JP2009085708A - Measuring method of organic substance concentration in sample liquid, and ultraviolet absorbance measuring device - Google Patents

Measuring method of organic substance concentration in sample liquid, and ultraviolet absorbance measuring device Download PDF

Info

Publication number
JP2009085708A
JP2009085708A JP2007254321A JP2007254321A JP2009085708A JP 2009085708 A JP2009085708 A JP 2009085708A JP 2007254321 A JP2007254321 A JP 2007254321A JP 2007254321 A JP2007254321 A JP 2007254321A JP 2009085708 A JP2009085708 A JP 2009085708A
Authority
JP
Japan
Prior art keywords
vis
absorbance
sample liquid
ultraviolet
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007254321A
Other languages
Japanese (ja)
Inventor
Masao Mizuno
雅夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2007254321A priority Critical patent/JP2009085708A/en
Publication of JP2009085708A publication Critical patent/JP2009085708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure accurately an organic substance concentration in sample liquid by removing accurately an influence of a turbidity component. <P>SOLUTION: When measuring the organic substance concentration in the sample liquid by determining a corrected ultraviolet absorbance Aa<SB>UV</SB>(Aa<SB>UV</SB>=AM<SB>UV</SB>-αAM<SB>VIS</SB>) by multiplying a visible light absorbance (Am<SB>VIS</SB>) acquired by measurement of the sample liquid by a coefficient α (α=S<SB>UV</SB>/S<SB>VIS</SB>) determined from the ratio between a turbidity detection sensitivity (S<SB>UV</SB>) of an ultraviolet ray used for measurement and a turbidity detection sensitivity (S<SB>VIS</SB>) of visible light, and by subtracting the value from an ultraviolet absorbance (Am<SB>UV</SB>) acquired by measurement of the sample liquid, the coefficient α is calculated following the equation (1): α=(Ad<SB>UV</SB>-Af<SB>UV</SB>)/(Ad<SB>VIS</SB>-Af<SB>VIS</SB>), wherein Ad<SB>UV</SB>is the ultraviolet absorbance of the sample liquid, Ad<SB>VIS</SB>is the visible light absorbance of the sample liquid, Af<SB>UV</SB>is the ultraviolet absorbance of a filtrate from the sample liquid, and Af<SB>VIS</SB>is the visible light absorbance of a filtrate from the sample liquid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、試料液中の有機物濃度測定方法およびこの方法を用いた紫外線吸光度計測器に関し、さらに詳述すると、試料液の見かけ上の紫外線吸光度から可視光吸光度を差し引くことにより、濁度成分による影響を排除する方式の試料液中の有機物濃度測定方法および紫外線吸光度計測器に関する。   The present invention relates to a method for measuring the concentration of an organic substance in a sample liquid and an ultraviolet absorbance measuring instrument using this method. The present invention relates to a method for measuring the concentration of an organic substance in a sample liquid and a UV absorbance measuring instrument that eliminates the influence.

従来、多くの有機物が紫外線(UV)を吸収することを利用して、光源ランプである低圧水銀ランプが発生する254nmの波長の光を試料液に照射し、その吸光度を求めて試料液中の有機物濃度を算出する紫外線吸光度計測器(有機汚濁モニタ)が使用されている。   Conventionally, by utilizing the fact that many organic substances absorb ultraviolet rays (UV), the sample liquid is irradiated with light having a wavelength of 254 nm generated by a low-pressure mercury lamp, which is a light source lamp, and the absorbance is obtained in the sample liquid. An ultraviolet absorbance measuring device (organic pollution monitor) for calculating the organic matter concentration is used.

上述した紫外線吸光度計測器では、試料液が濁度成分を含む場合は、UVが濁度成分によって散乱して透過光が減少するため、見かけ上の吸光度が大きくなる。そのため、光源ランプの可視光(VIS)の吸光度を測定して、見かけ上のUV吸光度(AmUV)からVIS吸光度(AmVIS)を差し引くことによって、濁度成分による影響を排除する方式を採用している(例えば、特許文献1参照)。 In the above-described ultraviolet absorbance measuring instrument, when the sample solution contains a turbidity component, UV is scattered by the turbidity component and transmitted light is reduced, so that the apparent absorbance increases. Therefore, a method is adopted that measures the absorbance of the light source lamp visible light ( VIS ) and subtracts the VIS absorbance (Am VIS ) from the apparent UV absorbance (Am UV ) to eliminate the influence of the turbidity component. (For example, refer to Patent Document 1).

この場合、UVの濁度検出感度(SUV)とVISの濁度検出感度(SVIS)とが異なるときには、それぞれの濁度に対する感度の比α(α=SUV/SVIS)を係数として測定によって得られたVIS吸光度(AmVIS)に乗算し、これを測定によって得られたUV吸光度(AmUV)から差し引くことにより、補正されたUV吸光度(AaUV)を算出している(AaUV=AmUV−α・AmVIS)。 In this case, when the UV turbidity detection sensitivity (S UV ) is different from the VIS turbidity detection sensitivity (S VIS ), the ratio α (α = S UV / S VIS ) of the sensitivity to each turbidity is used as a coefficient. The corrected UV absorbance (Aa UV ) is calculated by multiplying the VIS absorbance (Am VIS ) obtained by the measurement and subtracting this from the UV absorbance (Am UV ) obtained by the measurement (Aa UV = Am UV -α · Am VIS ).

特開昭55−166029号公報JP-A-55-166029

前述した係数αは、実際の試料液(実サンプル液)から濁度成分のみを抽出して蒸留水に分散させた溶液があれば、理論上は簡単に求めることができる。この場合、上記溶液の吸光度を実際に測定し、UV吸光度(AUV)とVIS吸光度(AVIS)との比を求めればよい(α=AUV/AVIS)。 The above-mentioned coefficient α can be easily obtained theoretically if there is a solution in which only the turbidity component is extracted from the actual sample liquid (actual sample liquid) and dispersed in distilled water. In this case, the absorbance of the solution is actually measured, and the ratio of UV absorbance (A UV ) to VIS absorbance (A VIS ) can be obtained (α = A UV / A VIS ).

しかし、実際には、実サンプル液から濁度成分だけを分離し、さらに蒸留水に分散させる手間と時間を考慮すると、上記のような溶液を調製することは容易ではない。   However, in practice, it is not easy to prepare a solution as described above, considering the time and effort to separate only the turbidity component from the actual sample solution and disperse it in distilled water.

また、濁度成分は測定する場所や状況により様々に変わるため、標準物質を用いることができない。さらに、濁度成分は色や粒度により異なる吸光度を示すから、VISの波長によっても吸光度が大きく異なる。そのため、屋内の試験では濁度標準物質であるカオリンを用いて校正することができても、フィールドでのマッチングがとれないという事態が発生する。   In addition, since the turbidity component varies depending on the measurement location and situation, a standard substance cannot be used. Furthermore, since the turbidity component exhibits different absorbance depending on the color and particle size, the absorbance varies greatly depending on the wavelength of VIS. For this reason, in an indoor test, even if calibration can be performed using kaolin, which is a turbidity standard substance, a situation in which matching in the field cannot be obtained occurs.

本発明は、前述した事情に鑑みてなされたもので、濁度成分を含む試料液中の有機物濃度を測定するに当たり、実際の試料液を用いて簡単に前記係数αを求めることができ、したがって濁度成分による影響を正しく排除して、試料液中の有機物濃度を正確に測定することができる試料液中の有機物濃度測定方法、およびこの方法を用いた紫外線吸光度計測器を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and in measuring the organic substance concentration in a sample liquid containing a turbidity component, the coefficient α can be easily obtained using an actual sample liquid. An object of the present invention is to provide a method for measuring the concentration of organic matter in a sample solution capable of accurately measuring the concentration of organic matter in the sample solution by correctly eliminating the influence of turbidity components, and an ultraviolet absorbance measuring instrument using this method. And

本発明者は、前記目的を達成するために、係数αは濁度成分だけのUV吸光度とVIS吸光度との比であることに着目し、そのデータをいかにして取得するかを考察した。その結果、濁度成分を含む実サンプル液のUV吸光度(AdUV)およびVIS吸光度(AdVIS)を測定した後、この実サンプル液をフィルタで濾過して濁度成分を除去した濾過液を調製し、得られた濾過液のUV吸光度(AfUV)およびVIS吸光度(AfVIS)を測定することで、実サンプル液のUV吸光度(AdUV)と濾過液のUV吸光度(AfUV)との差(AdUV−AfUV)と、実サンプル液のVIS吸光度(AdVIS)と濾過液のVIS吸光度(AfVIS)との差(AdVIS−AfVIS)とから、濁度成分による吸光度比αを算出できることを見出した(α=(AdUV−AfUV)/(AdVIS−AfVIS))。 In order to achieve the above object, the present inventor paid attention to the fact that the coefficient α is a ratio between the UV absorbance of only the turbidity component and the VIS absorbance, and considered how to obtain the data. As a result, after measuring the UV absorbance (Ad UV ) and VIS absorbance (Ad VIS ) of the actual sample solution containing the turbidity component, this actual sample solution was filtered with a filter to prepare a filtrate with the turbidity component removed. The difference between the UV absorbance (Ad UV ) of the actual sample solution and the UV absorbance (Af UV ) of the filtrate is measured by measuring the UV absorbance (Af UV ) and VIS absorbance (Af VIS ) of the obtained filtrate. From the difference between (Ad UV -Af UV ) and the VIS absorbance (Ad VIS ) of the actual sample liquid and the VIS absorbance (Af VIS ) of the filtrate (Ad VIS -Af VIS ), the absorbance ratio α due to the turbidity component is calculated. It was found that it can be calculated (α = (Ad UV −Af UV ) / (Ad VIS −Af VIS )).

本発明は、上記知見に基づいてなされたもので、測定に使用する紫外線の濁度検出感度(SUV)と可視光の濁度検出感度(SVIS)との比により求められる係数α(α=SUV/SVIS)を試料液の測定により得られた可視光吸光度(AmVIS)に乗算し、その値を試料液の測定により得られた紫外線吸光度(AmUV)から減算することにより、補正された紫外線吸光度AaUV(AaUV=AmUV−α・AmVIS)を求めて試料液中の有機物濃度を測定するに当たり、前記係数αを下記式(1)により算出することを特徴とする試料液中の有機物濃度測定方法を提供する。
α=(AdUV−AfUV)/(AdVIS−AfVIS) …(1)
AdUV :試料液の紫外線吸光度
AdVIS:試料液の可視光吸光度
AfUV :試料液の濾過液の紫外線吸光度
AfVIS:試料液の濾過液の可視光吸光度
The present invention has been made on the basis of the above knowledge, and a coefficient α (α that is obtained by a ratio between an ultraviolet turbidity detection sensitivity (S UV ) and a visible turbidity detection sensitivity (S VIS ) used for measurement. = S UV / S VIS ) multiplied by the visible light absorbance (Am VIS ) obtained by measuring the sample solution, and subtracting the value from the ultraviolet absorbance (Am UV ) obtained by measuring the sample solution, When the corrected ultraviolet absorbance Aa UV (Aa UV = Am UV -α · Am VIS ) is obtained and the organic substance concentration in the sample liquid is measured, the coefficient α is calculated by the following equation (1). Provided is a method for measuring the concentration of an organic substance in a sample solution.
α = (Ad UV −Af UV ) / (Ad VIS −Af VIS ) (1)
Ad UV : UV absorbance of sample liquid Ad VIS : Visible light absorbance of sample liquid Af UV : UV absorbance of filtrate of sample liquid Af VIS : Visible light absorbance of filtrate of sample liquid

また、本発明は、測定に使用する紫外線の濁度検出感度(SUV)と可視光の濁度検出感度(SVIS)との比により求められる係数α(α=SUV/SVIS)を試料液の測定により得られた可視光吸光度(AmVIS)に乗算し、その値を試料液の測定により得られた紫外線吸光度(AmUV)から減算することにより、補正された紫外線吸光度AaUV(AaUV=AmUV−α・AmVIS)を求めて試料液中の有機物濃度を測定するに当たり、前記係数αを前記式(1)により算出することを特徴とする紫外線吸光度計測器を提供する。 In the present invention, the coefficient α (α = S UV / S VIS ) determined by the ratio between the turbidity detection sensitivity (S UV ) of ultraviolet rays used for measurement and the turbidity detection sensitivity (S VIS ) of visible light is calculated. By multiplying the visible light absorbance (Am VIS ) obtained by the measurement of the sample liquid and subtracting the value from the ultraviolet absorbance (Am UV ) obtained by the measurement of the sample liquid, the corrected ultraviolet absorbance Aa UV ( (Aa UV = Am UV -α · Am VIS ) is obtained, and when measuring the organic substance concentration in the sample liquid, the coefficient α is calculated by the equation (1).

本発明において、試料液を濾過して濾過液を得るためのフィルタの種類に限定はなく、試料液中の濁度成分を除去できるものであればいずれのものでもよい。また、試料液の濾過は、紫外線吸光度計測器において自動的に行ってもよく、別の濾過装置を用いて行ってもよく、手作業で行ってもよい。   In the present invention, the type of filter for filtering the sample liquid to obtain the filtrate is not limited, and any filter can be used as long as it can remove the turbidity component in the sample liquid. In addition, the sample solution may be filtered automatically by an ultraviolet absorbance measuring instrument, may be performed using another filtering device, or may be performed manually.

本発明の紫外線吸光度計測器は、例えば、多波長吸光度測定方式の水質分析計、有機汚濁モニタなどとして構成することができる。また、本発明の紫外線吸光度計測器は、測定セルを溶液中に浸漬して測定を行う紫外線吸光度計測器として構成することもできる。   The ultraviolet absorbance measuring instrument of the present invention can be configured as, for example, a multi-wavelength absorbance measurement type water quality analyzer, an organic pollution monitor, or the like. In addition, the ultraviolet absorbance measuring instrument of the present invention can be configured as an ultraviolet absorbance measuring instrument that performs measurement by immersing a measurement cell in a solution.

本発明によれば、濁度成分を含む試料液中の有機物濃度を測定するに当たり、実際の試料液を用いて簡単に係数αを求めることができ、したがって濁度成分による影響を正しく排除して、試料液中の有機物濃度を正確に測定することができる。   According to the present invention, in measuring the organic substance concentration in the sample liquid containing the turbidity component, the coefficient α can be easily obtained using the actual sample liquid, and thus the influence of the turbidity component is correctly eliminated. The organic substance concentration in the sample solution can be accurately measured.

以下、図面を参照して本発明をさらに詳しく説明する。図1は本発明に係る紫外線吸光度計測器(有機汚濁モニタ)の一実施形態を示す概略図である。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic view showing an embodiment of an ultraviolet absorbance measuring instrument (organic pollution monitor) according to the present invention.

本例の紫外線吸光度計測器において、10は光源ランプ(水銀ランプ)、12は光源ランプ電源、14は測定セル、15はセル窓、16はワイパー、17はワイパー駆動モータ、18はハーフミラー、20は集光レンズ、22は水平移動可能なUVフィルタ、24は紫外線パスフィルタ、26は紫外線素子、28は可視光パスフィルタ、30は可視光素子、32は紫外・可視光素子、34は制御演算部を示す。図中36は、測定セル14を形成するとともに、光源ランプ10、ハーフミラー18、可視光パスフィルタ28、可視光素子30および紫外・可視光素子32を収容する構造体を示す。また、紫外線素子26、可視光素子30および紫外・可視光素子32は、それぞれ制御演算部34と接続されている。   In the ultraviolet absorbance measuring instrument of this example, 10 is a light source lamp (mercury lamp), 12 is a light source lamp power source, 14 is a measurement cell, 15 is a cell window, 16 is a wiper, 17 is a wiper drive motor, 18 is a half mirror, 20 Is a condensing lens, 22 is a horizontally movable UV filter, 24 is an ultraviolet pass filter, 26 is an ultraviolet ray element, 28 is a visible light pass filter, 30 is a visible light element, 32 is an ultraviolet / visible light element, and 34 is a control calculation. Indicates the part. In the figure, reference numeral 36 denotes a structure that forms the measurement cell 14 and accommodates the light source lamp 10, the half mirror 18, the visible light pass filter 28, the visible light element 30, and the ultraviolet / visible light element 32. Further, the ultraviolet element 26, the visible light element 30, and the ultraviolet / visible light element 32 are each connected to a control calculation unit 34.

本例の紫外線吸光度計測器では、試料液が導入された測定セル14を通った光のうち、ハーフミラー18によって直角に曲げられた光38は、光軸に対して直角に配置された紫外線パスフィルタ24に入って波長選択され、紫外線素子26によって電気信号VUVになる。一方、ハーフミラー18を通った光40は、可視光パスフィルタ(バンドパス)28によって波長選択され、可視光素子30によって電気信号VVISになる。測定セル14を通らずに紫外・可視光素子32に入った光42は、電気信号VREFになる。 In the ultraviolet absorbance measuring instrument of this example, the light 38 bent at a right angle by the half mirror 18 out of the light passing through the measurement cell 14 into which the sample liquid has been introduced is an ultraviolet path arranged at a right angle to the optical axis. The wavelength is selected by entering the filter 24 and is converted into an electric signal V UV by the ultraviolet element 26. On the other hand, the wavelength of the light 40 that has passed through the half mirror 18 is selected by the visible light pass filter (bandpass) 28, and becomes the electric signal V VIS by the visible light element 30. The light 42 that has entered the ultraviolet / visible light element 32 without passing through the measurement cell 14 becomes an electric signal V REF .

制御演算部34では、VUVとVREFからUV吸光度AmUV(AmUV=logVREF/VUV)を求め、VVISとVREFからVIS吸光度AmVIS(AmVIS=logVREF/VVIS)を求める。AmUVは見かけ上の吸光度であり、濁度成分による吸光度を含んでいる。そこで、前述した式(1)を用いて前記係数αを予め求めておくとともに、制御演算部34では、この係数αをVIS吸光度AmVISに乗算し、その値をUV吸光度AmUVから減算することにより、補正されたUV吸光度、すなわち有機汚濁による吸光度AaUV(AaUV=AmUV−α・AmVIS)を求める。 The control calculation unit 34 obtains UV absorbance Am UV (Am UV = log V REF / V UV ) from V UV and V REF, and obtains VIS absorbance Am VIS (Am VIS = log V REF / V VIS ) from V VIS and V REF. Ask. Am UV is the apparent absorbance and includes absorbance due to turbidity components. Therefore, the coefficient α is obtained in advance using the above-described equation (1), and the control calculation unit 34 multiplies the coefficient α by VIS absorbance Am VIS and subtracts the value from the UV absorbance Am UV. Thus, the corrected UV absorbance, that is, the absorbance Aa UV due to organic contamination (Aa UV = Am UV -α · Am VIS ) is obtained.

有機汚濁物質および濁度成分を含む試料液を調製し、図1に示した紫外線吸光度計測器を用いて本発明の有効性を実証する実験を行った。有機汚濁物質としては、フタル酸水素カリウム(KHP)を用いた。KHPは、代表的な有機汚濁物質であり、紫外線吸光度計測器の校正に用いられる標準物質である。濁度成分としては、カオリンを用いた。カオリンは、妨害成分となる濁度成分の標準物質である。   A sample solution containing an organic pollutant and a turbidity component was prepared, and an experiment was conducted to verify the effectiveness of the present invention using the ultraviolet absorbance measuring instrument shown in FIG. As the organic pollutant, potassium hydrogen phthalate (KHP) was used. KHP is a typical organic pollutant and is a standard substance used for calibration of an ultraviolet absorbance measuring instrument. Kaolin was used as the turbidity component. Kaolin is a standard substance of turbidity component that becomes a disturbing component.

まず、ゼロ校正およびスパン校正を行った。この場合、KHP100mg/L、カオリン100mg/Lを含む試料液のUV吸光度(AdUV)およびVIS吸光度(AdVIS)を測定した。AdUVは1.284、AdVISは0.283であった。次に、上記試料液を吸引濾過装置で濾過してカオリンを除去した濾過液を調製し、得られた濾過液のUV吸光度(AfUV)およびVIS吸光度(AfVIS)を測定した。AfUVは0.877、AfVISは−0.006であった。この結果、係数αは、前述の式(1)により1.408であった。 First, zero calibration and span calibration were performed. In this case, the UV absorbance (Ad UV ) and VIS absorbance (Ad VIS ) of a sample solution containing KHP 100 mg / L and kaolin 100 mg / L were measured. Ad UV was 1.284 and Ad VIS was 0.283. Next, the sample solution was filtered with a suction filtration device to prepare a filtrate from which kaolin was removed, and UV absorbance (Af UV ) and VIS absorbance (Af VIS ) of the obtained filtrate were measured. Af UV was 0.877 and Af VIS was -0.006. As a result, the coefficient α was 1.408 according to the above equation (1).

次に、KHP100mg/Lおよびカオリン100mg/Lを含む試料液のUV吸光度(AmUV)およびVIS吸光度(AmVIS)を測定した。AmUVは1.323、AmVISは0.323であった。その結果、補正された紫外線吸光度AaUV(AaUV=AmUV−α・AmVIS)は0.868であった。 Next, UV absorbance (Am UV ) and VIS absorbance (Am VIS ) of a sample solution containing 100 mg / L of KHP and 100 mg / L of kaolin were measured. Am UV was 1.323 and Am VIS was 0.323. As a result, the corrected ultraviolet absorbance Aa UV (Aa UV = Am UV -α · Am VIS ) was 0.868.

また、KHP50mg/Lおよびカオリン50mg/Lを含む試料液のUV吸光度(AmUV)およびVIS吸光度(AmVIS)を測定した。AmUVは0.628、AmVISは0.146であった。その結果、補正された紫外線吸光度AaUV(AaUV=AmUV−α・AmVIS)は0.422であった。 Further, the UV absorbance (Am UV ) and VIS absorbance (Am VIS ) of a sample solution containing 50 mg / L of KHP and 50 mg / L of kaolin were measured. Am UV was 0.628 and Am VIS was 0.146. As a result, the corrected ultraviolet absorbance Aa UV (Aa UV = Am UV -α · Am VIS ) was 0.422.

上記測定結果を吸光度基準値と比較した結果を表1に示す。吸光度基準値とは、濁度ゼロのとき、すなわち妨害成分がないときのKHPの当該濃度における吸光度値(基準値)である。表1より、補正された紫外線吸光度AaUVは吸光度基準値と近似しており、したがって本発明による補正が有効であることが確認された。 Table 1 shows the result of comparison of the measurement result with the absorbance reference value. The absorbance reference value is an absorbance value (reference value) at the concentration of KHP when turbidity is zero, that is, when there is no interfering component. From Table 1, it was confirmed that the corrected ultraviolet absorbance Aa UV is close to the absorbance reference value, and therefore the correction according to the present invention is effective.

Figure 2009085708
Figure 2009085708

本発明に係る紫外線吸光度計測器の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the ultraviolet-ray-absorbance measuring device which concerns on this invention.

符号の説明Explanation of symbols

10 光源ランプ
14 測定セル
15 セル窓
18 ハーフミラー
24 紫外線パスフィルタ
26 紫外線素子
28 可視光パスフィルタ
30 可視光素子
32 紫外・可視光素子
34 制御演算部
38、40、42 光
DESCRIPTION OF SYMBOLS 10 Light source lamp 14 Measurement cell 15 Cell window 18 Half mirror 24 Ultraviolet pass filter 26 Ultraviolet element 28 Visible light pass filter 30 Visible light element 32 Ultraviolet / visible light element 34 Control calculating part 38, 40, 42 Light

Claims (2)

測定に使用する紫外線の濁度検出感度(SUV)と可視光の濁度検出感度(SVIS)との比により求められる係数α(α=SUV/SVIS)を試料液の測定により得られた可視光吸光度(AmVIS)に乗算し、その値を試料液の測定により得られた紫外線吸光度(AmUV)から減算することにより、補正された紫外線吸光度AaUV(AaUV=AmUV−α・AmVIS)を求めて試料液中の有機物濃度を測定するに当たり、前記係数αを下記式(1)により算出することを特徴とする試料液中の有機物濃度測定方法。
α=(AdUV−AfUV)/(AdVIS−AfVIS) …(1)
AdUV :試料液の紫外線吸光度
AdVIS:試料液の可視光吸光度
AfUV :試料液の濾過液の紫外線吸光度
AfVIS:試料液の濾過液の可視光吸光度
The coefficient α (α = S UV / S VIS ) obtained by the ratio of the turbidity detection sensitivity (S UV ) of ultraviolet rays used for measurement and the turbidity detection sensitivity (S VIS ) of visible light is obtained by measuring the sample liquid. By multiplying the obtained visible light absorbance (Am VIS ) and subtracting the value from the ultraviolet absorbance (Am UV ) obtained by measuring the sample solution, the corrected ultraviolet absorbance Aa UV (Aa UV = Am UV − In determining the organic substance concentration in the sample liquid by obtaining (α · Am VIS ), the coefficient α is calculated by the following equation (1).
α = (Ad UV −Af UV ) / (Ad VIS −Af VIS ) (1)
Ad UV : UV absorbance of sample liquid Ad VIS : Visible light absorbance of sample liquid Af UV : UV absorbance of filtrate of sample liquid Af VIS : Visible light absorbance of filtrate of sample liquid
測定に使用する紫外線の濁度検出感度(SUV)と可視光の濁度検出感度(SVIS)との比により求められる係数α(α=SUV/SVIS)を試料液の測定により得られた可視光吸光度(AmVIS)に乗算し、その値を試料液の測定により得られた紫外線吸光度(AmUV)から減算することにより、補正された紫外線吸光度AaUV(AaUV=AmUV−α・AmVIS)を求めて試料液中の有機物濃度を測定するに当たり、前記係数αを下記式(1)により算出することを特徴とする紫外線吸光度計測器。
α=(AdUV−AfUV)/(AdVIS−AfVIS) …(1)
AdUV :試料液の紫外線吸光度
AdVIS:試料液の可視光吸光度
AfUV :試料液の濾過液の紫外線吸光度
AfVIS:試料液の濾過液の可視光吸光度
The coefficient α (α = S UV / S VIS ) obtained by the ratio of the turbidity detection sensitivity (S UV ) of ultraviolet rays used for measurement and the turbidity detection sensitivity (S VIS ) of visible light is obtained by measuring the sample liquid. By multiplying the obtained visible light absorbance (Am VIS ) and subtracting the value from the ultraviolet absorbance (Am UV ) obtained by measuring the sample solution, the corrected ultraviolet absorbance Aa UV (Aa UV = Am UV − In determining the organic substance concentration in the sample liquid by obtaining ( α · Am VIS ), the coefficient α is calculated by the following equation (1).
α = (Ad UV −Af UV ) / (Ad VIS −Af VIS ) (1)
Ad UV : UV absorbance of sample liquid Ad VIS : Visible light absorbance of sample liquid Af UV : UV absorbance of filtrate of sample liquid Af VIS : Visible light absorbance of filtrate of sample liquid
JP2007254321A 2007-09-28 2007-09-28 Measuring method of organic substance concentration in sample liquid, and ultraviolet absorbance measuring device Pending JP2009085708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254321A JP2009085708A (en) 2007-09-28 2007-09-28 Measuring method of organic substance concentration in sample liquid, and ultraviolet absorbance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254321A JP2009085708A (en) 2007-09-28 2007-09-28 Measuring method of organic substance concentration in sample liquid, and ultraviolet absorbance measuring device

Publications (1)

Publication Number Publication Date
JP2009085708A true JP2009085708A (en) 2009-04-23

Family

ID=40659329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254321A Pending JP2009085708A (en) 2007-09-28 2007-09-28 Measuring method of organic substance concentration in sample liquid, and ultraviolet absorbance measuring device

Country Status (1)

Country Link
JP (1) JP2009085708A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398953A (en) * 2013-08-14 2013-11-20 中山欧麦克仪器设备有限公司 Remote control sludge concentration detector
WO2014163037A1 (en) * 2013-04-02 2014-10-09 株式会社日立ハイテクノロジーズ Analyzer and automatic analyzer
CN114002168A (en) * 2021-08-04 2022-02-01 河北雄安华清宏远环境科技有限公司 Method and device for detecting liquid concentration by eliminating turbidity difference
WO2022086275A1 (en) * 2020-10-22 2022-04-28 주식회사 테크로스 Concentration measuring apparatus and method using absorption photometry
CN117517230A (en) * 2024-01-03 2024-02-06 北京英视睿达科技股份有限公司 Water quality monitoring method, device, equipment and medium based on ultraviolet-visible spectrum

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163037A1 (en) * 2013-04-02 2014-10-09 株式会社日立ハイテクノロジーズ Analyzer and automatic analyzer
JP2014202523A (en) * 2013-04-02 2014-10-27 株式会社日立ハイテクノロジーズ Analysis apparatus and automatic analysis apparatus
CN105008899A (en) * 2013-04-02 2015-10-28 株式会社日立高新技术 Analyzer and automatic analyzer
US9459271B2 (en) 2013-04-02 2016-10-04 Hitachi High-Technologies Corporation Analyzer and automatic analyzer
CN103398953A (en) * 2013-08-14 2013-11-20 中山欧麦克仪器设备有限公司 Remote control sludge concentration detector
WO2022086275A1 (en) * 2020-10-22 2022-04-28 주식회사 테크로스 Concentration measuring apparatus and method using absorption photometry
KR20220053355A (en) * 2020-10-22 2022-04-29 주식회사 테크로스 Apparatus and method for measuring concentration using absorption photometry
KR102393658B1 (en) 2020-10-22 2022-05-17 주식회사 테크로스 Apparatus and method for measuring concentration using absorption photometry
CN114002168A (en) * 2021-08-04 2022-02-01 河北雄安华清宏远环境科技有限公司 Method and device for detecting liquid concentration by eliminating turbidity difference
CN117517230A (en) * 2024-01-03 2024-02-06 北京英视睿达科技股份有限公司 Water quality monitoring method, device, equipment and medium based on ultraviolet-visible spectrum

Similar Documents

Publication Publication Date Title
TWI629462B (en) Spectroscopic analysis method and spectroscopic analyzer
JP2009085708A (en) Measuring method of organic substance concentration in sample liquid, and ultraviolet absorbance measuring device
JP2005524079A (en) Ultra-sensitive spectrophotometer
WO2015023545A1 (en) Systems and methods for monitoring phenanthrene equivalent concentration
JP7489972B2 (en) Water quality analysis system, sensor module, calibration device, and method for calibrating a water quality analysis system
WO2016129033A1 (en) Multi-channel spectrophotometer and data processing method for multi-channel spectrophotometer
KR20190040278A (en) Water quality detection
KR20170052256A (en) Apparatus and method for measuring concentration of material
JP2019518227A (en) Method and apparatus for determining the concentration of a substance in a liquid medium
JP2011043332A (en) Fluorescence detector
JP4660266B2 (en) Water quality inspection device
JP4487197B2 (en) Turbidity / colorimeter
JP2018146539A (en) Multi-wavelength fluorescence analyzer
JP2001033388A (en) Method and device for measuring concentration of chlorophyll a
JP4048139B2 (en) Concentration measuring device
Ratzlaff et al. Absorption-corrected fiber optic fluorometer
JP2008249363A (en) Turbidimeter
CN209961685U (en) Water quality spectrum analyzer
JPS6212842A (en) Fluorescent analysis instrument
RU2281479C1 (en) Fluorometer-turbidimeter
JPS62278436A (en) Fluorescence light measuring method and apparatus
CN212432972U (en) Dual-optical-path spectrophotometry measuring device for multiplexing CCD
JP3335776B2 (en) Water quality measurement method and water quality measurement device
TWI847724B (en) Methods and apparatuses for fluorospectrometric measurements of low photon budget samples
Obein et al. Report on the CCPR Key Comparison K6 Spectral regular transmittance