JP2009095801A - NOx PURIFYING APPARATUS IN NORMAL-TEMPERATURE GAS - Google Patents

NOx PURIFYING APPARATUS IN NORMAL-TEMPERATURE GAS Download PDF

Info

Publication number
JP2009095801A
JP2009095801A JP2007271515A JP2007271515A JP2009095801A JP 2009095801 A JP2009095801 A JP 2009095801A JP 2007271515 A JP2007271515 A JP 2007271515A JP 2007271515 A JP2007271515 A JP 2007271515A JP 2009095801 A JP2009095801 A JP 2009095801A
Authority
JP
Japan
Prior art keywords
nox
gas
adsorption
normal temperature
temperature gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271515A
Other languages
Japanese (ja)
Inventor
Sukeyuki Yasui
祐之 安井
Kazuchika Nagao
一親 永尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007271515A priority Critical patent/JP2009095801A/en
Publication of JP2009095801A publication Critical patent/JP2009095801A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NOx purifying apparatus which carries out a regeneration treatment of an adsorbent at an installation site, is stably operated for the long term, and surely purifies NOx without carrying out a complicated operation control. <P>SOLUTION: The NOx purifying apparatus in the normal-temperature gas has an adsorption unit 10 receiving the adsorbent for adsorbing NOx contained in the normal-temperature gas, a discharge device 20 for an O<SB>3</SB>production which produces O<SB>3</SB>from an air gas by a discharge treatment to inject O<SB>3</SB>into a normal-temperature gas passage 1 through an O<SB>3</SB>gas supplying passage 2 so that NO, which is the NOx constituting component in the normal-temperature gas, is oxidized to produce NO<SB>2</SB>, a reduction-gas supplying unit 30 which injects a reduction gas extracted from the air gas into a reduction gas passage 3 running between an inlet side and an outlet side of the adsorption unit, to substitute the inner part of the adsorption unit with a reduction gas atmosphere, an adsorbed-NOx desorption unit 50 for desorbing NOx from the adsorbent, and a discharge device 40 for reductive decomposition which circulates the desorbed NOx in the reduction gas passage 3 and reductively decomposes NOx by the discharge treatment to make NOx disappear. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有害物質を含む常温ガスを浄化する常温ガス浄化装置に係り、特に自動車が走行するトンネルや地下駐車場等の換気ガス、自動車走行量の多い交差点の沿道排ガス等のごとく常温・低濃度の有害物質を含む常温ガスを浄化する常温ガス中のNOx浄化装置に関する。   The present invention relates to a room temperature gas purification device that purifies room temperature gas containing harmful substances, and in particular, room temperature and low temperature such as ventilation gas in tunnels and underground parking lots where automobiles travel, roadside exhaust gas at intersections where automobiles travel a lot. The present invention relates to a NOx purification device in normal temperature gas for purifying normal temperature gas containing harmful substances of concentration.

近年、酸性雨等による周辺環境汚染が問題となりつつあるが、これに伴って自動車が走行するトンネルや地下駐車場等の換気ガス、自動車走行量の多い交差点の沿道排ガスなどに含まれるNOx(窒素酸化物)などの有害物質の排出規制が次第に強化されてきている。   In recent years, environmental pollution due to acid rain and the like has become a problem, and accompanying this, NOx (nitrogen) contained in ventilation gas in tunnels and underground parking lots where automobiles travel, roadside exhaust gas at intersections where automobiles travel a lot, etc. Emission regulations for harmful substances such as oxides are gradually being strengthened.

しかし、現状の自動車走行用トンネルなどの換気ガスは、ガス性状が常温の空気となっている。その結果、従来一般に使用されている燃焼排ガス中のNOx浄化触媒は、ガス温度が低いために活性化しないことから、換気ガスのNOx浄化には使用できない。   However, the current ventilation gas for automobile driving tunnels, etc., is air at normal temperature. As a result, the NOx purification catalyst in combustion exhaust gas generally used conventionally cannot be activated because the gas temperature is low, and therefore cannot be used for NOx purification of ventilation gas.

そこで、従来、常温の酸素共存下における換気ガス中に含まれるNOx等を除去する方法として、主として2つの浄化方法が提案されている。   Thus, conventionally, two purification methods have been proposed mainly as methods for removing NOx and the like contained in ventilation gas in the presence of oxygen at room temperature.

その1つの浄化方法は、換気ガス中のNOx(構成成分はNO(一酸化窒素)とNO2(二酸化窒素)を吸着剤で吸着し除去する乾式のNOx吸着除去法が使用されている。特に、NOx中のNO2が吸着され易い性質をもっているので、換気ガス中のNO2を容易に吸着除去することが可能である。このNOx吸着除去法は、NO2の吸着飽和前に新たな吸着剤を交換することにより、NOxの除去性能を維持することができる。 As one of the purification methods, a dry NOx adsorption / removal method in which NOx (components are NO (nitrogen monoxide) and NO 2 (nitrogen dioxide) in the ventilation gas is adsorbed and removed by an adsorbent is used. Since NO 2 in NOx is easily adsorbed, it is possible to easily adsorb and remove NO 2 in the ventilation gas.This NOx adsorption removal method is a new adsorption before NO 2 adsorption saturation. The NOx removal performance can be maintained by exchanging the agent.

しかし、換気ガス中のNOxは、通常,約9割のNOと残り1割のNO2との構成成分であるので、吸着剤によるNO2の吸着除去だけではNOxの除去効率が非常に悪い。 However, NOx in the ventilation gas is typically because it is a component of the NO 2 to about 90% of NO and the remaining 10%, very poor removal efficiency of NOx is only adsorption removal of NO 2 by the adsorbent.

そこで、この乾式のNOx吸着除去法は、吸着剤に吸着させる前に換気ガス中にO3(オゾン)を添加してNOとO3との酸化反応でNO2に変換し、吸着剤によるNOx除去の効率を上げている。 Therefore, in this dry NOx adsorption removal method, O 3 (ozone) is added to the ventilation gas before being adsorbed by the adsorbent, and converted to NO 2 by an oxidation reaction between NO and O 3, and NOx by the adsorbent. The removal efficiency is increased.

また、乾式のNOx吸着除去法は、NO2を十分に吸着した使用済みの吸着剤を、一旦別の再生工場に運び込んだ後、高温加熱処理や薬剤洗浄などを行って再使用可能な状態に再生し、新たに再利用する方法が考えられている(特許文献1参照)。 Also, the dry NOx adsorption removal method is a state where the used adsorbent that has sufficiently adsorbed NO 2 is once transported to another regeneration plant, and then subjected to high-temperature heat treatment, chemical cleaning, etc. so that it can be reused. A method of reproducing and newly reusing is considered (see Patent Document 1).

他のもう1つの浄化方法は、NOxをアルカリ溶液で吸収して除去する湿式のNOx吸収除去法が使用されている。この湿式のNOx吸収除去法は、換気ガス中にアルカリ溶液を噴霧したり、換気ガスをアルカリ溶液中に送り込んでバブリングさせることにより、酸性ガスであるNOxを吸収除去する方法である(特許文献2参照)。
特開平8−24579号公報 特開平6−99030号公報
As another purification method, a wet NOx absorption and removal method in which NOx is absorbed and removed by an alkaline solution is used. This wet NOx absorption and removal method is a method of absorbing and removing NOx which is an acidic gas by spraying an alkali solution into a ventilation gas or sending a ventilation gas into an alkali solution and causing it to bubble (Patent Document 2). reference).
JP-A-8-24579 Japanese Patent Laid-Open No. 6-99030

ところで、以上のような乾式のNOx吸着除去法や湿式のNOx吸収除去法を用いた浄化方法では、比較的手軽に吸着剤を使用することができ、またNOxをアルカリ溶液に吸収させて大気中に出さないこと等から実用化されつつある。   By the way, in the purification method using the dry NOx adsorption / removal method as described above or the wet NOx absorption / removal method, the adsorbent can be used relatively easily, and the NOx is absorbed in the alkaline solution in the atmosphere. It is being put into practical use because it does not come out.

しかしながら、乾式のNOx吸着除去法は、再生工場による吸着剤の新たな再生処理やNO2吸着飽和前の吸着剤の交換処理が必要となるので、運転管理やメンテナンスが煩雑、かつ、コスト高となる問題がある。 However, the dry NOx adsorption removal method requires a new regeneration process of the adsorbent by the regeneration factory and the replacement process of the adsorbent before the NO 2 adsorption saturation, so that the operation management and maintenance are complicated and the cost is high. There is a problem.

また、湿式のNOx吸収除去法は、湿式処理であることから、NOx吸収液の新たな配水処理設備が必要となり、また配水処理設備の運転管理、設備コスト、設置スペースの増加などの問題が出てくる。   In addition, since the wet NOx absorption and removal method is a wet process, a new water distribution treatment facility for the NOx absorption liquid is required, and problems such as operation management of the water distribution treatment facility, equipment cost, and increase in installation space arise. Come.

本発明は上記事情に鑑みてなされたもので、設置現場で吸着剤の再生処理を行い、長期にわたって安定、かつ、煩雑な運転管理を行うことなく、常温ガス中に含むNOxを確実に浄化する常温ガス中のNOx浄化装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and performs a regeneration treatment of the adsorbent at the installation site to reliably purify NOx contained in normal temperature gas without performing stable and complicated operation management for a long period of time. It aims at providing the NOx purification apparatus in normal temperature gas.

(1) 上記課題を解決するために、本発明に係る常温ガス中のNOx浄化装置は、酸素の共存する常温ガスを取り込む常温ガス流路に設置され、常温ガス中に含むNOxを吸着するための吸着剤を収納した吸着装置と、常温ガス中に含むNOxの構成成分であるNO(一酸化窒素)をオゾンで酸化させてNO2(二酸化窒素)を生成するために、放電処理により空気ガスからオゾンを生成し、オゾンガス供給流路を介して常温ガス流路に注入するオゾン生成用放電装置と、吸着装置の入側・出側間に跨って配設した還元ガス流路に接続され、空気ガスから還元ガスを抽出し、還元ガス流路を通して吸着装置に供給し、吸着装置内を還元ガス雰囲気に置換する還元ガス供給装置と、吸着装置に設けられ、吸着装置内が十分に還元ガス雰囲気に置換されたとき、吸着剤からNOxを脱離させる吸着NOx脱離装置と、還元ガス流路に設置され、脱離されたNOxを循環させるとともに、放電処理により当該NOxを還元分解し、NOxを消滅させる還元分解用放電装置とを備えた構成である。 (1) In order to solve the above-mentioned problem, the NOx purification device in room temperature gas according to the present invention is installed in a room temperature gas flow path for taking in room temperature gas in which oxygen coexists, and adsorbs NOx contained in room temperature gas. In order to produce NO 2 (nitrogen dioxide) by oxidizing NO (nitrogen monoxide), which is a constituent of NOx contained in room temperature gas, with ozone, and generating NO 2 (nitrogen dioxide), an air gas The ozone is generated from the ozone, and is connected to the ozone generating discharge device that is injected into the room temperature gas flow channel through the ozone gas supply flow channel, and the reducing gas flow channel that is disposed between the inlet side and the outlet side of the adsorption device, A reducing gas is extracted from the air gas, supplied to the adsorption device through the reducing gas passage, and the inside of the adsorption device is replaced with a reducing gas atmosphere, and the adsorption device is provided with the reducing gas sufficiently. Put in the atmosphere When replaced, an adsorption NOx desorbing device that desorbs NOx from the adsorbent and a reducing gas flow path are used to circulate the desorbed NOx and reduce and decompose the NOx by discharge treatment, thereby reducing NOx. It is the structure provided with the discharge device for reductive decomposition to be extinguished.

(2)また、本発明は、上記(1)の構成に新たに、常温ガス流路とオゾンガス供給流路とに設置される弁を開とし、常温ガス中のNOとオゾンとを反応させて前記NOxの構成成分であるNOをNO2に酸化させて吸着装置内に供給させるNOx除去運転モード制御手段と、吸着装置と還元ガス流路との循環路を形成するように弁を開とし、還元ガス供給装置で生成される還元ガスを吸着装置に供給し、吸着装置内を還元ガス雰囲気に置換させる還元ガス置換運転モード制御手段と、吸着装置内が十分に還元ガス雰囲気に置換されたとき、還元分解用放電装置及び吸着NOx脱離装置を起動し、還元分解用放電装置により吸着剤からNOxを脱離させ、かつ、還元分解用放電装置の放電処理によりNOxを無害なN2に還元分解させる吸着剤再生運転モード制御手段とを有する制御系を付加した構成である。 (2) Further, the present invention newly opens the valves installed in the normal temperature gas flow path and the ozone gas supply flow path in the configuration of (1) above, and reacts NO and ozone in the normal temperature gas with each other. NOx removal operation mode control means for oxidizing NO that is a component of NOx to NO 2 and supplying the NOx to the adsorption apparatus, and a valve is opened so as to form a circulation path between the adsorption apparatus and the reducing gas flow path, When the reducing gas generated by the reducing gas supply device is supplied to the adsorption device and the inside of the adsorption device is replaced with a reducing gas atmosphere, and when the inside of the adsorption device is sufficiently replaced with the reducing gas atmosphere Then, the reductive decomposition discharge device and the adsorption NOx desorption device are started, the NOx is desorbed from the adsorbent by the reductive decomposition discharge device, and NOx is reduced to harmless N 2 by the discharge treatment of the reductive decomposition discharge device. Adsorbent to be decomposed A control system having a regeneration operation mode control means is added.

(3) また、本発明は、前記(1)または前記(2)の構成を備えた常温ガス中のNOx浄化装置において、吸着装置を複数の吸着部に分割して個別の常温ガス流路に設置するとともに、各吸着部に吸着NOx脱離装置を取付け、各吸着部に対して選択的に、オゾン生成用放電装置を用いたNOx除去と、還元ガス供給装置及び還元分解用放電装置を用いた還元ガス置換及び吸着剤の再生処理を行う構成としてもよい。 (3) Further, the present invention provides an NOx purification device for room temperature gas having the configuration of (1) or (2) described above, wherein the adsorption device is divided into a plurality of adsorption portions to form individual room temperature gas flow paths. At the same time, an adsorption NOx desorption device is attached to each adsorption unit, and NOx removal using a discharge device for ozone generation and a reducing gas supply device and a reductive decomposition discharge device are selectively used for each adsorption unit. It is also possible to employ a configuration in which the reducing gas replacement and the adsorbent regeneration process are performed.

(4) さらに、本発明は、前記オゾン生成用放電装置に代えて、還元分解用放電装置が空気ガスを取り込むとともに、放電処理を実施し、空気ガスからオゾンを生成して常温ガス流路に注入し、常温ガス中に含むNOxの構成成分であるNOを酸化分解させてNO2を生成し、この生成されたNO2及び未反応のNOを吸着装置内または吸着部内の吸着剤に吸着させる構成であってもよい。 (4) Further, in the present invention, in place of the ozone generating discharge device, the reductive decomposition discharging device takes in the air gas and performs a discharge treatment to generate ozone from the air gas and enter the room temperature gas flow path. It is injected and NO, which is a constituent component of NOx contained in the normal temperature gas, is oxidized and decomposed to generate NO 2, and the generated NO 2 and unreacted NO are adsorbed to the adsorbent in the adsorption device or the adsorption unit. It may be a configuration.

本発明によれば、設置現場で吸着剤の再生処理を行うことができ、長期にわたって安定、かつ、煩雑な運転管理を行うことなく常温ガス中に含むNOxを確実に浄化できる常温ガス中のNOx浄化装置を提供できる。   According to the present invention, the adsorbent regeneration process can be performed at the installation site, and the NOx contained in the room temperature gas can be reliably purified over a long period of time without any complicated operation management. A purification device can be provided.

以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明に係る常温ガス中のNOx浄化装置の一実施の形態を示す構成図である。
このNOx浄化装置は、酸素と共存する常温ガス(X)中に含まれるNOx(窒素酸化物)などの有害物質を浄化するものであって、常温ガス流路1の適宜な個所に設置される吸着装置10と、この吸着装置10入側の常温ガス流路1に接続されるオゾンガス供給流路2に設置されるオゾン生成用放電装置20と、吸着装置10の入側・出側間に跨って配設される還元ガス流路3に設置される還元ガス供給装置30及び還元分解用放電装置40と、吸着装置10を覆うように設けられた吸着NOx脱離装置50と、制御系60とで構成される。なお、ここで、常温ガス(X)とは、自動車が走行するトンネルや多数の自動車が駐車する地下駐車場等の換気ガス、自動車の多い交差点の沿道排ガスその他常温・低濃度の有害物質であるNOxを含む各種のガスを含むものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an embodiment of a NOx purifying device in normal temperature gas according to the present invention.
This NOx purification device purifies harmful substances such as NOx (nitrogen oxide) contained in room temperature gas (X) coexisting with oxygen, and is installed at an appropriate location in the room temperature gas flow path 1. Between the adsorption device 10, the ozone generating discharge device 20 installed in the ozone gas supply channel 2 connected to the room temperature gas channel 1 on the inlet side of the adsorption device 10, and the inlet side / outlet side of the adsorption device 10. A reductive gas supply device 30 and a reductive decomposition discharge device 40 installed in a reductive gas flow path 3, an adsorbing NOx desorbing device 50 provided so as to cover the adsorbing device 10, and a control system 60. Consists of. Here, room temperature gas (X) is a ventilation gas in tunnels where automobiles run, underground parking lots where many automobiles park, etc., roadside exhaust gas at intersections with many automobiles, and other harmful substances at normal temperature and low concentration. It contains various gases including NOx.

同中、11A〜11C、12A〜12Eは制御系60からの開閉制御指令を受けて開閉する切替弁である。   11A to 11C and 12A to 12E are switching valves that open and close in response to an open / close control command from the control system 60.

吸着装置10は、可能な限り低い加熱温度でNOxの脱離効率を上げられる吸着剤が収納され、酸化雰囲気下のもとにNOxを吸着する機能を有する。ここで、酸化雰囲気状態を作り出すためには、少なくとも制御系60からの指令に基づき、切替弁11A〜11Cを開とし(その他の切替弁は閉)、常温ガス流路1から取り込む有害物質であるNOx(NO,NO2)を含む常温ガスを吸着装置10に導入する一方、オゾン生成用放電装置20で生成されるO3(オゾン)をオゾンガス供給流路2を通して常温ガス流路1に注入し、吸着装置10内を酸化雰囲気状態に生成する。 The adsorbing device 10 stores an adsorbent capable of increasing the NOx desorption efficiency at the lowest possible heating temperature, and has a function of adsorbing NOx under an oxidizing atmosphere. Here, in order to create an oxidizing atmosphere state, at least based on a command from the control system 60, the switching valves 11A to 11C are opened (the other switching valves are closed) and are harmful substances taken in from the room temperature gas flow path 1. While introducing normal temperature gas containing NOx (NO, NO 2 ) into the adsorption device 10, O 3 (ozone) generated by the ozone generating discharge device 20 is injected into the normal temperature gas flow channel 1 through the ozone gas supply flow channel 2. Then, the inside of the adsorption device 10 is generated in an oxidizing atmosphere state.

オゾン生成用放電装置20は、O2(酸素)を含む空気ガスを取り込んで放電処理を行い、その放電反応により空気ガスからO2を解離させてO3(オゾン)を生成し、常温ガス流路1に注入する。なお、オゾン生成用放電装置20は、図示されていないが、放電部と放電用電源とからなり、放電用電源から高圧ケーブル線を介して所望の放電用電圧を放電部に供給し、放電部による放電処理を行う。 The discharge device 20 for ozone generation takes in an air gas containing O 2 (oxygen), performs a discharge treatment, and dissociates O 2 from the air gas by the discharge reaction to generate O 3 (ozone). Inject into path 1. Although not shown, the ozone generating discharge device 20 includes a discharge unit and a discharge power source, and supplies a desired discharge voltage from the discharge power source to the discharge unit via the high-voltage cable line. Discharge treatment by.

還元ガス供給装置30及び還元分解用放電装置40は、制御系60からの指令に基づき、切替弁12A〜12Dを開とし(その他の切替弁は閉)、吸着装置10内を還元ガスに十分に置換された還元ガス雰囲気を生成する機能を有する。   Based on the command from the control system 60, the reducing gas supply device 30 and the reductive decomposition discharge device 40 open the switching valves 12A to 12D (the other switching valves are closed), and the inside of the adsorption device 10 is sufficiently filled with the reducing gas. It has a function of generating a substituted reducing gas atmosphere.

還元ガス供給装置30は、例えばPSA(Pressure Swing Adsorption)式窒素発生器などが用いられ、内部的には適宜に細孔径を持つ吸着剤が充填され、空気中のガス成分からN2(窒素)ガスのみを分離し抽出し、還元ガス流路3に導入する。   The reducing gas supply device 30 uses, for example, a PSA (Pressure Swing Adsorption) type nitrogen generator or the like, and is internally filled with an adsorbent having an appropriate pore size, and N2 (nitrogen) gas from gas components in the air. Only the water is separated and extracted and introduced into the reducing gas flow path 3.

還元分解用放電装置40は、還元ガス供給装置30から供給されるN2(窒素)ガスを吸着装置10内に導入し、十分に置換された還元ガス雰囲気を生成するとともに、後述する放電処理を行う。   The reductive decomposition discharge apparatus 40 introduces N2 (nitrogen) gas supplied from the reductive gas supply apparatus 30 into the adsorption apparatus 10, generates a sufficiently substituted reductive gas atmosphere, and performs a discharge process described later. .

すなわち、還元分解用放電装置40は、吸着装置10内が十分に還元ガス雰囲気に置換された時点において、制御系60からの指令に基づき、切替弁12A,12B,12Eを開、切替弁12C,12Dを閉とした後、例えばファンなどにより還元ガス循環を実施し、この還元ガス循環中に吸着NOx脱離装置50の起動及び還元分解用放電装置40による放電処理を実施する。   That is, the reductive decomposition discharge device 40 opens the switching valves 12A, 12B, and 12E based on a command from the control system 60 when the inside of the adsorption device 10 is sufficiently replaced with the reducing gas atmosphere. After closing 12D, for example, a reducing gas circulation is performed by a fan or the like, and during this reducing gas circulation, the adsorption NOx desorbing device 50 is activated and a discharge treatment by the reductive decomposition discharging device 40 is performed.

吸着NOx脱離装置50は、具体的には、加熱手段を用い、吸着装置10内の吸着剤を加熱し、吸着剤に吸着されているNOxを加熱脱離させ、この離反されたNOxを還元ガス流路3で循環させる。   Specifically, the adsorption NOx desorption device 50 uses heating means to heat the adsorbent in the adsorption device 10 to heat and desorb NOx adsorbed on the adsorbent, and reduce the separated NOx. Circulate in the gas flow path 3.

このとき、還元ガス流路3には還元分解用の放電装置40が設置されており、N2雰囲気にて放電処理を行っている。その結果、放電反応の作用に基づき、還元ガス中に脱離されて循環しているNOxであるNO、NO2を無害なN2に還元分解する。つまり、吸着剤から加熱脱離されたNOxが還元分解用放電装置40に導入し、ここで還元分解されてN2となり、NOxを消滅させるものである。このNOxの消滅により、吸着装置10内の吸着剤が再生される。 At this time, a discharge device 40 for reductive decomposition is installed in the reducing gas flow path 3, and discharge processing is performed in an N 2 atmosphere. As a result, based on the action of the discharge reaction, reducing and decomposing NO, the NO 2 to innocuous N 2 is a NOx circulating been desorbed in the reducing gas. In other words, NOx desorbed by heating from the adsorbent is introduced into the reductive decomposition discharge apparatus 40, where it is reductively decomposed to become N 2 , thereby eliminating NOx. As the NOx disappears, the adsorbent in the adsorption device 10 is regenerated.

次に、以上のような常温ガス中のNOx浄化装置の作用について説明する。   Next, the operation of the above-described NOx purification device in normal temperature gas will be described.

(1) NOx除去運転モード制御について。 (1) About NOx removal operation mode control.

先ず、制御系60から弁開閉制御指令を送出し、切替弁11A〜11Cを開、切替弁12A〜12Eを閉とし、オゾン生成用放電装置20を起動し、吸着装置10内を酸化雰囲気状態に生成する。   First, a valve opening / closing control command is sent from the control system 60, the switching valves 11A to 11C are opened, the switching valves 12A to 12E are closed, the ozone generating discharge device 20 is started, and the inside of the adsorption device 10 is in an oxidizing atmosphere state. Generate.

具体的には、NOxを含む常温ガス(X)を常温ガス流路1を通して吸着装置10に導入するが、このとき、オゾン生成用放電装置20がO2を含む空気ガスを取り込んで放電処理を行い、その放電反応により空気ガスからO2分子を解離させてO3を生成し、常温ガス流路1に注入する。その結果、常温ガス流路1内を流れるNOxを含む常温ガスに対してO3を注入することにより、O3と常温ガス中のNOとが反応し、NOxの構成成分であるNOがNO2に酸化され、吸着装置10内に供給される。 Specifically, normal temperature gas (X) containing NOx is introduced into the adsorption device 10 through the normal temperature gas flow path 1. At this time, the ozone generating discharge device 20 takes in air gas containing O 2 and performs discharge treatment. Then, O 2 molecules are dissociated from the air gas by the discharge reaction to generate O 3 and injected into the room temperature gas flow path 1. As a result, by injecting O 3 into room temperature gas containing NOx flowing in the room temperature gas flow path 1, O 3 reacts with NO in the room temperature gas, and NO which is a constituent of NOx is NO 2. And is supplied into the adsorption device 10.

従って、常温ガス(X)の約9割を占めるNOが酸化分解によってNO2に変換されるので、吸着装置10内の吸着剤に確実に吸着でき、ひいては常温ガス中からNOxを効率よく除去できる。 Therefore, since NO which occupies about 90% of the normal temperature gas (X) is converted into NO 2 by oxidative decomposition, it can be surely adsorbed by the adsorbent in the adsorption device 10, and NOx can be efficiently removed from the normal temperature gas. .

(2) 還元ガス置換運転モード制御について。 (2) Reducing gas replacement operation mode control.

NOx浄化装置の浄化処理開始後、所要とする期間を経過した後(吸着剤によるNO2の吸着飽和前)、制御系60は、浄化処理から吸着装置10内を還元ガス雰囲気に生成するために弁開閉制御指令を送出し、切替弁12A〜12Dを開、切替弁11A〜11C、12Eを閉とした後、還元ガス供給装置30を起動する。 After a required period has elapsed after the start of the purification process of the NOx purification device (before the adsorption saturation of NO 2 by the adsorbent), the control system 60 generates the inside of the adsorption device 10 from the purification process into a reducing gas atmosphere. A valve opening / closing control command is sent, the switching valves 12A to 12D are opened, the switching valves 11A to 11C and 12E are closed, and then the reducing gas supply device 30 is started.

なお、所要とする期間は、例えば自動車の通行量,空気中の汚染状態,吸着剤の種類,NOxの発生量等から定められ、予め制御系60の設定用メモリ(図示せず)等に適宜可変可能に設定される。   The required period is determined from, for example, the amount of automobile traffic, the state of air pollution, the type of adsorbent, the amount of NOx generated, etc., and is appropriately stored in a setting memory (not shown) of the control system 60 in advance. It is set to be variable.

還元ガス供給装置30は、起動に伴って空気ガスを取り込み、空気中のガス成分からN2ガスのみを分離し抽出し、還元分解用放電装置40及び還元ガス流路3を介して吸着装置10内に導入し、十分に置換された還元ガス雰囲気状態を生成する。このとき、制御系60は、センサにて吸着装置10内のガス濃度を検知し、十分に置換された還元ガス雰囲気状態か否かを判定する。 The reductive gas supply device 30 takes in the air gas when activated, separates and extracts only N 2 gas from the gas components in the air, and the adsorption device 10 via the reductive decomposition discharge device 40 and the reductive gas flow path 3. Introduced into the inside, a sufficiently substituted reducing gas atmosphere state is generated. At this time, the control system 60 detects the gas concentration in the adsorption apparatus 10 with a sensor, and determines whether or not the reducing gas atmosphere is sufficiently substituted.

(3) 吸着剤再生運転モード制御について。 (3) Adsorbent regeneration operation mode control.

制御系60は、吸着装置10内が十分に還元ガス雰囲気状態になったことを判定すると、吸着剤に対する再生処理を実施する。すなわち、制御系60は、再生処理を実施するために弁開閉制御指令を送出し、切替弁12A,12B,12Eを開、切替弁12C,12Dを閉とした後、還元分解用放電装置40及び吸着NOx脱離装置50を起動する。   When the control system 60 determines that the inside of the adsorption device 10 is sufficiently in the reducing gas atmosphere, the control system 60 performs a regeneration process on the adsorbent. That is, the control system 60 sends a valve opening / closing control command to perform the regeneration process, opens the switching valves 12A, 12B, and 12E and closes the switching valves 12C and 12D, and then performs the reductive decomposition discharge device 40 and The adsorption NOx desorption device 50 is activated.

還元分解用放電装置40としては、例えばファンを駆動して還元ガス循環を実施するとともに、放電処理を実施する。   As the reductive decomposition discharge device 40, for example, a fan is driven to perform reductive gas circulation and a discharge treatment is performed.

一方、吸着NOx脱離装置50は、加熱手段を用いて吸着装置10内の吸着剤を加熱し、当該吸着剤に吸着されているNOxを加熱脱離させ、還元ガス流路3を通して循環させる。   On the other hand, the adsorption NOx desorption device 50 heats the adsorbent in the adsorption device 10 using heating means, heats and desorbs NOx adsorbed on the adsorbent, and circulates it through the reducing gas flow path 3.

このとき、還元分解用放電装置40では、N2雰囲気で放電処理が行われているので、吸着剤から脱離して還元ガス流路3内へ流れてくるNOxであるNO、NO2を放電反応の作用により無害なN2に還元分解することにより、NOxを消滅させるものである。これにより、吸着装置10内の吸着剤は、新しい吸着剤と交換することなく、また、取り外して再生施設に搬入することなく、吸着剤の設置状態のまま再生処理を行うことができる。 At this time, since the discharge treatment for reductive decomposition is performed in the N 2 atmosphere, NO and NO 2 which are NOx desorbed from the adsorbent and flow into the reducing gas channel 3 are discharged. By reducing and decomposing into harmless N 2 by the action of NOx, NOx is extinguished. As a result, the adsorbent in the adsorbing device 10 can be regenerated without replacing the adsorbent with a new adsorbent and without being removed and carried into the regeneration facility.

図2は本発明に係る常温ガス中のNOx浄化装置の実施の形態1の他の例を示す構成図である。   FIG. 2 is a configuration diagram showing another example of the first embodiment of the NOx purifying device in normal temperature gas according to the present invention.

この例は、吸着装置10を小形化した複数(例えば5個)の吸着部10a〜10eに分割された構成とし、かつ、各吸着部10a〜10eに吸着NOx脱離装置(例えば加熱ヒータなど)50a〜50eを施した構成である。このような構成に伴い、常温ガス流路1a〜1e及び切替弁11A〜11C、12A,12Bも各吸着部10a〜10eに対応して設けられる。   In this example, the adsorption device 10 is divided into a plurality of (for example, five) adsorption units 10a to 10e which are downsized, and an adsorption NOx desorption device (such as a heater) is provided in each of the adsorption units 10a to 10e. It is the structure which gave 50a-50e. With such a configuration, the normal temperature gas flow paths 1a to 1e and the switching valves 11A to 11C, 12A, and 12B are also provided corresponding to the adsorption portions 10a to 10e.

次に、以上のようなNOx浄化装置に関し、例えば吸着部10a,10c、10d,10eをNOx除去運転モードとし、吸着部10bを還元ガス置換運転モード及び吸着剤再生運転モードとする運転例について説明する。但し、同図において、太線矢印はNOx除去運転モード時、細線矢印は還元ガス置換運転モード時、点線矢印は吸着剤再生運転モード時の流れを示している。   Next, regarding the NOx purification device as described above, for example, an operation example in which the adsorption units 10a, 10c, 10d, and 10e are set to the NOx removal operation mode and the adsorption unit 10b is set to the reducing gas replacement operation mode and the adsorbent regeneration operation mode will be described. To do. However, in the figure, the thick line arrows indicate the flow in the NOx removal operation mode, the thin line arrows indicate the flow in the reducing gas replacement operation mode, and the dotted line arrows indicate the flow in the adsorbent regeneration operation mode.

吸着部10a,10c、10d,10eに対応する各切替弁11A〜11Cのみを開(その他は閉)とし、吸着部10bに対応する切替弁11A〜11C,共用切替弁12E(還元ガス置換時)のみを閉とし、かつ、切替弁12A,12B,共用切替弁12C,12Dを開とする。   Only the switching valves 11A to 11C corresponding to the adsorption units 10a, 10c, 10d, and 10e are opened (the others are closed), and the switching valves 11A to 11C and the common switching valve 12E corresponding to the adsorption unit 10b (when reducing gas is replaced) Only the switching valve 12A, 12B and the common switching valve 12C, 12D are opened.

以上のように弁の切替え制御を行った後、各吸着部10a,10c、10d,10eに常温ガス(X)を供給するとともに、オゾン生成用放電装置20がO2(酸素)を含む空気ガスを取り込んで放電処理を行い、その放電反応により空気ガスからO2を解離させてO3(オゾン)を生成し、各常温ガス流路部1a,1c、1d,1eに注入する。なお、オゾン生成用放電装置20は、放電部20a,電源部20b及びファン20cを備えている。 After performing the valve switching control as described above, the normal temperature gas (X) is supplied to each of the adsorbing portions 10a, 10c, 10d, and 10e, and the ozone generating discharge device 20 is an air gas containing O 2 (oxygen). Is discharged, and O 2 is dissociated from the air gas by the discharge reaction to generate O 3 (ozone), which is injected into each room temperature gas flow path section 1a, 1c, 1d, 1e. The ozone generating discharge device 20 includes a discharge unit 20a, a power supply unit 20b, and a fan 20c.

これにより、O3と常温ガス中のNOとが反応し、NOxの構成成分であるNOがNO2に酸化され、各吸着部10a,10c、10d,10e内に供給する。その結果、各吸着部10a,10c、10d,10e内が酸化雰囲気状態に生成され、NOxが吸着剤に効率良く吸着され、処理された浄化ガス(Y)が吸引ファン71を通して外部に排出される。 As a result, O 3 reacts with NO in the room temperature gas, and NO, which is a constituent component of NOx, is oxidized to NO 2 and supplied into the adsorbing portions 10a, 10c, 10d, and 10e. As a result, the inside of each adsorption part 10a, 10c, 10d, 10e is generated in an oxidizing atmosphere state, NOx is efficiently adsorbed by the adsorbent, and the treated purified gas (Y) is discharged to the outside through the suction fan 71. .

一方、吸着部10bは、還元ガス置換運転モード時、切替弁12Eが閉じた状態に設定し、還元ガス供給装置30を起動する。還元ガス供給装置30は、起動に伴って空気ガスを取り込み、細線で示す矢印に従って、空気中のガス成分からN2ガスのみを分離し抽出し、還元分解用放電装置40及び還元ガス流路3を介して吸着部10b内に導入し、吸着部10b内を徐々に還元ガス雰囲気に置換していく。この還元ガス置換は、十分に置換された還元ガス雰囲気状態となるまで続けられる。そして、吸着部10b内が十分に置換された還元ガス雰囲気状態となったとき、吸着剤再生運転モードに移行する。 On the other hand, the adsorption unit 10b sets the switching valve 12E to be closed in the reducing gas replacement operation mode, and starts the reducing gas supply device 30. The reducing gas supply device 30 takes in the air gas as it starts up, separates and extracts only N 2 gas from the gas components in the air according to the arrows shown by the thin lines, and performs the reductive decomposition discharge device 40 and the reducing gas flow channel 3. Is introduced into the adsorption part 10b, and the inside of the adsorption part 10b is gradually replaced with a reducing gas atmosphere. This reducing gas replacement is continued until a sufficiently substituted reducing gas atmosphere is obtained. When the reducing gas atmosphere state in which the inside of the adsorption unit 10b is sufficiently substituted is reached, the adsorbent regeneration operation mode is entered.

この吸着剤再生運転モード時、切替弁12A,12B,共用切替弁12Eを開、共用切替弁12C,12Dを閉とし、還元分解用放電装置40及び吸着NOx脱離装置50を起動する。なお、還元分解用放電装置40は、放電部40a、電源部40b及びファン40cで構成されている。   In this adsorbent regeneration operation mode, the switching valves 12A and 12B and the common switching valve 12E are opened, the common switching valves 12C and 12D are closed, and the reductive decomposition discharge device 40 and the adsorption NOx desorption device 50 are started. The reductive decomposition discharge apparatus 40 includes a discharge unit 40a, a power supply unit 40b, and a fan 40c.

すなわち、吸着剤再生運転モード時、吸着NOx脱離装置50は、吸着部10b内の吸着剤に吸着されているNOxを加熱脱離させ、点線で示す矢印に従って還元ガス流路3を通して循環させる一方、還元分解用放電装置40によるN2雰囲気での放電処理により、還元ガス流路3内へ流れてくる脱離されたNOxであるNO、NO2を放電反応の作用により無害なN2に還元分解し、NOxを消滅させるものである。これにより、吸着部10b内の吸着剤が再生処理される。 That is, in the adsorbent regeneration operation mode, the adsorption NOx desorption device 50 heats and desorbs NOx adsorbed by the adsorbent in the adsorption unit 10b and circulates it through the reducing gas flow path 3 according to the arrow indicated by the dotted line. By the discharge treatment in the N 2 atmosphere by the reductive decomposition discharge device 40, the desorbed NOx NO and NO 2 flowing into the reducing gas channel 3 are reduced to harmless N 2 by the action of the discharge reaction. It decomposes and eliminates NOx. Thereby, the adsorbent in the adsorbing portion 10b is regenerated.

この例によるNOx浄化装置は、図1に示す装置と同様な効果を奏する他、吸着装置10を小形化した複数の吸着部10a〜10eに分割することにより、次のような効果を奏する。   The NOx purification device according to this example has the same effects as the device shown in FIG. 1 and also has the following effects by dividing the adsorption device 10 into a plurality of downsized adsorption portions 10a to 10e.

a.各吸着部10a〜10eを小形化することにより、設置場所(例えばトンネルの壁面)の複数箇所に分散して設置でき、広い範囲の常温ガス(X)を取り込むことが可能となる。 a. By reducing the size of each of the adsorbing portions 10a to 10e, the adsorption portions 10a to 10e can be installed dispersedly at a plurality of installation locations (for example, a wall surface of a tunnel), and a wide range of room temperature gas (X) can be taken in.

b.NOx(窒素酸化物)などの有害物質を多く排出する個所に選択的に各吸着部10a〜10eを設置することが可能である。 b. It is possible to selectively install the adsorbing portions 10a to 10e at locations where a lot of harmful substances such as NOx (nitrogen oxide) are discharged.

c.NOx浄化装置を稼動させた状態で時期をずらしつつ交互に吸着部10a〜10eの再生処理を実施でき、ひいてはNOx浄化装置を停止させずに長期にわたって安定に運転継続できる。 c. While the NOx purification device is in operation, the adsorbing portions 10a to 10e can be alternately regenerated while shifting the timing, and as a result, the operation can be stably continued for a long time without stopping the NOx purification device.

d.多数の吸着部12a〜12eに対して、オゾン生成用放電装置20、還元ガス供給装置30及び還元分解用放電装置40を共用使用できる。 d. The ozone generating discharge device 20, the reducing gas supply device 30, and the reductive decomposition discharging device 40 can be used in common for a large number of adsorbers 12a to 12e.

なお、上記実施の形態においては、吸着部10a〜10eを含む吸着装置10内に吸着剤を収納するが、この吸着剤としては加熱脱離を効率良く行うためには、NOxの加熱脱離温度が可能な限り低いものを選定することが望ましい。   In the above embodiment, the adsorbent is stored in the adsorbing device 10 including the adsorbing portions 10a to 10e. As the adsorbent, in order to efficiently perform heat desorption, the heat desorption temperature of NOx is used. It is desirable to select the one with the lowest possible.

また、本発明者等は、本発明に係るNOx浄化装置に用いる吸着剤について、種々の観点から実験を積み重ねた結果、図3及び図4に示すような特性を有することが確認された。   Further, as a result of accumulating experiments from various points of view, the present inventors have confirmed that the adsorbent used in the NOx purification device according to the present invention has characteristics as shown in FIGS.

図3及び図4は吸着剤における特性を説明する図である。
図3は細孔径を既知とする吸着剤(MS:モレキュラーシーブ)に関するNOの吸着特性を説明する図である。この図から明らかなように、吸着剤の細孔径が0.5nmよりも小さくなると、NOの吸着特性が極端に減少することが確認できる。
3 and 4 are diagrams for explaining the characteristics of the adsorbent.
FIG. 3 is a diagram for explaining the NO adsorption characteristics of an adsorbent (MS: molecular sieve) having a known pore diameter. As is clear from this figure, it can be confirmed that when the pore diameter of the adsorbent is smaller than 0.5 nm, the NO adsorption characteristic is extremely reduced.

従って、この実験結果から、吸着剤としては、少なくとも細孔径が0.5nm以上のものを使用すれば、吸着し難いNOも効率良く吸着でき、NOx浄化の効率も向上することがわかる。これは、NO分子の分子径が約0.5nmであることが起因しているものと考えられる。勿論、吸着剤は、0.5nm以上であれば望ましいが、NOが細孔径に入った後に吸着されずに簡単に流れ出てしまうことが考えられるので、吸着剤の種類及び吸着効果を考慮しつつ、細孔径の上限を定めものとする。   Therefore, from this experimental result, it can be seen that if an adsorbent having at least a pore diameter of 0.5 nm or more is used, NO that is difficult to adsorb can be adsorbed efficiently and the efficiency of NOx purification is improved. This is considered to be caused by the fact that the molecular diameter of NO molecules is about 0.5 nm. Of course, it is desirable that the adsorbent is 0.5 nm or more, but it is considered that NO flows easily without being adsorbed after entering the pore diameter, so considering the type of adsorbent and the adsorbing effect. The upper limit of the pore diameter shall be determined.

図4は各種の吸着剤の加熱によるNOx脱離温度の特性を表す図である。
同図では、活性炭を主成分とする吸着剤Aと、典型的なアルミナを主成分とする複数製造メーカ提供の吸着剤B,Cについて、加熱温度を可変しつつ、NOxの脱離割合をプロットしてみると、アルミナ主成分のものよりも活性炭を主成分とする吸着剤が低い加熱温度で脱離する割合が大きいことがわかる。このことから、活性炭を主成分とする吸着剤Aを用いるのが望ましいだけでなく、低い加熱温度でNOxを高効率に脱離させることが可能であり、ランニングコストの低減化にも大きく貢献できる。
FIG. 4 is a graph showing the characteristics of NOx desorption temperature due to heating of various adsorbents.
In the figure, NOx desorption ratio is plotted while varying the heating temperature for the adsorbent A mainly composed of activated carbon and the adsorbents B and C provided by multiple manufacturers mainly composed of typical alumina. As a result, it can be seen that the rate of desorption of the adsorbent mainly composed of activated carbon at a lower heating temperature is larger than that mainly composed of alumina. From this, it is desirable not only to use the adsorbent A mainly composed of activated carbon, but also NOx can be desorbed with high efficiency at a low heating temperature, which can greatly contribute to the reduction of running cost. .

さらに、吸着部10a〜10eを含む吸着装置10に収納される吸着剤は、O3の分解作用を有することが望ましい。その理由は吸着装置10からO3を排出するとまずい為である。因みに、アルミナ系はO3の分解作用を有しないが、活性炭系はO3の分解作用を持っているので、常温ガスにO3を注入する場合には吸着剤としては活性炭を主成分とする吸着剤を用いるのが望ましい。 Furthermore, it is desirable that the adsorbent accommodated in the adsorption device 10 including the adsorption units 10a to 10e has a decomposition action of O 3 . The reason is that it is bad to discharge O 3 from the adsorption device 10. Incidentally, the alumina system has no decomposition of O 3, since the activated carbon has a decomposing action of O 3, a main component activated carbon as an adsorbent in the case of injecting O 3 to a room temperature gas It is desirable to use an adsorbent.

さらに、本発明装置に使用する還元ガス供給装置30で生成する還元ガスとしては、酸素を含まないN2を分離し抽出することが望ましく、そのN2の生成純度が99%以上の場合に好ましい結果が得られることが確認できている。還元ガス供給装置30で生成される還元ガスに不純物(例えば酸素分)1%以上含んでくると、放電によるNOxのN2への還元分解の効率が低下する可能性があるためである。 Further, as the reducing gas produced by the reducing gas supply device 30 used in the apparatus of the present invention, it is desirable to separate and extract N 2 containing no oxygen, which is preferable when the production purity of N 2 is 99% or more. It has been confirmed that results can be obtained. This is because if the reducing gas generated by the reducing gas supply device 30 contains impurities (for example, oxygen content) of 1% or more, the efficiency of reductive decomposition of NOx to N2 by discharge may be reduced.

(その他の実施の形態)
図5は本発明に係る常温ガス中のNOx浄化装置の他の実施の形態を示す構成図である。
図1及び図2に示す実施の形態では、NOx除去運転モード時にオゾン生成用放電装置20を起動させ、オゾン生成用還元ガス置換運転モード時及び吸着剤再生運転モード時に別の還元分解用放電装置40を起動させたが、例えばオゾン生成用放電装置20及びオゾンガス供給流路3を削除し、オゾン生成用放電装置20に代えて還元分解用放電装置40を兼用使用する構成としてもよい。この場合、還元分解用放電装置40の入側の還元ガス流路3に空気ガスを取り込んで還元分解用放電装置40に導入する空気ガス流路72を接続するとともに、当該空気ガス流路72に切替弁73を設置するものとする。
(Other embodiments)
FIG. 5 is a block diagram showing another embodiment of the NOx purification device for normal temperature gas according to the present invention.
In the embodiment shown in FIGS. 1 and 2, the ozone generating discharge device 20 is activated during the NOx removal operation mode, and another reductive decomposition discharging device is used during the ozone generation reducing gas replacement operation mode and the adsorbent regeneration operation mode. For example, the ozone generation discharge device 20 and the ozone gas supply channel 3 may be deleted, and the reduction decomposition discharge device 40 may be used instead of the ozone generation discharge device 20. In this case, an air gas flow path 72 that takes air gas into the reductive gas flow path 3 on the inlet side of the reductive decomposition discharge apparatus 40 and introduces it into the reductive decomposition discharge apparatus 40 is connected to the air gas flow path 72. It is assumed that the switching valve 73 is installed.

そして、吸着部10a〜10eを含む吸着装置10内を酸化雰囲気に生成する場合、切替弁11A,12A,11C,73を開とするとともに、還元分解用放電装置40を起動するとともに、放電処理を実施する。これにより、還元分解用放電装置40がO2(酸素)を含む空気ガスを取り込んで放電処理を行い、その放電反応により空気ガスからO2を解離させてO3(オゾン)を生成し、常温ガス流路1に注入する。つまり、図1及び図2に示すオゾン生成用放電装置20と同様の作用ないし機能を実現する。 And when producing | generating inside the adsorption | suction apparatus 10 containing adsorption | suction part 10a-10e in an oxidizing atmosphere, while switching valve | bulb 11A, 12A, 11C, 73 is opened, while starting the discharge apparatus 40 for reductive decomposition, discharge processing is performed. carry out. As a result, the reductive decomposition discharge device 40 takes in the air gas containing O 2 (oxygen) and performs a discharge treatment, and the discharge reaction dissociates O 2 from the air gas to generate O 3 (ozone). Injection into the gas flow path 1. That is, the same action or function as the ozone generating discharge device 20 shown in FIGS. 1 and 2 is realized.

一方、還元ガス置換運転モード時及び吸着剤再生運転モード時には、切替弁73を閉とする以外は図1及び図2で説明した場合と全く同じ動作を実施するものである。   On the other hand, in the reducing gas replacement operation mode and the adsorbent regeneration operation mode, the same operation as that described in FIGS. 1 and 2 is performed except that the switching valve 73 is closed.

この実施の形態におけるNOx浄化装置では、一つの利用例ではあるが、例えば昼間には還元分解用放電装置40を用いてNOx除去運転モードを実施し、例えば自動車などにNOx排出の少ない夜間などを利用し、還元ガス供給装置30及び還元分解用放電装置40を用いて還元ガス置換運転モード及び吸着剤再生運転モードを行えば、殆どNOxの浄化に影響を与えずに、NOxの浄化処理と吸着剤の再生処理を交互に行うことが可能である。   In the NOx purification device in this embodiment, although it is one example of use, for example, the NOx removal operation mode is performed using the reduction decomposition discharge device 40 during the daytime, for example, at night when the NOx emission is low in an automobile or the like. If the reducing gas replacement operation mode and the adsorbent regeneration operation mode are performed by using the reducing gas supply device 30 and the reductive decomposition discharge device 40, the NOx purification treatment and adsorption are hardly affected without substantially affecting the NOx purification. It is possible to perform the regeneration process of the agent alternately.

この実施の形態によれば、前述した実施の形態と同様の効果を奏する他、NOx浄化装置の小形化及び価格の低減化を図ることができる。   According to this embodiment, in addition to the same effects as those of the above-described embodiment, the NOx purification device can be reduced in size and price.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

本発明に係る常温ガス中のNOx浄化装置の一実施の形態を示す構成図。The block diagram which shows one Embodiment of the NOx purification apparatus in the normal temperature gas which concerns on this invention. 図1に示す常温ガス中のNOx浄化装置の他の実施の形態例を示す構成図。The block diagram which shows the other embodiment of the NOx purification apparatus in the normal temperature gas shown in FIG. 細孔径を既知とする吸着剤に関するNOの吸着特性を説明する図。The figure explaining the adsorption | suction characteristic of NO regarding the adsorbent whose pore diameter is known. 各種の吸着剤の加熱によるNOx脱離温度の特性を説明する図。The figure explaining the characteristic of NOx desorption temperature by the heating of various adsorbents. 本発明に係る常温ガス中のNOx浄化装置の他の実施の形態を示す構成図。The block diagram which shows other embodiment of the NOx purification apparatus in normal temperature gas which concerns on this invention.

符号の説明Explanation of symbols

1…常温ガス流路、2…オゾンガス供給流路、3…還元ガス流路、10…吸着装置、10a〜10e…吸着部、11A〜11C、12A〜12E、72…切替弁、20…オゾン生成用放電装置、30…還元ガス供給装置、40…還元分解用放電装置、50…吸着NOx脱離装置、71…吸引ファン。   DESCRIPTION OF SYMBOLS 1 ... Normal temperature gas flow path, 2 ... Ozone gas supply flow path, 3 ... Reducing gas flow path, 10 ... Adsorption apparatus, 10a-10e ... Adsorption part, 11A-11C, 12A-12E, 72 ... Switching valve, 20 ... Ozone production Discharge device, 30 ... reducing gas supply device, 40 ... discharge device for reductive decomposition, 50 ... adsorption NOx desorption device, 71 ... suction fan.

Claims (9)

酸素の共存する常温ガスを取り込む常温ガス流路に設置され、当該常温ガス中に含むNOx(窒素酸化物)を吸着するための吸着剤を収納した吸着装置と、
前記常温ガス中に含むNOxの構成成分であるNO(一酸化窒素)を酸化させてNO2(二酸化窒素)を生成するために、放電処理により空気ガスからオゾンを生成し、オゾンガス供給流路を介して前記常温ガス流路に注入するオゾン生成用放電装置と、
前記吸着装置の入側・出側間に跨って配設された還元ガス流路に接続され、空気ガスから還元ガスを抽出し、前記還元ガス流路を通して前記吸着装置に供給し、当該吸着装置内を還元ガス雰囲気に置換する還元ガス供給装置と、
前記吸着装置に設けられ、前記吸着装置内が十分に還元ガス雰囲気に置換されたとき、前記吸着剤に吸着されているNOxを脱離させる吸着NOx脱離装置と、
前記還元ガス流路に設置され、前記脱離されたNOxを循環させるとともに、放電処理により当該NOxを還元分解し、当該NOxを消滅させる還元分解用放電装置とを備えたことを特徴とする常温ガス中のNOx浄化装置。
An adsorption device installed in a normal temperature gas flow path for taking in a normal temperature gas in which oxygen coexists, and containing an adsorbent for adsorbing NOx (nitrogen oxide) contained in the normal temperature gas;
In order to oxidize NO (nitrogen monoxide), which is a constituent of NOx contained in the normal temperature gas, to generate NO 2 (nitrogen dioxide), ozone is generated from the air gas by discharge treatment, and an ozone gas supply channel is provided. A discharge device for ozone generation injected into the room temperature gas flow path through,
Connected to a reducing gas channel disposed between the inlet side and the outlet side of the adsorption device, extracts the reducing gas from the air gas, and supplies the reducing gas channel to the adsorption device through the reducing gas channel. A reducing gas supply device for replacing the inside with a reducing gas atmosphere;
An adsorption NOx desorption device provided in the adsorption device and desorbing NOx adsorbed by the adsorbent when the inside of the adsorption device is sufficiently replaced with a reducing gas atmosphere;
A normal temperature characterized by comprising a reducing and decomposing discharge device that is installed in the reducing gas flow path, circulates the desorbed NOx, reduces and decomposes the NOx by discharge treatment, and extinguishes the NOx. NOx purification device in gas.
請求項1に記載の常温ガス中のNOx浄化装置において、
前記常温ガス流路と前記オゾンガス供給流路とに設置される弁を開とし、常温ガス中のNOとオゾンとを反応させて前記NOxの構成成分であるNOをNO2に酸化させて前記吸着装置内に供給させるNOx除去運転モード制御手段と、
前記吸着装置と前記還元ガス流路との循環路を形成するように弁を開とし、前記還元ガス供給装置で生成される還元ガスを前記吸着装置に供給し、当該吸着装置内を還元ガス雰囲気に置換させる還元ガス置換運転モード制御手段と、
前記吸着装置内が十分に還元ガス雰囲気に置換されたとき、前記還元分解用放電装置及び前記吸着NOx脱離装置を起動し、当該還元分解用放電装置により前記吸着剤からNOxを脱離させ、かつ、当該還元分解用放電装置の放電処理によりNOxを無害なN2に還元分解させる吸着剤再生運転モード制御手段とを有する制御系を、さらに付加したことを特徴とする常温ガス中のNOx浄化装置。
In the NOx purification device in normal temperature gas according to claim 1,
Opening the valves installed in the normal temperature gas flow path and the ozone gas supply flow path, reacting NO and ozone in the normal temperature gas to oxidize NO, which is a component of the NOx, to NO 2 , the adsorption NOx removal operation mode control means to be supplied into the apparatus;
The valve is opened so as to form a circulation path between the adsorption device and the reducing gas channel, the reducing gas generated by the reducing gas supply device is supplied to the adsorption device, and the inside of the adsorption device is reduced gas atmosphere Reducing gas replacement operation mode control means to be replaced with,
When the inside of the adsorption device is sufficiently replaced with a reducing gas atmosphere, the reductive decomposition discharge device and the adsorption NOx desorption device are activated, and the NOx is desorbed from the adsorbent by the reductive decomposition discharge device, In addition, a control system having an adsorbent regeneration operation mode control means for reducing and decomposing NOx into harmless N 2 by a discharge treatment of the reductive decomposition discharge apparatus is further added, and NOx purification in normal temperature gas is further characterized. apparatus.
請求項1または請求項2に記載の常温ガス中のNOx浄化装置において、
前記吸着装置を複数の吸着部に分割して個別の常温ガス流路に設置するとともに、各吸着部に吸着NOx脱離装置を取付け、前記各吸着部に対して選択的に、前記オゾン生成用放電装置と前記還元ガス供給装置及び前記還元分解用放電装置とを用い、NOx除去と還元ガス置換及び吸着剤再生処理とを行うことを特徴とする常温ガス中のNOx浄化装置。
In the NOx purification device in normal temperature gas according to claim 1 or claim 2,
The adsorption device is divided into a plurality of adsorption units and installed in individual room temperature gas flow paths, and an adsorption NOx desorption device is attached to each adsorption unit to selectively generate the ozone for each adsorption unit. A NOx purification device in normal temperature gas, wherein a NOx removal, a reducing gas replacement, and an adsorbent regeneration process are performed using a discharge device, the reducing gas supply device, and the reductive decomposition discharge device.
請求項1または請求項3に記載の常温ガス中のNOx浄化装置において、
前記オゾン生成用放電装置に代えて、前記還元分解用放電装置が空気ガスを取り込むとともに、放電処理を実施し、前記空気ガスからオゾンを生成して前記常温ガス流路に注入し、前記常温ガス中に含むNOxの構成成分であるNOを酸化させてNO2を生成し、この生成されたNO2及び未反応のNOを前記吸着装置内または前記吸着部内の吸着剤に吸着させることを特徴とする常温ガス中のNOx浄化装置。
In the NOx purification device in normal temperature gas of Claim 1 or Claim 3,
Instead of the ozone generating discharge device, the reductive decomposition discharging device takes in the air gas and performs a discharge treatment to generate ozone from the air gas and inject it into the room temperature gas flow path. by oxidizing NO is a constituent of NOx to generate NO 2, including in a feature that adsorbing NO in the generated NO 2 and unreacted adsorbent in said adsorption device or the suction unit NOx purification device in normal temperature gas.
請求項1ないし請求項4の何れか一項に記載の常温ガス中のNOx浄化装置において、
前記吸着NOx脱離装置は、前記吸着装置内または前記吸着部内の還元雰囲気中で前記吸着剤を加熱する加熱手段であることを特徴とする常温ガス中のNOx浄化装置。
In the NOx purification device in the normal temperature gas according to any one of claims 1 to 4,
The NOx purification device in normal temperature gas, wherein the adsorption NOx desorption device is a heating means for heating the adsorbent in a reducing atmosphere in the adsorption device or in the adsorption unit.
請求項1ないし請求項4の何れか一項に記載の常温ガス中のNOx浄化装置において、
前記吸着装置内または前記吸着部内に収納する吸着剤は、活性炭を主成分とする吸着剤であることを特徴とする常温ガス中のNOx浄化装置。
In the NOx purification device in the normal temperature gas according to any one of claims 1 to 4,
The NOx purification device in normal temperature gas, wherein the adsorbent stored in the adsorber or the adsorbing part is an adsorbent mainly composed of activated carbon.
請求項1ないし請求項4の何れか一項に記載の常温ガス中のNOx浄化装置において、
前記吸着装置内または前記吸着部内に収納する吸着剤は、その細孔径が0.5nm以上を有する吸着剤であることを特徴とする常温ガス中のNOx浄化装置。
In the NOx purification device in the normal temperature gas according to any one of claims 1 to 4,
The NOx purification device in normal temperature gas, wherein the adsorbent accommodated in the adsorber or the adsorbing part is an adsorbent having a pore diameter of 0.5 nm or more.
請求項1ないし請求項4の何れか一項に記載の常温ガス中のNOx浄化装置において、
前記吸着装置内または前記吸着部内に収納する吸着剤は、オゾンの分解作用を有する吸着剤であることを特徴とする常温ガス中のNOx浄化装置。
In the NOx purification device in the normal temperature gas according to any one of claims 1 to 4,
The NOx purification device in normal temperature gas, wherein the adsorbent housed in the adsorber or the adsorbing part is an adsorbent having an action of decomposing ozone.
請求項1ないし請求項4の何れか一項に記載の常温ガス中のNOx浄化装置において、
前記還元ガスは、N2(窒素ガス)であることを特徴とする常温ガス中のNOx浄化装置。
In the NOx purification device in the normal temperature gas according to any one of claims 1 to 4,
The reducing gas is N 2 (nitrogen gas), a NOx purification device in normal temperature gas.
JP2007271515A 2007-10-18 2007-10-18 NOx PURIFYING APPARATUS IN NORMAL-TEMPERATURE GAS Pending JP2009095801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271515A JP2009095801A (en) 2007-10-18 2007-10-18 NOx PURIFYING APPARATUS IN NORMAL-TEMPERATURE GAS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271515A JP2009095801A (en) 2007-10-18 2007-10-18 NOx PURIFYING APPARATUS IN NORMAL-TEMPERATURE GAS

Publications (1)

Publication Number Publication Date
JP2009095801A true JP2009095801A (en) 2009-05-07

Family

ID=40699315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271515A Pending JP2009095801A (en) 2007-10-18 2007-10-18 NOx PURIFYING APPARATUS IN NORMAL-TEMPERATURE GAS

Country Status (1)

Country Link
JP (1) JP2009095801A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305226A (en) * 1991-01-25 1992-10-28 Senichi Masuda Method for decreasing nox in gas
JPH0564721A (en) * 1991-09-05 1993-03-19 Mitsubishi Heavy Ind Ltd Method and apparatus for treating air containing nitrogen oxide in low concentration
JPH05277339A (en) * 1992-04-02 1993-10-26 Shimizu Corp Method for removing nox
JPH0788328A (en) * 1993-09-22 1995-04-04 Matsushita Electric Ind Co Ltd Nox and sox purging device and its maintenance method
JPH09136015A (en) * 1995-11-13 1997-05-27 Hitachi Ltd Device and method for purifying gas
JPH09155152A (en) * 1995-12-04 1997-06-17 Matsushita Electric Ind Co Ltd Method and device for removal of nitrogen oxide
JPH11114370A (en) * 1997-10-09 1999-04-27 Mitsubishi Heavy Ind Ltd Method and device for denitrification of exhaust gas
JP2001062243A (en) * 1999-08-26 2001-03-13 Nissin Electric Co Ltd Electric discharge type gas treating device
JP2005034772A (en) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp Nitrogen oxide treatment apparatus
JP2005288380A (en) * 2004-04-02 2005-10-20 Eco Works:Kk Gas processing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305226A (en) * 1991-01-25 1992-10-28 Senichi Masuda Method for decreasing nox in gas
JPH0564721A (en) * 1991-09-05 1993-03-19 Mitsubishi Heavy Ind Ltd Method and apparatus for treating air containing nitrogen oxide in low concentration
JPH05277339A (en) * 1992-04-02 1993-10-26 Shimizu Corp Method for removing nox
JPH0788328A (en) * 1993-09-22 1995-04-04 Matsushita Electric Ind Co Ltd Nox and sox purging device and its maintenance method
JPH09136015A (en) * 1995-11-13 1997-05-27 Hitachi Ltd Device and method for purifying gas
JPH09155152A (en) * 1995-12-04 1997-06-17 Matsushita Electric Ind Co Ltd Method and device for removal of nitrogen oxide
JPH11114370A (en) * 1997-10-09 1999-04-27 Mitsubishi Heavy Ind Ltd Method and device for denitrification of exhaust gas
JP2001062243A (en) * 1999-08-26 2001-03-13 Nissin Electric Co Ltd Electric discharge type gas treating device
JP2005034772A (en) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp Nitrogen oxide treatment apparatus
JP2005288380A (en) * 2004-04-02 2005-10-20 Eco Works:Kk Gas processing method

Similar Documents

Publication Publication Date Title
JP4590618B2 (en) Exhaust gas treatment method and treatment apparatus
JP4234496B2 (en) Method and apparatus for regenerating activated carbon and air purification system incorporating the same
JP4411432B2 (en) Method and apparatus for purifying exhaust gas using low temperature plasma
JP4751264B2 (en) Ventilation gas purification device and purification method thereof
JP2007000733A (en) Treatment method and treatment apparatus of gas
JP2007000733A5 (en)
KR101831681B1 (en) Volatile organic compound removal system and method using the same
JPH1190177A (en) Harmful gas purifier equipped with buffer and method thereof
JP5058107B2 (en) NOx purification device
JP3246641B2 (en) Treatment of exhaust gas containing methyl bromide
JP2009095801A (en) NOx PURIFYING APPARATUS IN NORMAL-TEMPERATURE GAS
JP2004512208A (en) Method and apparatus for removing harmful impurities from air
KR101210660B1 (en) Method for controlling exhaust gas purification apparatus
JP2002066246A (en) Digestion gas purifier
JP4835013B2 (en) Nitrogen oxide removing apparatus and operation method thereof
CN212081260U (en) VOCs waste gas catalytic combustion processing system
JPH1085556A (en) Ozone decomposition device
KR100473646B1 (en) An apparatus for combustion with adsorption and concentration of volatile organic compound gas
CN219252223U (en) Waste gas treatment device
WO2023042302A1 (en) Ethylene oxide gas removal method, and ethylene oxide gas removal system using same
JPH0478421A (en) Method and device for purifying waste gas
JPH05123525A (en) Gas purifying method and apparatus therefor
JP2010058060A (en) Method and apparatus of treating siloxane
JPH06233915A (en) Denitration equipment of combustion exhaust gas
JP2001058121A (en) Method and apparatus for decomposing harmful substance in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108