JP2009088020A - 撮像装置、撮像システム、及び撮像装置の駆動方法 - Google Patents

撮像装置、撮像システム、及び撮像装置の駆動方法 Download PDF

Info

Publication number
JP2009088020A
JP2009088020A JP2007252377A JP2007252377A JP2009088020A JP 2009088020 A JP2009088020 A JP 2009088020A JP 2007252377 A JP2007252377 A JP 2007252377A JP 2007252377 A JP2007252377 A JP 2007252377A JP 2009088020 A JP2009088020 A JP 2009088020A
Authority
JP
Japan
Prior art keywords
unit
conversion unit
photoelectric conversion
charge
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007252377A
Other languages
English (en)
Inventor
Masato Shinohara
真人 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007252377A priority Critical patent/JP2009088020A/ja
Publication of JP2009088020A publication Critical patent/JP2009088020A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】画素を縮小化した場合でもSN比を向上できる撮像装置、撮像システム、及び撮像装置の駆動方法を提供する。
【解決手段】撮像装置は、複数の画素ユニットが行方向及び列方向に配列された画素ユニット配列と、前記画素ユニット配列を駆動する駆動部とを備え、前記複数の画素ユニットのそれぞれは、第1の光電変換部と、前記第1の光電変換部に隣接した第2の光電変換部と、前記第1の光電変換部と前記第2の光電変換部との間に設けられた第1の転送部と、電荷電圧変換部と、前記第2の光電変換部と前記電荷電圧変換部との間に設けられた第2の転送部と、前記電荷電圧変換部の信号が入力される増幅部とを含む
【選択図】図6

Description

本発明は、撮像装置、撮像システム、及び撮像装置の駆動方法に関する。
CMOSセンサは、CMOSプロセスとのマッチングが良く、周辺CMOS回路をオンチップ化できることから、有力な撮像装置として開発されている(非特許文献1参照)。
特許文献1では、フォトダイオード、転送MOSトランジスタ、増幅MOSトランジスタ、選択MOSトランジスタ、及びリセットMOSトランジスタを含む基本的なCMOSセンサの画素構成が開示されている。
特許文献2では、CMOSセンサの画素内に選択MOSトランジスタを設けずに、フローティングディフュージョンの電位で画素の選択/非選択を制御する技術が提案されている。
特許文献3では、CMOSセンサの各画素から読み出される信号をクランプ容量に蓄積するとともに1以上のゲインをかけることにより、固定パターンノイズ(FPN)を除く技術が提案されている。
S.K.Mendis, S.E.Kemeny and E.R.Fossum, "A 128 ×128 CMOS active image sensor for highly integrated imaging systems," in IEDM Tech. Dig., 1993, pp. 583-586. 米国特許第5841126号明細書 特開平11−112018号公報 特開2003−051989号公報 特開平9−46596号公報 特許第3793250号明細書 曽根、ほか"フィールド蓄積モードCCDの単板カラー化方式"、テレビジョン学会誌、37、10.pp.855-862、(1983-10)
特許文献4では、CMOSセンサにおいて2つのフォトダイオードがそれぞれ転送MOSトランジスタ経由でフローティングディフュージョン(以下、FDとする)に接続される技術が提案されている。この技術では、2つのフォトダイオードでそれぞれ蓄積された信号が、それぞれ転送ゲート経由でFDに転送され、FDで加算される。
ここで、2つのフォトダイオードに対してFDを共通化しているので、単位画素当たりが占める面積を低減できるため、画素を縮小化することできる。しかし、FDに2つの転送MOSトランジスタが接続されているので、FDに1つの転送MOSトランジスタが接続されている場合に比べて、FDの寄生容量が大きくなる。これにより、FDにおいて、電荷を電圧に変換する変換比が寄生容量に反比例して小さくなり、SN比が悪化する可能性がある。
ところで、撮像システムでは、動画を表示するためにインターレース信号を扱うことが多い。このため、撮像装置自体がインターレース動作を行う必要が生ずる場合がある。「場合がある」というのは、カラーフィルタの配列によって動作の制限があるからである。
例えば、原色カラーフィルタの単板イメージセンサは、プログレシブ動作を行う。そして、そのプログレシブ動作を行って得られた信号がインターレース信号へ変換される。補色カラーフィルタの単板CCDは、非特許文献2で提案されているように、色差線順次方式に従ったインターレースが基本動作となっている。3板イメージセンサも一般にはインターレース動作を行う。
ここで、インターレース動作では、一般的に、奇数フィールドにおいて、画素配列の1行目+2行目、3行目+4行目、・・・というように信号が加算されて読み出される。また、偶数フィールドにおいて、画素配列の2行目+3行目、4行目+5行目、・・・というように信号が加算されて読み出される。それに対して、プログレシブ動作では、画素配列の1行目、2行目、3行目・・・の信号が加算されずにそのまま読み出される。
ところで、CCDとCMOSセンサとでは、一般的に、画素信号の加算動作において大きな違いがある。
CCDでは、信号電荷を加算するので(大きさが等しい信号を加算するとすれば)信号の大きさが2倍になる。それに対して、ノイズ電圧自体が変わらないので、CCDでは、信号電荷を加算することによりSN比を2倍にすることができる。
CMOSセンサでは、基本的にプログレシブ動作が行われる。CMOSセンサで画素信号の加算を行う場合、一般には、異なる行の信号電圧を読み出し回路において加算するので信号の大きさが平均化される。すなわち、CMOSセンサでは信号電圧を加算するので(大きさが等しい信号を加算するとすれば)信号の大きさが平均化されて1倍になる。それに対して、ノイズ電圧も平均化されて1〜1/√2倍になるので、CMOSセンサでは、信号電圧を加算することによりSN比は最大でも√2倍にしかならない。SN比が√2倍になるのは、画素ノイズが読み出し回路ノイズよりも圧倒的に大きくCMOSセンサの支配的ノイズとなっている場合である。
よって、CMOSセンサはCCDに比べて、画素信号の加算動作を伴うインターレース動作を行った場合にSN比が不利になる可能性がある。
一方、特許文献5では、CMOSセンサにおいて2つのフォトダイオードがそれぞれ転送MOSトランジスタ経由で電荷加算用のフォトダイオードに接続される技術が提案されている。この技術によれば、CMOSセンサにおいてもインターレース動作での電荷加算を行うことができる。
しかし、特許文献5に示された技術では、入射光に対して時間的な遅れを伴うことなくフォトダイオードに蓄積した電荷を瞬時に転送することを課題としており、電荷加算用のフォトダイオードが増幅用MOSトランジスタのゲートに直接接続されている。これにより、画素のリセットノイズを除去することができないので、画素から読み出される信号に対するノイズが大きくなり高SN比の達成は困難である。
本発明の第1の目的は、画素を縮小化した場合でもSN比を向上できる撮像装置、撮像システム、及び撮像装置の駆動方法を提供することにある。
本発明の第2の目的は、インターレース動作を行った場合でもSN比を向上できる撮像装置、撮像システム、及び撮像装置の駆動方法を提供することにある。
本発明の第1側面に係る撮像装置は、複数の画素ユニットが行方向及び列方向に配列された画素ユニット配列と、前記画素ユニット配列を駆動する駆動部とを備え、前記複数の画素ユニットのそれぞれは、第1の光電変換部と、前記第1の光電変換部に隣接した第2の光電変換部と、前記第1の光電変換部と前記第2の光電変換部との間に設けられた第1の転送部と、電荷電圧変換部と、前記第2の光電変換部と前記電荷電圧変換部との間に設けられた第2の転送部と、前記電荷電圧変換部の信号が入力される増幅部とを含むことを特徴とする。
本発明の第2側面に係る撮像装置は、複数の画素ユニットが行方向及び列方向に配列された画素ユニット配列と、前記画素ユニット配列を駆動する駆動部とを備え、前記複数の画素ユニットのそれぞれは、第1の光電変換部と、前記第1の光電変換部に隣接した第2の光電変換部と、前記第1の光電変換部と前記第2の光電変換部との間に設けられた第1の転送部と、電荷電圧変換部と、前記第2の光電変換部と前記電荷電圧変換部との間に設けられた第2の転送部と、前記第2の光電変換部と前記第2の光電変換部に対して前記第1の光電変換部と反対側に隣接する画素ユニットに含まれる第3の光電変換部との間に設けられた第3の転送部と、前記電荷電圧変換部の信号が入力される増幅部とを含むことを特徴とする。
本発明の第3側面に係る撮像システムは、本発明の第1側面又は第2側面に係る撮像装置と、前記撮像装置の撮像面へ像を形成する光学系と、前記撮像装置から出力された信号を処理して画像データを生成する信号処理部とを備えたことを特徴とする。
本発明の第4側面に係る撮像装置の駆動方法は、第1の光電変換部と、前記第1の光電変換部に隣接した第2の光電変換部と、前記第1の光電変換部と前記第2の光電変換部との間に設けられた第1の転送部と、電荷電圧変換部と、前記第2の光電変換部と前記電荷電圧変換部との間に設けられた第2の転送部と、前記第2の光電変換部に対して前記第3の光電変換部と反対側の位置に配された第3の光電変換部と前記第2の光電変換部との間に設けられた第3の転送部と、前記電荷電圧変換部の信号が入力される増幅部と含む複数の画素ユニットが行方向及び列方向に配列された画素ユニット配列を有する撮像装置の駆動方法であって、第1のフレーム期間に、前記第1の転送部をオンするとともに、前記第3の転送部をオフする第1のステップと、第2のフレーム期間に、前記第1の転送部をオフするとともに、前記第3の転送部をオンする第2のステップとを備えたことを特徴とする。
本発明によれば、画素を縮小化した場合でもSN比を向上できる。あるいは、本発明によれば、インターレース動作を行った場合でもSN比を向上できる。
本発明の第1実施形態に係る撮像装置100の構成を、図1を用いて説明する。図1は、本発明の第1実施形態に係る撮像装置100のレイアウト構成を示す図である。
撮像装置100は、画素ユニット配列PUAと駆動部(図示せず)とを備える。
画素ユニット配列PUAでは、複数の画素ユニットPU11、PU12、・・・が行方向及び列方向に配列されている。各画素ユニットPU11等は、画素配列において列方向に並ぶ2画素(2つの光電変換部)が共通化されたものである。図1には、画素配列において列方向に並ぶ4画素(4つの光電変換部)、すなわち画素ユニット配列において列方向に並ぶ2つの画素ユニットPU11等が示されている。
駆動部は、画素ユニット配列PUAを駆動する。
次に、画素ユニットPU11の構成を説明する。なお、他の画素ユニットPU12、・・・の構成は、画素ユニットPU11の構成と同様である。
画素ユニットPU11は、第1の光電変換部1、第2の光電変換部2、第1の転送部3、電荷電圧変換部5、第2の転送部4、第3の転送部12、増幅部6、及びリセット部7を含む。
第1の光電変換部1は、受けた光に応じた信号を蓄積する。第1の光電変換部1は、第2の光電変換部2よりも信号(電荷)に対するポテンシャルが浅い(図4参照)。第1の光電変換部1は、例えば、フォトダイオードである。
第2の光電変換部2は、受けた光に応じた信号を蓄積する。第2の光電変換部2は、第1の光電変換部1よりも信号(電荷)に対するポテンシャルが深い(図4参照)。第2の光電変換部2は、例えば、フォトダイオードである。
第1の転送部3は、第1の光電変換部1と第2の光電変換部2との間に設けられている。ここで、第1の転送部3は、オンした際に、第1の光電変換部1が蓄積した信号を一時的に保持できるだけの信号に対するポテンシャルの容量を有している。第1の転送部3は、例えば、転送MOSトランジスタである。
電荷電圧変換部5は、転送された電荷(信号)を電圧(信号)に変換する。電荷電圧変換部5において、電荷を電圧に変換する変換比は、電荷電圧変換部5の寄生容量に反比例する。電荷電圧変換部5は、例えば、フローティングディフュージョンである。
第2の転送部4は、第2の光電変換部2と電荷電圧変換部5との間に設けられている。第2の転送部4は、第2の光電変換部2が蓄積した信号又は第2の光電変換部2が保持する信号を電荷電圧変換部5へ転送する。第2の転送部4は、例えば、転送MOSトランジスタである。
第3の転送部12は、第3の光電変換部11と第2の光電変換部2との間に設けられている。第3の転送部12は、例えば、転送MOSトランジスタである。ここで、第3の光電変換部11は、第2の光電変換部2に対して第1の光電変換部1と反対側に隣接する画素ユニットPU12に含まれ、画素ユニットPU11に含まれる第1の光電変換部1と同様の構造を持つ。第3の光電変換部11は、第2の光電変換部2よりも信号(電荷)に対するポテンシャルが浅い。第3の光電変換部11は、例えば、フォトダイオードである。第3の転送部12は、それがオンした際に、第3の光電変換部11が蓄積した信号を一時的に保持できるだけの信号に対するポテンシャルの容量を有している。第3の転送部12は、例えば転送MOSトランジスタである。
増幅部6には、電荷電圧変換部5の信号(電圧)が入力される。増幅部6は、入力された信号を増幅して後段へ出力する。増幅部6は、例えば、増幅MOSトランジスタである。
リセット部7は、オンした際に、電荷電圧変換部5をリセットする。リセット部7は、例えば、リセットMOSトランジスタである。
次に、撮像装置100のインターレース動作を説明する。なお、以下の動作は、駆動部が各画素ユニットを駆動することにより実現される。
第1のフレーム期間(奇数フィールド)では、まず、第2の転送部4がオンする。これにより、第2の光電変換部2が蓄積した電荷が電荷電圧変換部5へ転送される。続いて、第2の転送部4がオンしたままの状態で、第1の転送部3がオンした後一定の時間をかけてオフに遷移する。これにより、第1の光電変換部1が蓄積した電荷が第2の光電変換部2経由で電荷電圧変換部5へ転送される。この結果、電荷電圧変換部5において、第1の光電変換部1が蓄積した信号と第2の光電変換部2が蓄積した信号とが加算される。加算された信号は、電荷電圧変換部5から増幅部6へ入力されて、増幅部6で増幅された後に出力される。このようにして、画素配列の1行目+2行目、3行目+4行目、・・・というように信号が加算されて読み出される。その後、第1の転送部3がオフされた後、第2の転送部4もオフされて、奇数フィールドの読み出しの動作が完了する。
第2のフレーム期間(偶数フィールド)では、まず、第2の転送部4がオンする。これにより、第2の光電変換部2が蓄積した電荷が電荷電圧変換部5へ転送される。続いて、第2の転送部4がオンしたままの状態で、第3の転送部12がオンした後一定の時間をかけてオフに遷移する。これにより、第3の光電変換部11が蓄積した電荷が第2の光電変換部2経由で電荷電圧変換部5へ転送される。この結果、電荷電圧変換部5において、第3の光電変換部11が蓄積した信号と第2の光電変換部2が蓄積した信号とが加算される。加算された信号は、電荷電圧変換部5から増幅部6へ入力されて、増幅部6で増幅された後に出力される。このようにして、画素配列の2行目+3行目、4行目+5行目、・・・というように信号が加算されて読み出される。その後、第3の転送部12がオフされた後、第2の転送部4もオフされて、偶数フィールドの読み出しの動作が完了する。
このように、撮像装置100はインターレース動作を行うことができる。この際に信号電圧でなく信号電荷を加算するので、大きさが等しい信号を加算するとすれば、信号の大きさを2倍にすることができる。それに対して、ノイズ電圧は増幅部6以降の読み出し回路で決まるため、信号電荷の加算を行わない場合と比べて変わらないので、信号電荷を加算することによりSN比を2倍に向上することができる。すなわち、インターレース動作を行った場合でもSN比を向上できる。
また、各画素ユニットでは、2つの光電変換部(2画素)に対して、電荷電圧変換部、増幅部、及びリセット部が共通に設けられている。これにより、1画素当たりの面積を低減できるので、画素を縮小化できる。
なお、画素ユニット内では、回路記号で示された増幅部6及びリセット部7がどのように配されても良い。また、画素ユニットは、さらに、選択用MOSトランジスタを含んでも良い。
次に、撮像装置100の断面構造を、図2を用いて説明する。図2は、図1のA‐Bの点線に沿って切った場合の断面構造を示す図である。
半導体基板SBにおいて、P型ウエル8が形成されている。そして、P型ウエル8において、幅の狭い斜線でハッチングで示された領域1a、2a、5にN型の不純物が埋め込まれており、幅の広い斜線のハッチングで示された領域1b、2bにP型の不純物が埋め込まれている。これにより、第1の光電変換部1、第2の光電変換部2、及び電荷電圧変化部5が形成されている。また、砂状のハッチングで示された部分3a、4aに例えばポリシリコンのゲート電極が形成されている。これにより、第1の転送部3及び第2の転送部4が形成されている。P型ウエル8において第1の転送部3のゲート電極の下に位置する領域は、ゲート電極に電圧が印加された際にチャネルが形成されることになるチャネル領域10である。同様に、P型ウエル8において第2の転送部4のゲート電極の下に位置する領域は、ゲート電極に電圧が印加された際にチャネルが形成されることになるチャネル領域13である。
次に、撮像装置100において信号を転送する際の動作を、図3及び図4を用いて説明する。図3は、撮像装置100において信号を転送する際の動作を示すタイミングチャートである。図4は、撮像装置100において信号を転送する際の信号(電荷)の流れを示す図である。第1の光電変換部1から第2の光電変換部2を経由して電荷電圧変換部5に信号が転送される際の動作を例として説明するが、第3の光電変換部11から第2の光電変換部2を経由して電荷電圧変換部5に信号が転送される際の動作も同様である。以下では、信号電荷を電子として説明する。なお、信号電荷がホールである場合には、以下の説明において半導体のP型、N型、および動作パルスの極性が逆になるだけであり、本発明が成立することに変わりはない。
図3において、パルスP4は、第2の転送部4に供給される転送パルスであり、アクティブな状態(例えばHレベルの状態)で第2の転送部4をオンさせる。パルスP3は、第1の転送部3に供給される転送パルスであり、アクティブな状態(例えばHレベルの状態)で第1の転送部3をオンさせる。パルスP7は、リセット部7に供給されるパルスであり、アクティブな状態(例えばHレベルの状態)でリセット部7をオンさせる。
図4では、縦軸が信号に対するポテンシャルの深さを示し、横軸が図2に対応した断面横方向の位置を示す。
図3に示すタイミングT0の直前のタイミングにおいて、パルスP7がアクティブな状態になる。これにより、リセット部7は、オンして、電荷電圧変換部5をリセットする。このとき、第1の光電変換部1は電荷量Q1の信号を蓄積しており、第2の光電変換部2は電荷量Q2の信号を蓄積している(図4参照)。
タイミングT0では、パルスP4がアクティブな状態になる。そして、第2の転送部4がオンする。これにより、第2の光電変換部2が蓄積した電荷が電荷電圧変換部5へ転送される。
タイミングT0からタイミングT1までの期間では、第2の光電変換部2に、ほとんど信号(電荷)が残っていない状態となるまで、第2の光電変換部2が蓄積した電荷が電荷電圧変換部5へ転送される(図4参照)。
タイミングT1では、パルスP4がアクティブな状態に維持されたままパルスP3がアクティブな状態になる。そして、第2の転送部4がオンしたままの状態で、第1の転送部3がオンする。これにより、第1の光電変換部1が蓄積した電荷が第1の転送部3のチャネル領域10へ転送される。
タイミングT1からタイミングT2までの期間では、第1の光電変換部1に、ほとんど信号(電荷)が残っていない状態となるまで、第1の光電変換部1が蓄積した電荷が第1の転送部3のチャネル領域10へ転送される(図4参照)。
タイミングT2からタイミングT3までの期間では、パルスP3がアクティブ状態(Hレベル)からノンアクティブ状態(Lレベル)へと一定以上の時間TPをかけて遷移する。そして、第1の転送部3は、オン状態からオフ状態へ一定以上の時間TPをかけて漸次的に遷移する。これにより、第1の転送部3のチャネル領域10のポテンシャルの底が上がっていき、チャネル領域10に転送された信号(電荷)がさらに第2の光電変換部2および電荷電圧変換部5へと転送される。
ここで、第1の光電変換部1が第2の光電変換部2よりも信号に対するポテンシャルが浅いので、チャネル領域10から第1の光電変換部1へ信号が逆流しにくくなっている(図4参照)。
また、仮に、その拡散する時間よりも短い時間でパルスP3がアクティブ状態(Hレベル)からノンアクティブ状態(Lレベル)へ遷移すると、第1の転送部3のチャンネル領域10にある電荷の一部は第1の光電変換部1へも逆流する可能性がある。
それに対して、本実施形態では、第1の転送部3がオン状態からオフ状態へ遷移する時間TPは、第1の転送部3のチャンネル領域10にある電荷が第2の光電変換部2に拡散する時間より長くなっている。この点からも、チャネル領域10から第1の光電変換部1へ信号が逆流しにくくなっている。
タイミングT3からタイミングT4までの期間では、タイミングT2からタイミングT3の間に電荷電圧変換部5に転送しきれずに第2の光電変換部2に残っているかもしれない電荷が電荷電圧変換部5へ転送される。これにより、第2の光電変換部2に、ほとんど信号(電荷)が残っていない状態となる(図4参照)。この結果、電荷電圧変換部5において、第1の光電変換部1が蓄積した信号(電荷量Q1)と第2の光電変換部2が蓄積した信号(電荷量Q2)とが加算される。電荷電圧変換部5は、加算された信号として電荷量(Q1+Q2)に応じた電圧を発生させる。
タイミングT4では、パルスP4がノンアクティブな状態になる。そして、第2の転送部4がオフする。これにより、第1の光電変換部1から第2の光電変換部2を経由して電荷電圧変換部5に信号が転送される際の動作を終了する。その後、加算された信号は、電荷電圧変換部5から増幅部6へ入力されて、増幅部6で増幅された後に出力される。
このように、第2の光電変換部2が第1の光電変換部1よりも信号に対するポテンシャルが深い。これにより、第1の転送部がそのチャネル領域10に保持された信号を第2の光電変換部2へ転送する際にオン状態からオフ状態へ一定以上の時間TPをかけて漸次的に遷移する。この結果、第1の光電変換部1から第2の光電変換部2を経由して電荷電圧変換部5に容易に信号を転送することができる。
次に、本発明の第1実施形態に係る撮像装置を適用した撮像システムの一例を図5に示す。
撮像システム90は、図5に示すように、主として、光学系、撮像装置100及び信号処理部を備える。光学系は、主として、シャッター91、撮影レンズ92及び絞り93を備える。信号処理部は、主として、撮像信号処理回路95、A/D変換器96、画像信号処理部97、メモリ部87、外部I/F部89、タイミング発生部98、全体制御・演算部99、記録媒体88及び記録媒体制御I/F部94を備える。なお、信号処理部は、記録媒体88を備えなくても良い。
シャッター91は、光路上において撮影レンズ92の手前に設けられ、露出を制御する。
撮影レンズ92は、入射した光を屈折させて、撮像装置100の画素配列(画素ユニット配列)に被写体の像を形成する。
絞り93は、光路上において撮影レンズ92と撮像装置100との間に設けられ、撮影レンズ92を通過後に撮像装置100へ導かれる光の量を調節する。
撮像装置100は、画素配列(撮像面)に形成された被写体の像を画像信号に変換する。撮像装置100は、その画像信号を画素配列から読み出して出力する。
撮像信号処理回路95は、撮像装置100に接続されており、撮像装置100から出力された画像信号を処理する。
A/D変換器96は、撮像信号処理回路95に接続されており、撮像信号処理回路95から出力された処理後の画像信号(アナログ信号)をデジタル信号へ変換する。
画像信号処理部97は、A/D変換器96に接続されており、A/D変換器96から出力された画像信号(デジタル信号)に各種の補正等の演算処理を行い、画像データを生成する。この画像データは、メモリ部87、外部I/F部89、全体制御・演算部99及び記録媒体制御I/F部94などへ供給される。
メモリ部87は、画像信号処理部97に接続されており、画像信号処理部97から出力された画像データを記憶する。
外部I/F部89は、画像信号処理部97に接続されている。これにより、画像信号処理部97から出力された画像データを、外部I/F部89を介して外部の機器(パソコン等)へ転送する。
タイミング発生部98は、撮像装置100、撮像信号処理回路95、A/D変換器96及び画像信号処理部97に接続されている。これにより、撮像装置100、撮像信号処理回路95、A/D変換器96及び画像信号処理部97へタイミング信号を供給する。そして、撮像装置100、撮像信号処理回路95、A/D変換器96及び画像信号処理部97がタイミング信号に同期して動作する。
全体制御・演算部99は、タイミング発生部98、画像信号処理部97及び記録媒体制御I/F部94に接続されており、タイミング発生部98、画像信号処理部97及び記録媒体制御I/F部94を全体的に制御する。
記録媒体88は、記録媒体制御I/F部94に取り外し可能に接続されている。これにより、画像信号処理部97から出力された画像データを、記録媒体制御I/F部94を介して記録媒体88へ記録する。
以上の構成により、撮像装置100において良好な画像信号が得られれば、良好な画像(画像データ)を得ることができる。
次に、本発明の第2実施形態に係る撮像装置200を、図6及び図7を用いて説明する。図6は、本発明の第2実施形態に係る撮像装置200のレイアウト構成を示す図である。図7は、撮像装置200において信号を転送する際の動作を示すタイミングチャートである。
撮像装置200は、画素ユニット配列PUA200を備える点と、駆動部が画素ユニット配列PUA200を駆動する際の動作とが、第1実施形態と異なる。
画素ユニット配列PUA200における各画素ユニットPU211、PU212、・・・は、第2の光電変換部202を含む。第2の光電変換部202と第3の光電変換部11との間には、第3の転送部が設けられていない。
駆動部は、第2の光電変換部202に、第1の光電変換部1が蓄積した電荷が転送されるように駆動する。しかし、駆動部は、第2の光電変換部202に、第3の光電変換部11が蓄積した電荷が転送されるようには駆動しない。すなわち、撮像装置200は、図7に示すように、撮像装置200において信号を転送する際の動作が第1実施形態と異なる。
タイミングT0からタイミングT201までの期間では、第2の光電変換部202に、ほとんど信号(電荷)が残っていない状態となるまで、第2の光電変換部2が蓄積した電荷が電荷電圧変換部5へ転送される。
タイミングT201では、パルスP4がノンアクティブな状態になる。そして、第2の転送部4がオフする。その後、転送された信号は、電荷電圧変換部5から増幅部6へ入力されて、増幅部6で増幅された後に出力される。
タイミングT202では、パルスP7がアクティブな状態になる。そして、リセット部7は、オンして、電荷電圧変換部5をリセットする。これにより、電荷電圧変換部5には信号(電荷)がない状態になる。
タイミングT203では、パルスP7がノンアクティブな状態になる。これにより、リセット部7は、オフする。
タイミングT204からタイミングT207における動作は、電荷電圧変換部5に第2の光電変換部202の信号(電荷)がない状態で行われる点で、タイミングT1からタイミングT4における動作(図3参照)と異なる。すなわち、電荷電圧変換部5へ第1の光電変換部1が蓄積した信号(電荷)のみが転送され、電荷電圧変換部5では信号の加算が行われない。その後、転送された信号は、電荷電圧変換部5から増幅部6へ入力されて、増幅部6で増幅された後に出力される。
このように、画素配列の2行目、1行目、4行目、3行目、・・・の信号が加算されずにそのまま読み出される。すなわち、撮像装置200は、インターレース動作を行わずに、プログレシブ動作を行うことができる。
また、各画素ユニットは、2つの光電変換部(2画素)に対して、電荷電圧変換部、増幅部、及びリセット部が共通に設けられている。これにより、1画素当たりの面積を低減できるので、画素を縮小化できる。
ここで、電荷電圧変換部(FD)に1つの転送部(転送MOSトランジスタ)が接続されているので、電荷電圧変換部に2つの転送部が接続されている場合に比べて、電荷電圧変換部の寄生容量が低減されている。これにより、電荷電圧変換部において、電荷を電圧に変換する変換比を向上できるので、SN比を向上できる。すなわち、画素を縮小化した場合でもSN比を向上できる。
なお、2つの光電変換部(2画素)に対して、電荷電圧変換部、増幅部、及びリセット部が共通に設けられているので、画素を縮小化せずに、画素に占める光電変換部の面積を増やしても良い。この場合、光電変換部の感度を向上でき、光電変換部の飽和電荷量を大きくすることができる。
また、上記の実施形態において、MOSトランジスタは、バイポーラや、接合型電界効果トランジスタなど他の型のトランジスタであってもよい。
本発明の第1実施形態に係る撮像装置100のレイアウト構成を示す図。 図1のA‐Bの点線に沿って切った場合の断面構造を示す図。 撮像装置100において信号を転送する際の動作を示すタイミングチャート。 撮像装置100において信号を転送する際の信号(電荷)の流れを示す図。 第1実施形態に係る撮像装置を適用した撮像システムの構成図。 本発明の第2実施形態に係る撮像装置200のレイアウト構成を示す図。 撮像装置200において信号を転送する際の動作を示すタイミングチャート。
符号の説明
1 第1の光電変換部
2 第2の光電変換部
3 第1の転送部
4 第2の転送部
5 電荷電圧変換部
6 増幅部
11 第3の光電変換部
12 第3の転送部
90 撮像システム
100、200 撮像装置

Claims (12)

  1. 複数の画素ユニットが行方向及び列方向に配列された画素ユニット配列と、
    前記画素ユニット配列を駆動する駆動部と、
    を備え、
    前記複数の画素ユニットのそれぞれは、
    第1の光電変換部と、
    前記第1の光電変換部に隣接した第2の光電変換部と、
    前記第1の光電変換部と前記第2の光電変換部との間に設けられた第1の転送部と、
    電荷電圧変換部と、
    前記第2の光電変換部と前記電荷電圧変換部との間に設けられた第2の転送部と、
    前記電荷電圧変換部の信号が入力される増幅部と、
    を含む
    ことを特徴とする撮像装置。
  2. 複数の画素ユニットが行方向及び列方向に配列された画素ユニット配列と、
    前記画素ユニット配列を駆動する駆動部と、
    を備え、
    前記複数の画素ユニットのそれぞれは、
    第1の光電変換部と、
    前記第1の光電変換部に隣接した第2の光電変換部と、
    前記第1の光電変換部と前記第2の光電変換部との間に設けられた第1の転送部と、
    電荷電圧変換部と、
    前記第2の光電変換部と前記電荷電圧変換部との間に設けられた第2の転送部と、
    前記第2の光電変換部と前記第2の光電変換部に対して前記第1の光電変換部と反対側に隣接する画素ユニットに含まれる第3の光電変換部との間に設けられた第3の転送部と、
    前記電荷電圧変換部の信号が入力される増幅部と、
    を含む
    ことを特徴とする撮像装置。
  3. 前記駆動部は、前記第1の転送部が、第1のフレーム期間においてオンし、第2のフレーム期間においてオフし、前記第3の転送部が、前記第1のフレーム期間においてオフし、前記第2のフレーム期間においてオンするように、前記複数の画素ユニットのそれぞれを駆動する
    ことを特徴とする請求項2に記載の撮像装置。
  4. 前記駆動部は、前記第2の転送部が、前記第1のフレーム期間において、前記第1の転送部がオンする前にオンするとともに、前記第1の転送部がオフした後にオフし、前記第2のフレーム期間において、前記第3の転送部がオンする前にオンするとともに、前記第3の転送部がオフした後にオフするように、前記複数の画素ユニットのそれぞれを駆動する
    ことを特徴とする請求項3に記載の撮像装置。
  5. 前記駆動部は、前記第1の転送部が、前記第2のフレーム期間において、オン状態からオフ状態へ一定以上の時間をかけて漸次的に遷移し、前記第3の転送部が、前記第1のフレーム期間において、オン状態からオフ状態へ一定以上の時間をかけて漸次的に遷移するように、前記複数の画素ユニットのそれぞれを駆動する
    ことを特徴とする請求項4に記載の撮像装置。
  6. 前記複数の画素ユニットのそれぞれの前記電荷電圧変換部では、前記第1のフレーム期間において、前記第1の光電変換部が蓄積した信号と前記第2の光電変換部が蓄積した信号とが加算され、前記第2のフレーム期間において、前記第3の光電変換部が蓄積した信号と前記第2の光電変換部が蓄積した信号とが加算される
    ことを特徴とする請求項3から5のいずれか1項に記載の撮像装置。
  7. 前記第2の光電変換部は、前記第1の光電変換部よりも信号に対するポテンシャルが深い
    ことを特徴とする請求項1から6のいずれか1項に記載の撮像装置。
  8. 請求項1から7のいずれか1項に記載の撮像装置と、
    前記撮像装置の撮像面へ像を形成する光学系と、
    前記撮像装置から出力された信号を処理して画像データを生成する信号処理部と、
    を備えたことを特徴とする撮像システム。
  9. 第1の光電変換部と、前記第1の光電変換部に隣接した第2の光電変換部と、前記第1の光電変換部と前記第2の光電変換部との間に設けられた第1の転送部と、電荷電圧変換部と、前記第2の光電変換部と前記電荷電圧変換部との間に設けられた第2の転送部と、前記第2の光電変換部に対して前記第3の光電変換部と反対側の位置に配された第3の光電変換部と前記第2の光電変換部との間に設けられた第3の転送部と、前記電荷電圧変換部の信号が入力される増幅部と含む複数の画素ユニットが行方向及び列方向に配列された画素ユニット配列を有する撮像装置の駆動方法であって、
    第1のフレーム期間に、前記第1の転送部をオンするとともに、前記第3の転送部をオフする第1のステップと、
    第2のフレーム期間に、前記第1の転送部をオフするとともに、前記第3の転送部をオンする第2のステップと、
    を備えたことを特徴とする撮像装置の駆動方法。
  10. 前記第1のステップでは、前記第2の転送部が、前記第1のフレーム期間において、前記第1の転送部がオンする前にオンするとともに、前記第1の転送部がオフした後にオフし、
    前記第2のステップでは、前記第2の転送部が、前記第2のフレーム期間において、前記第3の転送部がオンする前にオンするとともに、前記第3の転送部がオフした後にオフする
    ことを特徴とする請求項9に記載の撮像装置の駆動方法。
  11. 前記第1のステップでは、前記第1の転送部が、前記第2のフレーム期間において、オン状態からオフ状態へ一定以上の時間をかけて漸次的に遷移し、
    前記第2のステップでは、前記第3の転送部が、前記第1のフレーム期間において、オン状態からオフ状態へ一定以上の時間をかけて漸次的に遷移する
    ことを特徴とする請求項10に記載の撮像装置の駆動方法。
  12. 前記第1のステップでは、前記電荷電圧変換部において、前記第1のフレーム期間において、前記第1の光電変換部が蓄積した信号と前記第2の光電変換部が蓄積した信号とが加算され、
    前記第2のステップでは、前記電荷電圧変換部において、前記第2のフレーム期間において、前記第3の光電変換部が蓄積した信号と前記第2の光電変換部が蓄積した信号とが加算される
    ことを特徴とする請求項9から11のいずれか1項に記載の撮像装置の駆動方法。
JP2007252377A 2007-09-27 2007-09-27 撮像装置、撮像システム、及び撮像装置の駆動方法 Withdrawn JP2009088020A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252377A JP2009088020A (ja) 2007-09-27 2007-09-27 撮像装置、撮像システム、及び撮像装置の駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252377A JP2009088020A (ja) 2007-09-27 2007-09-27 撮像装置、撮像システム、及び撮像装置の駆動方法

Publications (1)

Publication Number Publication Date
JP2009088020A true JP2009088020A (ja) 2009-04-23

Family

ID=40661103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252377A Withdrawn JP2009088020A (ja) 2007-09-27 2007-09-27 撮像装置、撮像システム、及び撮像装置の駆動方法

Country Status (1)

Country Link
JP (1) JP2009088020A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082427A (ja) * 2009-10-09 2011-04-21 Canon Inc 固体撮像装置及びその製造方法
JP2013110548A (ja) * 2011-11-21 2013-06-06 Canon Inc 固体撮像素子、該固体撮像素子を備えた距離検出装置、該距離検出装置を備えたカメラ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011082427A (ja) * 2009-10-09 2011-04-21 Canon Inc 固体撮像装置及びその製造方法
JP2013110548A (ja) * 2011-11-21 2013-06-06 Canon Inc 固体撮像素子、該固体撮像素子を備えた距離検出装置、該距離検出装置を備えたカメラ

Similar Documents

Publication Publication Date Title
US11012651B2 (en) Solid-state imaging device and electronic apparatus
JP4455435B2 (ja) 固体撮像装置及び同固体撮像装置を用いたカメラ
US7825974B2 (en) Solid-state image sensor and imaging system
US7638826B2 (en) Imaging device and imaging system
JP5089017B2 (ja) 固体撮像装置及び固体撮像システム
JP2017055322A (ja) 撮像装置、撮像システム、および、撮像装置の制御方法
JP5959877B2 (ja) 撮像装置
JP5173503B2 (ja) 撮像装置及び撮像システム
JP2013005396A (ja) 固体撮像装置、固体撮像装置の駆動方法、及び電子機器
JP5434485B2 (ja) 固体撮像素子、固体撮像素子の駆動方法、およびカメラシステム
JP2009077098A (ja) 固体撮像素子及びその駆動方法
JP5058090B2 (ja) 固体撮像装置
JP6711005B2 (ja) 画素ユニット、及び撮像素子
JP4746962B2 (ja) 固体撮像装置及び撮像システム
JP2009088020A (ja) 撮像装置、撮像システム、及び撮像装置の駆動方法
JP2008218756A (ja) 光電変換装置及び撮像システム
JP5672363B2 (ja) 固体撮像素子およびカメラシステム
JP2017055359A (ja) 撮像装置、および、撮像システム
JP2008091669A (ja) Ccd型固体撮像素子及びその駆動方法並びに撮像装置
JP2016100847A (ja) 撮像装置
JP4156424B2 (ja) 固体撮像装置の駆動方法
JP2009105755A (ja) 撮像装置、撮像システム、及び撮像装置の駆動方法
JP2008245245A (ja) 撮像装置、撮像装置の駆動方法、及び撮像システム

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207