板にマーカーをパターニングしておき、マーカーにより位置合わせを行い、両者を接着するとによってより高精度な位置合わせが可能となる。   In the production of an optical path conversion element in which the horizontal waveguide has multiple layers, a marker is patterned on the first layer substrate and the second layer substrate, alignment is performed with the marker, and both are bonded to each other to obtain higher accuracy. Positioning becomes possible.

単チャンネルの光路変換素子も多チャンネル光路変換素子の作製法と同様な方法で作製できる。   A single-channel optical path conversion element can also be manufactured by a method similar to the manufacturing method of a multi-channel optical path conversion element.

導波路作製方法については、溝と透明基板を突き合わせて溝及び突き合わせ面に接着剤を注入するのか、溝に樹脂を充填した後、透明基板と突き合わせ接着するのか、あるいは水平導波路用溝を作製した短冊と垂直導波路用溝を形成した短冊を突き合わせ溝と突き合わせ面に接着剤を注入し硬化させるか、垂直導波路用溝を形成した短冊と水平導波路用溝を形成していない短冊を接着した後に水平導波路用溝を形成するのか等々作製方法は色々の組合せがある。どの組合せで作製するかは作製装置、加工精度、作製時間等を考慮し適宜選択する。   As for the waveguide fabrication method, the groove and the transparent substrate are abutted and adhesive is injected into the groove and the abutment surface, or the groove is filled with resin and then abutted and adhered to the transparent substrate, or a horizontal waveguide groove is fabricated. The strips formed with the vertical waveguide grooves are either cured by injecting adhesive into the abutting grooves and the abutting surfaces, or the strips with the vertical waveguide grooves and the strips without the horizontal waveguide grooves formed. There are various combinations of manufacturing methods such as forming a groove for a horizontal waveguide after bonding. Which combination is to be manufactured is appropriately selected in consideration of the manufacturing apparatus, processing accuracy, manufacturing time, and the like.

以下、実施例により説明する。   Hereinafter, an example explains.

厚さ2.5mmのホウケイ酸ガラス基板に250μmピッチの深さ70μm、幅40μmの平行な溝をダイサーで形成し、この溝に40μm高さでコア用紫外線硬化樹脂を充填し硬化させた。高さを均一にするため、樹脂硬化後、ダイサーで不要部分の樹脂を除去した。次にクラッド用紫外線硬化樹脂をコアの上に充填し硬化させ、基板から盛り上がった部分を研削研磨で除去した。この基板を1mm幅で溝と垂直方向にカットし垂直導波路用短冊を作製した。次に厚さ1mmのホウケイ酸ガラス基板を短冊状にカットし、前記垂直導波路用短冊を溝が形成された面が該短冊端面に一致するようにセットし、コアより屈折率の低い紫外線硬化接着剤を接触面に注入し硬化させた。基板から盛り上がった樹脂は研削研磨で除去し垂直導波路を形成した基板を作製した。   A parallel groove having a depth of 70 μm and a width of 40 μm was formed by a dicer on a borosilicate glass substrate having a thickness of 2.5 mm, and the groove was filled with an ultraviolet curing resin for core at a height of 40 μm and cured. In order to make the height uniform, unnecessary resin was removed with a dicer after the resin was cured. Next, an ultraviolet curable resin for cladding was filled on the core and cured, and the raised portion from the substrate was removed by grinding and polishing. This substrate was cut in a direction perpendicular to the groove with a width of 1 mm to produce a strip for vertical waveguide. Next, a 1 mm thick borosilicate glass substrate is cut into strips, and the strip for vertical waveguide is set so that the surface on which the grooves are formed coincides with the end surface of the strip. Adhesive was injected into the contact surface and allowed to cure. The resin swelled from the substrate was removed by grinding and polishing to produce a substrate in which a vertical waveguide was formed.

次に該基板表面に垂直導波路と交差するように250μmピッチ、深さ70μm、幅40μmの溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させた。コア高さを40μmにするため、樹脂硬化後、ダイサーで不要部分の樹脂を除去した。次にクラッド用紫外線硬化樹脂をコアの上に充填し硬化させ、基板から盛り上がった部分を研削研磨で除去した。次にクラッド用紫外線硬化樹脂をコアの上に充填し硬化させ、基板から盛り上がった部分を研削研磨で除去した。   Next, a groove having a pitch of 250 μm, a depth of 70 μm, and a width of 40 μm was formed on the substrate surface with a dicer so as to intersect the vertical waveguide, and the groove was filled with an ultraviolet curable resin for a core and cured. In order to make the core height 40 μm, unnecessary resin was removed with a dicer after the resin was cured. Next, an ultraviolet curable resin for cladding was filled on the core and cured, and the raised portion from the substrate was removed by grinding and polishing. Next, an ultraviolet curable resin for cladding was filled on the core and cured, and the raised portion from the substrate was removed by grinding and polishing.

次に水平導波路と垂直導波路の交差部に斜面が来るように先端がV字状のブレードを用いてダイサーによりV溝を形成し、斜面に金ミラーを作製した。   Next, a V-shaped groove was formed by a dicer using a blade having a V-shaped tip so that the inclined surface came to the intersection of the horizontal waveguide and the vertical waveguide, and a gold mirror was manufactured on the inclined surface.

上記方法で水平導波路長10mm、垂直導波路長1mmの4チャンネルの光路変換素子を作製した。850nmの光源で損失を測定した。挿入損失は2dB〜4dBであった。   A four-channel optical path conversion element having a horizontal waveguide length of 10 mm and a vertical waveguide length of 1 mm was produced by the above method. Loss was measured with a 850 nm light source. The insertion loss was 2 dB to 4 dB.

厚さ2.5mmのホウケイ酸ガラス基板に250μmピッチの70μm深さ、40μm幅の平行な溝をダイサーで形成し、この基板を1mm幅で溝と垂直方向にカットし垂直導波路用短冊を作製した。次に厚さ1mmのホウケイ酸ガラス基板を短冊状にカットし、前記垂直導波路用短冊を溝が形成された面が該短冊端面に一致するようにセットし、溝及び突き合わせ面に紫外線硬化樹脂を注入し硬化させた。基板から盛り上がった樹脂は研削研磨で除去し垂直導波路を形成した基板を作製した。   A parallel groove of 70 μm depth and 40 μm width with a pitch of 250 μm is formed on a 2.5 mm thick borosilicate glass substrate with a dicer, and this substrate is cut in a direction perpendicular to the groove with a width of 1 mm to produce a strip for vertical waveguide. did. Next, a 1 mm-thick borosilicate glass substrate is cut into strips, and the vertical waveguide strip is set so that the surface on which the groove is formed coincides with the end surface of the strip, and an ultraviolet curable resin is formed on the groove and the butted surface. Was injected and cured. The resin swelled from the substrate was removed by grinding and polishing to produce a substrate in which a vertical waveguide was formed.

次に貼り合わせた基板表面に垂直導波路と交差するように250μmピッチ、深さ40μm、幅40μmの溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させ水平導波路コアを形成した。基板から盛り上がった部分を研削研磨で除去した。次に貼り合わせた基板と同じ平面形状の厚さ0.5mmの透明基板を貼り合わせた基板の水平導波路側の面にコアより屈折率の低い紫外線硬化接着剤で接着した。   Next, a groove having a pitch of 250 μm, a depth of 40 μm, and a width of 40 μm is formed by a dicer on the bonded substrate surface so as to intersect with the vertical waveguide, and this groove is filled with an ultraviolet curing resin for a core and cured to be a horizontal waveguide core. Formed. The portion raised from the substrate was removed by grinding and polishing. Next, a transparent substrate having a thickness of 0.5 mm and the same planar shape as the bonded substrates was adhered to the surface of the bonded substrates on the horizontal waveguide side with an ultraviolet curable adhesive having a refractive index lower than that of the core.

次に水平導波路と垂直導波路の交差部に斜面が来るように先端がV字状のブレードを用いてダイサーによりV溝を形成し、斜面に金ミラーを形成した。   Next, a V-shaped groove was formed by a dicer using a blade having a V-shaped tip so that the inclined surface came to the intersection of the horizontal waveguide and the vertical waveguide, and a gold mirror was formed on the inclined surface.

上記方法で水平導波路長10mm、垂直導波路長1mmの4チャンネルの光路変換素子を作製した。850nmの光源で損失を測定した。挿入損失は2dB〜4dBであった。   A four-channel optical path conversion element having a horizontal waveguide length of 10 mm and a vertical waveguide length of 1 mm was produced by the above method. Loss was measured with a 850 nm light source. The insertion loss was 2 dB to 4 dB.

厚さ2.5mmのホウケイ酸ガラス基板に250μmピッチの深さ40μm、4幅0μmの平行な溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させた。基板から盛り上がった部分を研削研磨で除去した。この基板を1mm幅で溝と垂直方向にカットし垂直導波路用短冊を作製した。   Parallel grooves having a depth of 40 μm and a width of 4 μm and a width of 0 μm were formed on a borosilicate glass substrate having a thickness of 2.5 mm with a dicer, and the core was filled with an ultraviolet curable resin for curing. The portion raised from the substrate was removed by grinding and polishing. This substrate was cut in a direction perpendicular to the groove with a width of 1 mm to produce a strip for vertical waveguide.

次に厚さ1mmのホウケイ酸ガラス基板を短冊状にカットし、前記垂直導波路用短冊を溝が形成された面が該短冊端面に一致するようにセットし、コアより屈折率の低い紫外線硬化接着剤を接触面に注入し硬化させた。基板から盛り上がった樹脂は研削研磨で除去し垂直導波路を形成した基板を作製した。   Next, a 1 mm thick borosilicate glass substrate is cut into strips, and the strip for vertical waveguide is set so that the surface on which the grooves are formed coincides with the end surface of the strip. Adhesive was injected into the contact surface and allowed to cure. The resin swelled from the substrate was removed by grinding and polishing to produce a substrate in which a vertical waveguide was formed.

次に該基板表面に垂直導波路と交差するように250μmピッチ、深さ40μm、幅40μmの溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させた。基板から盛り上がった部分を研削研磨で除去した。   Next, grooves having a pitch of 250 μm, a depth of 40 μm, and a width of 40 μm were formed by a dicer on the surface of the substrate so as to intersect the vertical waveguide, and the grooves were filled with a core UV curable resin and cured. The portion raised from the substrate was removed by grinding and polishing.

次に該基板表面に垂直導波路と交差するように250μmピッチ、深さ40μm、幅40μmの溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させた水平導波路コアを形成した。基板から盛り上がった部分を研削研磨で除去した。次にこの部材と同じ平面形状の厚さ0.5mmの透明基板を前記部材の水平導波路側の面にコアより屈折率の低い紫外線硬化接着剤で接着した。
次に水平導波路と垂直導波路の交差部に斜面が来るように先端がV字状のブレードを用いてダイサーによりV溝を形成し、斜面に金ミラーを作製した。
Next, a groove having a pitch of 250 μm, a depth of 40 μm, and a width of 40 μm is formed by a dicer on the surface of the substrate so as to intersect with the vertical waveguide. Formed. The portion raised from the substrate was removed by grinding and polishing. Next, a transparent substrate having the same planar shape as this member and having a thickness of 0.5 mm was adhered to the surface of the member on the horizontal waveguide side with an ultraviolet curable adhesive having a refractive index lower than that of the core.
Next, a V-shaped groove was formed by a dicer using a blade having a V-shaped tip so that the inclined surface came to the intersection of the horizontal waveguide and the vertical waveguide, and a gold mirror was manufactured on the inclined surface.

上記方法で水平導波路長10mm、垂直導波路長1mmの4チャンネルの光路変換素子を作製した。850nmの光源で損失を測定した。挿入損失は3dB〜4dBであった。   A four-channel optical path conversion element having a horizontal waveguide length of 10 mm and a vertical waveguide length of 1 mm was produced by the above method. Loss was measured with a 850 nm light source. The insertion loss was 3 dB to 4 dB.

厚さ2.5mmのホウケイ酸ガラス基板に250μmピッチの深さ40μm、幅40μmの平行な溝をダイサーで形成し、この基板を1mm幅で溝と垂直方向にカットし垂直導波路用の溝を形成した短冊を作製した。次に厚さ1mmのホウケイ酸ガラス基板に水平導波路用の溝を250μmピッチの深さ40μm、幅40μmの平行な溝をダイサーで形成し、この基板を10mm幅で溝と垂直に完全カットし水平導波路用溝を形成した短冊を作製した。   A parallel groove with a depth of 40 μm and a width of 40 μm is formed with a dicer on a borosilicate glass substrate with a thickness of 2.5 mm, and this substrate is cut in a direction perpendicular to the groove with a width of 1 mm to form a groove for a vertical waveguide. A formed strip was prepared. Next, a groove for horizontal waveguide is formed on a 1 mm thick borosilicate glass substrate with a pitch of 250 μm and a depth of 40 μm and a width of 40 μm is formed by a dicer. This substrate is 10 mm wide and completely cut perpendicular to the groove. A strip with a horizontal waveguide groove formed was prepared.

次に垂直導波路用の溝が形成された短冊の溝側の面を水平導波路用溝が形成された短冊端面にそれぞれの溝位置が一致するようにセットし、それぞれの溝にコア用紫外線硬化樹脂を充填し、平板と基板の接触面に同樹脂を注入し紫外線を照射して樹脂を硬化させた。   Next, set the groove-side surface of the strip on which the vertical waveguide groove is formed so that the position of each groove coincides with the end surface of the strip on which the horizontal waveguide groove is formed. A cured resin was filled, the resin was injected into the contact surface between the flat plate and the substrate, and the resin was cured by irradiating with ultraviolet rays.

その後60℃で1時間加熱した。次に貼り合わせた基板から盛り上がった樹脂を研削研磨により除去し表面を平坦にした。   Then, it heated at 60 degreeC for 1 hour. Next, the raised resin from the bonded substrates was removed by grinding and polishing to flatten the surface.

この面に厚さ1mmのホウケイ酸ガラス基板を屈折率がコア樹脂より低い紫外線硬化の光学用接着剤を用いて接着した。   A borosilicate glass substrate having a thickness of 1 mm was adhered to this surface using an ultraviolet curing optical adhesive having a refractive index lower than that of the core resin.

次に水平導波路と垂直導波路の交差部に斜面が来るように先端がV字状のブレードを用いてダイサーによりV溝を形成し、斜面に金ミラーを作製した。   Next, a V-shaped groove was formed by a dicer using a blade having a V-shaped tip so that the inclined surface came to the intersection of the horizontal waveguide and the vertical waveguide, and a gold mirror was manufactured on the inclined surface.

上記方法で水平導波路長10mm、垂直導波路長1mmの4チャンネルの光路変換素子を作製した。850nmの光源で損失を測定した。挿入損失は2dB〜4dBであった。   A four-channel optical path conversion element having a horizontal waveguide length of 10 mm and a vertical waveguide length of 1 mm was produced by the above method. Loss was measured with a 850 nm light source. The insertion loss was 2 dB to 4 dB.

厚さ2.5mmのホウケイ酸ガラス基板に250μmピッチの深さ40μm、幅40μmの平行な溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させた。基板から盛り上がった部分を研削研磨で除去し、この基板を1mm幅で溝と垂直方向にカットし垂直導波路用コアを形成した短冊を作製した。   A parallel groove having a depth of 40 μm and a width of 40 μm with a pitch of 250 μm was formed on a borosilicate glass substrate having a thickness of 2.5 mm with a dicer, and this groove was filled with an ultraviolet curable resin for a core and cured. The raised portion from the substrate was removed by grinding and polishing, and the substrate was cut in a direction perpendicular to the groove with a width of 1 mm to produce a strip having a vertical waveguide core.

次に厚さ1mmのホウケイ酸ガラス基板に水平導波路用の溝を250μmピッチの深さ40μm、幅40μmの平行な溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させた。基板から盛り上がった部分を研削研磨で除去した。この基板を10mm幅で溝と垂直方向にカットし水平導波路用のコアを形成した短冊を作製した。   Next, a groove for horizontal waveguide is formed on a 1 mm thick borosilicate glass substrate by a dicer with a pitch of 250 μm and a depth of 40 μm and a width of 40 μm, and this groove is filled with an ultraviolet curing resin for core and cured. It was. The portion raised from the substrate was removed by grinding and polishing. A strip having a width of 10 mm was cut in a direction perpendicular to the groove to form a horizontal waveguide core.

次に垂直導波路用コアを形成した短冊のコアが形成された面を水平導波路コアを形成した短冊の端面にそれぞれの溝位置が一致するようにセットし、コア用紫外線硬化樹脂を突き当て面に注入し紫外線を照射して樹脂を硬化させた。その後60℃で1時間加熱した。次に平板から盛り上がった樹脂を研削研磨により除去し表面を平坦にした。この面に厚さ0.5mmのホウケイ酸ガラス基板を屈折率がコア樹脂より低い紫外線硬化の光学用接着剤を用いて接着した。   Next, set the surface of the strip core on which the vertical waveguide core is formed to the end surface of the strip on which the horizontal waveguide core is formed so that the respective groove positions coincide with each other and abut the core UV curable resin The resin was cured by injecting into the surface and irradiating with ultraviolet rays. Then, it heated at 60 degreeC for 1 hour. Next, the resin raised from the flat plate was removed by grinding and polishing to flatten the surface. A borosilicate glass substrate having a thickness of 0.5 mm was adhered to this surface using an ultraviolet curing optical adhesive having a refractive index lower than that of the core resin.

次に水平導波路と垂直導波路の交差部に斜面が来るように先端がV字状のブレードを用いてダイサーによりV溝を形成し、斜面に金ミラーを作製した。   Next, a V-shaped groove was formed by a dicer using a blade having a V-shaped tip so that the inclined surface came to the intersection of the horizontal waveguide and the vertical waveguide, and a gold mirror was manufactured on the inclined surface.

上記方法で水平導波路長10mm、垂直導波路長1mmの4チャンネルの光路変換素子を作製した。850nmの光源で損失を測定した。挿入損失は2dB〜4dBであった。   A four-channel optical path conversion element having a horizontal waveguide length of 10 mm and a vertical waveguide length of 1 mm was produced by the above method. Loss was measured with a 850 nm light source. The insertion loss was 2 dB to 4 dB.

厚さ2.5mmのホウケイ酸ガラス基板に250μmピッチの深さ40μm、幅40μmの平行な溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させた。基板から盛り上がった部分を研削研磨で除去しこの基板を1mm幅で溝と垂直方向にカットし垂直導波路用コアを形成した短冊1を作製した。   A parallel groove having a depth of 40 μm and a width of 40 μm with a pitch of 250 μm was formed on a borosilicate glass substrate having a thickness of 2.5 mm with a dicer, and this groove was filled with an ultraviolet curable resin for a core and cured. A portion 1 raised from the substrate was removed by grinding and polishing, and the substrate was cut in a direction perpendicular to the groove with a width of 1 mm to produce a strip 1 having a vertical waveguide core.

次に厚さ1mmのホウケイ酸ガラス基板に水平導波路用の溝を250μmピッチの深さ40μm、幅40μmの平行な溝をダイサーで形成し、この溝にコア用紫外線硬化樹脂を充填し硬化させた。基板から盛り上がった部分を研削研磨で除去した。この基板を12mm幅で溝と垂直方向にカットし水平導波路用のコアを形成した短冊2を作製した。   Next, a groove for horizontal waveguide is formed on a 1 mm thick borosilicate glass substrate by a dicer with a pitch of 250 μm and a depth of 40 μm and a width of 40 μm, and this groove is filled with an ultraviolet curing resin for core and cured. It was. The portion raised from the substrate was removed by grinding and polishing. A strip 2 having a width of 12 mm and cut in a direction perpendicular to the groove to form a horizontal waveguide core was produced.

次に厚さ1mmのホウケイ酸ガラス基板を幅12mmにダイサーで切断し短冊2を作製した。   Next, a strip 2 was prepared by cutting a borosilicate glass substrate having a thickness of 1 mm into a width of 12 mm with a dicer.

短冊1の垂直導波路コアと短冊2の水平導波路用コア位置が一致し且つ垂直導波路用コア配列の向きと水平導波路用コアが垂直になるように短冊2の上に短冊1を載せ紫外線硬化接着剤を注入し、次に短冊2の水平導波路用コアのある面に紫外線硬化接着剤を塗布し、この上に短冊3の端面が短冊1の垂直導波路用コアが形成された面と一致するようにセットし突き合わせ面に紫外線硬化の光学用接着剤を注入し紫外線を照射して樹脂を硬化させその後60℃で1時間加熱した。   The strip 1 is placed on the strip 2 so that the vertical waveguide core of the strip 1 and the horizontal waveguide core of the strip 2 are aligned, and the orientation of the vertical waveguide core arrangement and the horizontal waveguide core are vertical. The UV curable adhesive was injected, and then the UV curable adhesive was applied to the surface of the strip 2 with the horizontal waveguide core, and the vertical waveguide core having the strip 3 formed on the end surface of the strip 3 was formed thereon. The surface was set to coincide with the surface, an ultraviolet curing optical adhesive was injected into the butted surfaces, and the resin was cured by irradiating with ultraviolet rays, and then heated at 60 ° C. for 1 hour.

次に水平導波路と垂直導波路の交差部に斜面が来るように先端がV字状のブレードを用いてダイサーによりV溝を形成し、斜面に金ミラーを形成した。   Next, a V-shaped groove was formed by a dicer using a blade having a V-shaped tip so that the inclined surface came to the intersection of the horizontal waveguide and the vertical waveguide, and a gold mirror was formed on the inclined surface.

次に水平導波路の全長が10mmになるようにダイサーでカットした。   Next, it cut | disconnected with the dicer so that the full length of a horizontal waveguide might be set to 10 mm.

上記方法で水平導波路長10mm、垂直導波路長1mmの4チャンネルの光路変換素子を作製した。850nmの光源で損失を測定した。挿入損失は2dB〜4dBであった。   A four-channel optical path conversion element having a horizontal waveguide length of 10 mm and a vertical waveguide length of 1 mm was produced by the above method. Loss was measured with a 850 nm light source. The insertion loss was 2 dB to 4 dB.

厚さ250μmのホウケイ酸ガラス基板に250μmピッチの40μm深さ、40μm幅の平行な溝をダイサーで形成し、この基板を250μm幅で溝と垂直方向にカットし垂直導波路用の溝を形成した短冊1を作製した。   A 40 μm deep, 40 μm wide parallel groove with a 250 μm pitch was formed on a 250 μm thick borosilicate glass substrate with a dicer, and this substrate was cut in a direction perpendicular to the groove with a 250 μm width to form a groove for a vertical waveguide. A strip 1 was prepared.

次に厚さ250μmのBK7ガラス基板から幅10mmの短冊2をダイサーで切り出した。   Next, a strip 2 having a width of 10 mm was cut out from a BK7 glass substrate having a thickness of 250 μm with a dicer.

次に上記の短冊1と短冊2を短冊1の溝が形成された面を短冊2の端面に一致するようにセットし、溝にコア用紫外線硬化樹脂を充填し、短冊の突き合わせ面に樹脂を注入し紫外線を照射して樹脂を硬化させた。次に厚さ2.5mmのホウケイ酸ガラス基板に250μmピッチの40μm深さ、40μm幅の平行な溝をダイサーで形成し、この基板を250μm幅で溝と垂直方向にカットし垂直導波路用の溝を形成した短冊3を作製した。   Next, the strip 1 and the strip 2 are set so that the surface of the strip 1 where the groove is formed coincides with the end surface of the strip 2, the core is filled with the UV curable resin for the core, and the resin is applied to the butting surface of the strip. The resin was cured by injection and irradiation with ultraviolet rays. Next, a 40 μm deep, 40 μm wide, parallel groove with a pitch of 250 μm is formed on a 2.5 mm thick borosilicate glass substrate with a dicer, and this substrate is cut in a direction perpendicular to the groove with a width of 250 μm for a vertical waveguide. A strip 3 having grooves was produced.

次に短冊3を、短冊2の短冊1と接着した反対側の端面に、短冊2の溝と短冊3の溝が短冊長辺と垂直な線上に250μmのピッチで整列するようにセットし、短冊3の溝にコア用紫外線硬化樹脂を充填し、短冊2と短冊3の突き合わせ面に同樹脂を注入し紫外線を照射して樹脂を硬化させた。基板から盛り上がった樹脂を研削研磨により除去し表面を平坦にした。この方法により垂直導波路を形成した基板2枚(基板1、基板2)を作製した。   Next, the strip 3 is set on the opposite end surface bonded to the strip 1 of the strip 2 so that the groove of the strip 2 and the groove of the strip 3 are aligned at a pitch of 250 μm on a line perpendicular to the long side of the strip. The groove 3 was filled with an ultraviolet curable resin for the core, the resin was injected into the abutting surfaces of the strips 2 and 3, and the resin was cured by irradiating with ultraviolet rays. The resin raised from the substrate was removed by grinding and polishing to flatten the surface. Two substrates (substrate 1 and substrate 2) on which vertical waveguides were formed were produced by this method.

次に基板1表面に、基板の長辺と垂直に溝と交差するように深さ40μm、幅40μmの溝をダイサーで形成した。この溝にコア用紫外線硬化樹脂を充填し紫外線を照射し硬化させた。盛り上がった樹脂を研削研磨により除去し表面を平坦にした。   Next, a groove with a depth of 40 μm and a width of 40 μm was formed on the surface of the substrate 1 by a dicer so as to intersect the grooves perpendicular to the long side of the substrate. The groove was filled with an ultraviolet curable resin for the core and cured by irradiation with ultraviolet rays. The raised resin was removed by grinding and polishing to flatten the surface.

次に基板2の上に基板1を溝位置が一致するようにコア用に用いた紫外線硬化接着剤で接着した。   Next, the substrate 1 was bonded onto the substrate 2 with the ultraviolet curable adhesive used for the core so that the groove positions coincided.

次に基板2の裏面に短冊の長辺と垂直に溝と交差するように、幅40μの溝をダイサーで形成した。溝深さは基板1の溝の中心と基板2の溝の中心間距離が0.25mmになる深さとした。この溝にコア用紫外線硬化樹脂を充填し紫外線を照射し硬化させ、コア高さが40μmになるように不要部分をダイサーで除去し、基板から盛り上がった樹脂は研削研磨により除去し表面を平坦にした。   Next, a groove with a width of 40 μm was formed on the back surface of the substrate 2 with a dicer so as to intersect the groove perpendicular to the long side of the strip. The groove depth was such that the distance between the center of the groove of the substrate 1 and the center of the groove of the substrate 2 was 0.25 mm. This groove is filled with UV curable resin for the core and irradiated with UV light to cure, and unnecessary parts are removed with a dicer so that the core height becomes 40 μm, and the resin rising from the substrate is removed by grinding and polishing to flatten the surface. did.

次に基板2の溝内の隙間をコア樹脂より低い紫外線硬化接着剤で埋め、その上に幅が略12.75mm、厚さ0.5mmのガラス基板を載せ同じ接着剤を注入し一括して紫外線を照射し硬化させた。その後60℃で1時間加熱した。   Next, the gap in the groove of the substrate 2 is filled with an ultraviolet curable adhesive lower than the core resin, and a glass substrate having a width of about 12.75 mm and a thickness of 0.5 mm is placed thereon, and the same adhesive is injected and collectively. It was cured by irradiation with ultraviolet rays. Then, it heated at 60 degreeC for 1 hour.

次に先端が90°のV字ブレードを用いて、2列の垂直導波路と2層の水平導波路の交差部に45°斜面が来るようにV溝を形成し、面を鏡面化したのち金をスパッタリングし反射膜を形成し、斜面に金ミラーを作製した。   Next, using a V-shaped blade with a 90 ° tip, form a V-groove with a 45 ° slope at the intersection of two rows of vertical waveguides and two horizontal waveguides, and then mirror the surface Gold was sputtered to form a reflective film, and a gold mirror was fabricated on the slope.

上記方法で水平導波路長、垂直導波路長が10mm×230μm、10.25mm×480μmの2列×4チャンネルの光路変換素子を作製した。850nmの光源で損失を測定した。挿入損失は2dB〜4dBであった。   By the above method, a horizontal waveguide length and a vertical waveguide length of 10 mm × 230 μm, 10.25 mm × 480 μm, 2 rows × 4 channels of optical path conversion elements were produced. Loss was measured with a 850 nm light source. The insertion loss was 2 dB to 4 dB.

本発明は、光通信分野における通信システムはもちろん、評価・測定など光伝送の応用分野にも利用できるものである。   The present invention can be used not only in a communication system in the field of optical communication but also in an application field of optical transmission such as evaluation and measurement.

垂直導波路形成に溝付き短冊の貼り合わせを用いる本発明の多チャンネル光路変換素子の作製工程を説明する図である。It is a figure explaining the manufacturing process of the multichannel optical path conversion element of this invention which uses bonding of a strip with a groove | channel for vertical waveguide formation. 導波路がU字状の多チャンネル光路変換素子である。The waveguide is a U-shaped multichannel optical path conversion element. 導波路がクランク状の多チャンネル光路変換素子である。The waveguide is a crank-shaped multichannel optical path conversion element. 水平導波路が2層の多チャンネル光路変換素子の作製工程を説明する図である。It is a figure explaining the manufacturing process of a multi-channel optical path conversion element with two layers of horizontal waveguides. 実施例2の垂直及び水平導波路を作製する工程を示す。The process of producing the vertical and horizontal waveguide of Example 2 is shown. 実施例3の垂直及び水平導波路を作製する工程を示す。The process of producing the vertical and horizontal waveguide of Example 3 is shown. 実施例4の垂直及び水平導波路を作製する工程を示す。The process of producing the vertical and horizontal waveguide of Example 4 is shown. 実施例5の垂直及び水平導波路を作製する工程を示す。The process of producing the vertical and horizontal waveguide of Example 5 is shown. 実施例6の垂直及び水平導波路を作製する工程を示す。The process of producing the vertical and horizontal waveguide of Example 6 is shown. 実施例7の工程を示す。The process of Example 7 is shown.

符号の説明Explanation of symbols

1 垂直導波路用溝
2、5 透明基板
3、6 透明短冊
4 水平導波路用溝
7 コア用樹脂
8 透明基板リッド
9 クラッド用樹脂
10 反射膜
11 V溝
12 垂直導波路コア
13 水平導波路コア
14 電極
15 短冊1
16 短冊2
17 短冊3
18 基板1
19 基板2
DESCRIPTION OF SYMBOLS 1 Vertical waveguide groove 2, 5 Transparent substrate 3, 6 Transparent strip 4 Horizontal waveguide groove 7 Core resin 8 Transparent substrate lid 9 Clad resin 10 Reflective film 11 V groove 12 Vertical waveguide core 13 Horizontal waveguide core 14 electrodes 15 strip 1
16 Strip 2
17 Strip 3
18 Substrate 1
19 Substrate 2

Claims (9)

複数の垂直導波路と複数の水平導波路とその交差部に形成されたミラーからなる多チャンネル光路変換素子において、透明基板に平行に溝を形成し基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板端面に溝が形成された面を突き合わせ形成される孔にコア用樹脂が充填され、垂直導波路としたことを特徴とする、多チャンネル光路変換素子の作製方法。 In a multi-channel optical path conversion device comprising a plurality of vertical waveguides, a plurality of horizontal waveguides and mirrors formed at the intersections, grooves are formed in parallel to the transparent substrate, the substrate is cut perpendicular to the grooves, A manufacturing method of a multi-channel optical path conversion element, characterized in that a core waveguide is filled in a hole formed by abutting a surface having a groove formed on an end face of a transparent substrate having substantially the same thickness to form a vertical waveguide. 透明基板に平行に溝を形成し、該溝にコア用樹脂を所望の厚さ充填しその上にクラッド用樹脂を充填し基板表面を平滑にし、基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板端面に溝が形成された面を突き合わせ接着し垂直導波路としたことを特徴とする、請求項1記載の多チャンネル光路変換素子の作製方法。 Grooves are formed in parallel to the transparent substrate, the core resin is filled to a desired thickness, and the clad resin is filled thereon to smooth the substrate surface, the substrate is cut perpendicular to the grooves, 2. The method of manufacturing a multi-channel optical path conversion element according to claim 1, wherein a surface of the transparent substrate having substantially the same thickness has a groove formed on the end face and is bonded to form a vertical waveguide. 透明基板に平行に溝を形成し基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板端面に溝が形成された面を突き合わせ、溝及び突き合わせ面にコア用樹脂を注入し硬化させ垂直導波路としたことを特徴とする、請求項1記載の多チャンネル光路変換素子の作製方法。 A groove is formed in parallel to the transparent substrate, the substrate is cut perpendicular to the groove, the surface on which the groove is formed is abutted on the end surface of the transparent substrate having the same thickness as the cut width, and the core resin is injected into the groove and the abutting surface and cured. 2. The method of manufacturing a multi-channel optical path conversion element according to claim 1, wherein a vertical waveguide is used. 透明基板に平行に溝を形成し、該溝にコア用樹脂を充填し基板表面を平滑にし、基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板端面に溝が形成された面を突き合わせ接着し垂直導波路とした請求項1記載の多チャンネル光路変換素子の作製方法。 Grooves were formed in parallel with the transparent substrate, the core resin was filled into the grooves, the substrate surface was smoothed, the substrate was cut perpendicular to the grooves, and the grooves were formed on the end face of the transparent substrate having the same thickness as the cut width. The method for producing a multi-channel optical path conversion element according to claim 1, wherein the surfaces are butted and bonded to form a vertical waveguide. 透明基板に平行に溝を形成し、基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板に前記溝と同一ピッチで溝を形成し、該透明基板端面に前記透明基板の溝の面を突き合わせ、溝及び突き合わせ面にコア用樹脂を注入硬化し垂直導波路としたことを特徴とする、請求項1記載の多チャンネル光路変換素子の作製方法。 Grooves are formed in parallel to the transparent substrate, the substrate is cut perpendicular to the grooves, grooves are formed on the transparent substrate having the same thickness as the cut width at the same pitch as the grooves, and the grooves of the transparent substrate are formed on the transparent substrate end face. The multi-channel optical path conversion device manufacturing method according to claim 1, characterized in that a vertical waveguide is formed by injecting and curing a core resin into the groove and the abutting surface. 透明基板に平行に溝を形成し、該溝にコア用樹脂を充填し基板表面を平滑にし、基板を溝と垂直にカットし、カット幅と略同じ厚みの透明基板に前記溝と同一ピッチで溝を形成し、該溝にコア用樹脂を充填し基板表面を平滑にし、基板を溝と垂直にカットし、該透明基板端面に前記透明基板の溝の面を両方の溝位置が一致するように突き合わせ接着し垂直導波路としたことを特徴とする、請求項1記載の多チャンネル光路変換素子の作製方法。 Grooves are formed in parallel to the transparent substrate, the core resin is filled into the grooves, the substrate surface is smoothed, the substrate is cut perpendicular to the grooves, and the transparent substrate having the same thickness as the cut width is formed at the same pitch as the grooves. A groove is formed, the core resin is filled in the groove, the substrate surface is smoothed, the substrate is cut perpendicular to the groove, and the groove surface of the transparent substrate is aligned with the end surface of the transparent substrate so that both groove positions coincide. The multi-channel optical path conversion device manufacturing method according to claim 1, wherein a vertical waveguide is formed by abutting and bonding to the substrate. 請求項1乃至請求項6のいずれか1項に記載の垂直導波路を用い、水平導波路を多層にしたことを特徴とする、多層多チャンネル光路変換素子の作製方法。 A method for manufacturing a multilayer multichannel optical path conversion element, wherein the vertical waveguide according to any one of claims 1 to 6 is used and the horizontal waveguide is formed into a multilayer. 基板表面に電極及びマーカーを形成したことを特徴とする、請求項1乃至7のいずれか1項に記載の多チャンネル光路変換素子の作製方法。 8. The method for producing a multi-channel optical path conversion element according to claim 1, wherein an electrode and a marker are formed on the surface of the substrate. 請求項1乃至8のいずれか1項に記載の作製方法によって作製されたことを特徴とする多チャンネル光路変換素子。 A multi-channel optical path conversion element manufactured by the manufacturing method according to claim 1.
JP2007270127A 2007-10-17 2007-10-17 Device for converting laminated multi-channel optical path and method of manufacturing the same Pending JP2009098432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270127A JP2009098432A (en) 2007-10-17 2007-10-17 Device for converting laminated multi-channel optical path and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270127A JP2009098432A (en) 2007-10-17 2007-10-17 Device for converting laminated multi-channel optical path and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009098432A true JP2009098432A (en) 2009-05-07

Family

ID=40701489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270127A Pending JP2009098432A (en) 2007-10-17 2007-10-17 Device for converting laminated multi-channel optical path and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009098432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074869A (en) * 2012-10-05 2014-04-24 Fujitsu Ltd Optical module
WO2024013944A1 (en) * 2022-07-14 2024-01-18 日本電信電話株式会社 Integrated optical device and alignment method for integrated optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014074869A (en) * 2012-10-05 2014-04-24 Fujitsu Ltd Optical module
WO2024013944A1 (en) * 2022-07-14 2024-01-18 日本電信電話株式会社 Integrated optical device and alignment method for integrated optical device

Similar Documents

Publication Publication Date Title
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
KR960014123B1 (en) Method of connecting optical waveguide to optical fiber
US6907173B2 (en) Optical path changing device
US8715542B2 (en) Method of manufacturing optical waveguide
US8041159B2 (en) Optical/electrical hybrid substrate and method of manufacturing the same
JP4153007B2 (en) Optical wiring board and opto-electric hybrid board
JP2006209068A (en) Optical waveguide, optical waveguide module, and method for manufacturing optical waveguide module
JP2005352453A (en) Optical fiber component, optical waveguide module, and manufacturing method
KR20080100131A (en) Optical waveguide and method of manufacturing the same, and method of manufacturing optical/electrical hybrid substrate
TW200944853A (en) Manufacturing method of optical wiring printed board and optical wiring printed circuit board
JP2013020027A (en) Optical transmission line and method of manufacturing the same
TW201142391A (en) Optical waveguide substrate having positioning structure, method for manufacturing same, and method for manufacturing opto-electric hybrid substrate
US6791675B2 (en) Optical waveguide path, manufacturing method and coupling method of the same, and optical waveguide path coupling structure
CN106199832B (en) Optical waveguide plate and optical fiber coupling connection method, optical waveguide plate and communication transmission system
US8351751B2 (en) Optical waveguide and method of manufacturing the same, and optical waveguide mounted board
JP2005195651A (en) Optical connection substrate, optical transmission system, and manufacturing method
JP6268918B2 (en) Optical fiber connection structure, optical fiber connection method, and optical module
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
JP2004302188A (en) Electric wiring substrate with optical waveguide
JP2006267346A (en) Manufacturing method of optical member
JP5278644B2 (en) Photoelectric board and manufacturing method thereof, optical integrated circuit, optical interconnector, optical multiplexer / demultiplexer
JP2009098432A (en) Device for converting laminated multi-channel optical path and method of manufacturing the same
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP4288604B2 (en) Optical coupling device
JP2005292379A (en) Optical coupling device and manufacturing method therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326