JP2009097888A - Catalytic activity measuring method - Google Patents

Catalytic activity measuring method Download PDF

Info

Publication number
JP2009097888A
JP2009097888A JP2007267107A JP2007267107A JP2009097888A JP 2009097888 A JP2009097888 A JP 2009097888A JP 2007267107 A JP2007267107 A JP 2007267107A JP 2007267107 A JP2007267107 A JP 2007267107A JP 2009097888 A JP2009097888 A JP 2009097888A
Authority
JP
Japan
Prior art keywords
dye
aqueous solution
catalytic activity
measuring
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007267107A
Other languages
Japanese (ja)
Other versions
JP4928407B2 (en
Inventor
Toyoaki Inaba
豊昭 稲葉
Mitsugu Matsumura
貢 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIRIN CHEMICAL KK
Original Assignee
NICHIRIN CHEMICAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIRIN CHEMICAL KK filed Critical NICHIRIN CHEMICAL KK
Priority to JP2007267107A priority Critical patent/JP4928407B2/en
Publication of JP2009097888A publication Critical patent/JP2009097888A/en
Application granted granted Critical
Publication of JP4928407B2 publication Critical patent/JP4928407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method capable of measuring simply and quickly a catalytic activity of a preparation having a deodorizing or antibacterial effect by generating hydroxyl radicals. <P>SOLUTION: This catalytic activity measuring method of a material for generating hydroxyl radicals by decomposing water in the air includes processes for: preparing specimen aqueous solution containing hydrogen peroxide, an organic pigment and the material; preparing reference aqueous solution containing hydrogen peroxide and the organic pigment; and detecting a difference of a color tone change between the specimen aqueous solution and the reference aqueous solution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は消臭、抗菌効果を有する製剤の触媒活性を測定する方法に関する。   The present invention relates to a method for measuring the catalytic activity of a preparation having a deodorant and antibacterial effect.

消臭、抗菌効果を発揮する製剤が多く市販されている。それらの効果はラジカルの発生を利用している。特に、ヒドロキシルラジカル(以下、・OHという)は酸素の2倍以上の酸化力を有しており、臭いの成分の分解や細菌類の細胞の分解を誘導することで、強い消臭、抗菌効果を発揮できると考えられる。   Many preparations that exhibit deodorant and antibacterial effects are commercially available. Their effect utilizes the generation of radicals. In particular, hydroxyl radical (hereinafter referred to as “OH”) has an oxidizing power more than twice that of oxygen, and it induces strong deodorant and antibacterial effects by inducing the decomposition of odor components and bacterial cells. It is thought that can be demonstrated.

たとえば、アミノ基を含む有機化合物が臭い成分である場合の消臭機構について説明する。すなわち、ヒドロキシルラジカルが有機化合物に作用すると、有機化合物は最終的に水、炭酸ガス、アンモニアなどに分解する。この有機化合物から発生するアンモニアは微量であり、かつ空気の比重より軽く、すぐに空気中に拡散するため、悪臭の原因とはならない。   For example, a deodorizing mechanism in the case where an organic compound containing an amino group is an odor component will be described. That is, when a hydroxyl radical acts on an organic compound, the organic compound is finally decomposed into water, carbon dioxide gas, ammonia and the like. Ammonia generated from this organic compound is a trace amount, lighter than the specific gravity of air, and quickly diffuses into the air, so it does not cause bad odor.

このようなヒドロキシルラジカルによる消臭効果を有する製剤(以下、空気触媒と称する)については、特許文献1に記載されている。特許文献1に記載されている空気触媒によるヒドロキシルラジカルの発生機構は以下の通りである。すなわち、空気触媒中には質量数40のカリウム(以下、40Kという)が微量に含まれており、不安定な40Kが安定な元素に変換する際に放出する電子線、電磁波、および電子線が金属原子に衝突して放出される2次電磁波が、空気中の水分と反応してヒドロキシルラジカルを発生させる。このようにして発生した酸化力の強いヒドロキシルラジカルが消臭、抗菌作用を発揮するのである。このような消臭、抗菌作用有する製剤には、例えば、空気触媒セルフィール(Selfeel、ニチリンケミカル株式会社製)などがある。 A preparation having such a deodorizing effect due to hydroxyl radicals (hereinafter referred to as an air catalyst) is described in Patent Document 1. The generation mechanism of hydroxyl radicals by the air catalyst described in Patent Document 1 is as follows. That is, the air catalyst contains a small amount of potassium having a mass number of 40 (hereinafter referred to as 40 K), and the electron beam, electromagnetic waves, and electrons emitted when unstable 40 K is converted into a stable element. Secondary electromagnetic waves emitted when the line collides with metal atoms react with moisture in the air to generate hydroxyl radicals. The hydroxyl radicals with strong oxidizing power generated in this way exhibit deodorizing and antibacterial effects. Examples of such deodorant and antibacterial preparations include air catalyst self-feel (Selfeel, manufactured by Nichirin Chemical Co., Ltd.).

これらの消臭、抗菌効果を発揮する製剤の活性をモニターするには、ヒドロキシルラジカルの発生の有無を測定することが有効である。   In order to monitor the activity of these preparations exhibiting deodorant and antibacterial effects, it is effective to measure the presence or absence of the generation of hydroxyl radicals.

国際公開第07/069458号パンフレットInternational Publication No. 07/066948 Pamphlet

ヒドロキシルラジカルの一般的な測定方法は、スピントラップ法や電子スピン共鳴分光法などの直接測定法である。しかしながら、これらの直接測定法は、非常に高価な装置を必要とするうえに、短寿命のラジカルをトラップして測定するものであるため、測定には高度な技量が必要で一般的ではない。そこで、ヒドロキシルラジカルの簡便な測定方法が求められていた。   A general method for measuring hydroxyl radical is a direct measurement method such as a spin trap method or electron spin resonance spectroscopy. However, these direct measurement methods require a very expensive apparatus and trap and measure short-lived radicals. Therefore, the measurement requires a high level of skill and is not general. Therefore, a simple method for measuring hydroxyl radicals has been demanded.

また、ヒドロキシルラジカルによって分解される色素が知られているので、そのような色素の分解を利用して、色素の色調変化を検知することが考えられる。しかしながら、空気触媒セルフィールなどの消臭、抗菌効果を有する製剤は一度に多量のヒドロキシルラジカルを発生しない。そのため、色調変化を検出するには数日以上かかり実用的でないという欠点があった。   Moreover, since the pigment | dye decomposed | disassembled by a hydroxyl radical is known, it is possible to detect the color tone change of a pigment | dye using such decomposition | disassembly of a pigment | dye. However, preparations having a deodorizing and antibacterial effect such as air-catalyzed serfiel do not generate a large amount of hydroxyl radicals at once. For this reason, it takes several days or more to detect a change in color tone, which is not practical.

本発明は、このような消臭、抗菌効果を有する製剤の触媒活性を簡便かつ迅速に測定する測定方法を提供することを目的としている。   The object of the present invention is to provide a measuring method for simply and rapidly measuring the catalytic activity of a preparation having such deodorant and antibacterial effects.

すなわち本発明は、空気中の水を分解させてヒドロキシルラジカルを生成させる物質の触媒活性測定方法であって、過酸化水素と有機色素と物質とを含む検体水溶液を作製する工程と、過酸化水素と有機色素とを含む基準水溶液を作製する工程と、検体水溶液と基準水溶液の色調変化の差異を検出する工程とを含む触媒活性測定方法である。   That is, the present invention relates to a method for measuring the catalytic activity of a substance that decomposes water in the air to generate hydroxyl radicals, the step of preparing a sample aqueous solution containing hydrogen peroxide, an organic dye, and a substance; And a method for measuring catalytic activity comprising a step of preparing a reference aqueous solution containing an organic dye and a step of detecting a difference in color tone between the sample aqueous solution and the reference aqueous solution.

ヒドロキシルラジカルを生成させる物質(検体物質)が遷移金属を含有することが好ましい。   The substance (analyte substance) that generates hydroxyl radicals preferably contains a transition metal.

検体物質が、鉄、アルミニウム、およびカリウムを含む金属組成物またはさらに水を含む水性組成物であることが好ましい。   The specimen substance is preferably a metal composition containing iron, aluminum, and potassium or an aqueous composition further containing water.

金属組成物の水性組成物は、アルミニウムおよびカリウムを、鉄100ppmに対してそれぞれ100〜300ppmおよび1〜20ppm含有している水性組成物であることが好ましい。   The aqueous composition of the metal composition is preferably an aqueous composition containing 100 to 300 ppm and 1 to 20 ppm of aluminum and potassium with respect to 100 ppm of iron, respectively.

金属組成物の水性組成物はさらに水酸化チタン(IV)塩酸塩を含有し、チタン含有量が、鉄100ppmに対して0.2〜50ppmであることが好ましい。   The aqueous composition of the metal composition further contains titanium (IV) hydroxide, and the titanium content is preferably 0.2 to 50 ppm with respect to 100 ppm of iron.

有機色素が、メチルバイオレット、メチレンブルー、イエロー4、グリーン、およびレッド3の群から選ばれる少なくとも一つの色素であることが好ましい。   The organic dye is preferably at least one dye selected from the group consisting of methyl violet, methylene blue, yellow 4, green, and red 3.

検体水溶液と基準水溶液のpHがpH5〜7であることが好ましい。   The pH of the sample aqueous solution and the reference aqueous solution is preferably pH 5-7.

本発明の測定方法により、高価な装置を用いることなく、色素の色調変化をモニターすることを介して短時間で空気触媒の触媒活性を測定することができるため、空気触媒の品質管理指標を簡便に提供することができる。   With the measurement method of the present invention, the catalytic activity of the air catalyst can be measured in a short time through monitoring the change in the color tone of the dye without using an expensive apparatus. Can be provided.

鉄などの遷移元素が触媒量存在する系内に過酸化水素(H22)が入ると、遷移元素が触媒として作用することで・OHと水酸イオン(OH-)が生成することが知られている。セルフィールなどの空気触媒には、遷移元素を含むものが多い。本発明は、本来それ自体、・OHを発生することが知られており、かつ遷移元素を含有する空気触媒を、過酸化水素中に投入し、かつ、その系に色素を混在させたことを特徴とする触媒活性の検出方法である。過酸化水素と空気触媒との相乗効果により、ヒドロキシルラジカルが高濃度で発生し、混在する色素と化学反応することで色素の色調変化が促進される。色素の色調変化は色素を含む系全体の色変化として容易に検出することができる。 When hydrogen peroxide (H 2 O 2 ) enters a system in which a catalytic amount of a transition element such as iron is present, OH and hydroxide ions (OH ) may be generated due to the transition element acting as a catalyst. Are known. Many air catalysts such as SELFEEL contain transition elements. The present invention itself is known to generate OH itself, and an air catalyst containing a transition element was introduced into hydrogen peroxide, and a dye was mixed in the system. This is a characteristic method for detecting catalytic activity. Due to the synergistic effect of hydrogen peroxide and the air catalyst, hydroxyl radicals are generated at a high concentration, and the color change of the dye is promoted by a chemical reaction with the mixed dye. The color tone change of the dye can be easily detected as a color change of the entire system including the dye.

本発明で検出対象となる物質は、空気中の水を分解させてヒドロキシルラジカルを生成させる物質である。そのような物質としては遷移金属を含むものが好ましい。例えば、鉄、アルミニウム、およびカリウムを含む金属組成物またはさらに水を含む水性組成物が挙げられる。前記水性組成物はさらに水酸化チタン(IV)塩酸塩を含有してもよい。好ましくは、前記水性組成物は、アルミニウムおよびカリウムを、鉄100ppmに対してそれぞれ100〜300ppmおよび1〜20ppm含有している水性組成物である。このような検出対象物質として具体的には、先述のセルフィールが挙げられる。ただし、ヒドロキシルラジカルを発生し、過酸化水素存在下で色素の分解を加速させる物質であればよく、特に、遷移元素を含有するという条件を充たすのであれば、セルフィールに限定されるものではない。   The substance to be detected in the present invention is a substance that decomposes water in the air to generate hydroxyl radicals. As such a substance, a substance containing a transition metal is preferable. For example, a metal composition containing iron, aluminum, and potassium or an aqueous composition further containing water can be used. The aqueous composition may further contain titanium (IV) hydrochloride. Preferably, the aqueous composition is an aqueous composition containing 100 to 300 ppm and 1 to 20 ppm of aluminum and potassium with respect to 100 ppm of iron, respectively. Specific examples of such a substance to be detected include the above-mentioned selfie. However, any substance that generates hydroxyl radicals and accelerates the decomposition of the dye in the presence of hydrogen peroxide may be used. In particular, the substance is not limited to SELFIRE as long as the condition that it contains a transition element is satisfied. .

過酸化水素としては市販品(35%)を適当に希釈して用いることができる。   As hydrogen peroxide, a commercially available product (35%) can be appropriately diluted and used.

本発明では色素の選定が重要である。用いることができる色素としては、過酸化水素のみによる脱色が大きくなく、かつ、空気触媒が混在する過酸化水素中では脱色速度が大きいことが好ましい。   In the present invention, the selection of the dye is important. As the dye that can be used, it is preferable that decolorization by hydrogen peroxide alone is not large and that the decolorization rate is high in hydrogen peroxide mixed with an air catalyst.

また、用いることができる色素としては、弱酸性〜中性の水溶液を作製することが出来る有機色素が好ましい。なかでも、メチルバイオレット、メチレンブルー、イエロー4、グリーン、およびレッド3が好ましい。これらの色素をそれぞれ単独で用いてもよいし、二種以上の色素を混合して用いてもよい。   Moreover, as a pigment | dye which can be used, the organic pigment | dye which can produce weakly acidic-neutral aqueous solution is preferable. Of these, methyl violet, methylene blue, yellow 4, green, and red 3 are preferable. These pigments may be used alone or in combination of two or more pigments.

また、系中の色素濃度が高すぎると、色素分解による色調変化に時間がかかりすぎるし、一方で、系中の色素濃度が低すぎると、試験開始前と試験後の色調変化が小さいため、色調変化の検出が困難となる。用いる色素によって異なるものの、色素毎に適切な色素濃度の範囲が存在する。   Also, if the dye concentration in the system is too high, it takes too much time to change the color tone due to dye decomposition, while if the dye concentration in the system is too low, the change in color tone before and after the test is small, It becomes difficult to detect a change in color tone. Although depending on the dye used, there is a range of suitable dye concentrations for each dye.

以下、実施の形態により、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to embodiments.

1.色素水溶液の調整
色素1.メチルバイオレット水溶液
メチルバイオレットをイオン交換水に溶解し、まず色素濃度10mg/ml(色素1a)の水溶液を作製し、色素1aを希釈することで色素濃度0.1mg/ml(色素1b)、色素濃度0.02mg/ml(色素1c)の水溶液を調整した。
1. Preparation dye of dye aqueous solution Methyl violet aqueous solution Dissolve methyl violet in ion-exchanged water, first prepare an aqueous solution with a dye concentration of 10 mg / ml (dye 1a), and dilute dye 1a to obtain a dye concentration of 0.1 mg / ml (dye 1b). An aqueous solution of 0.02 mg / ml (Dye 1c) was prepared.

色素2.メチレンブルー水溶液
メチレンブルーをイオン交換水に溶解し、色素濃度10mg/ml(色素2a)、色素濃度0.1mg/ml(色素2b)、色素濃度0.02mg/ml(色素2c)の水溶液を調整した。
Dye 2. Methylene blue aqueous solution Methylene blue was dissolved in ion-exchanged water to prepare an aqueous solution having a dye concentration of 10 mg / ml (dye 2a), a dye concentration of 0.1 mg / ml (dye 2b), and a dye concentration of 0.02 mg / ml (dye 2c).

色素3.アリザリン水溶液
あらかじめ炭酸ナトリウムをイオン交換水に溶解し、濃度10mg/mlの炭酸ナトリウム水溶液(弱アルカリ性)を作製した。次に、アリザリンを上記炭酸ナトリウム水溶液に溶解し、色素濃度10mg/ml(色素3a)、色素濃度0.1mg/ml(色素3b)、色素濃度0.02mg/ml(色素3c)の水溶液を調整した。
Dye 3. Alizarin aqueous solution Sodium carbonate was previously dissolved in ion-exchanged water to prepare a sodium carbonate aqueous solution (weakly alkaline) with a concentration of 10 mg / ml. Next, alizarin is dissolved in the aqueous sodium carbonate solution to prepare an aqueous solution having a dye concentration of 10 mg / ml (dye 3a), a dye concentration of 0.1 mg / ml (dye 3b), and a dye concentration of 0.02 mg / ml (dye 3c). did.

色素4.イエロー4水溶液
イエロー4(Yellow−4)とデキストランが重量比で1/9の混合物をイオン交換水に溶解し、色素濃度1mg/ml(色素4a)、色素濃度0.02mg/ml(色素4b)の水溶液を調整した。
Dye 4. Yellow 4 aqueous solution A mixture of yellow 4 (Yellow-4) and dextran in a weight ratio of 1/9 is dissolved in ion-exchanged water to obtain a dye concentration of 1 mg / ml (dye 4a) and a dye concentration of 0.02 mg / ml (dye 4b). An aqueous solution was prepared.

色素5.グリーン水溶液
グリーン(Green)とデキストランが重量比で5/95の混合物をイオン交換水に溶解し、色素濃度1mg/ml(色素5a)、色素濃度0.02mg/ml(色素5b)の水溶液を調整した。
Dye 5. Green aqueous solution A mixture of green and dextran in a weight ratio of 5/95 is dissolved in ion-exchanged water to prepare an aqueous solution having a dye concentration of 1 mg / ml (dye 5a) and a dye concentration of 0.02 mg / ml (dye 5b). did.

色素6.レッド3水溶液
レッド3(RED−3)とデキストランが重量比で5/95の混合物をイオン交換水に溶解し、色素濃度0.1mg/ml(色素6a)、色素濃度0.05mg/ml(色素6b)、色素濃度0.02mg/ml(色素6c)の水溶液を調整した。
Dye 6. Red 3 aqueous solution A mixture of Red 3 (RED-3) and dextran in a weight ratio of 5/95 is dissolved in ion-exchanged water, and the dye concentration is 0.1 mg / ml (dye 6a), the dye concentration is 0.05 mg / ml (dye 6b), an aqueous solution having a dye concentration of 0.02 mg / ml (dye 6c) was prepared.

色素7.チオシアン酸鉄イオン水溶液
硫酸第二鉄とチオシアン酸カリウムとをイオン交換水に溶解し、チオシアン酸濃度10mg/ml(色素7a)、色素濃度0.2mg/ml(色素7b)の水溶液を調整した。
Dye 7 Iron thiocyanate ion aqueous solution Ferric sulfate and potassium thiocyanate were dissolved in ion-exchanged water to prepare an aqueous solution having a thiocyanate concentration of 10 mg / ml (dye 7a) and a dye concentration of 0.2 mg / ml (dye 7b).

2.触媒活性の測定実験
2−1.測定試料の調整
調整した上記の各色素水溶液、空気触媒溶液、および過酸化水素(17.5重量%水溶液)を準備した。ここで、空気触媒が固体の場合にはイオン交換水の0.01g/ml水溶液とした。
2. 2. Experiment for measuring catalytic activity 2-1. Preparation of measurement sample The prepared dye aqueous solutions, air catalyst solution, and hydrogen peroxide (17.5 wt% aqueous solution) were prepared. Here, when the air catalyst was solid, it was made into 0.01g / ml aqueous solution of ion-exchange water.

上記3種類の溶液を表1に示すように組み合わせて、4種類の試験管試料を作製した。   The above three types of solutions were combined as shown in Table 1 to prepare four types of test tube samples.

Figure 2009097888
Figure 2009097888

ここで試験管試料1〜4を作製した目的について説明する。
(試験管試料1)色素単独での脱色速度の確認用である。色素単独で急速に脱色するようだと本発明の目的である空気触媒活性のモニター用としては不適用と判断する。
(試験管試料2)空気触媒のみによる脱色速度の測定用である。
(試験管試料3)色素の過酸化水素による脱色速度の測定用試料であって、基準水溶液と称する。
(試験管試料4)本発明の測定方法に必要な要素がすべて揃った試験管であって、検体水溶液と称する。検体水溶液と基準水溶液とは、色調を整合させるため同一の過酸化水素濃度および同一の色素濃度を有する。
Here, the purpose of producing the test tube samples 1 to 4 will be described.
(Test tube sample 1) This is for confirming the decolorization rate of the dye alone. If the dye alone seems to rapidly decolorize, it is judged that it is not applicable for monitoring the air catalyst activity which is the object of the present invention.
(Test tube sample 2) This is for measuring the decolorization rate using only the air catalyst.
(Test tube sample 3) A sample for measuring the decolorization rate of the dye by hydrogen peroxide, which is referred to as a reference aqueous solution.
(Test tube sample 4) A test tube in which all the elements necessary for the measurement method of the present invention are prepared, and is referred to as a sample aqueous solution. The sample aqueous solution and the reference aqueous solution have the same hydrogen peroxide concentration and the same dye concentration in order to match the color tone.

検体水溶液(試験管試料4)が基準水溶液(試験管試料3)より速く脱色するのであれば、空気触媒による色素の脱色速度の増分を検知できる。   If the sample aqueous solution (test tube sample 4) decolors faster than the reference aqueous solution (test tube sample 3), the increase in the decoloration rate of the dye by the air catalyst can be detected.

なお、試験管試料3,4のpHについては、特に規定しないが、弱酸性〜中性の条件が好ましい。特にpH5〜7の範囲が好ましい。試験管試料がアルカリ性であると、過酸化水素の分解が過度に促進されるので好ましくない。   In addition, although it does not prescribe | regulate especially about the pH of the test tube samples 3 and 4, the conditions of weak acidity-neutrality are preferable. The range of pH 5-7 is particularly preferable. It is not preferable that the test tube sample is alkaline because decomposition of hydrogen peroxide is excessively accelerated.

また、試験管の温度条件についても特に規定しないが、室温付近、好ましくは15〜23℃前後が好ましい。なお、0℃近傍でも測定は可能である。ただし、高温にすると、過酸化水素の分解が過度に促進されるので好ましくない。   Moreover, although it does not prescribe | regulate especially about the temperature conditions of a test tube, Room temperature vicinity, Preferably around 15-23 degreeC is preferable. Note that measurement is possible even in the vicinity of 0 ° C. However, a high temperature is not preferable because decomposition of hydrogen peroxide is excessively accelerated.

さらに、過酸化水素濃度の適当な範囲を検討した。メチルバイオレットを色素として用い、本発明の測定方法を空気触媒セルフィールに適用した場合を例に、過酸化水素濃度が35重量%である水溶液、17.5重量%の水溶液、8重量%の水溶液、および4重量%の水溶液のそれぞれについて実験した。その結果、過酸化水素が8重量%以上の濃度にすると脱色が好適に進むので、本発明の目的に適していることがわかった。以下の実施例では、取り扱い性を考慮し、過酸化水素17.5重量%を採用した。   Furthermore, an appropriate range of the hydrogen peroxide concentration was examined. Using methyl violet as a dye and applying the measurement method of the present invention to air catalyst self-feel, an aqueous solution having a hydrogen peroxide concentration of 35% by weight, an aqueous solution of 17.5% by weight, an aqueous solution of 8% by weight , And 4% by weight aqueous solutions, respectively. As a result, it was found that when the concentration of hydrogen peroxide is 8% by weight or more, decolorization proceeds favorably, which is suitable for the purpose of the present invention. In the following examples, 17.5% by weight of hydrogen peroxide was employed in consideration of handleability.

2−2.色素対比実験
空気触媒としてセルフィール、過酸化水素、および予め調整しておいた各色素水溶液とを用いて、色素ごとに、表1に示す4種類の試験管試料を作製した。作製した試験管試料について、所定時間経過後の色調変化をモニターした。観察した時間は、試験管試料作製直後(0分)、15分、30分、60分、1日、3日、5日、10日、15日、30日とした。ただし、迅速な測定の実現を目的とする本発明の趣旨に照らして、実験データとしては1日後のデータまでを記載した。なお、下記の表では、脱色が顕著になった時間に「脱色」と記載した。つまり、「脱色」と記載した時間以前にも色調変化が生じているが、目視で確実に脱色が確認できた状態を「脱色」と記載した。また、脱色までは到っていないものの目視での色調変化が確認できる状態を「変化あり」とした。
2-2. Dye contrast experiment Four types of test tube samples shown in Table 1 were prepared for each dye by using SELFEEL, hydrogen peroxide, and each dye aqueous solution prepared in advance as an air catalyst. About the produced test tube sample, the color tone change after progress for a predetermined time was monitored. The observed time was immediately after preparation of the test tube sample (0 minute), 15 minutes, 30 minutes, 60 minutes, 1 day, 3 days, 5 days, 10 days, 15 days, and 30 days. However, in light of the gist of the present invention for the purpose of realizing rapid measurement, the data up to one day later was described as experimental data. In the table below, “decolorization” is described as the time when decolorization becomes significant. That is, although the color tone change occurred before the time described as “decolorization”, the state where decoloration was confirmed by visual observation was described as “decolorization”. In addition, a state in which a change in color tone with the naked eye can be confirmed although it has not reached decoloration was defined as “changed”.

各実験例の水溶液のpHは、アリザリンを用いた比較例1が弱アルカリ性である以外は、pH5〜7に調整した。また、各試料の放置温度は15〜23℃とした。   The pH of the aqueous solution of each experimental example was adjusted to pH 5 to 7 except that Comparative Example 1 using alizarin was weakly alkaline. Moreover, the leaving temperature of each sample was 15-23 degreeC.

実施例1.メチルバイオレット水溶液(濃度0.02mg/ml)

Figure 2009097888
Example 1. Methyl violet aqueous solution (concentration 0.02mg / ml)
Figure 2009097888

実施例2.メチレンブルー水溶液(濃度0.02mg/ml)

Figure 2009097888
Example 2 Methylene blue aqueous solution (concentration 0.02mg / ml)
Figure 2009097888

実施例3.イエロー4水溶液(濃度0.02mg/ml)

Figure 2009097888
Example 3 FIG. Yellow 4 aqueous solution (concentration 0.02mg / ml)
Figure 2009097888

実施例4.グリーン水溶液(濃度0.02mg/ml)

Figure 2009097888
Example 4 Green aqueous solution (concentration 0.02mg / ml)
Figure 2009097888

実施例5.レッド3水溶液(濃度0.1mg/ml)

Figure 2009097888
Embodiment 5 FIG. Red 3 aqueous solution (concentration 0.1mg / ml)
Figure 2009097888

比較例1.アリザリン水溶液(濃度0.1mg/ml)

Figure 2009097888
Comparative Example 1 Alizarin aqueous solution (concentration 0.1 mg / ml)
Figure 2009097888

比較例2.チオシアン酸鉄イオン水溶液(濃度0.2mg/ml)

Figure 2009097888
Comparative Example 2 Iron thiocyanate ion aqueous solution (concentration 0.2mg / ml)
Figure 2009097888

3.各色素の触媒活性の評価
実験例1〜5(表2〜6)の結果から、メチルバイオレット、メチレンブルー、イエロー4、グリーン、およびレッド3は、いずれも本発明の目的である触媒活性のモニター用途に適した色素であることがわかった。すなわち、空気触媒を添加することにより、過酸化水素の存在下における色素の脱色(検体水溶液)が、過酸化水素単独の場合(基準水溶液)の脱色よりも早いことを示した。また、上記の色素を用いた場合には、60分以内に検体水溶液(試験管試料4)の脱色が確認でき、簡便かつスピーディーな触媒活性測定方法が実現できることがわかった。
3. Evaluation of Catalytic Activity of Each Dye From the results of Experimental Examples 1 to 5 (Tables 2 to 6), methyl violet, methylene blue, yellow 4, green, and red 3 are all used for monitoring the catalytic activity that is the object of the present invention. It was found that the dye was suitable for That is, it was shown that by adding an air catalyst, the decolorization of the dye in the presence of hydrogen peroxide (analyte aqueous solution) was faster than the decolorization in the case of hydrogen peroxide alone (reference aqueous solution). In addition, when the above dye was used, decolorization of the sample aqueous solution (test tube sample 4) could be confirmed within 60 minutes, and it was found that a simple and speedy method for measuring catalytic activity could be realized.

一方、比較例1(表7)のアリザリン水溶液は弱アルカリ性であり、過酸化水素の混合直後に脱色するため、本発明に用いる色素としては適当ではないものと考えられる。弱アルカリ性では過酸化水素の分解が促進されるためである。   On the other hand, the alizarin aqueous solution of Comparative Example 1 (Table 7) is weakly alkaline and decolorizes immediately after mixing with hydrogen peroxide, so it is considered that it is not suitable as a dye used in the present invention. This is because the weak alkalinity promotes the decomposition of hydrogen peroxide.

また、比較例2(表8)に示すように、無機色素であるチオシアン酸鉄イオン水溶液は、過酸化水素単独の場合(試験管試料3)に対して、過酸化水素と空気触媒とが混在する場合に脱色の加速性が認められない。したがって、チオシアン酸鉄イオンに代表される無機色素は本発明に用いる色素としては適当ではないものと考えられる。   Further, as shown in Comparative Example 2 (Table 8), the aqueous iron thiocyanate ion solution, which is an inorganic dye, contains a mixture of hydrogen peroxide and an air catalyst as compared with hydrogen peroxide alone (test tube sample 3). Acceleration of decolorization is not observed when Therefore, it is considered that inorganic dyes represented by iron thiocyanate ions are not suitable as the dyes used in the present invention.

以上の結果から、本発明の触媒活性測定方法は、有機色素を用い、かつ酸性から中性の水溶液中で行うことが好ましいことがわかる。   From the above results, it can be seen that the method for measuring catalytic activity of the present invention is preferably performed using an organic dye and in an acidic to neutral aqueous solution.

4.レッド3の濃度確認実験
本発明の測定方法に用いる色素の一例としてレッド3を選定し、レッド3の濃度を変えて、表1に示す4種類の試験管試料を作製した。作製した試験管試料について、所定時間経過後の色調変化をモニターした結果を表9に示す。観察した時間は、試験管試料作製直後(0分)、5分、10分、15分、20分、30分、60分とした。なお、表9では、脱色が顕著になった時間に「脱色」と記載した。「脱色」と記載した時間以前にも色調変化が生じているが、目視で確実に脱色が確認できた期間の欄に「脱色」と記載した。測定した水溶液のpHをpH5〜7に調整し、放置時の温度は15〜23℃とした。
4). Red 3 Concentration Confirmation Experiment Red 3 was selected as an example of the dye used in the measurement method of the present invention, and the concentration of red 3 was changed to prepare four types of test tube samples shown in Table 1. Table 9 shows the results of monitoring the color tone change after the lapse of a predetermined time for the prepared test tube sample. The observed time was immediately after preparation of the test tube sample (0 minutes), 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, and 60 minutes. In Table 9, “decolorization” is described at the time when decolorization becomes significant. Although a change in color tone occurred before the time described as “decolorization”, “decoloration” was described in the column of the period during which decoloration could be confirmed by visual observation. The pH of the measured aqueous solution was adjusted to pH 5-7, and the temperature at the time of standing was 15-23 degreeC.

実施例6.レッド3水溶液
表9には、空気触媒、色素および過酸化水素を含む検体水溶液(試験管試料4)についての観察結果を示した。
Example 6 Table 3 shows the observation results for the sample aqueous solution (test tube sample 4) containing an air catalyst, a dye, and hydrogen peroxide.

Figure 2009097888
Figure 2009097888

4−1.レッド3の濃度の影響
レッド3の濃度が、0.02mg/mlの場合には、色素による水溶液の着色自体が薄いため、経時的な色調変化を明瞭に把握することがやや困難になる傾向があった。一方、レッド3の濃度が0.1mg/mlの場合、水溶液の着色が顕著という点は好ましいが、色調変化がやや遅くなるという傾向が見られた。したがって、レッド3を用いる場合には、水溶液中の色素濃度は0.02〜0.1mg/mlの範囲が好ましく、0.05mg/ml前後の色素濃度が特に好ましい。
4-1. Effect of the concentration of red 3 When the concentration of red 3 is 0.02 mg / ml, the coloring of the aqueous solution with the dye itself is thin, so it is somewhat difficult to clearly grasp the color tone change over time. there were. On the other hand, when the concentration of Red 3 is 0.1 mg / ml, it is preferable that the coloration of the aqueous solution is remarkable, but there is a tendency that the color tone change is slightly delayed. Therefore, when Red 3 is used, the dye concentration in the aqueous solution is preferably in the range of 0.02 to 0.1 mg / ml, and a dye concentration of around 0.05 mg / ml is particularly preferred.

なお、本発明では、検体水溶液と基準水溶液との色調の差異を目視で判断することで、より簡便な測定方法が提供できるが、分光光度計などの光学計測器を用いて、色調変化をより高精度に測定してもよい。   In the present invention, it is possible to provide a simpler measurement method by visually determining the difference in color tone between the sample aqueous solution and the reference aqueous solution, but the change in color tone can be further reduced by using an optical measuring instrument such as a spectrophotometer. You may measure with high precision.

以上説明したように、本発明は、空気触媒の触媒活性の簡便な測定方法を提供するものである。すなわち、本来それ自体、ヒドロキシルラジカルを発生することが知られており、かつ遷移元素を含有する空気触媒を過酸化水素中に投入し、かつ、その系に色素を混在させ、色素分解に伴う色調変化を観察することにより、空気触媒の触媒活性の検出を簡便に行うことができる方法を提供するものである。   As described above, the present invention provides a simple method for measuring the catalytic activity of an air catalyst. That is, it is originally known to generate hydroxyl radicals, and an air catalyst containing a transition element is introduced into hydrogen peroxide, and a dye is mixed in the system, so that the color tone accompanying the dye decomposition is increased. By observing the change, a method for easily detecting the catalytic activity of the air catalyst is provided.

Claims (8)

空気中の水を分解させてヒドロキシルラジカルを生成させる物質の触媒活性測定方法であって、
過酸化水素と有機色素と前記物質とを含む検体水溶液を作製する工程と、
前記検体水溶液と同じ濃度の過酸化水素および前記有機色素を含む基準水溶液を作製する工程と、
前記検体水溶液と前記基準水溶液の色調変化の差異を検出する工程とを含む触媒活性測定方法。
A method for measuring the catalytic activity of a substance that decomposes water in the air to generate hydroxyl radicals,
Producing an aqueous sample solution containing hydrogen peroxide, an organic dye, and the substance;
Producing a reference aqueous solution containing hydrogen peroxide having the same concentration as the sample aqueous solution and the organic dye;
A method for measuring catalytic activity, comprising a step of detecting a difference in color tone between the aqueous sample solution and the reference aqueous solution.
前記物質が遷移金属を含有することを特徴とする請求項1記載の触媒活性測定方法。 The method for measuring catalytic activity according to claim 1, wherein the substance contains a transition metal. 前記物質が、鉄、アルミニウム、およびカリウムを含む金属組成物またはさらに水を含む水性組成物であることを特徴とする請求項1記載の触媒活性測定方法。 2. The method for measuring catalytic activity according to claim 1, wherein the substance is a metal composition containing iron, aluminum, and potassium or an aqueous composition further containing water. 前記水性組成物は、アルミニウムおよびカリウムを、鉄100ppmに対してそれぞれ100〜300ppmおよび1〜20ppm含有している水性組成物であることを特徴とする請求項3記載の触媒活性測定方法。 The method for measuring catalytic activity according to claim 3, wherein the aqueous composition is an aqueous composition containing 100 to 300 ppm and 1 to 20 ppm of aluminum and potassium with respect to 100 ppm of iron, respectively. 前記水性組成物はさらに水酸化チタン(IV)塩酸塩を含有し、前記チタン含有量が、鉄100ppmに対して0.2〜50ppmであることを特徴とする請求項4記載の触媒活性測定方法。 The method for measuring catalytic activity according to claim 4, wherein the aqueous composition further contains titanium (IV) hydroxide, and the titanium content is 0.2 to 50 ppm with respect to 100 ppm of iron. . 前記有機色素が、メチルバイオレット、メチレンブルー、イエロー4、グリーン、およびレッド3の群から選ばれる少なくとも一つの色素であることを特徴とする請求項1〜5記載の触媒活性測定方法。 6. The method for measuring catalytic activity according to claim 1, wherein the organic dye is at least one dye selected from the group consisting of methyl violet, methylene blue, yellow 4, green, and red 3. 前記有機色素がレッド3であり、レッド3の濃度が0.02〜0.1mg/mlの範囲であることを特徴とする請求項6記載の触媒活性測定方法。 7. The method for measuring catalytic activity according to claim 6, wherein the organic dye is red 3, and the concentration of red 3 is in the range of 0.02 to 0.1 mg / ml. 前記検体水溶液と前記基準水溶液のpHが、pH5〜7であることを特徴とする請求項1〜7記載の触媒活性測定方法。 8. The method for measuring catalytic activity according to claim 1, wherein the pH of the sample aqueous solution and the reference aqueous solution is pH 5-7.
JP2007267107A 2007-10-12 2007-10-12 Method for measuring catalytic activity Active JP4928407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267107A JP4928407B2 (en) 2007-10-12 2007-10-12 Method for measuring catalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267107A JP4928407B2 (en) 2007-10-12 2007-10-12 Method for measuring catalytic activity

Publications (2)

Publication Number Publication Date
JP2009097888A true JP2009097888A (en) 2009-05-07
JP4928407B2 JP4928407B2 (en) 2012-05-09

Family

ID=40701041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267107A Active JP4928407B2 (en) 2007-10-12 2007-10-12 Method for measuring catalytic activity

Country Status (1)

Country Link
JP (1) JP4928407B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063873A1 (en) * 2014-10-24 2016-04-28 東洋紡株式会社 Substance decomposing and removing agent
JP6078192B1 (en) * 2016-04-22 2017-02-08 東洋紡株式会社 Textile or knitting for bedding
JP6078191B1 (en) * 2016-04-22 2017-02-08 東洋紡株式会社 Cotton for bedding
KR20200120052A (en) * 2019-04-11 2020-10-21 충북대학교 산학협력단 Method for Selecting Highly Antimicrobial Nanoparticles Using pH and Proton Conductivity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178919A (en) * 1994-12-26 1996-07-12 Kikkoman Corp Method and kit for determining hydroxy radical
JPH10332667A (en) * 1997-06-04 1998-12-18 Koujinkai Detecting apparatus for hydroxyl radical
JPH1183833A (en) * 1997-09-09 1999-03-26 Ube Nitto Kasei Co Ltd Method and apparatus for measuring photocatalyst activity
WO2003014725A1 (en) * 2001-08-02 2003-02-20 Kyowa Medex Co., Ltd. Reagent for determining hydrogen peroxide
JP2007014481A (en) * 2005-07-06 2007-01-25 Rosecc:Kk Deodorization and antibacterial method for automobile and automobile comprising deodorization and antibacterial means
WO2007069458A1 (en) * 2005-12-16 2007-06-21 Nichirin Chemical Co., Ltd. Aqueous composition containing metal composition, and deodorizing agent, antibacterial agent and antifungal agent composed of such aqueous composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178919A (en) * 1994-12-26 1996-07-12 Kikkoman Corp Method and kit for determining hydroxy radical
JPH10332667A (en) * 1997-06-04 1998-12-18 Koujinkai Detecting apparatus for hydroxyl radical
JPH1183833A (en) * 1997-09-09 1999-03-26 Ube Nitto Kasei Co Ltd Method and apparatus for measuring photocatalyst activity
WO2003014725A1 (en) * 2001-08-02 2003-02-20 Kyowa Medex Co., Ltd. Reagent for determining hydrogen peroxide
JP2007014481A (en) * 2005-07-06 2007-01-25 Rosecc:Kk Deodorization and antibacterial method for automobile and automobile comprising deodorization and antibacterial means
WO2007069458A1 (en) * 2005-12-16 2007-06-21 Nichirin Chemical Co., Ltd. Aqueous composition containing metal composition, and deodorizing agent, antibacterial agent and antifungal agent composed of such aqueous composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063873A1 (en) * 2014-10-24 2016-04-28 東洋紡株式会社 Substance decomposing and removing agent
JP5944072B1 (en) * 2014-10-24 2016-07-05 東洋紡株式会社 Substance decomposition remover
JP6078192B1 (en) * 2016-04-22 2017-02-08 東洋紡株式会社 Textile or knitting for bedding
JP6078191B1 (en) * 2016-04-22 2017-02-08 東洋紡株式会社 Cotton for bedding
KR20200120052A (en) * 2019-04-11 2020-10-21 충북대학교 산학협력단 Method for Selecting Highly Antimicrobial Nanoparticles Using pH and Proton Conductivity
KR102180903B1 (en) 2019-04-11 2020-11-19 충북대학교 산학협력단 Method for Selecting Highly Antimicrobial Nanoparticles Using pH and Proton Conductivity

Also Published As

Publication number Publication date
JP4928407B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
Bai et al. HKOH‐1: a highly sensitive and selective fluorescent probe for detecting endogenous hydroxyl radicals in living cells
Shah et al. Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: influence of water quality parameters
Liao et al. Chemical oxidation by photolytic decomposition of hydrogen peroxide
Wende et al. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet
Morgan et al. Ultraviolet molar absorptivities of aqueous hydrogen peroxide and hydroperoxyl ion
Emmanuel et al. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia
Wang et al. Sulfur dioxide prodrugs: triggered release of SO 2 via a click reaction
Mao et al. A highly sensitive and reductant-resistant fluorescent probe for nitroxyl in aqueous solution and serum
JP4928407B2 (en) Method for measuring catalytic activity
Terraschke et al. In situ luminescence analysis: a new light on monitoring calcium phosphate phase transitions
Donham et al. Photometric hydroxyl radical scavenging analysis of standard natural organic matter isolates
Burgaud et al. Determination of the Fe (II)/Fe (III) ratio in iron gall inks by potentiometry: A preliminary study
AU2011382298B2 (en) Sterilizer, oral sterilizer, sterilization method, sterilization apparatus, and sterilizer evaluation method
Wang et al. Direct quantification of total sulfur dioxide in wine using triple quadrupole ICP-MS
CN105628728B (en) A kind of method that hydroxy free radical concentration changes in solution in detection course of reaction
WO2011046943A1 (en) Bromothymol blue composition for detection of free radicals
Gao et al. The investigation of RONS permeation in plasma‐activated oil–water mixed system
US10634656B2 (en) Storage stable standards for aqueous chlorine analysis
EP3415503A1 (en) Composition for detecting bloodstain
Rizk et al. Kinetic spectrophotometric determination of mesna in drug substance and drug product using alkaline potassium permanganate
JP3833253B2 (en) Iodide measurement method and means
Kołodyński et al. Preliminary ecotoxicity assessment of selected flavour and fragrance compounds using microtox assay
WO2020257930A1 (en) Stable alkyl benzidine composition and methods of making and using same
CN107607529B (en) Rapid screening method for formaldehyde in perfume
JP5431079B2 (en) Novel chemiluminescent reagent, new chemiluminescent method, method for measuring a substance to be detected using the same, and kit used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250