JP2009090398A - Diamond-coated cutting tool having excellent lubricity and machining accuracy - Google Patents

Diamond-coated cutting tool having excellent lubricity and machining accuracy Download PDF

Info

Publication number
JP2009090398A
JP2009090398A JP2007261980A JP2007261980A JP2009090398A JP 2009090398 A JP2009090398 A JP 2009090398A JP 2007261980 A JP2007261980 A JP 2007261980A JP 2007261980 A JP2007261980 A JP 2007261980A JP 2009090398 A JP2009090398 A JP 2009090398A
Authority
JP
Japan
Prior art keywords
diamond
tool
coated
coating layer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007261980A
Other languages
Japanese (ja)
Inventor
Satoyuki Masuno
智行 益野
Kazunori Sato
和則 佐藤
Tsutomu Ogami
強 大上
Shinichi Shikada
信一 鹿田
Daisuke Kazami
大介 風見
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007261980A priority Critical patent/JP2009090398A/en
Publication of JP2009090398A publication Critical patent/JP2009090398A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diamond-coated cutting tool having excellent lubricity and machining accuracy. <P>SOLUTION: In this diamond-coated cutting tool, a diamond-coated layer of 1-15 μm in film thickness and a lubricating film layer of 3-5 μm in film thickness are formed on the surface of a tool base formed of a tungsten carbide base cemented carbide or a carbonitride titanium base cermet. The lubricating film layer is so formed that diamond particles of 15-50 area% is exposed to the surface in a matrix phase formed of a hexagonal boron nitride, a molybdenum disulfide, or a chromium nitride. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体にダイヤモンド皮膜を被覆したダイヤモンド被覆切削工具に関し、特に、金属材料よりも比強度、比剛性の高いCFRP(Carbon Fiber Reinforced Plastics。炭素繊維強化プラスチック)の高速切削に際し、すぐれた潤滑性を発揮するとともに、長期の使用に亘ってすぐれた加工精度を維持できるダイヤモンド被覆切削工具(以下、ダイヤモンド被覆工具という)に関するものである。   The present invention relates to a diamond-coated cutting tool in which a diamond coating is coated on a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and in particular, CFRP (Carbon Fiber Reinforced This is a diamond-coated cutting tool (hereinafter referred to as a diamond-coated tool) that exhibits excellent lubricity during high-speed cutting of carbon fiber reinforced plastic) and can maintain excellent processing accuracy over a long period of use. .

従来、炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットなどの工具基体に、ダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られており、このダイヤモンド被覆工具が、アルミニウム合金やマグネシウム合金などの非鉄材料の切削加工ですぐれた切削性能を発揮することが知られている。 Conventionally, a diamond coated tool in which a diamond coating is coated on a tool substrate such as a tungsten carbide group (WC group) cemented carbide or a titanium carbonitride group (TiCN group) cermet is known. This diamond coated tool is an aluminum alloy. It is known to exhibit excellent cutting performance in the cutting of non-ferrous materials such as magnesium alloys.

また、ダイヤモンド被覆工具を鉄系被削材の切削に用いた場合には、鉄とダイヤモンドが反応を起こし、被削材に浸炭が生じたり、ダイヤモンド皮膜が剥離したり、摩耗進行が促進されること等によって、十分な切削性能を発揮することができないという問題点があり、そこで、これを解決するため、例えば、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、5〜25μmのダイヤモンド皮膜を被覆し、この上にさらに2〜6μmの金属間化合物皮膜を被覆することにより、被削材である鉄系材料とダイヤモンドとの反応を防止し、浸炭、剥離等の発生を抑制し、工具寿命の改善を図ったダイヤモンド被覆工具も知られている。
特開平8−267303号公報 特開2003−145309号公報
In addition, when a diamond-coated tool is used for cutting an iron-based work material, iron and diamond react to cause carburization of the work material, peeling of the diamond film, and acceleration of wear. Therefore, there is a problem in that sufficient cutting performance cannot be exhibited. Therefore, in order to solve this problem, for example, the surface of a tool base made of WC-based cemented carbide or TiCN-based cermet may be 5 By covering a ~ 25μm diamond film and further covering a 2 ~ 6μm intermetallic compound film on this, reaction between the iron-based material that is the work material and diamond is prevented, and carburization, peeling, etc. occur. There is also known a diamond-coated tool that suppresses the above and improves the tool life.
JP-A-8-267303 JP 2003-145309 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って、切削条件はますます高速化しているが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これを一般の金属材料に比して、比強度、比剛性にすぐれるCFRP等の高速切削に用いた場合には、CFRP自体が、炭素繊維とエポキシ系樹脂の複合材であることから工具摩耗が激しく、その結果、工具寿命が短くなり、また、被削材のバリ発生等により仕上げ面精度が粗くなり、かつ、寸法精度も劣るという問題点があった。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing, and along with this, cutting conditions are becoming increasingly faster. For coated tools, there is no problem when this is used for cutting under normal conditions, but this is used for high-speed cutting such as CFRP, which has superior specific strength and specific rigidity compared to general metal materials. In such a case, the CFRP itself is a composite material of carbon fiber and epoxy resin, so that the tool wears severely, resulting in a shortened tool life. There was a problem that it became rough and the dimensional accuracy was inferior.

そこで、本発明者等は、上述のような観点から、特に難削材であるCFRPの高速切削加工で、長期の使用に亘って、すぐれた加工精度(仕上げ面精度、寸法精度)とすぐれた耐摩耗性を備えるダイヤモンド被覆工具を開発すべく、上記従来のダイヤモンド被覆工具の被覆層に着目し研究を行った結果、以下の知見を得た。
図1(a)、(b)に、それぞれ、この発明のダイヤモンド被覆工具の側断面の概略図および上面模式図を示すように、工具基体(図1(a)中、超硬母材で示す)の表面に、例えば、マイクロプラズマCVD法、フィラメントCVD法、アークプラズマCVD法等のダイヤモンド気相合成法によって、膜厚1〜15μmのダイヤモンド皮膜(図1(a)中、CVD−Dia皮膜で示す)を形成し、ついで、該ダイヤモンド皮膜の上面に、六方晶窒化ほう素(以下、h−BNで示す)、二硫化モリブデン(以下、MoSで示す)および窒化クロム(以下、CrNで示す)のいずれかからなる潤滑膜(図1(a)中、潤滑膜で示す)を蒸着形成することにより、上記ダイヤモンド皮膜を構成するダイヤモンド粒子の粒子間隙に、上記h−BN、MoS、CrNを充填した潤滑皮膜を形成し、その後、潤滑皮膜表面にブラスト等を施し、ダイヤモンド粒子が、上記h−BN、MoS、CrNからなるマトリックス中に分散して表面に露出存在する膜厚3〜5μmの潤滑皮膜層を形成すると(図1(b)は、△印で示されるダイヤモンド粒子が、h−BN、MoS、CrNからなるマトリックス中に分散存在する状態を示す)、このようなダイヤモンド皮膜層と潤滑皮膜層からなる被覆層を形成したダイヤモンド被覆工具は、ダイヤモンド皮膜層によってその耐摩耗性が確保されるとともに、潤滑皮膜層が、潤滑性ばかりか、分散露出したダイヤモンド粒子によってすぐれた耐摩耗性を発揮することにより、難削材であるCFRPの高速切削加工においても、バリ等の発生もなくすぐれた仕上げ面精度、寸法精度で加工をすることができ、また、長期の使用に亘ってすぐれた耐摩耗性を発揮すること。
Therefore, the inventors of the present invention have excellent machining accuracy (finished surface accuracy, dimensional accuracy) over a long period of use, particularly in high-speed cutting of CFRP, which is a difficult-to-cut material, from the above viewpoint. In order to develop a diamond-coated tool with wear resistance, the following knowledge was obtained as a result of research conducted focusing on the coating layer of the conventional diamond-coated tool.
As shown in FIGS. 1 (a) and 1 (b), respectively, a schematic side view and a schematic top view of a diamond-coated tool of the present invention are shown as a tool base (in FIG. 1 (a), a carbide base material). ) By a diamond gas phase synthesis method such as a microplasma CVD method, a filament CVD method, an arc plasma CVD method or the like, with a diamond film having a film thickness of 1 to 15 μm (in FIG. 1A, a CVD-Dia film). Then, on the upper surface of the diamond film, hexagonal boron nitride (hereinafter referred to as h-BN), molybdenum disulfide (hereinafter referred to as MoS 2 ), and chromium nitride (hereinafter referred to as CrN). ) To form the above-mentioned h-BN in the interstices of the diamond particles constituting the diamond film by vapor deposition of a lubricating film (shown by the lubricating film in FIG. 1A). MoS 2, to form a lubricating film filled with CrN, then subjected to blasting the lubricating film surface, the diamond particles are exposed present on the h-BN, the surface dispersed in a matrix of the MoS 2, CrN When a lubricating coating layer having a thickness of 3 to 5 μm is formed (FIG. 1B shows a state in which diamond particles indicated by Δ are dispersed in a matrix composed of h-BN, MoS 2 , and CrN). A diamond-coated tool having a coating layer composed of such a diamond coating layer and a lubricating coating layer ensures the wear resistance of the diamond coating layer, and the lubricating coating layer has not only lubricity but also dispersed and exposed diamond. By exhibiting excellent wear resistance due to particles, burrs and the like are not generated even in high-speed cutting of CFRP, which is a difficult-to-cut material. Capable of machining with excellent finished surface accuracy and dimensional accuracy, and exhibiting excellent wear resistance over a long period of use.

この発明は、上記知見に基づいてなされたものであって、
「 炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットで構成された工具基体表面に、1〜15μmの膜厚のダイヤモンド皮膜層と3〜5μmの膜厚の潤滑皮膜層が形成されたダイヤモンド被覆切削工具において、
上記潤滑皮膜層は、六方晶窒化ホウ素(h−BN)、二硫化モリブデン(MoS)または窒化クロム(CrN)のいずれかからなるマトリックス相中に、15〜50面積%のダイヤモンド粒子が表面に露出して存在することを特徴とする潤滑性および加工精度にすぐれたダイヤモンド被覆切削工具(ダイヤモンド被覆工具)。」
に特徴を有するものである。
This invention has been made based on the above findings,
“A diamond coating layer having a thickness of 1 to 15 μm and a lubricating coating having a thickness of 3 to 5 μm on the surface of a tool base composed of a tungsten carbide group (WC group) cemented carbide or a titanium carbonitride group (TiCN group) cermet. In a diamond-coated cutting tool with a layer formed,
The lubricating coating layer has 15 to 50 area% diamond particles on the surface in a matrix phase composed of either hexagonal boron nitride (h-BN), molybdenum disulfide (MoS 2 ), or chromium nitride (CrN). A diamond-coated cutting tool (diamond-coated tool) with excellent lubricity and processing accuracy characterized by being exposed. "
It has the characteristics.

つぎに、この発明のダイヤモンド被覆工具の被覆層について、詳細に説明する。   Next, the coating layer of the diamond-coated tool of the present invention will be described in detail.

ダイヤモンド皮膜層;
ダイヤモンド皮膜層は、それ自体が有する高硬度特性により、基本的にダイヤモンド被覆工具の耐摩耗性を確保し、使用寿命を向上せしめるための層であるが、ダイヤモンド皮膜の膜厚が1μm未満では、上記所望の作用効果が得られず、一方その膜厚が15μmを越えると、ダイヤモンド皮膜自体の内部応力の増大による基体との剥離現象の発生や、チッピング(微小欠け)が発生し易くなることから、その膜厚は、1〜15μmと定めた。
なお、ダイヤモンド皮膜の成膜は、気相合成法等の既に知られているいかなる方法で行っても良く、その成膜法が特に限定されるものではないが、潤滑膜をダイヤモンド粒子間に十分に充填するために、成膜するダイヤモンド粒子の大きさは、直径1〜3μmとすることが望ましい。これは、ダイヤモンド粒子径が1μm未満では、ダイヤモンド粒子間の凹凸が少ないために潤滑成分の充填が不十分となり、所望の切削性能を得ることができず、また、ダイヤモンド粒子径が3μmを超えると、ダイヤモンド粒子の脱離に伴う潤滑膜の剥離が発生し、所望の切削性能を得ることができないという理由による。
Diamond coating layer;
The diamond coating layer is basically a layer for ensuring the wear resistance of the diamond-coated tool and improving the service life due to its high hardness characteristics. However, when the diamond coating thickness is less than 1 μm, If the desired effect is not obtained, on the other hand, if the film thickness exceeds 15 μm, a peeling phenomenon from the substrate due to an increase in internal stress of the diamond film itself and chipping (minute chipping) are likely to occur. The film thickness was determined to be 1 to 15 μm.
The diamond film may be formed by any known method such as a gas phase synthesis method, and the film forming method is not particularly limited. In order to fill the film, it is desirable that the diamond particles to be formed have a diameter of 1 to 3 μm. This is because when the diamond particle diameter is less than 1 μm, the unevenness between the diamond particles is small, so that the lubrication component is insufficiently filled and the desired cutting performance cannot be obtained, and when the diamond particle diameter exceeds 3 μm. This is because the lubricant film is peeled off due to the detachment of the diamond particles, and the desired cutting performance cannot be obtained.

潤滑膜;
h−BN、MoS、CrNこれら自体が潤滑性を有することは良く知られているが、本発明では、上記ダイヤモンド皮膜の上面に、h−BN、MoS、CrNのいずれかからなる潤滑膜を形成し、その際同時にダイヤモンド粒子の粒子間隙に、これらの潤滑膜成分を充填する。
潤滑膜は、例えば、AIP法、スパッタ法、プラズマCVD法等によって形成することができる。
Lubricating film;
Although it is well known that h-BN, MoS 2 , and CrN themselves have lubricity, in the present invention, a lubricating film made of any of h-BN, MoS 2 , and CrN is formed on the upper surface of the diamond film. At the same time, these lubricating film components are filled in the particle gaps of the diamond particles.
The lubricating film can be formed by, for example, an AIP method, a sputtering method, a plasma CVD method, or the like.

潤滑皮膜層;
ダイヤモンド皮膜上面に上記潤滑膜を形成し、同時に、ダイヤモンド粒子間隙に潤滑膜成分を充填した後、ブラストを施し、潤滑膜の表層を一部除去し、ダイヤモンド粒子を表面に露出存在させた潤滑皮膜層を3〜5μmの膜厚で形成する。
潤滑皮膜層の膜厚が3μm未満では、十分な潤滑性能を発揮することはできず、一方、膜厚が5μmを超えると、長期間の切削加工による膜厚変化のため、寸法精度が低下することから、潤滑皮膜層の膜厚は3〜5μmと定めた。
また、潤滑皮膜層表面を観察した場合に、ダイヤモンド粒子が露出存在する面積割合は、15〜50面積%とすることが必要であり、ダイヤモンド粒子が露出存在する面積割合が15面積%未満の場合には、潤滑皮膜層の耐摩耗性が不足し、CFRP等の高速切削加工において、工具摩耗による寸法精度の劣化が生じ、一方、ダイヤモンド粒子が露出存在する面積割合が50面積%を超えると、潤滑皮膜層の潤滑性が不足し、バリ発生等により穴径精度が低下するので、面積割合は、15〜50面積%と定めた。
Lubricating film layer;
Lubricating film in which the above lubricating film is formed on the upper surface of the diamond film, and at the same time, the lubricating film component is filled in the diamond particle gap, and then blasted to partially remove the surface layer of the lubricating film so that the diamond particles are exposed on the surface. The layer is formed with a film thickness of 3 to 5 μm.
If the film thickness of the lubricating coating layer is less than 3 μm, sufficient lubrication performance cannot be exhibited. On the other hand, if the film thickness exceeds 5 μm, the dimensional accuracy decreases due to the film thickness change due to long-term cutting. For this reason, the thickness of the lubricating coating layer was determined to be 3 to 5 μm.
When the surface of the lubricating coating layer is observed, the area ratio where the diamond particles are exposed needs to be 15 to 50 area%, and the area ratio where the diamond particles are exposed is less than 15 area%. In such a case, the wear resistance of the lubricant film layer is insufficient, and in high-speed cutting such as CFRP, dimensional accuracy is deteriorated due to tool wear. On the other hand, when the area ratio where the diamond particles are exposed exceeds 50 area%, Since the lubricity of the lubricating coating layer is insufficient and the hole diameter accuracy is reduced due to the occurrence of burrs, the area ratio is determined to be 15 to 50 area%.

この発明のダイヤモンド被覆工具は、ダイヤモンド皮膜層が耐摩耗性を備え、その上に設けられた潤滑皮膜層が潤滑性と耐摩耗性を相兼ね備えるので、これをCFRP等の難削材の高速切削に用いた場合にも、加工精度にすぐれ、かつ、長期の使用に亘ってすぐれた耐摩耗性を発揮するものである。   In the diamond-coated tool of the present invention, the diamond coating layer has wear resistance, and the lubricating coating layer provided thereon has both lubricity and wear resistance. Therefore, this is used for high-speed cutting of difficult-to-cut materials such as CFRP. Even when used in the above, it has excellent processing accuracy and excellent wear resistance over a long period of use.

つぎに、この発明のダイヤモンド被覆工具を実施例により具体的に説明する。   Next, the diamond-coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表1に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角45度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Thus, three types of tool base forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three kinds of round bar sintered bodies are shown in Table 1 by grinding. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 45 degrees Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、
(a)まず、金属Wフィラメントを内部に備えたダイヤモンド気相合成被覆装置に装入し、
雰囲気圧力:20 Torr、
工具基体温度:850 ℃、
反応ガス:CH 1容量%、残部:H
ガス流量:0.5 l/sec、
の条件に保持し、
第1段階として、金属Wフィラメントを1850〜2050(℃)×0.2〜4(hr)保持し、
第2段階として、前記温度から2100〜2400(℃)の温度範囲に0.1〜1(hr)で昇温し、
第3段階として、上記温度範囲で3〜30(hr)保持することにより、表 に示される膜厚のダイヤモンド皮膜層を形成し、
(b)ついで、これを、h−BN、MoS、CrNのいずれかからなるスパッタリングターゲットを内部に備えるマグネトロンスパッタリング装置に装入し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、ダイヤモンド皮膜層を形成した工具基体に−100Vの直流バイアス電圧を印加して、スパッタリングターゲット(h−BN、MoSまたはCrN)にパルス電源から3kWのパルス電力を印加してh−BN、MoSまたはCrNをスパッタし、ダイヤモンド皮膜層上面に潤滑膜を形成し、
(c)その後、Al砥粒(粒度:220〜1500メッシュ,含有量:15〜60wt%)、投射圧力:0.08〜0.24MPaの条件で、潤滑膜表面にブラスト処理を施し、
工具基体の表面に、表2に示される目標膜厚のダイヤモンド皮膜層、また、同じく表2に示されるダイヤモンド露出面積割合および目標膜厚の潤滑皮膜層を形成することにより、本発明ダイヤモンド被覆工具としての本発明ダイヤモンド被覆エンドミル(以下、本発明エンドミルという)1〜8をそれぞれ製造した。
Next, the surfaces of these tool substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried,
(A) First, a diamond vapor synthesis coating apparatus equipped with a metal W filament inside is charged,
Atmospheric pressure: 20 Torr,
Tool substrate temperature: 850 ° C.
Reaction gas: 1% by volume of CH 3 , balance: H 2 ,
Gas flow rate: 0.5 l / sec,
In the condition of
As a first step, hold the metal W filament 1850-2050 (° C.) × 0.2-4 (hr),
As the second stage, the temperature is raised from 0.1 to 1 (hr) in the temperature range of 2100 to 2400 (° C.),
As a third stage, a diamond film layer having a film thickness shown in the table is formed by maintaining 3 to 30 (hr) in the above temperature range,
(B) Next, this is loaded into a magnetron sputtering apparatus equipped with a sputtering target made of h-BN, MoS 2 , or CrN, and the apparatus is first evacuated and kept at a vacuum of 0.5 Pa or less. However, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −100 V is applied to the tool substrate on which the diamond coating layer is formed, and a pulse power source is applied to the sputtering target (h-BN, MoS 2 or CrN). To apply a pulse power of 3 kW to sputter h-BN, MoS 2 or CrN, and form a lubricating film on the upper surface of the diamond coating layer.
(C) Thereafter, the lubricating film surface was blasted under conditions of Al 2 O 3 abrasive grains (particle size: 220-1500 mesh, content: 15-60 wt%), projection pressure: 0.08-0.24 MPa. ,
The diamond coated tool of the present invention is formed on the surface of the tool base by forming the diamond coating layer having the target film thickness shown in Table 2 and the lubricant coating layer having the diamond exposed area ratio and the target film thickness similarly shown in Table 2. The present invention diamond-coated end mills (hereinafter referred to as the present invention end mills) 1 to 8 were produced.

また、比較の目的で、上記の工具基体(エンドミル)C−1、C−2、C−5、C−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、上記実施例1と同一の条件で、上記工具基体(エンドミル)の表面に、表3に示される目標膜厚のダイヤモンド皮膜層を形成することにより、比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆エンドミル(以下、比較エンドミルという)1、2、5、6をそれぞれ製造した。   For the purpose of comparison, the surfaces of the tool bases (end mills) C-1, C-2, C-5, and C-6 were ultrasonically cleaned in acetone and dried. By forming a diamond coating layer having a target film thickness shown in Table 3 on the surface of the tool base (end mill) under the same conditions, a comparative diamond-coated end mill (hereinafter referred to as a comparative end mill) as a comparative diamond-coated tool. 1, 2, 5, and 6 were produced, respectively.

また、さらに比較の目的で、上記の工具基体(エンドミル)C−3、C−4、C−7、C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、上記実施例1と同一の条件で、上記工具基体(エンドミル)の表面に、表3に示される目標膜厚のダイヤモンド皮膜層を形成した後、同じく表3に示される成分系および目標膜厚の硬質皮膜層をアークイオンプレーティングで蒸着形成することにより、ダイヤモンド皮膜層と硬質皮膜層とを被覆した比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆エンドミル(以下、比較エンドミルという)3、4、7、8をそれぞれ製造した。   Further, for the purpose of comparison, the surface of the above-mentioned tool base (end mill) C-3, C-4, C-7, C-8 was ultrasonically cleaned in acetone and dried, in the above-mentioned Example 1. The diamond coating layer having the target film thickness shown in Table 3 is formed on the surface of the tool base (end mill) under the same conditions as above, and then the component system and the hard coating layer having the target film thickness shown in Table 3 are formed. Comparative diamond-coated end mills (hereinafter referred to as comparative end mills) 3, 4, 7, and 8 as comparative diamond-coated tools coated with a diamond film layer and a hard film layer were produced by vapor deposition by arc ion plating, respectively. .

つぎに、上記本発明エンドミル1〜8および比較エンドミル1〜8のうち、
本発明エンドミル1〜4および比較エンドミル1〜4については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、炭素繊維と熱硬化型エポキシ系樹脂が35層の直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 250 m/min.、
溝深さ(切り込み): 7 mm、
テーブル送り: 1200 mm/分、
の条件での上記CFRPの乾式高速側面切削加工試験、
本発明エンドミル5〜8および比較エンドミル5〜8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、炭素繊維と熱硬化型エポキシ系樹脂が45層の直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 300 m/min.、
溝深さ(切り込み): 15 mm、
テーブル送り: 2000 mm/分、
の条件での上記CFRPの乾式高速側面切削加工試験、
をそれぞれ行い、いずれの切削加工試験でも切刃部の欠損に伴う被削材のムシレが発生するまでの切削溝長を測定した。
これらの測定結果を表2、3にそれぞれ示した。
Next, of the present invention end mills 1-8 and comparative end mills 1-8,
For the present invention end mills 1-4 and comparative end mills 1-4,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, carbon fiber reinforced resin composite material (CFRP) plate material having 35 layers of carbon fiber and thermosetting epoxy resin,
Cutting speed: 250 m / min. ,
Groove depth (cut): 7 mm,
Table feed: 1200 mm / min,
CFRP dry high speed side cutting test under the conditions of
For the present invention end mills 5-8 and comparative end mills 5-8,
Workpiece material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm, carbon fiber reinforced resin composite material (CFRP) plate material having 45 layers of carbon fiber and thermosetting epoxy resin,
Cutting speed: 300 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 2000 mm / min,
CFRP dry high speed side cutting test under the conditions of
In each cutting test, the length of the cutting groove until the squeezing of the work material due to the chipping of the cutting edge portion occurred was measured.
These measurement results are shown in Tables 2 and 3, respectively.

Figure 2009090398
Figure 2009090398

Figure 2009090398
Figure 2009090398

Figure 2009090398
Figure 2009090398

上記の実施例1で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters manufactured in Example 1 were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した後、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−8の表面に、表4に示される目標膜厚のダイヤモンド皮膜層、また、同じく表4に示されるダイヤモンド露出面積割合および目標膜厚の潤滑皮膜層を形成することにより、本発明ダイヤモンド被覆工具としての本発明ダイヤモンド被覆ドリル(以下、本発明ドリルという)1〜8をそれぞれ製造した。   Subsequently, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, dried, and then subjected to the same conditions as in Example 1 above. Drill) On the surfaces of D-1 to D-8, a diamond coating layer having a target film thickness shown in Table 4 and a diamond coating area ratio and a lubricating coating layer having a target film thickness shown in Table 4 are also formed. Thus, diamond-coated drills of the present invention (hereinafter referred to as drills of the present invention) 1 to 8 as the diamond-coated tools of the present invention were produced, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1、D−2、D−5、D−6の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した後、上記実施例1と同一の条件で、上記工具基体(ドリル)の表面に、表5に示される目標膜厚のダイヤモンド皮膜層を形成することにより、比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆ドリル(以下、比較ドリルという)1、2、5、6をそれぞれ製造した。   For the purpose of comparison, honing is performed on the surface of the tool base (drill) D-1, D-2, D-5, D-6, ultrasonic cleaning in acetone, and drying. By forming a diamond coating layer having a target film thickness shown in Table 5 on the surface of the tool base (drill) under the same conditions as in Example 1, a comparative diamond-coated drill (hereinafter referred to as a comparative diamond-coated drill) (Referred to as comparative drills) 1, 2, 5, and 6 were manufactured.

また、さらに比較の目的で、上記の工具基体(ドリル)D−3、D−4、D−7、D−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、上記実施例1と同一の条件で、上記工具基体(ドリル)の表面に、表5に示される目標膜厚のダイヤモンド皮膜層を形成した後、同じく表5に示される成分系および目標膜厚の硬質皮膜層をアークイオンプレーティングで蒸着形成することにより、ダイヤモンド皮膜層と硬質皮膜層とを被覆した比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆ドリル(以下、比較ドリルという)3、4、7、8をそれぞれ製造した。   Further, for the purpose of comparison, the surface of the above-mentioned tool base (drill) D-3, D-4, D-7, D-8 was ultrasonically cleaned in acetone and dried, and the above Example 1 was used. The diamond coating layer having the target film thickness shown in Table 5 is formed on the surface of the tool base (drill) under the same conditions as above, and then the component system and the hard coating layer having the target film thickness shown in Table 5 are formed. Comparative diamond-coated drills (hereinafter referred to as comparative drills) 3, 4, 7, and 8 were produced as comparative diamond-coated tools coated with a diamond coating layer and a hard coating layer by vapor deposition using arc ion plating. .

つぎに、上記本発明ドリル1〜8および比較ドリル1〜8のうち、
本発明ドリル1〜4および比較ドリル1〜4については、
被削材−平面寸法:100mm×250mm、厚さ:10mmの、炭素繊維と熱硬化型エポキシ系樹脂が35層の直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 100 m/min.、
送り: 0.05 mm/rev、
穴深さ: 10 mm、
の条件での上記CFRPの乾式高速穴あけ切削加工試験、
本発明ドリル5〜8および比較ドリル5〜8については、
被削材−平面寸法:100mm×250mm、厚さ:15mmの、炭素繊維と熱硬化型エポキシ系樹脂が45層の直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 160 m/min.、
送り: 0.1 mm/rev、
穴深さ: 15 mm、
の条件での上記CFRPの乾式高速穴あけ切削加工試験、
をそれぞれ行い、いずれの乾式高速穴あけ切削加工試験でも、加工穴寸法精度が0.04mmを超えるまでの穴あけ加工数を測定した。
この測定結果を表4、5にそれぞれ示した。
Next, among the above-described drills 1 to 8 and comparative drills 1 to 8,
About this invention drills 1-4 and comparative drills 1-4,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 10 mm, carbon fiber reinforced resin composite material (CFRP) plate material having an orthogonal laminated structure of 35 layers of carbon fiber and thermosetting epoxy resin,
Cutting speed: 100 m / min. ,
Feed: 0.05 mm / rev,
Hole depth: 10 mm,
CFRP dry high-speed drilling test under the conditions of
About this invention drill 5-8 and comparative drills 5-8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 15 mm, carbon fiber reinforced resin composite material (CFRP) plate material having an orthogonal laminated structure of 45 layers of carbon fiber and thermosetting epoxy resin,
Cutting speed: 160 m / min. ,
Feed: 0.1 mm / rev,
Hole depth: 15 mm,
CFRP dry high-speed drilling test under the conditions of
In each dry high-speed drilling test, the number of drilling processes until the drilling hole dimension accuracy exceeded 0.04 mm was measured.
The measurement results are shown in Tables 4 and 5, respectively.

Figure 2009090398
Figure 2009090398

Figure 2009090398
Figure 2009090398

表2〜5に示される結果から、本発明ダイヤモンド被覆工具としての本発明エンドミル1〜8および本発明ドリル1〜8は、ダイヤモンド皮膜層上に、さらに、面積割合で15〜50%のダイヤモンドが露出存在する潤滑皮膜層が設けられているので、CFRP等の難削材の高速切削加工においても、仕上げ面精度、寸法精度に優れ、長期の使用に亘ってすぐれた耐摩耗性を発揮するのに対して、ダイヤモンド皮膜層のみが被覆された比較ダイヤモンド被覆工具としての比較エンドミル1、2、5、6および比較ドリル1、2、5、6においては、耐摩耗性については本発明ダイヤモンド被覆工具と同等の特性を示すものの、仕上げ面精度は非常に劣るものであり、また、ダイヤモンド皮膜層と硬質皮膜層とが被覆された比較エンドミル3、4、7、8および比較ドリル3、4、7、8においては、仕上げ面精度については本発明ダイヤモンド被覆工具と同等の特性を示すものの、寸法精度および耐摩耗性は非常に劣るものであった。   From the results shown in Tables 2 to 5, the present end mills 1 to 8 and the present drills 1 to 8 as the diamond coated tool of the present invention have 15 to 50% of diamond in an area ratio on the diamond coating layer. Since the exposed lubricant film layer is provided, even in high-speed cutting of difficult-to-cut materials such as CFRP, it has excellent finished surface accuracy and dimensional accuracy, and exhibits excellent wear resistance over a long period of use. On the other hand, in comparative end mills 1, 2, 5, 6 and comparative drills 1, 2, 5, 6 and comparative drills 1, 2, 5, 6 as comparative diamond-coated tools coated only with a diamond coating layer, the diamond-coated tool of the present invention is used for wear resistance. The finished end surface accuracy is very inferior, and a comparative end mill 3 coated with a diamond coating layer and a hard coating layer, In the 7,8 and comparative drill 3,4,7,8, although for surface finish according to the present invention diamond-coated tools and similar properties, dimensional accuracy and wear resistance it was as very poor.

上述のように、この発明のダイヤモンド被覆工具は、非鉄材料の通常条件での切削加工は勿論のこと、金属材料よりも比強度、比剛性の高いCFRPの高速切削においても、すぐれた潤滑性と耐摩耗性を発揮し、長期の使用に亘ってすぐれた加工精度(仕上げ面精度、寸法精度)を維持するものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the diamond-coated tool of the present invention has excellent lubricity not only in cutting of non-ferrous materials under normal conditions, but also in high-speed cutting of CFRP having a higher specific strength and specific rigidity than metal materials. Since it exhibits wear resistance and maintains excellent processing accuracy (finished surface accuracy, dimensional accuracy) over a long period of use, it is possible to use FA for cutting equipment, labor saving and energy saving of cutting processing, Furthermore, it can cope with cost reduction sufficiently satisfactorily.

(a)は、この発明のダイヤモンド被覆工具の側断面を示す概略図であり、(b)は、その表面にダイヤモンドが露出存在するこの発明のダイヤモンド被覆工具の潤滑皮膜層の上面模式図である。(A) is the schematic which shows the side cross section of the diamond-coated tool of this invention, (b) is the upper surface schematic diagram of the lubricating film layer of the diamond-coated tool of this invention in which the diamond exists exposed on the surface. .

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面に、1〜15μmの膜厚のダイヤモンド皮膜層と3〜5μmの膜厚の潤滑皮膜層が形成されたダイヤモンド被覆切削工具において、
上記潤滑皮膜層は、六方晶窒化ホウ素、二硫化モリブデンまたは窒化クロムのいずれかからなるマトリックス相中に、15〜50面積%のダイヤモンド粒子が表面に露出して存在することを特徴とする潤滑性および加工精度にすぐれたダイヤモンド被覆切削工具。
A diamond-coated cutting tool in which a diamond coating layer having a thickness of 1 to 15 μm and a lubricating coating layer having a thickness of 3 to 5 μm are formed on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet. In
The lubricating coating layer is characterized in that 15 to 50 area% of diamond particles are exposed on the surface in a matrix phase composed of hexagonal boron nitride, molybdenum disulfide or chromium nitride. Diamond coated cutting tool with excellent machining accuracy.
JP2007261980A 2007-10-05 2007-10-05 Diamond-coated cutting tool having excellent lubricity and machining accuracy Withdrawn JP2009090398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261980A JP2009090398A (en) 2007-10-05 2007-10-05 Diamond-coated cutting tool having excellent lubricity and machining accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261980A JP2009090398A (en) 2007-10-05 2007-10-05 Diamond-coated cutting tool having excellent lubricity and machining accuracy

Publications (1)

Publication Number Publication Date
JP2009090398A true JP2009090398A (en) 2009-04-30

Family

ID=40662905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261980A Withdrawn JP2009090398A (en) 2007-10-05 2007-10-05 Diamond-coated cutting tool having excellent lubricity and machining accuracy

Country Status (1)

Country Link
JP (1) JP2009090398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063318A1 (en) * 2010-11-09 2012-05-18 トーメイダイヤ株式会社 Substrate for cvd diamond deposition and method for forming deposition surface
CN115607735A (en) * 2022-10-12 2023-01-17 富地润滑科技股份有限公司 Preparation method of titanium alloy antifriction coating, titanium alloy component and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063318A1 (en) * 2010-11-09 2012-05-18 トーメイダイヤ株式会社 Substrate for cvd diamond deposition and method for forming deposition surface
US9663851B2 (en) 2010-11-09 2017-05-30 Tomel Diamond Co., Ltd. Substrate for CVD deposition of diamond and method for the preparation thereof
CN115607735A (en) * 2022-10-12 2023-01-17 富地润滑科技股份有限公司 Preparation method of titanium alloy antifriction coating, titanium alloy component and application

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5594575B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP4711177B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer
JP2006001006A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP5041222B2 (en) Surface coated cutting tool
JP5088480B2 (en) Surface coated cutting tool
JP2011152627A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP2009090398A (en) Diamond-coated cutting tool having excellent lubricity and machining accuracy
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4645819B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2006224198A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5099495B2 (en) Surface coated cutting tool
JP5234515B2 (en) A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5476842B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP2009095916A (en) Surface-coated cutting tool
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2008173750A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2006224216A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of heat resisting alloy
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207