JP2009091661A - Composite material, manufacturing method of the composite material and slide member using the composite material - Google Patents

Composite material, manufacturing method of the composite material and slide member using the composite material Download PDF

Info

Publication number
JP2009091661A
JP2009091661A JP2008292387A JP2008292387A JP2009091661A JP 2009091661 A JP2009091661 A JP 2009091661A JP 2008292387 A JP2008292387 A JP 2008292387A JP 2008292387 A JP2008292387 A JP 2008292387A JP 2009091661 A JP2009091661 A JP 2009091661A
Authority
JP
Japan
Prior art keywords
composite material
layer
powder
sliding
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008292387A
Other languages
Japanese (ja)
Inventor
Masatoyo Okazaki
正豊 岡崎
Yoshikazu Yamashita
義和 山下
Takashi Mitani
高志 三谷
Shinichi Suzuki
新一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotanKako Co Ltd
Original Assignee
TotanKako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TotanKako Co Ltd filed Critical TotanKako Co Ltd
Priority to JP2008292387A priority Critical patent/JP2009091661A/en
Publication of JP2009091661A publication Critical patent/JP2009091661A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material which aims for prevention of strength deterioration and cracks and improvement of productivity, its manufacturing method, and a slide member using the composite material. <P>SOLUTION: The composite material is composed of a slide layer 7 mainly made of carbon and a carbon-free sintered compact layer 8 attached to the outer circumference of the slide layer 7. The composite material is used in the slide member. The manufacturing method of the composite material includes: a first packing step of packing a material 9 of the sintered compact layer into a mold; a second packing step of packing a material 10 of the slide layer into a mold located on the inner circumference of the sintered compact layer and; a molding step of simultaneously subjecting the materials packed in the first and second packing steps to press-molding to obtain a powder compact. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、摺動部材に用いる複合材料に関し、さらに詳しくいえば、主にカーボンからなる摺動層と、前記摺動層周囲に結合された焼結体層とで構成される複合材料、その製造方法及び該複合材料を用いた摺動部材に関する。   The present invention relates to a composite material used for a sliding member. More specifically, the present invention relates to a composite material composed of a sliding layer mainly composed of carbon and a sintered body layer bonded around the sliding layer. The present invention relates to a manufacturing method and a sliding member using the composite material.

従来から、下記特許文献1に開示される複層構造を有する軸受がある。この特許文献1には、主にカーボンからなる摺接層と、主にカーボンおよび金属からなり該摺接層に結合して該摺接層を支持する支持層とで構成される燃料ポンプ用軸受が開示されている。
特開2003−286922号公報
Conventionally, there is a bearing having a multilayer structure disclosed in Patent Document 1 below. Patent Document 1 discloses a fuel pump bearing comprising a sliding contact layer mainly made of carbon and a support layer mainly made of carbon and metal and bonded to the sliding contact layer to support the sliding contact layer. Is disclosed.
JP 2003-286922 A

しかし、特許文献1のものは、支持層が主にカーボンおよび金属からなるため、支持層が金属単独の場合よりも軸受の強度が低く、支持層を後加工した際の寸法精度が悪くなる。また、摺接層を粗形成した後に支持層を結合させるため、摺接層と支持層の界面が明確にできてしまい、充分な界面の接着力が得られず、後加工時に摺接層にクラックが発生するといった問題がある。さらに、特許文献1のものは、2回加圧成形しなければならず、生産性が悪いといった問題がある。   However, since the support layer is mainly composed of carbon and metal in Patent Document 1, the strength of the bearing is lower than when the support layer is made of metal alone, and the dimensional accuracy when the support layer is post-processed is deteriorated. Further, since the support layer is bonded after the slidable contact layer is roughly formed, the interface between the slidable contact layer and the support layer can be clearly defined, and sufficient adhesive force cannot be obtained. There is a problem that cracks occur. Furthermore, the thing of patent document 1 has to press-mold twice, and there exists a problem that productivity is bad.

そこで、本発明の目的は、自己潤滑性、耐蝕性に優れるが、強度が弱いカーボンと、強度は強いが、自己潤滑性がなく、耐蝕性に問題がある金属及び/又はセラミックスの両者の長所を活かすべく、カーボン層と金属及び/又はセラミックス層を別々に作製し一体化させるのではなく、カーボン層と金属及び/又はセラミックス層を同時に形成する一体成形により、カーボン層と金属及び/又はセラミックス層からなり、両層の界面が不明瞭である構造とし、摺動部材としての性能改善と生産性向上を図った複合材料を提供することである。   Accordingly, the object of the present invention is to provide both the advantages of both carbon and / or ceramics, which are excellent in self-lubricating and corrosion resistance, but weak in strength, and strong in strength, but not self-lubricating and in corrosion resistance. The carbon layer and the metal and / or ceramic layer are not formed separately and integrated to make the best use of the carbon layer and the metal and / or ceramic layer by forming the carbon layer and the metal and / or ceramic layer simultaneously. It is to provide a composite material composed of layers and having a structure in which the interface between both layers is unclear, and improving performance and productivity as a sliding member.

本発明者は、上記課題を解決すべく鋭意研究した結果、摺動層に用いられる黒鉛粉の粒子径、バインダーの配合割合、焼結体層に用いられる金属及び/又はセラミックス粉体の粒子径を特定し、摺動層と焼結体層を同時に形成する一体成形を行うことで、強度低下の防止、クラック発生の防止および生産性の向上できることを見出し、本発明を完成するに到ったものである。   As a result of earnest research to solve the above problems, the present inventor has found that the particle diameter of graphite powder used in the sliding layer, the blending ratio of the binder, and the particle diameter of the metal and / or ceramic powder used in the sintered body layer. The present invention was completed by finding that it is possible to prevent strength reduction, crack generation and productivity by performing integral molding that simultaneously forms the sliding layer and the sintered body layer. Is.

すなわち、本発明の複合材料の製造方法は、主にカーボンからなる摺動層と、前記摺動層の外周に結合された焼結体層とで構成される複合材料の製造方法であり、前記焼結体層の材料を型に充填する第1充填工程と、前記摺動層の材料を前記焼結体層の内周に位置する型に充填する第2充填工程と、前記第1充填工程及び前記第2充填工程において充填された材料を同時に加圧成形して粉末成形体を得る成形工程とを有している。また、本発明の複合材料は、主にカーボンからなる摺動層と、前記摺動層の外周に結合されたカーボンを含まない焼結体層とで構成されている。また、本発明の複合材料は、前記摺動層と前記焼結体層との界面が不明瞭であることが好ましい。また、本発明の複合材料は、前記摺動層が平均粒子径1〜200μmの黒鉛粉100重量部に対して、バインダー5〜80重量部を混合、焼成してなるものであることが好ましい。また、本発明の複合材料は、前記焼結体層が平均粒子径1〜200μmの金属及び/又はセラミックスの粉体を焼結してなるものであることが好ましい。また、前記摺動層と前記焼結体層との厚みの比が5:95〜70:30であることが好ましい。さらには、本発明の複合材料は摺動部材として使用されることが好ましい。   That is, the method for producing a composite material of the present invention is a method for producing a composite material composed of a sliding layer mainly composed of carbon and a sintered body layer bonded to the outer periphery of the sliding layer, A first filling step of filling the mold with the material of the sintered body layer; a second filling step of filling the material of the sliding layer into a mold located on the inner periphery of the sintered body layer; and the first filling step. And a molding step of simultaneously pressing the materials filled in the second filling step to obtain a powder compact. The composite material of the present invention is composed of a sliding layer mainly composed of carbon, and a sintered body layer not containing carbon bonded to the outer periphery of the sliding layer. In the composite material of the present invention, the interface between the sliding layer and the sintered body layer is preferably unclear. In the composite material of the present invention, the sliding layer is preferably obtained by mixing and baking 5 to 80 parts by weight of a binder with respect to 100 parts by weight of graphite powder having an average particle diameter of 1 to 200 μm. In the composite material of the present invention, the sintered body layer is preferably formed by sintering metal and / or ceramic powder having an average particle diameter of 1 to 200 μm. Moreover, it is preferable that ratio of the thickness of the said sliding layer and the said sintered compact layer is 5: 95-70: 30. Furthermore, the composite material of the present invention is preferably used as a sliding member.

上記構成により、本発明によれば、摺動層は自己潤滑性、耐蝕性に優れたカーボンの特性が活かせ、金属及び/又はセラミックスからなる支持層により複合材料の強度を高くでき、良好な寸法精度の後加工が可能となる複合材料及びこの複合材料を製造する方法を提供できる。また、カーボン層と金属及び/又はセラミックス層を一体成形することにより、成形時における生産性向上を図ることができる。
また、本発明の複合材料によれば、カーボン層と金属及び/又はセラミックス層の層間に明確な界面がないので、剥離やクラックを発生しない。なお、本発明の明細書中において、「層」と表現しているが、これは界面が明瞭であるもののみならず、界面が不明瞭であるものをも含む広い概念である。
さらに、本発明の複合材料によれば、寸法出しを行う仕上げ工程において、プレス加工による寸法出し(以下、サイジングという)が使用可能である。本発明ではサイジングによってカーボン層にクラックが発生しないため、寸法精度が優れた摺動部材を、効率的に安価に生産できる。なお、ドリル等による仕上げでは、寸法精度が悪く、生産性も悪く、コストがかかる。
With the above configuration, according to the present invention, the sliding layer can make use of the characteristics of carbon excellent in self-lubricating property and corrosion resistance, the strength of the composite material can be increased by the support layer made of metal and / or ceramics, and good dimensions It is possible to provide a composite material capable of accurate post-processing and a method for manufacturing the composite material. Further, by integrally forming the carbon layer and the metal and / or ceramic layer, it is possible to improve productivity at the time of forming.
Further, according to the composite material of the present invention, there is no clear interface between the carbon layer and the metal and / or ceramic layer, so that no peeling or cracking occurs. In the specification of the present invention, it is expressed as “layer”, but this is a wide concept including not only a clear interface but also an unclear interface.
Furthermore, according to the composite material of the present invention, dimensioning by press working (hereinafter referred to as sizing) can be used in a finishing process for dimensioning. In the present invention, the carbon layer is not cracked by sizing, so that a sliding member having excellent dimensional accuracy can be produced efficiently and inexpensively. Note that finishing with a drill or the like has poor dimensional accuracy, poor productivity, and high cost.

次に、実施形態を挙げ、本発明をより詳しく説明する。
本発明の複合材料は、主にカーボンからなる摺動層と、前記摺動層の外周に結合された焼結体層とで構成される複合材料である。前記摺動層は平均粒子径1〜200μmの黒鉛粉100重量部に対して、バインダー5〜80重量部を混合、焼成してなるものである。また、本発明の複合材料は、前記摺動層と前記焼結体層との厚みの比が5:95〜70:30である。厚みの比が5:95未満であると、摺動層が薄いため摺動材料としての寿命が短くなり、実用的ではない。また、70:30を越えると、支持層の強度的な補強効果が小さくなるため好ましくない。
Next, the present invention will be described in more detail with reference to embodiments.
The composite material of the present invention is a composite material composed of a sliding layer mainly composed of carbon and a sintered body layer bonded to the outer periphery of the sliding layer. The sliding layer is obtained by mixing and baking 5 to 80 parts by weight of a binder with respect to 100 parts by weight of graphite powder having an average particle diameter of 1 to 200 μm. In the composite material of the present invention, the thickness ratio between the sliding layer and the sintered body layer is 5:95 to 70:30. If the thickness ratio is less than 5:95, the sliding layer is thin, so that the life as a sliding material is shortened, which is not practical. On the other hand, if it exceeds 70:30, the strength reinforcing effect of the support layer is reduced, which is not preferable.

本発明に用いられる黒鉛粉(カーボン)としては、人造黒鉛、天然黒鉛、スート等が挙げられるが、特に限定はされない。平均粒子径が1μm未満では、成形粉の流動性が悪くなり、成形性が低下する。平均粒子径が200μmを越えると、強度が低下するばかりではなく、摺動層の剥離が起こりやすくなる。従って、黒鉛粉の平均粒子径は10〜100μmがさらに好ましい。   Examples of the graphite powder (carbon) used in the present invention include artificial graphite, natural graphite, and soot, but are not particularly limited. When the average particle diameter is less than 1 μm, the fluidity of the molding powder is deteriorated and the moldability is lowered. When the average particle diameter exceeds 200 μm, not only the strength is lowered, but also the sliding layer is easily peeled off. Therefore, the average particle diameter of the graphite powder is more preferably 10 to 100 μm.

本発明に用いられるバインダーとしては、ピッチ、タール、合成樹脂等が挙げられる。合成樹脂としては、熱硬化性樹脂及び熱可塑性樹脂のいずれをも使用することができる。特に好適な合成樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂が挙げられる。   Examples of the binder used in the present invention include pitch, tar, and synthetic resin. As the synthetic resin, any of a thermosetting resin and a thermoplastic resin can be used. Particularly suitable synthetic resins include phenolic resins, epoxy resins, and furan resins.

本発明に用いられる金属、セラミックスの粉体の種類については特に限定はされず、市販のものが使用できる。金属粉としては、各種金属の金属粉末でも合金粉末でもよい。金属粉としては、銅、鉄、亜鉛、錫、真鍮、青銅およびこれらの合金が好適である。また、添加剤として、銅−リン合金、硼化鉄等を使用することができる。セラミックス粉としては、アルミナ、炭化珪素、窒化珪素等が使用でき、また、各種焼結助剤を用いてもよい。なお、金属粉とセラミックス粉は混合して使用してもよい。
本発明に用いられる金属、セラミックスの粉体の平均粒子径は1〜200μmである。平均粒子径が1μm未満では、成形粉の流動性が悪くなり、成形性が低下する。200μmを越えると、材料組織が粗くなり、材料強度の低下や摺動特性の悪化を引き起こす。従って、平均粒子径は5〜100μmがさらに好ましい。
The type of metal or ceramic powder used in the present invention is not particularly limited, and commercially available products can be used. The metal powder may be a metal powder of various metals or an alloy powder. As the metal powder, copper, iron, zinc, tin, brass, bronze and alloys thereof are suitable. Moreover, a copper-phosphorus alloy, iron boride, etc. can be used as an additive. As the ceramic powder, alumina, silicon carbide, silicon nitride or the like can be used, and various sintering aids may be used. The metal powder and ceramic powder may be mixed and used.
The average particle diameter of the metal or ceramic powder used in the present invention is 1 to 200 μm. When the average particle diameter is less than 1 μm, the fluidity of the molding powder is deteriorated and the moldability is lowered. If it exceeds 200 μm, the material structure becomes rough, causing a decrease in material strength and a deterioration in sliding characteristics. Therefore, the average particle diameter is more preferably 5 to 100 μm.

次に、本発明の複合材料の製造工程を説明する。第1工程として、本発明の複合材料の摺動層に用いる材料の作製工程について説明する。
まず、黒鉛粉とバインダーを混練する。黒鉛粉とバインダーの配合比は、黒鉛粉100重量部に対して、バインダー5〜80重量部、好ましくはバインダー10〜50重量部である。バインダー量が5重量部未満では、摺動層の剥離が起こりやすく、摺動時の摩耗量が増加する。また、バインダー量が80重量部を越えると、焼成時の収縮が大きく、割れが発生しやすい。また、黒鉛量が少なくなるため、摺動特性が悪くなる。なお、混練の際には必要に応じてアルコール類、アセトン類の有機溶剤を適量加えてもよい。また、必要に応じて黒鉛粉に添加剤、例えば固体潤滑材、皮膜調整剤を加えてもよい。すなわち、二硫化モリブデン、二硫化タングステン等の固体潤滑材を加えてもよく、アルミナ、シリカ、炭化珪素等の皮膜調整剤を加えてもよい。次に、混練した塊を粉砕して成形用の粉体(以下、成形用粉体という)に調整する。なお、得られた成形粉に離型剤、滑剤等の添加剤を加えてもよい。
Next, the manufacturing process of the composite material of this invention is demonstrated. As a first step, a production step of a material used for the sliding layer of the composite material of the present invention will be described.
First, graphite powder and a binder are kneaded. The compounding ratio of the graphite powder and the binder is 5 to 80 parts by weight, preferably 10 to 50 parts by weight of the binder with respect to 100 parts by weight of the graphite powder. When the amount of the binder is less than 5 parts by weight, the sliding layer is easily peeled off, and the amount of wear during sliding increases. On the other hand, if the amount of the binder exceeds 80 parts by weight, the shrinkage during firing is large and cracking is likely to occur. Further, since the amount of graphite is reduced, the sliding characteristics are deteriorated. When kneading, an appropriate amount of an organic solvent such as alcohol or acetone may be added as necessary. Moreover, you may add an additive, for example, a solid lubricant, a film | membrane regulator, to graphite powder as needed. That is, a solid lubricant such as molybdenum disulfide or tungsten disulfide may be added, or a film modifier such as alumina, silica, or silicon carbide may be added. Next, the kneaded mass is pulverized and adjusted to a molding powder (hereinafter referred to as a molding powder). In addition, you may add additives, such as a mold release agent and a lubricant, to the obtained shaping | molding powder.

次に、第2工程として、本発明の複合材料を製造するための成形工程について説明する。図1(a)に示す断面模式図のように、この成形工程で用いる金型11は、円筒状のダイス5と、ダイス5に下方から嵌装され、下方端に押圧用リングを有する円筒状の下パンチ2と、下パンチ2の筒内壁に沿って嵌装され、下方端に押圧用リングを有する円筒状のしきり部材6と、しきり部材6の筒内壁に沿って嵌装され、下方端に押圧用リングを有する円筒状の下パンチ3と、下パンチ3の筒内壁に沿って嵌装される棒状の下パンチ4と、ダイス5に上方から嵌装可能な上パンチ1とを備えてなる。   Next, a molding process for producing the composite material of the present invention will be described as a second process. As shown in the schematic cross-sectional view of FIG. 1A, a mold 11 used in this molding step is a cylindrical die 5 and a cylindrical shape that is fitted into the die 5 from below and has a pressing ring at the lower end. The lower punch 2 is fitted along the cylinder inner wall of the lower punch 2 and has a cylindrical threshold member 6 having a pressing ring at the lower end, and is fitted along the cylinder inner wall of the threshold member 6 at the lower end. A cylindrical lower punch 3 having a pressing ring, a rod-like lower punch 4 fitted along the cylinder inner wall of the lower punch 3, and an upper punch 1 that can be fitted to the die 5 from above. Become.

次に、金型11を用いて成形体を成形する工程について具体的に説明する。
まず、金型11のダイス5、下パンチ2及びしきり部材6で囲まれた空間に斜線で示す金属及び/又はセラミックス粉体9を充填する(図1(a)参照)。
次いで、下パンチ3の上端と下パンチ2の上端とが同位置になるまで下パンチ3を下方に移動させ、主にカーボンからなる成形用粉体10をしきり部材6と下パンチ3、4とに囲まれた空間に充填する(図1(b)参照)。
そして、成形用粉体10と、金属及び/又はセラミックス粉体9との間のしきり部材6の上端を下パンチ3の上端及び下パンチ2の上端と同位置になるまでしきり部材6を下方に移動させる(図1(c)参照)。このように、しきり部材6が下降することにより、成形用粉体10と、金属及び/又はセラミックス粉体9が一体成形可能となるとともに、両層の界面が生じなくなる。
その後、上パンチ1を上方からダイス5に嵌装し、かつ、下方へ押圧するとともに、下パンチ2、3及びしきり部材6各々の一端の位置がずれないようにしながら上方に各々の押圧用リングを押圧し、金属及び/又はセラミックス粉体9と成形用粉体10とを加圧成形する(図1(d)参照)。このようにして、金属及び/又はセラミックス粉体9、成形用粉体10の両層は強固に接着、成形され、金属及び/又はセラミックス層7、成形用層8となる。
成形後、上パンチ1をダイス5から上方に取り外し、下パンチ2、3及びしきり部材6それぞれの一端の位置がずれないように上方に押し上げ、成形体から下パンチ4を下方に移動させて引き抜いて(図1(e)参照)、金属及び/又はセラミックス層7及び成形用層8からなる円筒状の成形体を金型11から取り出す。このようにして成形体が得られる。
なお、図1で示した成形方法は支持層の内側に摺動層が形成されるものであるが、支持層の外側に摺動層が形成されるものであってもかまわない。
Next, the step of forming a molded body using the mold 11 will be specifically described.
First, a metal and / or ceramic powder 9 indicated by hatching is filled in a space surrounded by the die 5, the lower punch 2, and the threshold member 6 of the mold 11 (see FIG. 1A).
Next, the lower punch 3 is moved downward until the upper end of the lower punch 3 and the upper end of the lower punch 2 are in the same position, and the molding powder 10 mainly made of carbon is cut into the cutting member 6 and the lower punches 3, 4. The space surrounded by is filled (see FIG. 1B).
Then, the threshold member 6 is moved downward until the upper end of the threshold member 6 between the molding powder 10 and the metal and / or ceramic powder 9 is at the same position as the upper end of the lower punch 3 and the upper end of the lower punch 2. Move (see FIG. 1C). As described above, when the threshold member 6 is lowered, the molding powder 10 and the metal and / or ceramic powder 9 can be integrally molded, and the interface between the two layers does not occur.
Thereafter, the upper punch 1 is fitted into the die 5 from above and pressed downward, and the respective press rings are pressed upward while preventing the positions of one end of each of the lower punches 2 and 3 and the threshold member 6 from being displaced. Is pressed to pressure-mold the metal and / or ceramic powder 9 and the molding powder 10 (see FIG. 1D). In this way, both the metal and / or ceramic powder 9 and the molding powder 10 are firmly bonded and molded into the metal and / or ceramic layer 7 and the molding layer 8.
After molding, the upper punch 1 is removed upward from the die 5 and pushed upward so that the positions of the lower punches 2 and 3 and the squeeze member 6 are not displaced, and the lower punch 4 is moved downward from the molded body and pulled out. (See FIG. 1 (e)), a cylindrical molded body made of the metal and / or ceramics layer 7 and the molding layer 8 is taken out from the mold 11. A molded body is thus obtained.
In the molding method shown in FIG. 1, the sliding layer is formed inside the support layer, but the sliding layer may be formed outside the support layer.

次に、第3工程として、上記成形体の焼成について説明する。
成形体の焼成は、非酸化性雰囲気下あるいは還元雰囲気下で実施されることが好ましい。また、焼成温度は、金属、セラミックスが溶融または分解しない温度であり、例えば、500〜2000℃である。非酸化性雰囲気下あるいは還元雰囲気下で焼成することによって、成形品の酸化劣化を防止する。焼成温度は、支持層に使用した金属、セラミックスの融点に応じて適宜選択することができる。なお、焼成された成形品には、酸化防止剤を塗布する等の防錆処理を施してもよい。
Next, firing of the molded body will be described as a third step.
The firing of the molded body is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere. The firing temperature is a temperature at which the metal or ceramic does not melt or decompose, and is, for example, 500 to 2000 ° C. By calcination in a non-oxidizing atmosphere or a reducing atmosphere, oxidative deterioration of the molded product is prevented. The firing temperature can be appropriately selected according to the melting point of the metal or ceramic used in the support layer. The fired molded article may be subjected to a rust prevention treatment such as applying an antioxidant.

上記実施形態によれば、摺動層は自己潤滑性、耐蝕性に優れたカーボンの特性が活かせ、金属及び/又はセラミックスからなる支持層により複合材料の強度を高くでき、良好な寸法精度の後加工が可能となる複合材料及びその製造方法を提供できる。また、カーボン層と金属及び/又はセラミックス層を一体成形することにより、成形時における生産性向上を図ることができる。また、上記実施形態で得られた成形品の寸法出しを行う仕上げ工程において、優れた寸法精度を得ることができるサイジングの使用が可能である。さらに、サイジングによって摺動層にクラックが発生しないため、効率的かつ安価に生産することできる。   According to the above-described embodiment, the sliding layer can make use of the characteristics of carbon excellent in self-lubrication and corrosion resistance, and the strength of the composite material can be increased by the support layer made of metal and / or ceramics. It is possible to provide a composite material that can be processed and a manufacturing method thereof. Further, by integrally forming the carbon layer and the metal and / or ceramic layer, it is possible to improve productivity at the time of forming. Further, in the finishing process for dimensioning the molded product obtained in the above embodiment, it is possible to use sizing that can obtain excellent dimensional accuracy. Furthermore, since cracks do not occur in the sliding layer due to sizing, it can be produced efficiently and inexpensively.

なお、本発明の複合材料は、摺動部材に用いることができる。好ましくは軸受、特に好ましくは、液体中、ガス雰囲気中、300℃程度までの高温大気中で使用される軸受である。   In addition, the composite material of this invention can be used for a sliding member. A bearing is preferable, and a bearing used in a high-temperature atmosphere up to about 300 ° C. in a liquid or gas atmosphere is particularly preferable.

以下に、実施例を挙げて、本発明を具体的に説明する。
(実施例1)
人造黒鉛粉(平均粒子径10μm)100重量部に対して、フェノール樹脂25重量部を配合し、人造黒鉛粉と樹脂とが均一に混合されるように、常温で混練した。得られた混練物を平均粒子径40μmに粉砕して成形用粉体とした。
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
To 100 parts by weight of artificial graphite powder (average particle diameter 10 μm), 25 parts by weight of phenol resin was blended, and kneaded at room temperature so that the artificial graphite powder and the resin were uniformly mixed. The obtained kneaded product was pulverized to an average particle size of 40 μm to obtain a molding powder.

銅粉(平均粒子径40μm)を図1(a)に示すように金型に充填した後、前記成形用粉体を図1(b)に示すように金型に充填し、上記実施形態で説明した成形工程により常温にて加圧力300MPaで圧縮成形した。得られた成形品は、還元雰囲気下800℃で焼成した。   After filling the mold with copper powder (average particle size 40 μm) as shown in FIG. 1 (a), the molding powder is filled into the mold as shown in FIG. 1 (b). Compression molding was performed at a normal pressure and a pressure of 300 MPa by the described molding process. The obtained molded product was fired at 800 ° C. in a reducing atmosphere.

焼成された成形品にサイジングを施した。このとき、成形品の摺動層にクラックは発生しなかった。得られた製品は、製品寸法が外径15mm×内径5mm×高さ10mm、摺動層と支持層の厚みの比が30:70であった。   Sizing was performed on the fired molded article. At this time, no crack occurred in the sliding layer of the molded product. The obtained product had an outer diameter of 15 mm, an inner diameter of 5 mm, and a height of 10 mm, and the ratio of the thickness of the sliding layer to the support layer was 30:70.

(実施例2)
金属粉に鉄粉(平均粒子径80μm)を用い、還元雰囲気下1100℃で焼成した以外は、実施例1の場合と同様の操作を行った。焼成された成形品にサイジングを施したが、実施例1の場合と同様に、成形品の摺動層にクラックは発生しなかった。
(Example 2)
The same operation as in Example 1 was performed, except that iron powder (average particle diameter of 80 μm) was used as the metal powder and was fired at 1100 ° C. in a reducing atmosphere. Sizing was performed on the fired molded product, but no crack was generated in the sliding layer of the molded product, as in Example 1.

(実施例3)
金属粉に、銅粉(平均粒子径40μm)と鉄粉(平均粒子径80μm)の重量比が50:50の混合金属粉を用い、還元雰囲気下800℃で焼成した以外は、実施例1の場合と同様の操作を行った。焼成された成形品にサイジングを施したが、実施例1の場合と同様に、成形品の摺動層にクラックは発生しなかった。
(Example 3)
For the metal powder, a mixed metal powder having a weight ratio of copper powder (average particle diameter of 40 μm) and iron powder (average particle diameter of 80 μm) of 50:50 was used and fired at 800 ° C. in a reducing atmosphere. The same operation as in the case was performed. Sizing was performed on the fired molded product, but no crack was generated in the sliding layer of the molded product, as in Example 1.

(比較例1)
銅粉(平均粒子径40μm)を先に圧縮成形した後、銅粉成形品を金型から取り出さず、その金型の内側部分に、実施例1で使用した成形用粉体を充填してから、再度、圧縮成形した以外は、実施例1の場合と同様の操作を行った。焼成された成形品にサイジングを施したが、カーボン層と金属層の界面にクラックが発生した。
(Comparative Example 1)
After the copper powder (average particle diameter of 40 μm) is compression molded first, the molded powder used in Example 1 is filled in the inner part of the mold without removing the copper powder molded product from the mold. The same operation as in Example 1 was performed except that the compression molding was performed again. Sizing was performed on the fired molded product, but cracks occurred at the interface between the carbon layer and the metal layer.

このように、本発明に係る実施例で得られた成形品にサイジングを施しても、成形品の摺動層にクラックが発生しないことが確認できた。   Thus, even if sizing was performed on the molded product obtained in the example according to the present invention, it was confirmed that no crack was generated in the sliding layer of the molded product.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples.

(a)は、金型に金属及び/又はセラミックスの粉体を充填したときの断面模式図である。(b)は、次いで、成形用粉体を充填したときの断面模式図である。(c)は、成形用粉体と、金属及び/又はセラミックスの粉体との間のしきり部材が外されたときの断面模式図である。(d)は、加圧成形時の断面模式図である。(e)は、成形終了時の断面模式図である。(A) is a cross-sectional schematic diagram when a metal and / or ceramic powder is filled in a mold. (B) is a schematic cross-sectional view when the molding powder is then filled. (C) is a cross-sectional schematic diagram when the cleaving member between the molding powder and the metal and / or ceramic powder is removed. (D) is a cross-sectional schematic diagram at the time of pressure molding. (E) is a cross-sectional schematic diagram at the end of molding.

符号の説明Explanation of symbols

1 上パンチ
2,3,4 下パンチ
5 ダイス
6 しきり部材
7 成形用粉体層
8 金属及び/又はセラミックス層
9 金属及び/又はセラミックス粉体
10 成形用粉体
11 金型
DESCRIPTION OF SYMBOLS 1 Upper punch 2, 3, 4 Lower punch 5 Die 6 Cutting member 7 Molding powder layer 8 Metal and / or ceramic layer 9 Metal and / or ceramic powder 10 Molding powder 11 Mold

Claims (7)

主にカーボンからなる摺動層と、前記摺動層の外周に結合された焼結体層とで構成される複合材料の製造方法であり、
前記焼結体層の材料を型に充填する第1充填工程と、
前記摺動層の材料を前記焼結体層の内周に位置する型に充填する第2充填工程と、
前記第1充填工程及び前記第2充填工程において充填された材料を同時に加圧成形して粉末成形体を得る成形工程とを有していることを特徴とする複合材料の製造方法。
A manufacturing method of a composite material composed of a sliding layer mainly made of carbon and a sintered body layer bonded to the outer periphery of the sliding layer,
A first filling step of filling a mold with the material of the sintered body layer;
A second filling step of filling the material of the sliding layer into a mold located on the inner periphery of the sintered body layer;
A method for producing a composite material, comprising: a molding step of simultaneously pressing and molding the material filled in the first filling step and the second filling step to obtain a powder compact.
主にカーボンからなる摺動層と、前記摺動層の外周に結合されたカーボンを含まない焼結体層とで構成された複合材料。   A composite material composed of a sliding layer mainly made of carbon and a sintered body layer not containing carbon bonded to the outer periphery of the sliding layer. 前記摺動層と前記焼結体層との界面が不明瞭であることを特徴とする請求項2に記載の複合材料。   The composite material according to claim 2, wherein an interface between the sliding layer and the sintered body layer is unclear. 前記摺動層が平均粒子径1〜200μmの黒鉛粉100重量部に対して、バインダー5〜80重量部を混合、焼成してなる請求項2又は3に記載の複合材料。   The composite material according to claim 2 or 3, wherein the sliding layer is obtained by mixing and baking 5 to 80 parts by weight of a binder with respect to 100 parts by weight of graphite powder having an average particle diameter of 1 to 200 µm. 前記焼結体層が平均粒子径1〜200μmの金属及び/又はセラミックスの粉体を焼結してなる請求項2〜4のいずれか1項に記載の複合材料。   The composite material according to any one of claims 2 to 4, wherein the sintered body layer is obtained by sintering metal and / or ceramic powder having an average particle diameter of 1 to 200 µm. 前記摺動層と前記焼結体層との厚みの比が5:95〜70:30である請求項2〜5のいずれか1項に記載の複合材料。   The composite material according to any one of claims 2 to 5, wherein a ratio of thicknesses of the sliding layer and the sintered body layer is 5:95 to 70:30. 請求項2〜6のいずれか1項に記載の複合材料を用いた摺動部材。   The sliding member using the composite material of any one of Claims 2-6.
JP2008292387A 2008-11-14 2008-11-14 Composite material, manufacturing method of the composite material and slide member using the composite material Pending JP2009091661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292387A JP2009091661A (en) 2008-11-14 2008-11-14 Composite material, manufacturing method of the composite material and slide member using the composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292387A JP2009091661A (en) 2008-11-14 2008-11-14 Composite material, manufacturing method of the composite material and slide member using the composite material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004240193A Division JP2006057138A (en) 2004-08-20 2004-08-20 Composite material and sliding member obtained by using the composite material

Publications (1)

Publication Number Publication Date
JP2009091661A true JP2009091661A (en) 2009-04-30

Family

ID=40663927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292387A Pending JP2009091661A (en) 2008-11-14 2008-11-14 Composite material, manufacturing method of the composite material and slide member using the composite material

Country Status (1)

Country Link
JP (1) JP2009091661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043140A1 (en) * 2010-09-27 2012-04-05 Ntn株式会社 Sintered bearing
CN107252888A (en) * 2012-07-26 2017-10-17 Ntn株式会社 Sintered bearing
WO2022209965A1 (en) * 2021-03-30 2022-10-06 イーグル工業株式会社 Sliding component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363616A (en) * 2001-06-12 2002-12-18 Hitachi Powdered Metals Co Ltd Sintered product with excellent sliding characteristic, and its manufacturing method
JP2003286922A (en) * 2002-03-27 2003-10-10 Denso Corp Bearing for fuel pump, method for manufacturing the same, and fuel pump
JP2006052757A (en) * 2004-08-10 2006-02-23 Mitsubishi Materials Corp Sliding member, powder molding system, and manufacturing method for compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363616A (en) * 2001-06-12 2002-12-18 Hitachi Powdered Metals Co Ltd Sintered product with excellent sliding characteristic, and its manufacturing method
JP2003286922A (en) * 2002-03-27 2003-10-10 Denso Corp Bearing for fuel pump, method for manufacturing the same, and fuel pump
JP2006052757A (en) * 2004-08-10 2006-02-23 Mitsubishi Materials Corp Sliding member, powder molding system, and manufacturing method for compact

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043140A1 (en) * 2010-09-27 2012-04-05 Ntn株式会社 Sintered bearing
CN103119313A (en) * 2010-09-27 2013-05-22 Ntn株式会社 Sintered bearing
CN103119313B (en) * 2010-09-27 2015-10-21 Ntn株式会社 Sintered bearing
US9200670B2 (en) 2010-09-27 2015-12-01 Ntn Corporation Sintered bearing
CN107252888A (en) * 2012-07-26 2017-10-17 Ntn株式会社 Sintered bearing
CN107252888B (en) * 2012-07-26 2019-05-14 Ntn株式会社 Sintered bearing
WO2022209965A1 (en) * 2021-03-30 2022-10-06 イーグル工業株式会社 Sliding component

Similar Documents

Publication Publication Date Title
CN101041875A (en) High-strength high-ductility thermostable ceramet material
JP2009091661A (en) Composite material, manufacturing method of the composite material and slide member using the composite material
JP6395217B2 (en) Method for manufacturing sintered parts
JP2008267158A (en) Piston for internal combustion engine and method for manufacturing the same
CN107206497B (en) Sintered body surface densification finishing mold, densifying method and obtained product
JP2009222073A (en) Two layer bearing and its manufacturing method
JP6502085B2 (en) Powder compact and method for producing the same
WO2011072961A1 (en) Process for sintering powders assisted by pressure and electric current
JP2006057138A (en) Composite material and sliding member obtained by using the composite material
JP5955498B2 (en) Manufacturing method of power transmission parts
CN105463276B (en) Preparation method of aluminium base powder metallurgy part with densifying surface
JP6675886B2 (en) Oil-impregnated bearing and its manufacturing method
JP2009270141A (en) METHOD FOR PRODUCING Ti-Al BASED ALLOY TARGET MATERIAL
JP2011045954A (en) Cermet sintered body and cutting tool
JP2016053210A (en) Exhaust valve device and gas cushion material
KR102232591B1 (en) Method for manufacturing brassware and brassware manufactured by the method
JP2016141815A (en) Sliding member and manufacturing method therefor
KR101221060B1 (en) Carbon-based aluminium composite and method for fabricating the same which silicon carbide is formed at the interface of compacted or sintered carbon bulk and aluminium
JP6304586B2 (en) Aluminum alloy sleeve and method of manufacturing aluminum alloy sleeve
JP7401233B2 (en) Sintered friction material and method for manufacturing sintered friction material
WO2016021362A1 (en) Method for manufacturing composite sintered body
JP4206476B2 (en) Method for producing aluminum sintered material
JP5276491B2 (en) Surface densification method of sintered body
JP2009143772A (en) Slide member and method of manufacturing the same
JP2010133029A (en) Metal composite material and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20120117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120312

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20121218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507