JP2009097134A - Coated base fabric for airbag - Google Patents

Coated base fabric for airbag Download PDF

Info

Publication number
JP2009097134A
JP2009097134A JP2008198725A JP2008198725A JP2009097134A JP 2009097134 A JP2009097134 A JP 2009097134A JP 2008198725 A JP2008198725 A JP 2008198725A JP 2008198725 A JP2008198725 A JP 2008198725A JP 2009097134 A JP2009097134 A JP 2009097134A
Authority
JP
Japan
Prior art keywords
base fabric
coated base
fabric
elastomer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008198725A
Other languages
Japanese (ja)
Other versions
JP5374089B2 (en
Inventor
Hiroyuki Kobayashi
裕之 小林
Kazumi Shiga
一三 志賀
Yasushi Ozaki
康司 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2008198725A priority Critical patent/JP5374089B2/en
Priority to US12/232,390 priority patent/US8142869B2/en
Priority to EP20080016288 priority patent/EP2042649B1/en
Priority to CN2008101683058A priority patent/CN101397707B/en
Publication of JP2009097134A publication Critical patent/JP2009097134A/en
Application granted granted Critical
Publication of JP5374089B2 publication Critical patent/JP5374089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2277/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2313/00Use of textile products or fabrics as reinforcement
    • B29K2313/02Use of textile products or fabrics as reinforcement coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/02Inflatable articles
    • B29L2022/027Air bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated base fabric for airbags including: a cloth obtained by weaving polyamide (PA) fiber yarns; and a PA elastomer coating film formed on one surface or both surfaces of the cloth, wherein the coated base fabric has predetermined air tightness and flexibility, is easily converted to a PA reproduced material. <P>SOLUTION: The coated base fabric for airbags is obtained by fusing a coating film 16 made of an airflow suppression PA elastomer on one surface or both surfaces of a cloth 14 obtained by weaving yarns 12 and 12A made of a polyamide (PA) fiber. As the PA elastomer, soft PA is normally used, which has a melting point (measured by the standard of ASTM D3418) of 135 to 200°C, a difference between the melting points of the PA fiber and PA elastomer being 80 to 120°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

発明は、エアバッグ用コート基布及び該コート基布の廃材からなるポリアミド(PA)再生材に関する。   The present invention relates to a coated base fabric for airbags and a polyamide (PA) recycled material made of a waste material of the coated base fabric.

自動車には、乗員保護のためのエアバッグ装置が装着されている。エアバッグ装置に組み込まれるエアバッグの基布としては、PA繊維糸(例えば、ナイロン66)で織成(通常、平織)した布帛(ノンコート基布)、又は、該布帛の片面又は両面にエラストマー塗膜を形成したコート布帛(コート基布)の2種類ある。   An automobile is equipped with an airbag device for protecting an occupant. The airbag base fabric incorporated in the airbag device may be a fabric woven (usually plain weave) with PA fiber yarn (for example, nylon 66) (uncoated base fabric), or an elastomer coating on one or both sides of the fabric. There are two types of coated fabric (coated base fabric) on which a film is formed.

エアバッグ装置が助手席用も含み全車標準装備となった昨今、エアバッグ用基布の廃材(基布裁断時に発生する端材を含む。以下同じ。)が多量に発生する。   Nowadays, airbag devices have become standard equipment for all passenger cars, including passenger seats, and waste materials for airbag fabrics (including scrap materials generated during cutting of the fabric fabric; the same applies hereinafter) are generated in large quantities.

そして、循環型社会構築の見地から、上記基布の廃材をPA再生材としてリサイクル(再利用)する要請が増大してきている。   From the viewpoint of building a recycling-oriented society, there is an increasing demand for recycling (reusing) the waste material of the base fabric as a PA recycled material.

ノンコート基布は、PA繊維糸のみからなり再生が容易であるため、リサイクルが実用化されている。   Since the non-coated base fabric is made of only PA fiber yarns and can be easily recycled, recycling has been put to practical use.

しかし、コート基布は、特許文献1〜3に示す如く、PA繊維糸からなる布帛に、シリコーンゴム乃至シリコーン樹脂をコートしたものが主流であった。   However, as the coated base fabric, as shown in Patent Documents 1 to 3, a fabric made of PA fiber yarn is mainly coated with silicone rubber or silicone resin.

すなわち、特許文献1段落0013には、エラストマー塗膜の塗膜材として、「クロロプレンゴム、クロルスルフォン化ゴム、シリコーンゴム」と記載され、特許文献2段落0061には「シリコーン樹脂、ポリウレタン樹脂、ポリアミド系樹脂」と記載され、特許文献3には、「クロロプレン、クロルスルフォン化オレフィン、シリコーンゴム、ポリアミド系エラストマー、・・・」と記載されている。そして、いずれの特許文献も耐熱性が良好な「シリコーンゴム(シリコーン樹脂)」が、実施例として記載されていたり、特に好ましいと記載されていたりする。   That is, in Patent Document 1, paragraph 0013, “chloroprene rubber, chlorosulfonated rubber, silicone rubber” is described as a coating material for an elastomer coating, and in Patent Document 2, paragraph 0061, “silicone resin, polyurethane resin, polyamide” Patent Document 3 describes “chloroprene, chlorosulfonated olefin, silicone rubber, polyamide elastomer,...”. In any patent document, “silicone rubber (silicone resin)” having good heat resistance is described as an example or particularly preferable.

本願出願前においては、「エラストマー塗膜の材料としては、布帛と同等以上の耐熱性に優れたゴム乃至樹脂でなければならないとする。」のが当業者常識であったことが伺える。   Prior to the filing of the present application, it can be said that it was common knowledge to those skilled in the art that “the material of the elastomer coating film must be a rubber or a resin excellent in heat resistance equal to or higher than that of the fabric”.

なお、特許文献2・3には、エラストマー塗膜の形成材料として、PAエラストマーも例示はされているが、リサイクルを予定していないことは勿論、上記記載から、本発明のような低融点のものを予定していないと想像される。しかし、そのような高融点のPAエラストマーを使用した場合、基布に所要の気密度(低通気量)を確保しながら、柔軟性を確保することは困難と推定される。   In Patent Documents 2 and 3, PA elastomer is also exemplified as a material for forming the elastomer coating film, but it is not planned to be recycled. Imagine not planning on anything. However, when such a high melting point PA elastomer is used, it is estimated that it is difficult to ensure flexibility while ensuring a required air density (low air flow rate) in the base fabric.

特に、昨今、乗員保護のために、エアバッグの機能についてより迅速かつ高精度の初期拘束性を確保する要請が増大してきているため、エアバッグ展開性の見地から、さらなる高気密度が要求されるようになってきている。他方、エアバッグの折り畳み性と上記エアバッグ展開性からも所要の柔軟性(低反発弾性)も必須要件である。   In recent years, in order to protect passengers, there has been an increasing demand for ensuring quicker and more accurate initial restraint on the functions of airbags, so that higher air density is required from the standpoint of airbag deployment. It is becoming. On the other hand, the required flexibility (low rebound resilience) is also an essential requirement in view of the foldability of the airbag and the deployability of the airbag.

一般的に、コート基布において、上記高気密度と柔軟性とは二律背反的要請であるとするのが当業者常識であった。すなわち、高気密度を確保するためには、相対的に厚肉の塗膜とする必要がある、しかし、塗膜を厚くすると、エアバッグの質量が増加し、また、相対的に反発弾性が大きくなって柔軟性を確保し難くなるとともに、折畳み性にも悪影響を与える。   In general, it has been common knowledge to those skilled in the art that in the coated base fabric, the high air density and flexibility are contradictory requirements. In other words, in order to ensure a high air density, it is necessary to make the coating film relatively thick. However, if the coating film is thick, the mass of the airbag increases and the resilience is relatively low. It becomes large and it becomes difficult to ensure flexibility, and it also has an adverse effect on foldability.

なお、本発明と同様のPAエラストマー(軟質PA)をエラストマー塗膜の塗膜材として、明記されている公知文献として、特許文献4・5がある。   Patent Documents 4 and 5 are publicly known documents in which PA elastomer (soft PA) similar to the present invention is used as a coating material for an elastomer coating film.

すなわち、特許文献4の請求項1には、「合成繊維糸を構成要素とするエアバッグ用基布であって水溶性または水分散性の合成樹脂で含浸処理されてなり、該合成樹脂は、厚み:0.3mmのフィルム形状とし、引張試験機により、チャック間距離:35mm、引張速度:300mm/分の条件で引張試験を行った際に、引張伸びが200%以上であり、且つ200%伸張時の強度が5MPa以下であることを特徴とするエアバッグ用基布。」と記載され、同請求項2には、「合成樹脂は、ポリウレタン樹脂、アクリル樹脂、ポリエステル樹脂およびポリアミド樹脂から選択される」ことが記載され、さらに、
段落0028には、軟質PAとして「トレジン(帝国化学産業社製商品名:N-メトキシメチル化ナイロン)」が好適例とされている。
That is, in claim 1 of Patent Document 4, “a base fabric for an airbag having a synthetic fiber yarn as a constituent element, which is impregnated with a water-soluble or water-dispersible synthetic resin, Thickness: 0.3 mm film shape, and tensile test was performed with a tensile tester at a distance between chucks of 35 mm and a tensile speed of 300 mm / min. The base fabric for an air bag is characterized in that the strength at the time is 5 MPa or less. ”In claim 2,“ the synthetic resin is selected from polyurethane resin, acrylic resin, polyester resin and polyamide resin ”. In addition,
In Paragraph 0028, “Toresin (trade name: N-methoxymethylated nylon manufactured by Teikoku Chemical Industry Co., Ltd.)” is a preferred example of the soft PA.

しかし、該軟質PA(PAエラストマー)では、所定の気密度は、確保し難いと推定される。「トレジン」の商品説明書(ナガセケムテックス株式会社発行)によれば、水蒸気透過性(g・cm/cm2・s・cmHg×1012:38℃、24h、フィルム厚25μ)において、「トレジンF−30K」は「3060」で「再生セルロース」の「3800」に近い数値を示し、「ナイロン6」の「160」と20倍以上の差があるためである。 However, with the soft PA (PA elastomer), it is estimated that a predetermined air density is difficult to ensure. According to the “Toresin” product description (issued by Nagase ChemteX Corporation), the water vapor permeability (g · cm / cm 2 · s · cmHg × 1012: 38 ° C, 24h, film thickness 25μ) This is because “-30K” is “3060”, which is close to “3800” of “regenerated cellulose”, and is more than 20 times different from “160” of “nylon 6”.

また、「トレジン」は、アルコール可溶性ナイロンであり、塗料として溶液タイプを予定している。このため、塗膜形成樹脂が、布帛の隙間に侵入してコート基布に柔軟性を確保し難いものと推定される。   “Toresin” is an alcohol-soluble nylon, and a solution type is planned as a paint. For this reason, it is presumed that the coating film-forming resin penetrates into the gaps of the fabric and it is difficult to ensure the flexibility of the coated base fabric.

また、特許文献5には、布帛をナイロン66とし、該布帛の片面にPAエラストマー(ソフトセグメントをアミノ変性ポリエーテルとするブロック共重合体)からなる乾燥塗膜が記載されている。しかし、本文献における塗膜の乾燥温度は、実施例1では乾燥仕上げ温度が110℃であり(段落0018)、PAエラストマーは溶融して、塗膜が布帛に融着形成されているとは考え難い。
特開平6-81274号公報 特開2004-176221号公報 特開2006-249655号公報 特開2004-218138号公報 特開2008-13897号公報
Patent Document 5 describes a dry coating film made of nylon 66 as a fabric and PA elastomer (a block copolymer having a soft segment as an amino-modified polyether) on one side of the fabric. However, the drying temperature of the coating film in this document is that the drying finishing temperature is 110 ° C. in Example 1 (paragraph 0018), and it is considered that the PA elastomer is melted and the coating film is fused to the fabric. hard.
JP-A-6-81274 JP 2004-176221 A JP 2006-249655 A JP 2004-218138 A JP 2008-13897

本発明は、上記にかんがみて、PA繊維糸で織成された布帛の片面又は両面にPAエラストマー塗膜が形成されているエアバッグ用コート基布において、所定の気密度とともに柔軟性を有し、さらには、PA再生材とすることが容易なエアバッグ用コート基布を提供することを目的(課題)とする。   In view of the above, the present invention provides a coated base fabric for an airbag in which a PA elastomer coating film is formed on one or both sides of a fabric woven with PA fiber yarns, and has flexibility with a predetermined air density. Furthermore, it is an object (problem) to provide a coated base fabric for an air bag that can be easily made into a PA recycled material.

本発明は、上記課題(目的)を、下記構成により解決する。   The present invention solves the above problem (object) by the following configuration.

ポリアミド(PA)繊維の糸で織成された布帛の少なくとも片面にPAエラストマーの塗膜が形成されてなるエアバッグ用のコート基布において、
PAエラストマーが、融点(ASTM D3418。以下同じ。)135〜200℃を示すものであり、且つ、PA繊維との融点差が80〜120℃とされて、PAエラストマー塗膜が布帛に融着形成されていることを特徴とする。
In a coated base fabric for an air bag in which a coating film of PA elastomer is formed on at least one side of a fabric woven with polyamide (PA) fiber yarns,
The PA elastomer has a melting point (ASTM D3418; the same applies hereinafter) of 135 to 200 ° C., and the melting point difference with the PA fiber is set to 80 to 120 ° C., and the PA elastomer coating film is fused to the fabric. It is characterized by being.

本発明に係るエアバッグ用コート基布の製造方法は、下記構成となる。   The manufacturing method of the coat base fabric for airbags which concerns on this invention becomes the following structure.

本発明のエアバッグ用コート基布の製造方法であって、上記塗膜の塗料として、ポリマー粒径0.05〜5μmの水分散系の塗料を使用するとともに、該塗料を塗布後、前記PAエラストマーの融点より5〜30℃高い温度で0.5〜5min加熱処理して塗膜の形成を行うことを特徴とする。   In the method for producing a coated base fabric for an airbag according to the present invention, a water-dispersed paint having a polymer particle size of 0.05 to 5 μm is used as the paint for the coating film, and after applying the paint, A coating film is formed by heat treatment at a temperature 5 to 30 ° C. higher than the melting point for 0.5 to 5 minutes.

本発明のPA再生材は、本発明のエアバッグ用コート基布の廃材を破砕・溶融・ペレット化されてなることを特徴とする。   The PA recycled material of the present invention is characterized in that the waste material of the coated fabric for airbag of the present invention is crushed, melted and pelletized.

当該PA再生材は、望ましくは、成形体の機械的特性が、引張強さ(ASTM D 638)、引張伸び(同)、曲げ強さ(ASTM D 790)、曲げ弾性率(同)において、ノンコート基布の再生材の50%以上値を示すものであり、さらには、シャルピー衝撃値(JIS K 7111)において、ノンコート基布に比して35%以上(望ましくは70%以上、さらには100%以上)大きな値を示すものとする。   The PA recycled material preferably has a non-coated mechanical property of the molded body in terms of tensile strength (ASTM D 638), tensile elongation (same), bending strength (ASTM D 790), and flexural modulus (same). The value indicates 50% or more of the recycled material of the base fabric. Furthermore, in the Charpy impact value (JIS K 7111), it is 35% or more (preferably 70% or more, or even 100%) compared to the non-coated base fabric. Above) Show a large value.

そして、本発明は、本発明のエアバッグ用コート基布を用いたエアバッグ、さらには、該エアバッグを用いたエアバッグ装置にまで及ぶ。   And this invention extends to the airbag using the coat base fabric for airbags of this invention, and also the airbag apparatus using this airbag.

以下、本発明の望ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本実施形態のエアバッグ用コート基布は、ポリアミド繊維糸で織成された布帛と、該布帛の少なくとも片面(片面又は両面)に形成される通気抑制塗膜とを備えてなることを前提的構成とする。   The air bag coat base fabric of the present embodiment is premised on including a fabric woven with polyamide fiber yarns and a ventilation suppression coating film formed on at least one side (one side or both sides) of the fabric. The configuration.

前記PA繊維糸のPA繊維としては、例えば、ナイロン66、ナイロン6、ナイロン46、ナイロン12などの脂肪族ポリアミド;アラミドなどの芳香族ポリアミド等を使用する。これらのうちで、耐熱性と汎用性の見地からナイロン66が好ましい。その理由は、下記の如くである。   Examples of the PA fibers of the PA fiber yarn include aliphatic polyamides such as nylon 66, nylon 6, nylon 46, and nylon 12; aromatic polyamides such as aramid. Among these, nylon 66 is preferable from the viewpoint of heat resistance and versatility. The reason is as follows.

ナイロン66(融点:250〜260℃)は、他の汎用ナイロンであるナイロン6(同215〜220℃)、ナイロン11(同184〜194℃)、ナイロン12(同176〜180℃)より融点が高くて熱容量も大きい。ナイロン46(同290℃)は、融点は高いが特殊であり高コストである。芳香族ポリアミドは、機械的強度や耐熱性は高いが耐摩耗性に劣る。なお、上記ナイロンの各融点は、「高分子大辞典」(丸善出版)p987、「実用プラスチック事典」(産業調査会)p320、「化学便覧応用編 改訂3版」(丸善出版)p833からそれぞれ引用したものをまとめたものである。   Nylon 66 (melting point: 250-260 ° C) has a melting point higher than other general-purpose nylons such as nylon 6 (215-220 ° C), nylon 11 (184-194 ° C), and nylon 12 (176-180 ° C). High and large heat capacity. Nylon 46 (290 ° C.) has a high melting point but is special and expensive. Aromatic polyamide has high mechanical strength and heat resistance, but is inferior in wear resistance. Each melting point of the above nylon is quoted from "Polymer Dictionary" (Maruzen Publishing) p987, "Practical Plastics Dictionary" (Industry Research Committee) p320, "Chemical Handbook Application Edition 3rd Edition" (Maruzen Publishing) p833, respectively. It is a summary of what you did.

PA繊維糸は、PA繊維の種類により異なるが、通常、200〜700dtexの合糸を使用する。例えば、フィラメント72本合糸で470dtexとなるようなナイロン66合糸を使用する。   Although the PA fiber yarn varies depending on the type of PA fiber, a 200 to 700 dtex composite yarn is usually used. For example, nylon 66 combined yarn is used so that 72 filaments are combined to be 470 dtex.

そして、布帛の織成の態様は、通常、平織りとするが、斜文織りや朱子織りでもよい。   The weaving mode of the fabric is usually a plain weave, but it may be an oblique weave or a satin weave.

また、布帛の下記式で示されるカバーファクター(K)は、1200〜2400、望ましくは1400〜2100、更に望ましくは1600〜2000、最も望ましくは1800〜2000とする。カバーファクターの低い、即ち、通気度の低い布帛を用いることにより、本発明の効果、軽量、低コスト化が可能となる。カバーファクターが低すぎると、所定の機械的強度を得難くなることに加えて、布帛の織り目間に溶融樹脂が貫通流入してコート基布の気密度乃至柔軟性を確保し難くなる。   Further, the cover factor (K) represented by the following formula of the fabric is 1200 to 2400, desirably 1400 to 2100, more desirably 1600 to 2000, and most desirably 1800 to 2000. By using a fabric having a low cover factor, that is, a low air permeability, the effect, light weight, and cost reduction of the present invention can be achieved. If the cover factor is too low, it becomes difficult to obtain a predetermined mechanical strength, and in addition, it becomes difficult to ensure the air density or flexibility of the coated base fabric due to the molten resin penetrating and flowing between the fabric textures.

K=NW × DW0.5 + NF × DF0.5
但し、NW:経糸密度(本/in)、DW:経糸繊度(デニール)
NF:緯糸密度(本/in)、DF:緯糸繊度(デニール)
カバーファクター(K)が、低すぎる又は高すぎるということは、経・緯糸密度及び/又は経・緯繊度が相対的に低いこと又は高いことを意味する。
K = NW x DW 0.5 + NF x DF 0.5
However, NW: Warp density (lines / in), DW: Warp fineness (denier)
NF: Weft density (main / in), DF: Weft fineness (denier)
That the cover factor (K) is too low or too high means that the warp / weft density and / or the warp / weft fineness is relatively low or high.

糸密度及び/又は繊度が低いと、布帛に所定の機械的強度を得難く、さらに、糸密度が低い場合、糸ずれが発生して織り目形態が崩れるおそれがある。   When the yarn density and / or fineness is low, it is difficult to obtain a predetermined mechanical strength for the fabric. Furthermore, when the yarn density is low, there is a possibility that the yarn form may be lost and the texture form may be lost.

糸密度及び/又は繊度が高いと、布帛の剛性が所定値内に収まり難く、さらに、糸密度が高い場合布帛が厚くなって、エアバッグの折畳み性・収納性に問題が生じ易くなる。   If the yarn density and / or fineness is high, the stiffness of the fabric is difficult to be within a predetermined value, and if the yarn density is high, the fabric becomes thick and problems with the folding and storing properties of the airbag are likely to occur.

そして、図1ではPA繊維糸(経・緯糸)12、12Aで形成された布帛14の片面にPAエラストマーの塗膜16が形成されている。前述の如く、該塗膜は、両面に形成されていてもよい。   In FIG. 1, a PA elastomer coating film 16 is formed on one side of a fabric 14 formed of PA fiber yarns (warp / weft) 12 and 12A. As described above, the coating film may be formed on both sides.

そして、本発明においては、コート基布の柔軟性確保の見地から、図示の如く、塗膜16が可及的に薄層で、布帛表面における織り目間隙の片面凹部にPAエラストマー(樹脂)が部分浸入したマクロ構造を有することが望ましい。   In the present invention, from the viewpoint of ensuring the flexibility of the coated base fabric, as shown in the figure, the coating film 16 is as thin as possible, and the PA elastomer (resin) is partially formed in the concave portion on one side of the weave gap on the fabric surface. It is desirable to have an intruded macrostructure.

そして、PAエラストマーは、基布の種類により異なるが、例えば、基布(PA繊維)がナイロン66(融点:250〜260℃)の場合、下記特性を有するブロック共重合タイプの熱可塑性エラストマー(TPE)を好適に使用できる。   The PA elastomer varies depending on the type of the base fabric. For example, when the base fabric (PA fiber) is nylon 66 (melting point: 250 to 260 ° C.), a block copolymer type thermoplastic elastomer (TPE) having the following characteristics is used. ) Can be suitably used.

1)融点:135〜200℃、望ましくは140〜180℃、さらに望ましくは155〜165℃とする。   1) Melting point: 135 to 200 ° C, desirably 140 to 180 ° C, more desirably 155 to 165 ° C.

そして、PA繊維との融点差は80〜120℃、望ましくは80〜110℃、さらに望ましくは85〜105℃とする。   The difference in melting point with the PA fiber is 80 to 120 ° C, preferably 80 to 110 ° C, more preferably 85 to 105 ° C.

PAエラストマーの融点が高いと、エラストマーの相対的な結晶率の上昇に伴う剛性増大により、コート基布に柔軟性を確保し難くなる。すなわち、バッグの折畳みが困難となるとともにバッグ展開時の要求展開性能(バッグ内へのガス流入に伴う、スムーズな展開性)を確保し難くなる。逆にPAエラストマーの融点が低すぎると、即ち、車両使用環境上限温度(通常、105℃)に近いと、塗膜自体の形態が崩れて気密度(低通気量)を確保し難くなり、さらには、布帛(基布)を構成するPAとの融点差が大きくなり易く、再生材料の品質を確保し難くなる。   When the melting point of the PA elastomer is high, it becomes difficult to ensure flexibility in the coated base fabric due to an increase in rigidity accompanying an increase in the relative crystallinity of the elastomer. That is, it becomes difficult to fold the bag, and it is difficult to ensure the required deployment performance (smooth deployability accompanying gas inflow into the bag) when the bag is deployed. Conversely, if the melting point of the PA elastomer is too low, that is, if it is close to the vehicle use environment upper limit temperature (usually 105 ° C.), the form of the coating film itself will collapse and it will be difficult to ensure the air density (low air flow rate). Is likely to have a large melting point difference from PA constituting the fabric (base fabric), and it becomes difficult to ensure the quality of the recycled material.

2)引張伸び(引張破断伸度)(ASTM D638。以下同じ):200%以上とする。引張伸びが低すぎると、コート基布に柔軟性を確保し難くなるとともに、バッグ展開時の応力で、エラストマー塗膜に亀裂が発生して、所定気密性を確保し難くなるおそれがある。   2) Tensile elongation (tensile elongation at break) (ASTM D638, the same shall apply hereinafter): 200% or more. If the tensile elongation is too low, it is difficult to ensure flexibility in the coated base fabric, and cracks may occur in the elastomer coating film due to stress during bag deployment, making it difficult to ensure the predetermined airtightness.

3)曲げ弾性率(ASTM D790):200MPa以下とする。曲げ弾性率が高すぎると、コート基布に柔軟性を確保し難くなる。曲げ弾性率は低い方が望ましいが、通常、下限は50MPaとする。   3) Flexural modulus (ASTM D790): 200 MPa or less. If the flexural modulus is too high, it will be difficult to ensure flexibility in the coated base fabric. A lower flexural modulus is desirable, but usually the lower limit is 50 MPa.

4)平衡吸水率(ASTM D790;20℃×65%R):3%以下、望ましくは2%以下とする。   4) Equilibrium water absorption (ASTM D790; 20 ° C x 65% R): 3% or less, preferably 2% or less.

平衡吸水率が高すぎると、塗膜が水分を吸収して塗膜剥がれが発生するおそれがある。   If the equilibrium water absorption is too high, the coating film may absorb moisture and peeling of the coating film may occur.

本発明者らは、ナイロンエラストマーが、ナイロン66繊維の平衡吸水率(3.3〜4.5%)と同じか若干低めの場合に、塗膜密着性の観点から有利であることを確認している。   The present inventors have confirmed that the nylon elastomer is advantageous from the viewpoint of coating film adhesion when it is the same as or slightly lower than the equilibrium water absorption (3.3 to 4.5%) of the nylon 66 fiber.

なお、前記の如く「トレジン」は、セルロースに近い水蒸気透過性を有し、平衡吸水率は、ナイロン6,6よりはるかに高いものと推定される。   As mentioned above, “Tresin” has water vapor permeability close to that of cellulose, and the equilibrium water absorption is estimated to be much higher than that of nylon 6 and 6.

5)環境負荷物質を含まない。例えば、「トレジン」(N−メトキシメチル化ナイロン)の場合、残留ホルマリンを含有する。リサイクルの見地から環境負荷物質を含まないものが望ましい。   5) Does not contain environmentally hazardous substances. For example, “Tresin” (N-methoxymethylated nylon) contains residual formalin. From the viewpoint of recycling, those that do not contain environmentally hazardous substances are desirable.

そして、PAエラストマーの種類は、上記特性1)さらには2)〜5)を満たすものなら特に限定されず、下記各種タイプのものを使用可能である。これらのうちで、ブロック共重合タイプが、本発明に要求される融点(耐熱性)とともに柔軟性(引張伸び、曲げ弾性率)を得やすくて、好ましい。   The type of PA elastomer is not particularly limited as long as it satisfies the above characteristics 1) and 2) to 5), and the following various types can be used. Among these, the block copolymer type is preferable because flexibility (tensile elongation, flexural modulus) can be easily obtained together with the melting point (heat resistance) required for the present invention.

1)ブロック共重合タイプ:PAブロックをハードセグメントとし、ポリエーテル(PE)ブロックをソフトセグメントとする下記構造式で示されるPEBA(ポリエーテルブロックポリアミド)を好適に使用できる。ここで、PAとしては、ナイロン6、ナイロン66、ナイロン11、ナイロン12等を使用できるが、ナイロン11又はナイロン12が好ましく、ナイロン12がさらに好ましい。ナイロン12は、ポリアミド中でポリメチレン鎖が長くアミド結合密度が低い。したがって、PA中、一番柔らかく、且つ、耐衝撃性及び低温特性等にも優れている。   1) Block copolymerization type: PEBA (polyether block polyamide) represented by the following structural formula having a PA block as a hard segment and a polyether (PE) block as a soft segment can be suitably used. Here, nylon 6, nylon 66, nylon 11, nylon 12, etc. can be used as PA, but nylon 11 or nylon 12 is preferable, and nylon 12 is more preferable. Nylon 12 has a long polymethylene chain in polyamide and a low amide bond density. Therefore, it is the softest in PA and has excellent impact resistance and low temperature characteristics.

Figure 2009097134
ポリエーテルとしては、ポリテトラメチレンエーテルグリコール、ポリプロピレングリコール等を挙げることができる。ソフトセグメントを、脂肪族ポリエステルジオール等のポリエステルブロックとしてもよい。
Figure 2009097134
Examples of the polyether include polytetramethylene ether glycol and polypropylene glycol. The soft segment may be a polyester block such as an aliphatic polyester diol.

2)結晶性低下タイプ:ナイロン分子鎖に官能基(例えば、アルコキシアルキル基)をグラフト重合し、分子同士の距離を離間させて分子間引力を低減させ、結晶性を低下させた
ものである。
2) Crystallinity-reducing type: A functional group (for example, an alkoxyalkyl group) is graft-polymerized on a nylon molecular chain, and the intermolecular attractive force is reduced by separating the distance between molecules, thereby reducing the crystallinity.

3)ポリマーアロイタイプ:PA樹脂中にEPDM等のゴム微粒子を分散させて海島構造としたものである。   3) Polymer alloy type: A rubber island such as EPDM is dispersed in a PA resin to form a sea-island structure.

4)可塑剤タイプ:PAに可塑剤を添加し軟質化させたものである。可塑剤としては、ブチルベンゼンスルホン酸アミド、N−アルキルトルエンスルホン酸アミド、ヘキシレングリコール、p−オキシ安息香酸エステル−2等を挙げることができる。   4) Plasticizer type: A plasticizer added to PA to be softened. Examples of the plasticizer include butylbenzenesulfonic acid amide, N-alkyltoluenesulfonic acid amide, hexylene glycol, and p-oxybenzoic acid ester-2.

上記PAエラストマーは、分散液(エマルション)又は溶液として、布帛に塗布をする。   The PA elastomer is applied to the fabric as a dispersion (emulsion) or a solution.

エマルションに分散させるPAエラストマーの粒径は、通常、0.05〜5μm、望ましくは0.2〜5μm、さらに望ましくは0.2〜1μmの範囲から適宜選定する。   The particle size of the PA elastomer dispersed in the emulsion is usually appropriately selected from the range of 0.05 to 5 μm, desirably 0.2 to 5 μm, and more desirably 0.2 to 1 μm.

そして、エマルション化の態様としては、下記の慣用の方法を挙げることができる。   And as an aspect of emulsification, the following conventional method can be mentioned.

1)溶媒置換法:ポリマーを溶媒に溶解後、乳化剤と水を添加し転相(溶媒は回収)。   1) Solvent replacement method: After dissolving a polymer in a solvent, an emulsifier and water are added to perform phase inversion (the solvent is recovered).

2)加圧法:ポリマー、乳化剤、水を容器中にて高温・高圧下で攪拌し乳化。   2) Pressurization method: Polymer, emulsifier and water are stirred and emulsified in a container at high temperature and high pressure.

3)機械乳化法:2軸エクストルーダー(押出機)を用い、機械的せん断力で乳化。   3) Mechanical emulsification method: emulsification by mechanical shearing force using a twin screw extruder (extruder).

溶液とする場合は、例えば、シクロヘキサノン、クレゾール等を使用する。   In the case of a solution, for example, cyclohexanone, cresol or the like is used.

上記PAのエマルション又は溶液を用いて行う塗布方法としては、片面塗布とする場合は、例えば、ナイフコート(ダイコート)、ローラコート(ナショナル、リバース)、刷毛コート、スプレーコートとする。これらの内で、ナイフコートが、望ましい。合糸に対して表層含浸させ、かつ、布帛の織り目間隙の片面凹部SへPAを浸入させた状態で、布帛の片面に薄層のエラストマー塗膜を形成し易いためである。結果的に、コート基布の柔軟性を確保し易い。   As a coating method performed using the above emulsion or solution of PA, for example, knife coating (die coating), roller coating (national, reverse), brush coating, and spray coating are used for single-side coating. Of these, a knife coat is desirable. This is because it is easy to form a thin elastomer coating film on one side of the fabric in a state where the surface yarn is impregnated into the combined yarn and PA is infiltrated into the single-sided concave portion S of the fabric gap. As a result, it is easy to ensure the flexibility of the coated base fabric.

なお、両面塗布とする場合は、例えば、ディッピング(浸漬塗り)とする。   In addition, when it is set as double-sided coating, it is set as dipping (dip coating), for example.

このときの塗布量(乾量基準)は、エアバッグに要求される通気量及び柔軟性(折り畳み性)のバランスから、3〜100gm-2、望ましくは5〜25gm-2、さらに望ましくは5〜15gm-2、の範囲から適宜選定する。 The coating amount of this time (dry basis) from the balance of the airflow amount and flexibility required to the air bag (foldability), 3~100Gm -2, preferably 5~25Gm -2, more preferably 5 to Select from the range of 15gm- 2 .

そして、塗布後、通常、PA塗膜の布帛に対して密着(融着)させるために加熱処理(融着処理)をする。このときの加熱処理条件は、PA塗膜が、合糸に対して表層融着状態で、且つ、布帛の織り目間隙における片面凹部Sに連続する縊れ部(隘路:最少隙間部)を通過しないものとする(部分侵入のマクロ構造を有する)ことが望ましい。コート基布の柔軟性を維持(確保)するためである。合糸の内部までPAが含浸状態となったり、及び/又は、織り目隙間の縊れ部を通過して裏面にも塗膜が形成されたりすると、コート基布の剛性が高くなり柔軟性を確保し難くなる。   And after application | coating, in order to make it adhere | attach (fusing) normally to the fabric of PA coating film, it heat-processes (fusion process). The heat treatment conditions at this time are such that the PA coating film is in a surface layer fusion state with respect to the combined yarn and does not pass through a wrinkle portion (bottleway: minimum gap portion) continuous to the single-sided concave portion S in the fabric weave gap. It is desirable (having a partial intrusion macrostructure). This is to maintain (secure) the flexibility of the coat base fabric. If the PA is impregnated to the inside of the combined yarn and / or if a coating film is formed on the back side through the creased portion of the weave gap, the coated base fabric becomes more rigid and secures flexibility. It becomes difficult to do.

加熱処理の条件は、塗膜形成PA(エラストマー)の融点より5〜30℃(望ましくは10〜20℃)高く、且つ、布帛形成PA(繊維)の融点より30℃以上(望ましくは50℃以上)低い温度で、0.5〜10min(望ましくは0.5〜5min)とする。処理温度において塗膜形成PAとの融点差が小さいと、塗膜形成PAを十分に流動化させ難く、布帛に対する濡れ性を得難く必要な密着性(融着性)を得られない。逆に、処理温度が塗膜形成PAとの融点差が大きいと、PAエラストマーの溶融流動性が増大して、カバーファクターが大きな布帛の場合、織り目隙間に浸入(浸透)しやすく、コート基布の柔軟性を阻害するおそれがある。すなわち、布帛形成PA繊維の融点より30℃以上(望ましくは50℃以上)低い温度差とすることが困難となってくる。   The heat treatment conditions are 5 to 30 ° C. (preferably 10 to 20 ° C.) higher than the melting point of the film-forming PA (elastomer), and 30 ° C. or higher (preferably 50 ° C. or higher) than the melting point of the fabric-forming PA (fiber). ) At low temperature, set to 0.5 to 10 min (preferably 0.5 to 5 min). If the melting point difference with the coating film-forming PA is small at the treatment temperature, it is difficult to sufficiently fluidize the coating film-forming PA, it is difficult to obtain wettability with respect to the fabric, and the necessary adhesion (fusing property) cannot be obtained. On the contrary, if the treatment temperature has a large melting point difference from the coating film-formed PA, the melt fluidity of the PA elastomer increases, and in the case of a fabric having a large cover factor, it is easy to enter (penetrate) into the texture gap, and the coated base fabric There is a risk of hindering the flexibility. That is, it becomes difficult to make the temperature difference 30 ° C. or higher (preferably 50 ° C. or higher) lower than the melting point of the fabric-forming PA fiber.

こうしてコート基布を製造することにより、後述の実施例で示す如く、通気量(高圧通気度測定器20KPa)0.4 Lcm-2min-1以下、望ましくは0.2 Lcm-2min-1以下であり、反発弾性(ASTM D 726;ガーレー試験機)120g以下、望ましくは80g以下のものを容易に得ることができる。 By producing the coated base fabric in this way, as shown in the examples described later, the air flow rate (high pressure air permeability measuring device 20 KPa) is 0.4 Lcm -2 min -1 or less, preferably 0.2 Lcm -2 min -1 or less, Rebound resilience (ASTM D 726; Gurley tester) of 120 g or less, desirably 80 g or less can be easily obtained.

以下、本発明の効果を裏付けるために対照例・従来例とともに行った実施例について説明をする。   Hereinafter, in order to support the effect of the present invention, examples carried out together with the comparative example and the conventional example will be described.

なお、使用したPAエラストマーは、下記特性を有するPEBAの上市品を使用した。   The PA elastomer used was a commercial product of PEBA having the following characteristics.

1)融点(ASTM D3418):160℃、
2)引張伸び(ASTM D638):450%
3)曲げ弾性率(ASTM D790 (ISO 178)):84MPa
4)平衡吸水率(ASTM D570;20℃×65%RH):0.5%
5)吸水率(ASTM D570;20℃、水中、24h):1.2%
各実施例・比較例の試料は、下記仕様のノンコート基布(布帛)に下記各条件で塗布・加熱処理を行って調製した(表1参照)。なお、塗布量は、いずれも乾量基準である。
1) Melting point (ASTM D3418): 160 ° C
2) Tensile elongation (ASTM D638): 450%
3) Flexural modulus (ASTM D790 (ISO 178)): 84MPa
4) Equilibrium water absorption (ASTM D570; 20 ° C x 65% RH): 0.5%
5) Water absorption rate (ASTM D570; 20 ° C, underwater, 24 hours): 1.2%
Samples of Examples and Comparative Examples were prepared by applying and heat-treating non-coated base fabric (fabric) having the following specifications under the following conditions (see Table 1). In addition, all application amounts are on a dry basis.

Figure 2009097134
(1)エアバッグ用基布
対照例:ノンコート・・・350dtex(315デニール)のナイロン66合糸で平織(経糸:59本/in、緯糸:59本/in)、カバーファクター(K)=59×(315)0.5+59×(315)0.5=2094
実施例1:PEBAコート・・・下記被処理布帛(ノンコート)に塗布(ナイフコート)後、175℃×2minの条件で塗膜樹脂を加熱処理(加熱融着)し、塗布量12gm-2のコート基布を調製した。
Figure 2009097134
(1) Airbag base fabric Contrast example: Non-coated · 350dtex (315 denier) nylon 66 synthetic yarn, plain weave (warp: 59 / in, weft: 59 / in), cover factor (K) = 59 × (315) 0.5 +59 × (315) 0.5 = 2094
Example 1: PEBA coating: After coating (knife coating) on the following treated fabric (non-coated), the coating resin was heat-treated (heat fusion) at 175 ° C. × 2 min, and the coating amount was 12 gm −2 . A coated base fabric was prepared.

470dtex(423デニール)のナイロン66合糸で平織(経糸:46本/in、緯糸:46本/in)、カバーファクター(K)=46×(423)0.5+46×(423)0.5=1892
比較例1:PEBAコート・・・実施例1において、加熱処理条件を90℃×15minとして加熱処理(乾燥)した以外は、同様にして、コート基布(塗布量:7gm-2)を調製した。
470dtex (423 denier) nylon 66 synthetic yarn with plain weave (warp: 46 / in, weft: 46 / in), cover factor (K) = 46 x (423) 0.5 + 46 x (423) 0.5 = 1892
Comparative Example 1: PEBA coating: A coated base fabric (coating amount: 7 gm −2 ) was prepared in the same manner as in Example 1, except that the heat treatment conditions were 90 ° C. × 15 min. .

実施例2:PEBAコート・・・実施例1で用いた被処理布帛に塗布(ディッピング)後、175℃×2minの条件で加熱溶融成膜(乾燥)させ、コート基布(塗布量:7gm-2)を調製した。 Example 2: PEBA coating: After coating (dipping) on the treated fabric used in Example 1, the film was heated and melted (dried) under the condition of 175 ° C. × 2 min to form a coated base fabric (coating amount: 7 gm −). 2 ) was prepared.

実施例3:PEBAコート・・・実施例1で用いた被処理布帛に塗布(ディッピング)後、175℃×2minの条件で乾燥させ、コート基布(塗布量:20gm-2)を調製した。 Example 3: PEBA coat: After coating (dipping) on the treated fabric used in Example 1, it was dried at 175 ° C. for 2 minutes to prepare a coated base fabric (coating amount: 20 gm −2 ).

従来例:シリコーンゴムコート・・・上記ノンコート布帛にシリコーンゴムをナイフコートして、加硫硬化させた塗布した出願人の製造していた従来品(塗布量:22gm-2)。 Conventional example: Silicone rubber coat: A conventional product manufactured by the applicant who applied the above-mentioned non-coated fabric by knife coating silicone rubber and vulcanized and cured (application amount: 22 gm −2 ).

上記で調製した各試料について、下記各項目の試験をそれぞれの試験法に従って行った。なお、反発弾性における比較例は、市販のナイロンエマルション液を塗布したものである。   About each sample prepared above, the test of each following item was done according to each test method. In addition, the comparative example in impact resilience applies a commercially available nylon emulsion liquid.

1)通気量:コスモ計器株式会社製「高圧通気度測定機」を用い、圧力を10〜50kPaの間で、10kPaピッチで増大させて測定した。以下、通気量の後の括弧内は、高圧通気度測定機による加圧度を示す。     1) Aeration rate: Measured by using a “high pressure permeability measuring device” manufactured by Cosmo Keiki Co., Ltd., increasing the pressure between 10 and 50 kPa at a 10 kPa pitch. Hereinafter, the parenthesis after the air flow rate indicates the degree of pressurization by the high pressure air permeability measuring machine.

2)反発弾性:ASTM D 726(JIS L 1096)
上記1)、2)の試験結果を、表2及び図2・3に示す。
2) Rebound resilience: ASTM D 726 (JIS L 1096)
The test results of 1) and 2) are shown in Table 2 and FIGS.

Figure 2009097134
本発明の各実施例は、従来例のシリコーンゴムコート基布より若干劣るが、気密度及び柔軟性において実用化可能な気密度(通気量)及び柔軟性(反発弾性)を示すことが確認できた。ここで実用化可能とは、通気量(20Kpa)0.4Lcm-2min-1以下、望ましくは0.2Lcm-2min-1以下で柔軟性(反発弾性)120g以下、望ましくは80g以下とする。さらに望ましくは、エアバッグ作動時に最大内圧を想定して、通気量(50Kpa)で、0.50Lcm-2min-1以下、最も望ましくは0.10Lcm-2min-1以下とする。各実施例は、望ましい乃至最も望ましい特性を満足する。
Figure 2009097134
Each example of the present invention is slightly inferior to the silicone rubber coated base fabric of the conventional example, but it can be confirmed that air density (aeration amount) and flexibility (rebound resilience) that can be put into practical use in air density and flexibility are shown. It was. Here, “practical use” means that the air flow rate (20 Kpa) is 0.4 Lcm −2 min −1 or less, preferably 0.2 Lcm −2 min −1 or less and flexibility (rebound resilience) is 120 g or less, preferably 80 g or less. More desirably, assuming the maximum internal pressure when the airbag is activated, the air flow rate (50 Kpa) is 0.50 Lcm −2 min −1 or less, and most desirably 0.10 Lcm −2 min −1 or less. Each embodiment satisfies desirable or most desirable characteristics.

また、比較例1は反発弾性が52gと、柔軟性は実施例2の反発弾性88gより低く柔軟であるが、気密度(20kPa)0.5Lcm-2min-1であり、実用化可能な最低限の気密度、通気量(20kPa)0.4Lcm-2min-1以下を確保し難いことが確認できた。 The comparative example 1 has a rebound resilience of 52 g, and the flexibility is lower than the rebound resilience 88 g of the example 2 and is flexible, but the airtightness (20 kPa) is 0.5 Lcm −2 min −1, which is the lowest practically possible It was confirmed that it was difficult to secure an air density and air flow rate (20 kPa) of 0.4 Lcm -2 min -1 or less.

また、反発弾性において、片面コート(ナイフコート)である塗布量の少ない実施例1・3の方が、塗布量の多い両面コート(ディッピング)の実施例2より小さい。即ち、ディッピングの場合、布帛織り目隙間へのPAエラストマー(樹脂)の浸入量が多く、結果として、少ない塗布量でも、基布の剛性が高くなるのに対し、ナイフコートでは布帛織り目隙間へのPAエラストマー(樹脂)の浸入が抑制されて、コート基布の柔軟性が確保し易いことが確認できた。   In terms of impact resilience, Examples 1 and 3 with a small amount of coating, which is a single-sided coating (knife coating), are smaller than those of Example 2 with a large coating amount of double-sided coating (dipping). That is, in the case of dipping, the amount of PA elastomer (resin) invading into the fabric weave gap is large, and as a result, even with a small amount of application, the rigidity of the base fabric is increased. It was confirmed that the intrusion of the elastomer (resin) was suppressed and it was easy to ensure the flexibility of the coated base fabric.

さらに、上記で調製した実施例1(PAコート)及び対照例(ノンコート)の各基布を破砕機・ペレタイザー(呼び径:46mm)を備えた出願人のノンコート基布再生設備を用いてペレタイザー運転条件:280℃×180rpmで、PA再生材(ペレット)を調製した。   Further, each of the base fabrics of Example 1 (PA coat) and the control example (non-coat) prepared above was operated by a pelletizer using the applicant's non-coat base fabric regeneration facility equipped with a crusher and a pelletizer (nominal diameter: 46 mm). Conditions: PA recycled material (pellets) was prepared at 280 ° C. × 180 rpm.

そして、各PA再生材(ペレット)を、射出成形機(シリンダー内温度:270℃)で溶融したものを、室温に保持した成形型に充填・冷却固化して、各試料を調製した。   Then, each PA recycled material (pellet) melted with an injection molding machine (in-cylinder temperature: 270 ° C.) was filled into a mold held at room temperature and solidified by cooling to prepare each sample.

そして、各試料について、下記各項目の機械的特性の試験を行った。   And about each sample, the test of the mechanical characteristic of each following item was done.

a)引張強さ、引張伸び:ASTM D638
b)曲げ弾性率:ISO 178
c)曲げ強さ:ASTM D 790
d)シャルピー衝撃値:JIS K 7111
それらの試験結果を、図5・6に示す。引張強さ、引張伸び、曲げ強さ及び曲げ弾性率において、ノンコート基布の再生材のそれらの値に比して50%以上の値を示すことが確認できた。すなわち、引張強さ:70%、引張伸び:100%、曲げ強さ:60%、曲げ弾性率:57%であった。また、シャルピー衝撃値において、ノンコート基布の2.475倍(247.5%)と、十分に望ましい100%以上大きな値を示すことが確認できた。
a) Tensile strength, tensile elongation: ASTM D638
b) Flexural modulus: ISO 178
c) Bending strength: ASTM D 790
d) Charpy impact value: JIS K 7111
The test results are shown in FIGS. It was confirmed that the tensile strength, tensile elongation, bending strength, and flexural modulus showed values of 50% or more compared to those of the non-coated base fabric recycled material. That is, the tensile strength was 70%, the tensile elongation was 100%, the flexural strength was 60%, and the flexural modulus was 57%. In addition, it was confirmed that the Charpy impact value was 2.475 times (247.5%) that of the non-coated base fabric and a sufficiently desirable value of 100% or more.

本発明におけるコート基布のモデル断面図である。It is model sectional drawing of the coat base fabric in this invention. 実施例1、比較例1、従来例、対照例のコート乃至ノンコート基布における通気量の試験結果を示す通気量/圧力関係図である。It is an air flow / pressure relationship diagram showing the test results of air flow in coated or non-coated base fabrics of Example 1, Comparative Example 1, Conventional Example, and Control Example. 実施例2・3、従来例、対照例のコート乃至ノンコート基布における通気量の試験結果を示す通気量/圧力関係図である。It is an air flow / pressure relationship diagram showing the test results of air flow in the coated or non-coated base fabrics of Examples 2 and 3, the conventional example, and the control example. 同じく反発弾性の試験結果を示すヒストグラムである。It is a histogram which similarly shows the test result of impact resilience. コート基布等の再生材の引張強さ・引張伸び・曲げ強さの各試験結果を示すヒストグラムである。It is a histogram which shows each test result of tensile strength, tensile elongation, and bending strength of recycled materials, such as a coat base fabric. 同じく曲げ弾性率・シャルピー衝撃値の各試験結果を示すヒストグラムである。It is a histogram which similarly shows each test result of a bending elastic modulus and a Charpy impact value.

符号の説明Explanation of symbols

12、12A・・・PA繊維糸
14・・・布帛
16・・・PAエラストマー塗膜
12, 12A ... PA fiber yarn 14 ... Fabric 16 ... PA elastomer coating

Claims (12)

ポリアミド(PA)繊維の糸で織成された布帛の少なくとも片面にPAエラストマーの塗膜が形成されてなるエアバッグ用のコート基布において、
前記PAエラストマーが、融点(ASTM D3418。以下同じ。)135〜200℃を示すものであり、且つ、前記PA繊維との融点差が80〜120℃とされて、前記塗膜が布帛に融着形成されていることを特徴とするエアバッグ用コート基布。
In a coated base fabric for an air bag in which a coating film of PA elastomer is formed on at least one side of a fabric woven with polyamide (PA) fiber yarns,
The PA elastomer has a melting point (ASTM D3418; the same shall apply hereinafter) of 135 to 200 ° C., and the melting point difference with the PA fiber is 80 to 120 ° C., so that the coating film is fused to the fabric. A coated base fabric for an airbag characterized by being formed.
前記塗膜は、布帛表面における織り目間隙の片面凹部に前記PAエラストマー(樹脂)が部分浸入したマクロ構造を有するものであることを特徴とする請求項1記載のエアバッグ用コート基布。   2. The coated base fabric for an air bag according to claim 1, wherein the coating film has a macro structure in which the PA elastomer (resin) is partially infiltrated into a single-sided concave portion of a weave gap on the fabric surface. 前記塗膜が、カバーファクターが1200〜2400である前記布帛の片面に塗布量5〜25gm-2で形成されたものであることを特徴とする請求項1記載のエアバッグ用コート基布。 2. The coated base fabric for an air bag according to claim 1, wherein the coating film is formed on one side of the fabric having a cover factor of 1200 to 2400 at a coating amount of 5 to 25 gm <-2 >. 前記塗膜が前記布帛の片面に形成されるとともに、前記コート基布の特性が、反発弾性(ASTM D 726;ガーレー試験機、以下同じ)120g以下、コート基布の通気量(高圧通気度測定機による20KPa下。以下同じ。)0.4Lcm-2min-1以下を示すことを特徴とする請求項3記載のエアバッグ用コート基布。 The coating film is formed on one side of the fabric, and the properties of the coated base fabric are rebound resilience (ASTM D 726; Gurley tester, the same applies hereinafter) 120 g or less, the air flow rate of the coated base fabric (measurement of high-pressure air permeability) 4. The coated base fabric for an air bag according to claim 3, which shows 0.4 Lcm -2 min -1 or less under 20 KPa by a machine. 前記PAエラストマーがブロック共重合タイプであるとともに、前記コート基布の特性が、反発弾性:80g以下、コート基布の通気量:0.2 Lcm-2min-1以下を示すことを特徴とする請求項4記載のエアバッグ用コート基布。 The PA elastomer is of a block copolymer type, and the properties of the coated base fabric exhibit rebound resilience: 80 g or less, and the air permeability of the coated base fabric: 0.2 Lcm -2 min -1 or less. 4. Coated base fabric for airbag according to 4. 前記PA繊維がナイロン66であり、前記PAエラストマーが、融点:140〜180℃の範囲にあり、ハードセグメント(ポリアミド)をナイロン12又はナイロン11とし、ソフトセグメントをポリエーテルブロックとするブロック共重合体であることを特徴とする請求項5記載のエアバッグ用コート基布。   A block copolymer in which the PA fiber is nylon 66, the PA elastomer has a melting point of 140 to 180 ° C., the hard segment (polyamide) is nylon 12 or nylon 11, and the soft segment is a polyether block. The coated base fabric for an air bag according to claim 5, wherein 請求項1〜6のいずれか一記載のエアバッグ用コート基布の製造方法であって、前記塗膜の塗料として、ポリマー粒径0.05〜5μmの水分散系の塗料を使用するとともに、該塗料を塗布後、前記PAエラストマーの融点より5〜30℃高い温度で0.5〜5min加熱処理して前記塗膜の形成を行うことを特徴とするエアバッグ用コート基布の製造方法。   It is a manufacturing method of the coat base fabric for airbags as described in any one of Claims 1-6, Comprising: While using the coating material of the polymer particle diameter of 0.05-5 micrometers as a coating material of the said coating film, this coating material A method for producing a coated base fabric for an air bag is characterized in that, after coating, the coating film is formed by heat treatment at a temperature 5 to 30 ° C. higher than the melting point of the PA elastomer for 0.5 to 5 minutes. 請求項1〜6のいずれか一記載のエアバッグ用コート基布の廃材が破砕・溶融・ペレット化されてなることを特徴とするPA再生材。   A PA recycled material obtained by crushing, melting, and pelletizing the waste material of the airbag coating base fabric according to any one of claims 1 to 6. 前記PA再生材であって、成形体の機械的特性が、引張強度(ASTM D 638)、引張伸び(同)、曲げ強度(ASTM D 790)、曲げ弾性率(同)において、ノンコート基布の再生材の50%以上の値を示すものであることを特徴とする請求項8記載のPA再生材。   In the PA recycled material, the mechanical properties of the molded body are tensile strength (ASTM D 638), tensile elongation (same as above), bending strength (ASTM D 790), and flexural modulus (same as above). The PA recycled material according to claim 8, which exhibits a value of 50% or more of the recycled material. 前記エアバッグ用コート基布の再生材のシャルピー衝撃値(JIS K 7111)において、ノンコート基布の再生材に比して35%以上大きな値を示すことを特徴とする請求項9記載のPA再生材。   10. The PA regeneration according to claim 9, wherein the Charpy impact value (JIS K 7111) of the recycled material of the coated base fabric for airbags is 35% or more larger than that of the recycled material of the non-coated base fabric. Wood. 請求項1〜6のいずれか一記載のエアバッグ用コート基布を用いたものであることを特徴とするエアバッグ。   An airbag using the coat base fabric for an airbag according to any one of claims 1 to 6. 請求項11に記載のエアバッグを用いたものであることを特徴とするエアバッグ装置。   An airbag device using the airbag according to claim 11.
JP2008198725A 2007-09-27 2008-07-31 Aircraft coat base fabric Active JP5374089B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008198725A JP5374089B2 (en) 2007-09-27 2008-07-31 Aircraft coat base fabric
US12/232,390 US8142869B2 (en) 2007-09-27 2008-09-16 Coated base fabric for airbags
EP20080016288 EP2042649B1 (en) 2007-09-27 2008-09-16 Coated base fabric for airbags
CN2008101683058A CN101397707B (en) 2007-09-27 2008-09-26 Coated base fabric for airbags

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007251998 2007-09-27
JP2007251998 2007-09-27
JP2008198725A JP5374089B2 (en) 2007-09-27 2008-07-31 Aircraft coat base fabric

Publications (2)

Publication Number Publication Date
JP2009097134A true JP2009097134A (en) 2009-05-07
JP5374089B2 JP5374089B2 (en) 2013-12-25

Family

ID=40516541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198725A Active JP5374089B2 (en) 2007-09-27 2008-07-31 Aircraft coat base fabric

Country Status (2)

Country Link
JP (1) JP5374089B2 (en)
CN (1) CN101397707B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285703A (en) * 2009-06-10 2010-12-24 Toyobo Co Ltd Woven fabric for air bag
KR101134379B1 (en) 2009-09-28 2012-04-09 현대자동차주식회사 Additive for recycling of air bag fabrics and Resin composition using the air bag fabrics and Recycling method for air bag farics
WO2013047652A1 (en) * 2011-09-28 2013-04-04 豊田合成株式会社 Coating material for airbag base fabric, and airbag base fabric
JP2013539491A (en) * 2010-08-26 2013-10-24 ロディア オペレーションズ Recycling use of polyamide airbag
US9863088B2 (en) 2013-09-27 2018-01-09 Toyoda Gosei Co., Ltd. Airbag base fabric coating material, airbag base fabric, and method for manufacturing the same
JP2019512414A (en) * 2016-04-01 2019-05-16 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Method of manufacturing a three-dimensional object
CN113650379A (en) * 2021-08-17 2021-11-16 华懋(厦门)新材料科技股份有限公司 Double-layer composite one-step forming safety airbag and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150218735A1 (en) * 2011-12-21 2015-08-06 Kolon Industries, Inc. Aramid fabric and airbag for vehicle including same
CN103668996A (en) * 2013-11-09 2014-03-26 孙光华 Flame-retardant ribbon
CN103696268A (en) * 2013-11-12 2014-04-02 孙光华 High strength fiber coating ribbon production process
JP6743695B2 (en) * 2015-03-30 2020-08-19 東レ株式会社 Coated base fabric for airbag, airbag and method for producing coated base fabric for airbag
CN104960442B (en) * 2015-07-24 2018-07-06 广州钰鑫新材料有限公司 A kind of inflatable child safety seat
CN109228596B (en) * 2018-07-05 2021-01-19 滁州学院 Air storage bag body
EP3990340B1 (en) * 2019-06-27 2023-06-07 Micheal O Ceallaigh Low-cost viscous-drag-reducing cladding
CN110962355B (en) * 2019-12-27 2021-09-21 中国化工集团曙光橡胶工业研究设计院有限公司 Bonding forming method for improving air tightness of shrapnel gas bag
CN113718398A (en) * 2021-09-04 2021-11-30 苏州徽盈纺织科技有限公司 High-elasticity luminous garment fabric
CN115233455B (en) * 2022-09-23 2023-01-31 江苏恒力化纤股份有限公司 Method for preparing full-nylon composite coating fabric from nylon 6 waste silk

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692193A (en) * 1992-09-16 1994-04-05 Toray Ind Inc Air bag and its manufacture
JPH09240405A (en) * 1995-09-18 1997-09-16 Toray Ind Inc Foundation cloth for air bag, its manufacture, and air bag
JP2001513719A (en) * 1997-12-24 2001-09-04 エルフ アトケム ソシエテ アノニム Multilayer structure having a substrate coated with a copolymer having a polyamide block and a hydrophilic block
JP2001524624A (en) * 1997-12-01 2001-12-04 ミリケン・リサーチ・コーポレーション Airbag cloth coated with crosslinked elastomeric resin with pore blocking properties
JP2004359066A (en) * 2003-06-03 2004-12-24 Toyoda Gosei Co Ltd Sheath material and under protector equipped with the same
JP2005330646A (en) * 2000-04-07 2005-12-02 Asahi Kasei Chemicals Corp Method for producing coated fabric and air bag
JP2008013897A (en) * 2006-06-09 2008-01-24 Toyobo Co Ltd Woven fabric for airbag
WO2009072353A1 (en) * 2007-12-07 2009-06-11 Toyo Boseki Kabushiki Kaisha Woven fabric for air bag

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032372C (en) * 1992-05-25 1996-07-24 中国石油化工总公司大连石油化工公司 Quick shining quenching oil composites
JP4419378B2 (en) * 2002-10-04 2010-02-24 東レ株式会社 Airbag base fabric and manufacturing method thereof
ATE334852T1 (en) * 2003-09-16 2006-08-15 Collano Xiro Ag COMPOSITE LAYER MATERIAL IN PARTICULAR FOR AN AIRBAG, AND METHOD FOR THE PRODUCTION THEREOF, AIRBAG, PASSIVE RESTRAINT SYSTEMS WITH AIRBAG, AND GAS-TIGHT POLYAMIDE POLYMER FILM

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692193A (en) * 1992-09-16 1994-04-05 Toray Ind Inc Air bag and its manufacture
JPH09240405A (en) * 1995-09-18 1997-09-16 Toray Ind Inc Foundation cloth for air bag, its manufacture, and air bag
JP2001524624A (en) * 1997-12-01 2001-12-04 ミリケン・リサーチ・コーポレーション Airbag cloth coated with crosslinked elastomeric resin with pore blocking properties
JP2001513719A (en) * 1997-12-24 2001-09-04 エルフ アトケム ソシエテ アノニム Multilayer structure having a substrate coated with a copolymer having a polyamide block and a hydrophilic block
JP2005330646A (en) * 2000-04-07 2005-12-02 Asahi Kasei Chemicals Corp Method for producing coated fabric and air bag
JP2004359066A (en) * 2003-06-03 2004-12-24 Toyoda Gosei Co Ltd Sheath material and under protector equipped with the same
JP2008013897A (en) * 2006-06-09 2008-01-24 Toyobo Co Ltd Woven fabric for airbag
WO2009072353A1 (en) * 2007-12-07 2009-06-11 Toyo Boseki Kabushiki Kaisha Woven fabric for air bag

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285703A (en) * 2009-06-10 2010-12-24 Toyobo Co Ltd Woven fabric for air bag
KR101134379B1 (en) 2009-09-28 2012-04-09 현대자동차주식회사 Additive for recycling of air bag fabrics and Resin composition using the air bag fabrics and Recycling method for air bag farics
JP2013539491A (en) * 2010-08-26 2013-10-24 ロディア オペレーションズ Recycling use of polyamide airbag
KR101511877B1 (en) 2010-08-26 2015-04-17 로디아 오퍼레이션스 Recycling polyamide airbags
US9718960B2 (en) 2010-08-26 2017-08-01 Rhodia Operations Recycling polyamide airbags
US10208205B2 (en) 2010-08-26 2019-02-19 Rhodia Operations Recycling polyamide airbags
WO2013047652A1 (en) * 2011-09-28 2013-04-04 豊田合成株式会社 Coating material for airbag base fabric, and airbag base fabric
US9863088B2 (en) 2013-09-27 2018-01-09 Toyoda Gosei Co., Ltd. Airbag base fabric coating material, airbag base fabric, and method for manufacturing the same
JP2019512414A (en) * 2016-04-01 2019-05-16 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Method of manufacturing a three-dimensional object
CN113650379A (en) * 2021-08-17 2021-11-16 华懋(厦门)新材料科技股份有限公司 Double-layer composite one-step forming safety airbag and manufacturing method thereof

Also Published As

Publication number Publication date
CN101397707B (en) 2011-01-19
JP5374089B2 (en) 2013-12-25
CN101397707A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP5374089B2 (en) Aircraft coat base fabric
US8142869B2 (en) Coated base fabric for airbags
TWI741961B (en) Continuous fiber reinforced resin molded article
JP2003526557A (en) Two-layer coating system for airbag fabric
KR20090015132A (en) Woven fabric for airbag
EP3619078A1 (en) Low permeability and high strength woven fabric and methods of making the same
JP2017186723A (en) Composite yarn and fabric and production method thereof
JP2019173262A (en) Coated fabric for airbags
JP6734643B2 (en) Composite yarn, woven fabric, and continuous reinforced fiber resin molding
CN106029452A (en) Coated base fabric for airbags
JP4453039B2 (en) Airbag fabric
JP2008002003A (en) Ground fabric for airbag and method for producing the ground fabric
KR20000076191A (en) Composite Sheet Material Comprising Polyamide Film and Fabric
JP5610902B2 (en) Airbag base fabric
JP7286264B2 (en) Cloth, its manufacturing method and continuous fiber reinforced resin composite
JP2007100292A (en) Woven fabric for air bag
JP2020019897A (en) Manufacturing method of continuous fiber reinforced resin molded body, manufacturing device, and intermediate substrate
JP7308991B2 (en) Multilayer composite for airbags and airbags
JP2004183152A (en) Base fabric for air bag and air bag
KR101843663B1 (en) Coated woven fabric
KR102124508B1 (en) Airbag Fabric and Method for Manufacturing The Same
JP3395677B2 (en) Airbag cloth
KR102349770B1 (en) silicone coated cloth
JP2010013770A (en) Woven fabric for airbag and airbag
KR20210086892A (en) Air back fabric and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110520

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R150 Certificate of patent or registration of utility model

Ref document number: 5374089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250