JP2009087791A - Water-refilling device of fuel-cell power generator - Google Patents

Water-refilling device of fuel-cell power generator Download PDF

Info

Publication number
JP2009087791A
JP2009087791A JP2007257021A JP2007257021A JP2009087791A JP 2009087791 A JP2009087791 A JP 2009087791A JP 2007257021 A JP2007257021 A JP 2007257021A JP 2007257021 A JP2007257021 A JP 2007257021A JP 2009087791 A JP2009087791 A JP 2009087791A
Authority
JP
Japan
Prior art keywords
water
exchange resin
ion exchange
resin cylinder
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007257021A
Other languages
Japanese (ja)
Inventor
Masakazu Hasegawa
雅一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2007257021A priority Critical patent/JP2009087791A/en
Publication of JP2009087791A publication Critical patent/JP2009087791A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress generation of sliminess, alga, bacteria and the like in the pooled water of an ion-exchange resin tube, in the water-refilling device of a fuel-cell power generator to pool the water purified by an ion-exchange resin into a tank. <P>SOLUTION: The water-refilling device of a fuel-cell power generator is equipped with: a tank 1 for pooling pure water; a water-volume measuring device 33 for measuring water volume pooled in the tank 1 and generating a water-volume signal; a water-refilling pipe 9 communicated with the tank 1; the ion-exchange resin tube 7 provided in the water-refilling pipe 9 and filled with the ion-exchange resin; refilling-water valves 8, 32 disposed in each of the water-refilling pipes 9 in the upper- and down-stream side from the ion-exchange resin tube 7; and a controller 70 for opening and closing the refilling-water valves 8, 32 according to the water-volume signal to refill water into the ion-exchange resin tube 7. The controller 70 refills with water the ion-exchange resin tube 7 filled with the always moist ion-exchange resin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池発電装置の水補給経路の汚れを抑制できる装置に関する。 The present invention relates to an apparatus capable of suppressing contamination of a water supply path of a fuel cell power generator.

図3は、従来のこの種の燃料電池発電装置のガス系および水系の基本構成を示すフロー図である。冷却水タンク14に蓄えられた冷却水としての純水は、冷却水タンク14と燃料電池スタック16とを循環する電池冷却水配管17を経由し、ポンプ41によって燃料電池スタック16へと送られ、燃料電池スタック16を所定の温度に冷却した後、再び冷却水タンク14へ戻される。又、冷却水タンク14に貯留した純水の一部は、ポンプ42を備えた改質用水配管13を通流し、燃料ガスと共に燃料改質手段12へ送られての水蒸気改質反応に利用され水素を生成する。生成した水素含有ガスは、燃料電池スタック16の燃料極へ供給される。燃料改質手段12は、水蒸気改質反応に使用される改質触媒を加熱するためのバーナーとこのバーナーに空気を送るブロア43を備えている。燃料極から排出する残余のガスは、燃料改質手段12に備えたバーナーで燃焼される。ブロア44は、燃料電池スタック16の空気極に空気を供給する。バーナーから排出される燃焼排ガスと、空気極から排出される空気極排ガスは、生成水回収貯留手段10に供給されてガス中の水分が回収水として回収される。生成水回収貯留手段10は、回収した水分を貯留する回収水タンク1と、空気極と回収水タンク1を連通する配管2と、配管2に備えて空気極排ガスを冷却して水分を凝縮させる冷却器18と、バーナーと回収水タンク1を連通する配管3と、配管3に備えて燃焼排ガスを冷却して水分を凝縮させる冷却器19とを備える。水分を回収された後のガスは、回収水タンク1の排気口11から外部に排出される。
回収水タンク1の水中と冷却水タンク14は配管6で接続されており、その途中にポンプ4と電気式脱イオン装置5が備えられている。冷却水タンクの水位は、水位計で計測されており、冷却水水位が低下すると、回収水タンク1から電気式脱イオン装置5で純化された純水が供給される。
このように反応生成水や燃焼生成水を回収して再利用すれば、外部から水を補給しなくとも燃料電池スタック16の発電運転を継続することができるが、燃料電池発電装置の運転負荷が低く、十分に水を回収できない時や、水を回収する冷却器が汚れなどにより水回収性能が低下した時や、漏水時などの異常事態が発生すると系の水量が不足し、発電運転の継続が困難となる。そこで、イオン交換樹脂筒7と補給水弁8を組み込んだ補給水配管9が備えられている。この補給水配管9を通して水道水をイオン交換樹脂筒7で純化して回収水タンク1に送り、さらに回収水とともに冷却水タンク14へと送ることによって冷却水の補給が行われるよう構成されている。
このような燃料電池発電装置において、生成水通流経路の汚れの一つである微生物の繁殖を防止する手段として、特許文献1の装置が知られている。特許文献1の装置の特徴は、補給水を純水または強酸性水に変換する滅菌手段に通流させた後、回収水タンク1へ水を供給していることである。
特開平9−306523号公報
FIG. 3 is a flow diagram showing the basic configuration of the gas system and water system of this type of conventional fuel cell power generator. The pure water as the cooling water stored in the cooling water tank 14 is sent to the fuel cell stack 16 by the pump 41 via the battery cooling water pipe 17 that circulates between the cooling water tank 14 and the fuel cell stack 16. After the fuel cell stack 16 is cooled to a predetermined temperature, it is returned to the cooling water tank 14 again. A part of the pure water stored in the cooling water tank 14 flows through the reforming water pipe 13 provided with the pump 42 and is used for the steam reforming reaction sent to the fuel reforming means 12 together with the fuel gas. Produce hydrogen. The generated hydrogen-containing gas is supplied to the fuel electrode of the fuel cell stack 16. The fuel reforming means 12 includes a burner for heating a reforming catalyst used in the steam reforming reaction and a blower 43 for sending air to the burner. The remaining gas discharged from the fuel electrode is burned by a burner provided in the fuel reforming means 12. The blower 44 supplies air to the air electrode of the fuel cell stack 16. The combustion exhaust gas discharged from the burner and the air electrode exhaust gas discharged from the air electrode are supplied to the generated water recovery and storage means 10, and the water in the gas is recovered as recovered water. The generated water recovery and storage means 10 is provided with a recovered water tank 1 for storing recovered water, a pipe 2 that communicates the air electrode and the recovered water tank 1, and a pipe 2 that cools the air electrode exhaust gas to condense the water. A cooler 18, a pipe 3 that communicates the burner and the recovered water tank 1, and a cooler 19 that is provided in the pipe 3 and cools the combustion exhaust gas to condense moisture. The gas after the moisture is recovered is discharged to the outside from the exhaust port 11 of the recovered water tank 1.
The water in the recovered water tank 1 and the cooling water tank 14 are connected by a pipe 6, and a pump 4 and an electric deionization device 5 are provided in the middle. The water level in the cooling water tank is measured by a water level meter, and when the cooling water level is lowered, pure water purified by the electric deionizer 5 is supplied from the recovered water tank 1.
If the reaction product water and combustion product water are collected and reused in this way, the power generation operation of the fuel cell stack 16 can be continued without supplying water from the outside. When the water recovery performance is low, when the water recovery performance deteriorates due to contamination of the cooler that collects water, or when water leakage occurs, the amount of water in the system will be insufficient, and power generation operation will continue. It becomes difficult. Therefore, a supplementary water pipe 9 incorporating an ion exchange resin cylinder 7 and a supplementary water valve 8 is provided. The tap water is purified by the ion exchange resin cylinder 7 through the supply water pipe 9 and sent to the recovered water tank 1, and further supplied to the cooling water tank 14 together with the recovered water so that the cooling water is supplied. .
In such a fuel cell power generation device, the device of Patent Document 1 is known as means for preventing the growth of microorganisms, which is one of the contaminations of the generated water flow path. The feature of the device of Patent Document 1 is that water is supplied to the recovered water tank 1 after passing the makeup water through sterilization means that converts pure water or strong acid water.
JP-A-9-306523

上記のごとく燃料電池発電装置においては、漏水等による回収水不足を考慮して電池冷却水系に水を補給する配管が組み込まれており、イオン交換樹脂筒7で純化され、さらには電気式脱イオン装置5で純化された水が補給されている。従来の一般的な燃料電池発電装置では純化は通常1台のイオン交換樹脂筒のみによって行われていたが、補給水配管9にイオン交換樹脂筒7を設けると、補給水配管9の内部は水の流れがなく、滞留するので、イオン交換樹脂筒7の出口から回収水タンク1に至る配管の内部は、イオン交換樹脂筒7により塩素が処理された純水が充填された状態となり、配管には、ぬめり、藻、バクテリアなどの汚れが発生し、補給によってこれらの汚い水が回収水タンク1に入ったり、あるいは配管が閉塞したりする等の不具合が生じる。
このため、最近の燃料電池発電装置では図2のように、電気式脱イオン装置5を組み込んで純化する方式がしばしば用いられている。しかしながら、この電気式脱イオン装置5はシリカが存在すると正常な純化作用ができないので、前段にイオン交換樹脂筒を組み込み、このイオン交換樹脂筒で水道水中のシリカを除去したのち電気式脱イオン装置で純化する方式とする必要がある。しかし、一度水道水をイオン交換樹脂筒7に通水した後、外部からの水の補給が長時間不要となった場合、イオン交換樹脂筒7の内部は水道水が滞留した状態のままとなるため、イオン交換樹脂は劣化が進み、寿命が短くなってしまうという問題点がある。
As described above, in the fuel cell power generator, piping for supplying water to the battery cooling water system in consideration of a shortage of recovered water due to water leakage or the like is incorporated, purified by the ion exchange resin cylinder 7, and further an electric deionizer. The water purified in 5 is replenished. In a conventional general fuel cell power generation device, purification is usually performed by only one ion exchange resin cylinder. However, if the ion exchange resin cylinder 7 is provided in the makeup water pipe 9, the interior of the makeup water pipe 9 is water. Therefore, the interior of the pipe from the outlet of the ion exchange resin cylinder 7 to the recovered water tank 1 is filled with pure water treated with chlorine by the ion exchange resin cylinder 7, and the pipe is filled with In such a case, dirt such as slime, algae, bacteria, etc. is generated, and there is a problem that such dirty water enters the recovered water tank 1 or the piping is blocked by replenishment.
For this reason, in recent fuel cell power generators, as shown in FIG. 2, a method of incorporating an electric deionizer 5 and purifying is often used. However, since this electric deionization device 5 cannot perform a normal purification action if silica is present, an ion exchange resin cylinder is incorporated in the previous stage, and after removing silica in tap water with this ion exchange resin cylinder, the electric deionization apparatus 5 It is necessary to use a method of purifying with However, when the tap water is once passed through the ion exchange resin cylinder 7 and it is not necessary to replenish water from the outside for a long time, the inside of the ion exchange resin cylinder 7 remains in a state where the tap water remains. For this reason, the ion exchange resin has a problem that the deterioration progresses and the life is shortened.

本発明は、このような従来の燃料電池発電装置の問題点を考慮してなされたもので、本発明の目的は、電気式脱イオン装置を組み込んだ給水配管とイオン交換樹脂筒を組み込んだ補給水配管を備える燃料電池発電装置において、給水配管へ汚れた水を供給したり、配管の閉塞を生じたりすることなく安全に運転され、イオン交換樹脂の劣化を抑制できる燃料電池発電装置を提供することにある。   The present invention has been made in consideration of such problems of the conventional fuel cell power generation device. The object of the present invention is to supply water supply pipes incorporating an electric deionization device and ion exchange resin cylinders. Provided is a fuel cell power generator including a water pipe, which can be operated safely without supplying dirty water to the water supply pipe or blocking the pipe, and capable of suppressing deterioration of the ion exchange resin. There is.

本発明者は、水の滞留部分を無くせば汚れが滞留しないことに着目し、本発明を完成させた。
すなわち、本発明の燃料電池発電装置の水補給装置の特徴は、純水を貯留するタンクと、前記タンクに貯留された水量を計測して水量信号を発する水量計測装置と、前記タンクに連通した補給水配管と、前記補給水配管に備えイオン交換樹脂を充填したイオン交換樹脂筒と、前記イオン交換樹脂筒より上流および下流の前記補給水配管にそれぞれ配置した補給水弁と、前記水量信号に応じて前記補給水弁を開閉制御し前記イオン交換樹脂筒に通水させる制御装置を備えた燃料電池発電装置の水補給装置において、前記制御装置は、常に湿潤したイオン交換樹脂を充填した前記イオン交換樹脂筒へ通水させることである。(請求項1の発明)
ここでいう湿潤状態とは、イオン交換樹脂筒内の滞留している水を抜いた後のイオン交換樹脂が水分を含んでいる状態をいう。湿潤状態のイオン交換樹脂筒には、予め0.1%(w/v)アジ化ナトリウム水溶液を添加しておくことがより望ましい。
本発明によれば、イオン交換樹脂筒に滞留した水に生じる、ぬめり、藻、バクテリアなどの汚れがタンクに供給されることを抑制できる。
The inventor of the present invention has completed the present invention, paying attention to the fact that dirt is not retained if the water retaining portion is eliminated.
That is, the features of the water replenishment device of the fuel cell power generator of the present invention are communicated with the tank for storing pure water, the water amount measuring device for measuring the amount of water stored in the tank and generating a water amount signal, and the tank. A makeup water pipe; an ion exchange resin cylinder filled with an ion exchange resin in the makeup water pipe; a makeup water valve disposed in each of the makeup water pipes upstream and downstream of the ion exchange resin cylinder; and the water amount signal Accordingly, in the water replenishing device of the fuel cell power generation device provided with a control device for controlling the opening and closing of the replenishing water valve and allowing the water to flow through the ion exchange resin cylinder, the control device is always configured to supply the ion filled with the wet ion exchange resin. It is to let water flow into the exchange resin cylinder. (Invention of Claim 1)
The wet state here means a state in which the ion exchange resin after draining the water remaining in the ion exchange resin cylinder contains moisture. It is more desirable to add a 0.1% (w / v) aqueous sodium azide solution in advance to the wet ion exchange resin cylinder.
ADVANTAGE OF THE INVENTION According to this invention, it can suppress that stain | pollution | contamination, such as slimy, algae, and bacteria which arises in the water which accumulated in the ion exchange resin cylinder, is supplied to a tank.

また、2つ目の本発明の特徴は、請求項1に記載の燃料電池発電装置の水補給装置において、前記イオン交換樹脂筒を複数備え、前記制御装置が、前記通水に先立って、前記タンクに連通するイオン交換樹脂筒を、通水して使用されたイオン交換樹脂筒から他の湿潤したイオン交換樹脂を備えるイオン交換樹脂筒へ切り替えることである。(請求項2の発明)湿潤状態のイオン交換樹脂筒には、予め0.1%(w/v)アジ化ナトリウム水溶液を添加しておくことがより望ましい。
本発明によれば、交換の手間無く、常に湿潤したイオン交換樹脂筒に通水した純水をタンクに自動で貯留でき、イオン交換樹脂筒に滞留した水に生じた、ぬめり、藻、バクテリアなどの汚れがタンクに供給されることを抑制できる。
また、3つ目の本発明の特徴は、請求項1に記載の燃料電池発電装置の水補給装置において、前記イオン交換樹脂筒に連通する大気開放弁およびドレン排出弁を備え、前記制御装置は、前記大気開放弁および前記ドレン排出弁を閉じかつ前記補給水弁を開くことと、前記大気開放弁および前記ドレン排出弁を開きかつ前記補給水弁を閉じることとを切り替えて制御することである。(請求項3の発明)
本発明によれば、大気開放弁および前記ドレン排出弁を閉じかつ前記補給水弁を開くことにより、イオン交換樹脂筒へ水が通水されタンクに純水が貯留される。そして、大気開放弁および前記ドレン排出弁を開きかつ前記補給水弁を閉じることにより、イオン交換樹脂筒への水の通水が止まり、イオン交換樹脂筒内の水がドレン弁から排出され、イオン交換樹脂を湿潤状態で保存できるので、イオン交換樹脂筒内に、ぬめり、藻、バクテリアなどの汚れが生じることを抑制できる。制御装置が、補給水弁を閉じてドレン排出弁を開いた後に、0.1%(w/v)アジ化ナトリウム水溶液(azide)などの防腐剤を添加するとより望ましい。
A second feature of the present invention is the water replenishing device for a fuel cell power generator according to claim 1, comprising a plurality of the ion exchange resin cylinders, and the control device prior to the water flow, The ion exchange resin cylinder communicated with the tank is switched from the ion exchange resin cylinder used by passing water to an ion exchange resin cylinder having another wet ion exchange resin. (Invention of Claim 2) It is more preferable to add a 0.1% (w / v) aqueous solution of sodium azide in advance to the wet ion exchange resin cylinder.
According to the present invention, pure water that has always passed through a wet ion-exchange resin cylinder can be automatically stored in the tank without the hassle of replacement, and slime, algae, bacteria, etc. produced in the water remaining in the ion-exchange resin cylinder Can be prevented from being supplied to the tank.
According to a third aspect of the present invention, there is provided a water replenishing device for a fuel cell power generator according to claim 1, further comprising an air release valve and a drain discharge valve communicating with the ion exchange resin cylinder, And switching between opening the atmosphere release valve and the drain discharge valve and opening the makeup water valve and opening the atmosphere release valve and the drain discharge valve and closing the makeup water valve. . (Invention of Claim 3)
According to the present invention, by closing the air release valve and the drain discharge valve and opening the makeup water valve, water is passed through the ion exchange resin cylinder and pure water is stored in the tank. Then, by opening the air release valve and the drain discharge valve and closing the makeup water valve, the water flow to the ion exchange resin cylinder is stopped, and the water in the ion exchange resin cylinder is discharged from the drain valve, Since the exchange resin can be stored in a wet state, it is possible to suppress the occurrence of dirt such as slime, algae, and bacteria in the ion exchange resin cylinder. More preferably, the controller adds a preservative such as 0.1% (w / v) sodium azide aqueous solution (azide) after closing the makeup water valve and opening the drain discharge valve.

また、4つ目の本発明の特徴は、請求項3に記載の燃料電池発電装置の水補給装置において、前記大気開放弁およびドレン排出弁を開放した時からの経過時間を計測するタイマーを備え、前記制御装置は、前記経過時間が予め定めた時間を越えたら、前記大気開放弁および前記ドレン排出弁を閉じることである。(請求項4の発明)
本発明によれば、制御装置は、イオン交換樹脂が乾くために必要な時間が経過した後、大気開放弁およびドレン排出弁を閉じるので、外気との通気が遮断され、大気開放弁およびドレン排出弁を開放したまま放置した場合に比べてホコリなどの混入を防止できる。
また、5つ目の本発明の特徴は、請求項1ないし4のいずれか一項に記載の燃料電池発電装置の水補給装置において、前記イオン交換樹脂筒が前記補給水配管に接続されているか否かを検知してイオン交換樹脂筒検知信号を発するイオン交換樹脂筒検知装置を備え、前記制御装置は、前記イオン交換樹脂筒検知信号を受けて、前記イオン交換樹脂筒が前記補給水配管に接続されていることを検知した後に前記補給水弁を開くことである。(請求項5の発明)
本発明によれば、制御装置は、イオン交換樹脂筒検知信号を受けて、イオン交換樹脂筒が補給水配管に接続されていることを検知した後に補給水弁を開くので、イオン交換樹脂筒が未接続のときに補給水弁を開くことが防止され、漏水を防止できる。
According to a fourth aspect of the present invention, there is provided a water replenishing device for a fuel cell power generator according to claim 3, further comprising a timer for measuring an elapsed time from when the air release valve and the drain discharge valve are opened. The control device closes the atmosphere release valve and the drain discharge valve when the elapsed time exceeds a predetermined time. (Invention of Claim 4)
According to the present invention, the control device closes the air release valve and the drain discharge valve after the time necessary for the ion exchange resin to dry, so that the ventilation with the outside air is blocked, and the air release valve and the drain discharge are closed. Compared to the case where the valve is left open, dust and the like can be prevented from being mixed.
A fifth feature of the present invention is the water replenishing device for a fuel cell power generator according to any one of claims 1 to 4, wherein the ion exchange resin cylinder is connected to the replenishing water pipe. An ion-exchange resin tube detection device that detects whether or not and issues an ion-exchange resin tube detection signal, and the control device receives the ion-exchange resin tube detection signal, and the ion-exchange resin tube is connected to the makeup water pipe. Opening the makeup water valve after detecting that it is connected. (Invention of Claim 5)
According to the present invention, the control device receives the ion exchange resin cylinder detection signal and opens the makeup water valve after detecting that the ion exchange resin cylinder is connected to the makeup water pipe. When not connected, the replenishment water valve is prevented from opening and water leakage can be prevented.

上記のごとく、湿潤したイオン交換樹脂を充填したイオン交換樹脂筒へ通水すれば、イオン交換樹脂筒内の水の長期にわたる滞留がなくなるので、藻、ぬめり、バクテリアなどの汚れの発生が抑制され、これらの汚れがタンクに供給されることを抑制できる。 As described above, if water is passed through the ion exchange resin cylinder filled with the wet ion exchange resin, the water in the ion exchange resin cylinder does not stay for a long time, so the generation of dirt such as algae, slime, and bacteria is suppressed. It is possible to suppress the supply of these dirt to the tank.

図1,2,3において、図4に示した従来のガス系および水系の構成要素と同一機能を有する構成要素には同一符号が付されている。以下の説明では、燃料電池に関わる部分は、図4と同じため説明を省略する。
まず、図1の燃料電池発電装置の水補給装置の構成について説明する。
本発明の燃料電池発電装置の水補給装置は、純水を貯留する回収水タンク1と、回収水タンクに貯留された水量を計測して水量信号を発する水量計測装置33と、回収水タンク1に連通した補給水配管9と、補給水配管9に備えイオン交換樹脂を充填したイオン交換樹脂筒7と、イオン交換樹脂筒7より上流および下流の補給水配管にそれぞれ配置した補給水弁8a,32bと、水量信号に応じて補給水弁8a,32bを開閉制御し前記イオン交換樹脂筒7に通水させる制御装置70を備えた燃料電池発電装置の水補給装置において、制御装置70は、常に湿潤したイオン交換樹脂を充填した前記イオン交換樹脂筒7へ通水させる。前記イオン交換樹脂筒7は、着脱自在に設けられている。
一旦、燃料電池発電装置が作動し、イオン交換樹脂を充填したイオン交換樹脂筒7に水を供給して純化した純水を製造し、純水を回収水タンク1に貯留した後、湿潤したイオン交換樹脂を充填した前記イオン交換樹脂筒を再び備えておき、水の補給が必要になった時に湿潤したイオン交換樹脂を充填した前記イオン交換樹脂筒へ通水する通水工程を備える水補給方法になるように制御装置70が補給水弁8,32を制御することで、イオン交換樹脂筒7に滞留した水に生じる、ぬめり、藻、バクテリアなどの汚れが回収水タンク1に供給されることを抑制できる。より詳細には、水量計測装置33で水不足を検知し、水不足信号を発すると、水不足信号を受けた制御装置70は、補給水弁8,32を開き、水をイオン交換樹脂筒7に通流させて純水を製造し、回収水タンク1へ貯留する。そして、回収水タンク1の水量が満水になると、水量計測装置33は、満水信号を発し、満水信号を受けた制御装置70は、補給水弁8,32を閉じる。その後、回収水タンク1に連通するイオン交換樹脂筒7を、通水して使用されたイオン交換樹脂筒7から他の湿潤したイオン交換樹脂を備えるイオン交換樹脂筒7へ機械的手段で交換する。湿潤状態のイオン交換樹脂筒7には、予め0.1%(w/v)アジ化ナトリウム水溶液を添加しておくことがより望ましい。
1, 2 and 3, components having the same functions as those of the conventional gas and water components shown in FIG. 4 are denoted by the same reference numerals. In the following description, portions related to the fuel cell are the same as those in FIG.
First, the structure of the water replenishment device of the fuel cell power generation device of FIG. 1 will be described.
The water replenishment device of the fuel cell power generator of the present invention includes a recovered water tank 1 that stores pure water, a water amount measuring device 33 that measures the amount of water stored in the recovered water tank and generates a water amount signal, and a recovered water tank 1 Make-up water pipe 9 communicated with the make-up water pipe, an ion-exchange resin cylinder 7 filled with ion-exchange resin in the make-up water pipe 9, and a make-up water valve 8a disposed respectively in the make-up water pipe upstream and downstream of the ion-exchange resin pipe 7. In the water replenishing device of the fuel cell power generation apparatus comprising 32b and a control device 70 for controlling the opening and closing of the replenishing water valves 8a and 32b according to the water amount signal and passing the water through the ion exchange resin cylinder 7, the control device 70 is always Water is passed through the ion exchange resin cylinder 7 filled with the wet ion exchange resin. The ion exchange resin cylinder 7 is detachably provided.
Once the fuel cell power generator is activated, water is supplied to the ion exchange resin cylinder 7 filled with the ion exchange resin to produce purified pure water, the pure water is stored in the recovered water tank 1, and then the wet ions A water replenishing method comprising a step of passing water through the ion exchange resin cylinder filled with the ion exchange resin wetted when the ion exchange resin cylinder filled with the exchange resin is provided again and when it becomes necessary to replenish water The control device 70 controls the replenishing water valves 8 and 32 so that the water accumulated in the ion exchange resin cylinder 7 is supplied with dirt such as slime, algae, bacteria, etc. to the recovered water tank 1. Can be suppressed. More specifically, when a water shortage is detected by the water amount measuring device 33 and a water shortage signal is generated, the control device 70 that has received the water shortage signal opens the replenishing water valves 8 and 32 and passes water through the ion exchange resin cylinder 7. The purified water is produced and stored in the recovered water tank 1. When the amount of water in the recovered water tank 1 becomes full, the water amount measuring device 33 issues a full water signal, and the control device 70 that has received the full water signal closes the makeup water valves 8 and 32. Thereafter, the ion exchange resin cylinder 7 communicating with the recovered water tank 1 is exchanged by mechanical means from the ion exchange resin cylinder 7 used by passing water to another ion exchange resin cylinder 7 having a wet ion exchange resin. . It is more desirable to add a 0.1% (w / v) aqueous sodium azide solution in advance to the wet ion exchange resin cylinder 7.

このようにすれば、水の補給が必要になった時に、順次、別の湿潤したオウン交換樹脂を充填したイオン交換樹脂筒7に切り替えることで、イオン交換樹脂筒7を交換する手間無く、常に湿潤したイオン交換樹脂筒7に通水した純水を回収水タンク1に自動で貯留でき、イオン交換樹脂筒7に滞留した水に生じた、ぬめり、藻、バクテリアなどの汚れが回収水タンク1に供給されることを抑制できる。
次に、図2の燃料電池発電装置の水補給装置の構成について説明する。
また、上記燃料電池発電装置の水補給装置の形態として、イオン交換樹脂筒7を複数備え、制御装置70が、通水に先立って、回収水タンク1に連通するイオン交換樹脂筒を、通水して使用されたイオン交換樹脂筒7aから他の湿潤したイオン交換樹脂を備えるイオン交換樹脂筒7bへ切り替えることが望ましい。より詳細には、水量計測装置33で水不足を検知し、水不足信号を発すると、水不足信号を受けた制御装置70は、補給水弁8a,32aを開き、水をイオン交換樹脂筒7に通流させて純水を製造し、回収水タンク1へ貯留する。そして、回収水タンク1の水量が満水になると、水量計測装置33は、満水信号を発し、満水信号を受けた制御装置70は、補給水弁8a,32aを閉じる。
その後、新たな水不足信号を受けた制御装置70は、補給水弁8b,32bを開き、水をイオン交換樹脂筒7bに通流させて純水を製造し、回収水タンク1へ貯留する。そして、回収水タンク1の水量が満水になると、水量計測装置33は、満水信号を発し、満水信号を受けた制御装置70は、補給水弁8b,32bを閉じる。回収水タンク1に連通するイオン交換樹脂筒を、通水して使用されたイオン交換樹脂筒7bから図示しない他の湿潤したイオン交換樹脂を備えるイオン交換樹脂筒へ上記と同様に切り替える。次の湿潤したイオン交換樹脂を備えるイオン交換樹脂筒がない場合は、警報を発して、使用者にイオン交換樹脂筒の交換が必要であることを知らせる。湿潤状態のイオン交換樹脂筒7には、予め0.1%(w/v)アジ化ナトリウム水溶液を添加しておくことがより望ましい。
In this way, when it becomes necessary to replenish water, the ion exchange resin cylinder 7 filled with another wet own exchange resin is sequentially switched, so that there is always no need to replace the ion exchange resin cylinder 7. Pure water that has passed through the wet ion exchange resin cylinder 7 can be automatically stored in the recovery water tank 1, and dirt such as slime, algae, and bacteria generated in the water remaining in the ion exchange resin cylinder 7 can be recovered in the recovery water tank 1. Can be suppressed.
Next, the configuration of the water replenishment device of the fuel cell power generation device of FIG. 2 will be described.
In addition, as a form of the water replenishment device of the fuel cell power generation device, a plurality of ion exchange resin cylinders 7 are provided, and the control device 70 uses an ion exchange resin cylinder communicating with the recovered water tank 1 prior to water flow. It is desirable to switch from the used ion exchange resin cylinder 7a to the ion exchange resin cylinder 7b provided with another wet ion exchange resin. More specifically, when a water shortage is detected by the water amount measuring device 33 and a water shortage signal is generated, the control device 70 that has received the water shortage signal opens the replenishing water valves 8a and 32a and flows water through the ion exchange resin cylinder 7. The purified water is produced and stored in the recovered water tank 1. When the amount of water in the recovered water tank 1 is full, the water amount measuring device 33 issues a full water signal, and the control device 70 that has received the full water signal closes the replenishing water valves 8a and 32a.
After that, the control device 70 that has received a new water shortage signal opens the makeup water valves 8 b and 32 b, causes water to flow through the ion exchange resin cylinder 7 b, produces pure water, and stores it in the recovered water tank 1. When the amount of water in the recovered water tank 1 becomes full, the water amount measuring device 33 issues a full water signal, and the control device 70 that has received the full water signal closes the makeup water valves 8b and 32b. The ion exchange resin cylinder communicating with the recovered water tank 1 is switched from the ion exchange resin cylinder 7b used by passing water to an ion exchange resin cylinder having another wet ion exchange resin (not shown) in the same manner as described above. If there is no ion exchange resin cylinder with the next wet ion exchange resin, an alarm is issued to inform the user that the ion exchange resin cylinder needs to be replaced. It is more desirable to add a 0.1% (w / v) aqueous sodium azide solution in advance to the wet ion exchange resin cylinder 7.

このようにすれば、水の補給が必要になった時に、順次、別の湿潤したオウン交換樹脂を充填したイオン交換樹脂筒7に切り替えることで、イオン交換樹脂筒7を交換する手間無く、常に湿潤したイオン交換樹脂筒7に通水した純水を回収水タンク1に自動で貯留でき、イオン交換樹脂筒7に滞留した水に生じた、ぬめり、藻、バクテリアなどの汚れが回収水タンク1に供給されることを抑制できる。
次に、図3の燃料電池発電装置の水補給装置の構成について説明する。
本発明の燃料電池発電装置の水補給装置は、純水を貯留する回収水タンク1と、回収水タンク1に貯留された水量を計測する水量計測装置33と、回収水タンク1に連通した補給水配管9と、補給水配管9に備えイオン交換樹脂を充填したイオン交換樹脂筒7と、補給水配管9のイオン交換樹脂筒7より上流および下流にそれぞれ配置した補給水弁8,32と、イオン交換樹脂筒7に連通する大気開放弁30およびドレン排出弁31と、水量計測装置33の信号を受けて補給水弁8,32と大気開放弁30およびドレン排出弁31の開閉を制御する制御装置70を備える。
次に動作を説明する。
制御装置70は、水量計測装置33の水不足信号を受けると、大気開放弁30およびドレン排出弁31を閉じ、補給水弁8,32を開いて水を湿潤したイオン交換樹脂が充填されたイオン交換樹脂筒7に通流させて回収水タンク1へ供給する通水工程と、通水工程に引き続き、水量計測装置33の満水信号を受けると、補給水弁8,32を閉じ、大気開放弁30およびドレン排出弁31を開いて、イオン交換樹脂筒7内部を大気開放してドレン排出弁31から水を排出する湿潤工程とを実行する。
このようにすれば、大気開放弁およびドレン排出弁を閉じかつ補給水弁を開くことにより、イオン交換樹脂筒へ水が通水されタンクに純水が貯留される。そして、大気開放弁およびドレン排出弁を開きかつ補給水弁を閉じることにより、イオン交換樹脂筒への水の通水が止まり、イオン交換樹脂筒内の水がドレン弁から排出されてイオン交換樹脂を湿潤状態で保存できるので、イオン交換樹脂筒内に、ぬめり、藻、バクテリアなどの汚れが生じることを抑制できる。0.1%(w/v)アジ化ナトリウム水溶液(azide)などの防腐剤を添加する図示していない防腐剤添加装置を備え、制御装置70が、補給水弁を閉じてドレン排出弁を開いた後に、0.1%(w/v)アジ化ナトリウム水溶液をイオン交換樹脂筒7へ添加するとより望ましい。
In this way, when it becomes necessary to replenish water, the ion exchange resin cylinder 7 filled with another wet own exchange resin is sequentially switched, so that there is always no need to replace the ion exchange resin cylinder 7. Pure water that has passed through the wet ion exchange resin cylinder 7 can be automatically stored in the recovery water tank 1, and dirt such as slime, algae, and bacteria generated in the water remaining in the ion exchange resin cylinder 7 can be recovered in the recovery water tank 1. Can be suppressed.
Next, the configuration of the water replenishment device of the fuel cell power generation device of FIG. 3 will be described.
The water replenishing device of the fuel cell power generator according to the present invention includes a recovered water tank 1 for storing pure water, a water amount measuring device 33 for measuring the amount of water stored in the recovered water tank 1, and a replenishment communicating with the recovered water tank 1. A water pipe 9, an ion exchange resin cylinder 7 filled with an ion exchange resin in the makeup water pipe 9, and makeup water valves 8, 32 respectively disposed upstream and downstream of the ion exchange resin cylinder 7 of the makeup water pipe 9. Control for opening / closing the replenishing water valves 8, 32, the air release valve 30 and the drain discharge valve 31 in response to a signal from the air release valve 30 and the drain discharge valve 31 communicating with the ion exchange resin cylinder 7 and the water amount measuring device 33. A device 70 is provided.
Next, the operation will be described.
Upon receiving the water shortage signal from the water amount measuring device 33, the control device 70 closes the air release valve 30 and the drain discharge valve 31, opens the replenishing water valves 8 and 32, and is filled with an ion exchange resin that has wetted water. Upon receiving the full signal from the water amount measuring device 33 following the water flow process for supplying the recovered water tank 1 through the resin cylinder 7 and the water flow process, the replenishing water valves 8 and 32 are closed and the air release valve 30 is closed. And the drain discharge valve 31 is opened, the inside of the ion exchange resin cylinder 7 is opened to the atmosphere, and a wetting process for discharging water from the drain discharge valve 31 is executed.
In this way, by closing the air release valve and the drain discharge valve and opening the replenishment water valve, water is passed through the ion exchange resin cylinder and pure water is stored in the tank. Then, by opening the air release valve and the drain discharge valve and closing the replenishing water valve, the water flow to the ion exchange resin cylinder stops, and the water in the ion exchange resin cylinder is discharged from the drain valve. Can be stored in a wet state, so that it is possible to suppress the occurrence of dirt such as slime, algae, and bacteria in the ion exchange resin cylinder. A preservative addition device (not shown) for adding a preservative such as 0.1% (w / v) sodium azide aqueous solution (azide) is provided. The control device 70 closes the replenishing water valve and opens the drain discharge valve. After that, it is more desirable to add a 0.1% (w / v) aqueous sodium azide solution to the ion exchange resin cylinder 7.

上記図3の燃料電池発電装置の水補給装置において、大気開放弁30およびドレン排出弁31を開放した時からの経過時間を計測するタイマー71を備え、制御装置70は、経過時間が予め定めた時間を越えたら、大気開放弁30およびドレン排出弁31を閉じることが望ましい。そうすれば、制御装置70は、イオン交換樹脂が乾くために必要な時間が経過した後、大気開放弁およびドレン排出弁を閉じるので、外気との通気が遮断され、大気開放弁30およびドレン排出弁31を開放したまま放置した場合に比べてホコリなどの混入を防止できる。
また、上記いずれか1つの燃料電池発電装置の水補給装置において、イオン交換樹脂筒7が補給水配管9に接続されているか否かを検知してイオン交換樹脂筒検知信号を発するイオン交換樹脂筒検知装置80を備え、制御装置70は、イオン交換樹脂筒検知信号を受けて、イオン交換樹脂筒7が補給水配管9に接続されていることを検知した後に補給水弁を開くことがより望ましい。そうすれば、制御装置70は、イオン交換樹脂筒検知信号を受けて、イオン交換樹脂筒7が補給水配管9に接続されていることを検知した後に補給水弁を開くので、イオン交換樹脂筒7が未接続のときに補給水弁を開くことが防止され、漏水を防止できる。
In the water replenishing device of the fuel cell power generation device of FIG. 3 described above, a timer 71 that measures the elapsed time from when the air release valve 30 and the drain discharge valve 31 are opened is provided, and the control device 70 sets the elapsed time in advance. When the time is exceeded, it is desirable to close the atmosphere release valve 30 and the drain discharge valve 31. Then, the control device 70 closes the air release valve and the drain discharge valve after the time necessary for the ion exchange resin to dry, and thus the ventilation with the outside air is blocked, and the air release valve 30 and the drain discharge are closed. Compared with the case where the valve 31 is left open, it is possible to prevent dust and the like from being mixed.
Further, in any one of the above-described water replenishing devices of the fuel cell power generator, an ion exchange resin cylinder that detects whether or not the ion exchange resin cylinder 7 is connected to the makeup water pipe 9 and generates an ion exchange resin cylinder detection signal. More preferably, the control device 70 includes the detection device 80 and receives the ion exchange resin tube detection signal and opens the refill water valve after detecting that the ion exchange resin tube 7 is connected to the refill water pipe 9. . Then, the control device 70 receives the ion exchange resin cylinder detection signal and opens the makeup water valve after detecting that the ion exchange resin cylinder 7 is connected to the makeup water pipe 9. Opening of the replenishing water valve when 7 is not connected is prevented, and water leakage can be prevented.

本発明の燃料電池発電装置の概略構成図Schematic configuration diagram of a fuel cell power generator of the present invention 本発明の別の形態における燃料電池発電装置の概略構成図The schematic block diagram of the fuel cell power generator in another form of this invention 本発明の別の形態における燃料電池発電装置の概略構成図The schematic block diagram of the fuel cell power generator in another form of this invention 従来の燃料電池発電装置の概略構成図Schematic configuration diagram of a conventional fuel cell power generator

符号の説明Explanation of symbols

1 回収水タンク
2 反応オフガス配管
3 配管
4,41,42 ポンプ
5 電気式脱イオン装置
6 配管
7 イオン交換樹脂筒
8,8a,8b,21,22,32,32a,32b 弁
9 補給水配管
10 生成水回収貯留手段
11 排気口
12 燃料改質手段
13 改質用水配管
14 電池冷却水循環手段
15 水位計
16 燃料電池スタック
17 電池冷却水配管
18,19 冷却器
20 循環配管
23 逆止弁
33 水量計測装置
43,44 ブロア
70 制御装置
71 タイマー
80 イオン交換樹脂筒検知装置
DESCRIPTION OF SYMBOLS 1 Recovery water tank 2 Reaction off gas piping 3 Piping 4,41,42 Pump 5 Electric deionization device 6 Piping 7 Ion exchange resin cylinder 8,8a, 8b, 21,22,32,32a, 32b Valve 9 Supplementary water piping 10 Generated water collection and storage means 11 Exhaust port 12 Fuel reforming means 13 Reforming water piping 14 Battery cooling water circulation means 15 Water level gauge 16 Fuel cell stack 17 Battery cooling water piping 18, 19 Cooler 20 Circulation piping 23 Check valve 33 Water quantity measurement Apparatus 43, 44 Blower 70 Control apparatus 71 Timer 80 Ion exchange resin cylinder detection apparatus

Claims (5)

純水を貯留するタンクと、前記タンクに貯留された水量を計測して水量信号を発する水量計測装置と、前記タンクに連通した補給水配管と、前記補給水配管に備えイオン交換樹脂を充填したイオン交換樹脂筒と、前記イオン交換樹脂筒より上流および下流の前記補給水配管にそれぞれ配置した補給水弁と、前記水量信号に応じて前記補給水弁を開閉制御し前記イオン交換樹脂筒に通水させる制御装置を備えた燃料電池発電装置の水補給装置において、
前記制御装置は、常に湿潤したイオン交換樹脂を充填した前記イオン交換樹脂筒へ通水させることを特徴とする燃料電池発電装置の水補給装置。
A tank for storing pure water, a water amount measuring device for measuring the amount of water stored in the tank and generating a water amount signal, a makeup water pipe communicating with the tank, and a makeup water pipe filled with an ion exchange resin An ion exchange resin cylinder; a makeup water valve disposed in each of the makeup water pipes upstream and downstream of the ion exchange resin cylinder; and opening / closing control of the makeup water valve according to the water amount signal to pass through the ion exchange resin cylinder. In a water replenishment device for a fuel cell power generator equipped with a control device for causing water to flow,
The water replenishing device for a fuel cell power generator, wherein the control device always allows water to flow through the ion exchange resin cylinder filled with a wet ion exchange resin.
前記イオン交換樹脂筒を複数備え、前記制御装置が、前記通水に先立って、前記タンクに連通するイオン交換樹脂筒を、通水して使用されたイオン交換樹脂筒から他の湿潤したイオン交換樹脂を備えるイオン交換樹脂筒へ切り替えることを特徴とする請求項1に記載の燃料電池発電装置の水補給装置。   A plurality of the ion exchange resin cylinders are provided, and the control device passes the ion exchange resin cylinder communicating with the tank prior to the water flow from the ion exchange resin cylinder used by passing the water to another wet ion exchange. 2. The water supply device for a fuel cell power generator according to claim 1, wherein the water supply device is switched to an ion exchange resin cylinder having a resin. 前記イオン交換樹脂筒に連通する大気開放弁およびドレン排出弁を備え、前記制御装置は、前記大気開放弁および前記ドレン排出弁を閉じかつ前記補給水弁を開くことと、前記大気開放弁および前記ドレン排出弁を開きかつ前記補給水弁を閉じることとを切り替えて制御することを特徴とする請求項1に記載の燃料電池発電装置の水補給装置。   An air release valve and a drain discharge valve communicating with the ion exchange resin cylinder, and the control device closes the air release valve and the drain discharge valve and opens the makeup water valve; 2. The water replenishing device for a fuel cell power generator according to claim 1, wherein control is performed by switching between opening a drain discharge valve and closing the replenishing water valve. 前記大気開放弁およびドレン排出弁を開放した時からの経過時間を計測するタイマーを備え、
前記制御装置は、前記経過時間が予め定めた時間を越えたら、前記大気開放弁および前記ドレン排出弁を閉じることを特徴とする請求項3に記載の燃料電池発電装置の水補給装置。
A timer for measuring an elapsed time from when the air release valve and the drain discharge valve are opened,
The water replenishing device for a fuel cell power generator according to claim 3, wherein the control device closes the air release valve and the drain discharge valve when the elapsed time exceeds a predetermined time.
前記イオン交換樹脂筒が前記補給水配管に接続されているか否かを検知してイオン交換樹脂筒検知信号を発するイオン交換樹脂筒検知装置を備え、前記制御装置は、前記イオン交換樹脂筒検知信号を受けて、前記イオン交換樹脂筒が前記補給水配管に接続されていることを検知した後に前記補給水弁を開くことを特徴とする請求項1ないし4のいずれか一項に記載の燃料電池発電装置の水補給装置。   An ion exchange resin cylinder detection device that detects whether or not the ion exchange resin cylinder is connected to the makeup water pipe and generates an ion exchange resin cylinder detection signal, and the control device includes the ion exchange resin cylinder detection signal. 5. The fuel cell according to claim 1, wherein the supply water valve is opened after detecting that the ion exchange resin cylinder is connected to the supply water pipe. Water replenishment device for power generators.
JP2007257021A 2007-10-01 2007-10-01 Water-refilling device of fuel-cell power generator Withdrawn JP2009087791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257021A JP2009087791A (en) 2007-10-01 2007-10-01 Water-refilling device of fuel-cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257021A JP2009087791A (en) 2007-10-01 2007-10-01 Water-refilling device of fuel-cell power generator

Publications (1)

Publication Number Publication Date
JP2009087791A true JP2009087791A (en) 2009-04-23

Family

ID=40660936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257021A Withdrawn JP2009087791A (en) 2007-10-01 2007-10-01 Water-refilling device of fuel-cell power generator

Country Status (1)

Country Link
JP (1) JP2009087791A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231155A (en) * 2008-03-25 2009-10-08 Aisin Seiki Co Ltd Water purification device for fuel cell system
CN101921010A (en) * 2009-06-01 2010-12-22 奥加诺株式会社 Water treatment facility for fuel cell
CN103130301A (en) * 2009-06-01 2013-06-05 奥加诺株式会社 Water treatment device for fuel cell
JP2013119058A (en) * 2011-12-07 2013-06-17 Kurita Water Ind Ltd Method of draining packed column and packed column system
JP2015050032A (en) * 2013-09-02 2015-03-16 東京瓦斯株式会社 Water treatment system and water treatment method in fuel cell system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315002A (en) * 1992-05-11 1993-11-26 Fuji Electric Co Ltd Water treatment system for fuel cell power generating set
JP2004230215A (en) * 2003-01-28 2004-08-19 Nissan Motor Co Ltd Ion exchange resin filter
JP2005102458A (en) * 2003-08-27 2005-04-14 Tatsuno Corp Fuel-cell-powered vehicle
JP2005243623A (en) * 2004-01-30 2005-09-08 Matsushita Electric Ind Co Ltd Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315002A (en) * 1992-05-11 1993-11-26 Fuji Electric Co Ltd Water treatment system for fuel cell power generating set
JP2004230215A (en) * 2003-01-28 2004-08-19 Nissan Motor Co Ltd Ion exchange resin filter
JP2005102458A (en) * 2003-08-27 2005-04-14 Tatsuno Corp Fuel-cell-powered vehicle
JP2005243623A (en) * 2004-01-30 2005-09-08 Matsushita Electric Ind Co Ltd Fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231155A (en) * 2008-03-25 2009-10-08 Aisin Seiki Co Ltd Water purification device for fuel cell system
CN101921010A (en) * 2009-06-01 2010-12-22 奥加诺株式会社 Water treatment facility for fuel cell
CN103130301A (en) * 2009-06-01 2013-06-05 奥加诺株式会社 Water treatment device for fuel cell
CN103130302A (en) * 2009-06-01 2013-06-05 奥加诺株式会社 Water treatment device for fuel cell
CN101921010B (en) * 2009-06-01 2013-06-19 奥加诺株式会社 Water treatment facility for fuel cell
JP2013119058A (en) * 2011-12-07 2013-06-17 Kurita Water Ind Ltd Method of draining packed column and packed column system
JP2015050032A (en) * 2013-09-02 2015-03-16 東京瓦斯株式会社 Water treatment system and water treatment method in fuel cell system

Similar Documents

Publication Publication Date Title
US7052790B2 (en) Fuel cell system and operation method having a condensed water tank open to atmosphere
JP5132142B2 (en) Fuel cell device
JP2009087791A (en) Water-refilling device of fuel-cell power generator
JP2009004343A (en) Carbon corrosion inhibitive device for cathode of fuel cell
JP3921935B2 (en) Fuel cell cogeneration system
JP2009009808A (en) Fuel cell device
JP5063189B2 (en) Fuel cell device
JP5383111B2 (en) Fuel cell
JP5178042B2 (en) Fuel cell device
JP5153178B2 (en) Fuel cell device
JP2008135271A (en) Fuel cell device
JP2007087623A (en) Fuel cell power generation system and method for operating same
JP2009009807A (en) Fuel cell device
JP2008300058A (en) Fuel cell device
JP2008053209A (en) Fuel cell device
JP2008159467A (en) Fuel cell device
JP2009081084A (en) Fuel cell power generation apparatus
JP4629999B2 (en) Water treatment system and fuel cell power generation system
JP5534775B2 (en) Fuel cell cogeneration system
JP2016157621A (en) Fuel battery system
JP2006147348A (en) Fuel cell power generation device and water quality control method of the same
JP2010153264A (en) Fuel cell system
JP5178041B2 (en) Fuel cell device
JP5178020B2 (en) Fuel cell device
JP5132144B2 (en) Fuel cell device and operation method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121120