JP2009082033A - Method for producing completely human antibody - Google Patents

Method for producing completely human antibody Download PDF

Info

Publication number
JP2009082033A
JP2009082033A JP2007253917A JP2007253917A JP2009082033A JP 2009082033 A JP2009082033 A JP 2009082033A JP 2007253917 A JP2007253917 A JP 2007253917A JP 2007253917 A JP2007253917 A JP 2007253917A JP 2009082033 A JP2009082033 A JP 2009082033A
Authority
JP
Japan
Prior art keywords
antibody
human antibody
fully human
egg
yolk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007253917A
Other languages
Japanese (ja)
Inventor
Tomoyuki Nakaishi
智之 中石
Hiromi Higami
宏美 樋上
Takuya Shindo
卓也 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007253917A priority Critical patent/JP2009082033A/en
Publication of JP2009082033A publication Critical patent/JP2009082033A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a completely human antibody, having a human-type sugar chain that is very unlikely to cause immunoreaction, when it is administered to humans, to a higher concentration by transgenic birds. <P>SOLUTION: The method for producing the completely human antibody includes introducing a gene that encodes the completely human antibody to a bird for making the gene express, and collecting the completely human antibody from the inside of albumen and yolk of the bird, to which the gene is introduced. As a result, the completely human antibody, having higher therapeutic effects can be provided in large quantity, by allowing the completely human antibody to be produced in the eggs of the transgenic bird, and collecting and purifying the antibody. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、トランスジェニック鳥類による完全ヒト型抗体の高濃度生産法に関する。   The present invention relates to a high-concentration production method for fully human antibodies by transgenic birds.

近年、組換えタンパク質生産技術が開発され多くの高機能性タンパク質製剤が次々と上市され、医薬品、食品業界で注目されている。ところが、生理活性の高いタンパク質医薬品は糖鎖修飾に代表される高度な翻訳後修飾が必要とされ、生産コストの高い発現システムおよび生産方法が用いられているのが現状である。わが国の国民所得に対する医療費負担の割合は年々増加しており、個人はもとより国内経済に大きな負担をかけており、安価な医薬品供給が望まれている。   In recent years, recombinant protein production technology has been developed, and many highly functional protein preparations have been put on the market one after another and attracting attention in the pharmaceutical and food industries. However, highly bioactive protein pharmaceuticals require advanced post-translational modifications such as sugar chain modification, and the present situation is that expression systems and production methods with high production costs are used. The ratio of medical expenses to the national income of our country is increasing year by year, and it places a heavy burden on the domestic economy as well as individuals, and cheap drug supply is desired.

現在上市または開発されている組換えタンパク質医薬品は微生物または培養細胞を用いた生産が一般的であるが、微生物には高度な翻訳後修飾が不可能であり、医薬品あるいは医薬品原料として限られたターゲットしか生産することはできない。また、培養細胞での生産ではある程度の翻訳後修飾が付与される代償として、高い栄養価の培地、高価な血清、増殖因子が要求される。また、培養槽やプラントにかかる生産設備費にも莫大なコストがかかってしまい、これらの手法で生産された医薬品の価格高騰に歯止めがかかっていない。   Recombinant protein drugs that are currently on the market or being developed are generally produced using microorganisms or cultured cells, but microorganisms cannot be subjected to advanced post-translational modifications and are limited targets for drugs or pharmaceutical raw materials. It can only be produced. In addition, a medium with high nutritional value, expensive serum, and a growth factor are required as a compensation for a certain degree of post-translational modification in production in cultured cells. In addition, the production equipment costs for the culture tank and the plant are enormous, and the price increase of pharmaceuticals produced by these methods has not been stopped.

一方、ごく最近にはトランスジェニック動物によるタンパク質生産方法が報告された。ウシやヤギ、ヒツジといった哺乳動物の乳に目的タンパク質を蓄積させる、いわゆる動物工場である。目的タンパク質にもよるが、抗体が乳汁中に10mg/ml発現したという報告もある(例えば、非特許文献1参照)。しかし、この方法にもBSEの問題や利用可能な哺乳類は個体が大きく生産、飼育、管理が大変であること、性成熟の期間がヤギやヒツジで8ヶ月、ウシでは15ヶ月と長いこと等の問題がある。   On the other hand, a protein production method using transgenic animals has been recently reported. It is a so-called animal factory that accumulates the target protein in the milk of mammals such as cows, goats and sheep. Although it depends on the target protein, there is also a report that the antibody was expressed at 10 mg / ml in milk (see, for example, Non-Patent Document 1). However, this method also has problems such as BSE, available mammals are large in production, breeding and management, sexual maturity is 8 months for goats and sheep, 15 months for cattle, etc. There's a problem.

このような現状を考え、我々は鳥類をタンパク質生産システムとすることに着目した。鳥類の卵には全成分の三分の一近くをタンパク質が占め、非常に高いタンパク質生産、蓄積能を有している。トランスジェニック作製技術により、鳥類に目的タンパク質を生産させ、その卵中に蓄積すればその生産量は驚くべきものであり、現在の製造施設飽和状態による生産量の頭打ちを打破することができる。また、トランスジェニック動物は厳密に管理された施設内でしか飼育できないが、鳥類は個体が小さいため広大な飼育スペースが必要ではなく飼育にかかるコストが安価である。さらに鳥類には性成熟する期間が5ヶ月と短い、人工授精法が確立しており大規模の遺伝子組換え群を急速に育成可能である、一般に卵の中は自然に無菌であるなどの利点が挙げられる。   Given this situation, we focused on using birds as a protein production system. Avian eggs have nearly one-third of all components, and have a very high protein production and accumulation capacity. If the target protein is produced in birds by the transgenic production technique and accumulated in the egg, the production amount will be surprising, and the peak of the production amount due to the current state of production facility saturation can be overcome. Transgenic animals can only be bred in strictly controlled facilities, but birds are small, so a vast breeding space is not necessary and the cost of breeding is low. In addition, birds have a short sexual maturity period of 5 months, an artificial insemination method has been established, and large-scale genetic recombination groups can be bred rapidly. Generally, eggs are naturally sterile. Is mentioned.

糖鎖の付加を高活性に必要とする糖タンパク質を医薬品とする場合、その糖鎖構造が重要である。現在多くの糖タンパク質が生産されている培養細胞は、付加結合する糖鎖は多くの種類が混在し、培養方法や培養条件、スケールアップによってその存在率と活性が変動してしまう(例えば、非特許文献2)。これでは安定活性には不十分である。また、培養細胞の糖鎖構造は必ずしもヒトの糖鎖構造と同じではない。これは免疫反応を起こす原因となりうる。これら糖鎖構造が違うことで患者への投与量が増えることは患者に大きな負担を強いることになる。   When a glycoprotein that requires high activity for the addition of a sugar chain is used as a pharmaceutical product, the sugar chain structure is important. In cultured cells where many glycoproteins are currently produced, there are many types of sugar chains to which additional bonds are attached, and their abundance and activity vary depending on the culture method, culture conditions, and scale-up (for example, Patent Document 2). This is insufficient for stable activity. In addition, the sugar chain structure of cultured cells is not necessarily the same as the human sugar chain structure. This can cause an immune response. Increasing the dose to the patient due to the difference in these sugar chain structures imposes a heavy burden on the patient.

鳥類の卵中で産生されるタンパク質に付加される糖鎖はヒト型に大変近い(例えば、非特許文献3)。シアル酸はN−アセチルノイラミン酸(NANA)とN−グリコリルノイラミン酸(NGNA)で構成されており、培養細胞はその混成型である一方、ヒトはNANAのみを付加する。ニワトリもヒト同様にNANAのみを付加する。また、その卵の生産性が安定であることは、これまでの食卵及びワクチン産生の実績から実証されている。   A sugar chain added to a protein produced in an avian egg is very close to a human type (for example, Non-Patent Document 3). Sialic acid is composed of N-acetylneuraminic acid (NANA) and N-glycolylneuraminic acid (NGNA), and cultured cells are a mixture of them, while humans add only NANA. Chickens only add NANA as in humans. Moreover, it is demonstrated from the past results of egg production and vaccine production that the egg productivity is stable.

トランスジェニック鳥類で産生させるタンパク質は例えば、ヒトインターフェロンやヒト由来エリスロポエチンの報告がある(例えば、特許文献1および2)。また抗体を産生させる報告もある(例えば、非特許文献3、4および5)。例えば、非特許文献3ではマウス―ヒトモノクロナル抗体を最大3.4mg/egg発現している。非特許文献4では、scFv−Fc(一本鎖抗体)を200μg/ml、非特許文献5ではscFv−Fcを5.6mg/ml発現している。抗体医薬は、開発候補品の選択、評価の早さ、ターゲットへの高選択性と副作用リスクの最小化、治療までの時間短縮、効果の持続、DDSなどへの幅広い利用などの利点がある。1980年代後半から抗体工学技術が急速に発展し、キメラ抗体やヒト化抗体など遺伝子組換え型の抗体医薬品の上市が相次いでいる。しかし、これらは副作用を完全に除去できないという問題を抱えている。また、scFvは完全抗体に比べ分子量が小さいことから組織への浸透効率がよいことが報告されているが、完全抗体は生体内での安定性・結合親和力の増加、エフェクター機能の付加などのメリットがあり、抗体を生体内で長期間作用させたり、膜上に標的分子を発現している細胞を除去したい場合には完全抗体が有利である。これらを解決するためには、抗体全配列がヒト由来である完全ヒト型抗体の生産が望まれるが、トランスジェニック鳥類での生産にはまだいたっていない。
米国特許出願公開第2004/0019922号明細書 米国特許出願公開第2004/0019923号明細書 Trends Biotechnol.1999 Sep;17(9):367−74 Current Opinion in Biotechnoly2002,13:625−629 NATURE BIOTECHNOLOGY 2005 Sep;23(9):1159―1169 PNAS 2007 Feb;104(6):1771―1776 JOURNAL OF VIROLOGY 2005 Sep;19(17):10864―10874
For example, human interferon and human-derived erythropoietin have been reported as proteins produced in transgenic birds (for example, Patent Documents 1 and 2). There are also reports of producing antibodies (for example, Non-Patent Documents 3, 4 and 5). For example, in Non-Patent Document 3, a mouse-human monoclonal antibody is expressed at a maximum of 3.4 mg / egg. Non-patent document 4 expresses scFv-Fc (single chain antibody) at 200 μg / ml, and non-patent document 5 expresses scFv-Fc at 5.6 mg / ml. Antibody drugs have advantages such as selection of development candidates, rapid evaluation, high selectivity to the target and minimization of the risk of side effects, shortening the time to treatment, sustained effect, and wide use for DDS and the like. Antibody engineering technology has developed rapidly since the late 1980s, and a series of genetically engineered antibody drugs such as chimeric antibodies and humanized antibodies are on the market. However, these have a problem that side effects cannot be completely removed. In addition, scFv has been reported to have better tissue penetration efficiency due to its lower molecular weight than complete antibody, but complete antibody has advantages such as increased in vivo stability, increased binding affinity, and addition of effector functions. The complete antibody is advantageous when the antibody is allowed to act in vivo for a long period of time or when cells expressing the target molecule on the membrane are to be removed. In order to solve these problems, production of a fully human antibody whose whole antibody sequence is derived from humans is desired, but has not yet been produced in transgenic birds.
US Patent Application Publication No. 2004/0019922 US Patent Application Publication No. 2004/0019923 Trends Biotechnol. 1999 Sep; 17 (9): 367-74. Current Opinion in Biotechnology 2002, 13: 625-629 NATURE BIOTECHNOLOGY 2005 Sep; 23 (9): 1159-1169 PNAS 2007 Feb; 104 (6): 1771-1776 JOURNAL OF VIROLOGY 2005 Sep; 19 (17): 10864-10874

上記の現状に鑑み、本発明では、ヒトに投与した場合に免疫反応を極めて起こし難いヒト型糖鎖を有する完全ヒト型抗体をトランスジェニック鳥類により高濃度に生産する方法を示すことを課題とする。   In view of the above-mentioned present situation, an object of the present invention is to show a method for producing a fully human antibody having a human-type sugar chain that hardly causes an immune reaction when administered to humans at a high concentration by transgenic birds. .

本発明者らは鋭意検討を重ねた結果、トランスジェニック鳥類で完全ヒト型抗体を高発現生産させる方法を見出した。また、より血中安定性が高いシアル酸付加完全ヒト型抗体を生産させる方法も見出した。   As a result of intensive studies, the present inventors have found a method for producing a highly humanized fully expressed antibody in transgenic birds. Also, a method for producing a sialic acid-added fully human antibody with higher blood stability was found.

即ち、本発明が提供するのは、以下のとおりである。
(1)完全ヒト型抗体をコードする遺伝子を鳥類に導入し、前記遺伝子を発現させ、前記遺伝子を導入した鳥類の血中、卵白中、卵黄中から前記完全ヒト型抗体を回収することを特徴とする、完全ヒト型抗体を生産する方法。
(2)卵黄中から完全ヒト型抗体を回収、精製する(1)記載の方法。
(3)卵白中に完全ヒト型抗体を40μg/ml以上含む(1)に記載の方法。
(4)卵黄中に完全ヒト型抗体を1μg/ml以上含む(1)に記載の方法。
(5)卵中に完全ヒト型抗体を1mg/egg以上含む(1)に記載の方法。
(6)鳥類が家禽類である、(1)に記載の方法。
(7)鳥類がニワトリである(6)に記載の方法。
(8)(1)〜(7)に記載の方法で産生された完全ヒト型抗体。
(9)卵黄中にシアル酸を1つ以上含む完全ヒト型抗体を7%以上含む鶏卵。
(10)前記完全ヒト抗体が抗TNF抗体である(6)記載の鶏卵。
That is, the present invention provides the following.
(1) A gene encoding a fully human antibody is introduced into a bird, the gene is expressed, and the fully human antibody is recovered from blood, egg white, and egg yolk of the bird into which the gene has been introduced. A method for producing a fully human antibody.
(2) The method according to (1), wherein a fully human antibody is collected and purified from egg yolk.
(3) The method according to (1), wherein the egg white contains 40 μg / ml or more of a fully human antibody.
(4) The method according to (1), wherein the human yolk contains 1 μg / ml or more of a fully human antibody.
(5) The method according to (1), wherein 1 mg / egg or more of the fully human antibody is contained in the egg.
(6) The method according to (1), wherein the birds are poultry.
(7) The method according to (6), wherein the bird is a chicken.
(8) A fully human antibody produced by the method according to (1) to (7).
(9) A chicken egg containing 7% or more of a fully human antibody containing one or more sialic acids in the yolk.
(10) The chicken egg according to (6), wherein the fully human antibody is an anti-TNF antibody.

本発明により、医療用抗体で好適な完全ヒト型抗体をトランスジェニック鳥類で高濃度に生産させる方法が可能となる。つまり、本発明により高い治療効果が望める抗体医薬品の生産量が向上し、需要に見合った供給量の提供が可能となる。   The present invention enables a method for producing a fully human antibody suitable for a medical antibody at a high concentration in transgenic birds. That is, the production amount of the antibody drug that can be expected to have a high therapeutic effect is improved by the present invention, and it becomes possible to provide a supply amount that meets the demand.

本発明は、完全ヒト型抗体をコードする遺伝子を鳥類に導入し、前記遺伝子を発現させ、前記遺伝子を導入した鳥類の血中、卵白中、卵黄中から完全ヒト型抗体を回収することを特徴とする、完全ヒト型抗体を生産する方法を提供する。   The present invention is characterized in that a gene encoding a fully human antibody is introduced into a bird, the gene is expressed, and the fully human antibody is recovered from blood, egg white, and egg yolk of the bird into which the gene has been introduced. A method for producing a fully human antibody is provided.

完全ヒト型抗体とは、元々ヒトの体内に存在する抗体である。全配列がヒト由来であるため副作用がなく高い治療効果が望める抗体として期待されていた。しかし、実際には完全ヒト型抗体を採取することは、ヒトに抗原を免疫しなければならない等の倫理的問題や、大量生産方法がなかったために、マウス由来配列を含むマウス―ヒトキメラ抗体やヒト化抗体が治療用として使用されてきた。しかし、マウス由来配列を含む抗体は、望ましくない免疫応答(「ヒト抗マウス抗体」(HAMA)反応)の誘出等により、その使用が極端に制限される。近年、ヒトゲノム解読の完了や大きな技術革新を受け、完全ヒト型抗体を獲得することができつつある。獲得した抗体は培養細胞により生産されているが、抗体に付加する糖鎖構造が完全にヒト型ではないため、免疫応答を引き起こすことが容易に予想される。一方、本発明で産生できる抗体はヒト型にきわめて近い糖鎖を付加することができるため、抗体に対する免疫応答を劇的に軽減することが可能であり、より高い治療効果を望むことができる。該抗体は、完全長であってもよいし、又は抗原結合部位のみを含んでいてもよい。   A fully human antibody is an antibody originally present in the human body. Since the entire sequence is derived from humans, it was expected as an antibody with no side effects and high therapeutic effect. However, in reality, collecting a fully human antibody does not involve ethical problems such as the need to immunize a human with an antigen or a mass production method. Antibody has been used for therapy. However, the use of antibodies containing mouse-derived sequences is extremely limited, such as by eliciting an undesirable immune response (“human anti-mouse antibody” (HAMA) reaction). In recent years, with the completion of human genome decoding and major technological innovations, fully human antibodies can be obtained. The acquired antibody is produced by cultured cells, but since the sugar chain structure added to the antibody is not completely human, it is easily expected to cause an immune response. On the other hand, since an antibody that can be produced in the present invention can add a sugar chain very close to a human type, it is possible to dramatically reduce the immune response to the antibody, and a higher therapeutic effect can be desired. The antibody may be full length or may include only an antigen binding site.

遺伝子導入法について特に限定されることはないが、本発明はウイルスベクターによる遺伝子導入法に特徴つけられる。ウイルスベクターとしては、レトロウイルスベクターのモロニー・ミューリン・ロイケミア・ウイルス(MoMLV)、エビアン・ロイコシス・ウイルス(ALV)等に由来するベクターがあげられる。なかでもMoMLVに由来するものが好ましいが、これに限定されるものではない。
安全性を考慮し、遺伝子導入ベクターとして用いられるウイルスは、通常ウイルス粒子の複製に必要な3種の遺伝子gag、pol、envのうちのいづれか又はすべてを欠くことにより、自己複製能を欠失したウイルスが用いられる。鳥類細胞にこのウイルスベクターを効率的に感染させるため、外皮タンパク質を人工的にVSV−G(水泡性口内炎ウイルス由来)シュドタイプとしたウイルスベクターが好ましいが、これに限定されるものではない。
The gene transfer method is not particularly limited, but the present invention is characterized by a gene transfer method using a viral vector. Examples of the virus vector include vectors derived from retrovirus vectors such as Moloney Mullin Leukemia virus (MoMLV) and Evian Leukosis virus (ALV). Among these, those derived from MoMLV are preferable, but not limited thereto.
In consideration of safety, the virus used as a gene transfer vector lacks the self-replicating ability by lacking any or all of the three genes gag, pol, and env that are normally required for the replication of virus particles. Virus is used. In order to efficiently infect avian cells with this virus vector, a viral vector in which the coat protein is artificially made into a VSV-G (derived from vesicular stomatitis virus) pseudotype is preferable, but is not limited thereto.

パッケージング細胞又はヘルパーウイルス等を利用することにより調製されたシュドタイプのウイルスベクターは、通常のマイクロインジェクション法(Bosselman,R.Aら(1989)Science 243,533)により、初期胚、血管内、心臓内へ導入される。遺伝子導入法としては、この他にもリポフェクションやエレクトロポレーション法等が考えられる。   A pseudo-type viral vector prepared by using a packaging cell or a helper virus or the like can be obtained by an ordinary microinjection method (Bosselman, RA et al. (1989) Science 243, 533). It is introduced into the heart. Other gene transfer methods include lipofection and electroporation.

本発明の生産法はトランスジェニック鳥類の血中、卵白中、卵黄中から前記完全ヒト型抗体を回収することを特徴とする。トランスジェニック鳥類作製法としては特に限定されるものではないが、鳥類受精卵を孵卵し、放卵直後の胚盤葉期を除くそれ以降の初期胚へ複製能欠損型レトロウイルスベクターを感染させ、その胚を孵化させる作製法が挙げられる。また、鳥類受精卵を孵卵し、孵卵開始から24時間以降の初期胚へ複製能欠損型レトロウイルスベクターを感染させ、その胚を孵化させる作製法も挙げられる。
より好ましくは、上記初期胚に形成される心臓ないしは血管内へ、複製能欠損型レトロウイルスベクターをマイクロインジェクションする方法である。
The production method of the present invention is characterized in that the fully human antibody is recovered from blood, egg white, and egg yolk of transgenic birds. Although it is not particularly limited as a method for producing a transgenic bird, incubate a fertilized egg of a bird, infect a replication-defective retrovirus vector to an early embryo after that excluding the blastoderm stage immediately after egg release, A production method for hatching the embryo is mentioned. In addition, a method for incubating a fertilized avian egg, infecting an early embryo 24 hours after the start of incubation with a replication-defective retrovirus vector, and hatching the embryo is also mentioned.
More preferred is a method of microinjecting a replication-defective retrovirus vector into the heart or blood vessel formed in the early embryo.

本発明で生産される完全ヒト型抗体は、鳥類の血中、卵白中、卵黄中から完全ヒト型抗体を回収することを特徴とする。また完全ヒト型抗体を高濃度で卵黄中に生産しうることを特徴とし、卵黄から血中安定性が高く、免疫原性の低い抗体の産生及びそれに続く精製を可能とする。従来はほとんど発現できなかった卵黄中に発現可能であることは卵白中での発現では付加されない糖鎖であるヒト型糖鎖(NANA型シアル酸糖鎖)を付加できることが特徴であり、ヒトに投与した場合の副作用の免疫反応を低減できることに大きく貢献する。   The fully human antibody produced in the present invention is characterized by recovering a fully human antibody from the blood, egg white, and egg yolk of birds. In addition, it is characterized in that a fully human antibody can be produced in egg yolk at a high concentration, and it is possible to produce an antibody having high blood stability and low immunogenicity from egg yolk and subsequent purification. The fact that it can be expressed in egg yolk, which could hardly be expressed in the past, is characterized by the addition of a human-type sugar chain (NANA-type sialic acid sugar chain), which is a sugar chain that is not added by expression in egg white. It greatly contributes to the reduction of the immune reaction of side effects when administered.

卵白中抗体含量は好ましくは40μg/ml以上であり、より好ましくは100μg/ml以上であり、更に好ましくは300μg/ml以上である。卵黄中抗体含量は好ましくは1μg/ml以上であり、より好ましくは10μg/ml以上、更に好ましくは50μg/ml以上である。また卵あたりの卵白体積を30ml、卵黄体積を10mlとすると、卵一個あたりの抗体含量は1mg/egg以上が望ましい。産生した完全ヒト型抗体の回収および精製方法としては特に限定されないが、プロテインAまたはプロテインGによるアフェニティー精製が可能である。この手法により産生した完全ヒト型抗体をされに精製または調製し抗体医薬また抗体医薬品原料として用いることが可能であるが、その利用方法は限定されない。   The antibody content in egg white is preferably 40 μg / ml or more, more preferably 100 μg / ml or more, and still more preferably 300 μg / ml or more. The antibody content in egg yolk is preferably 1 μg / ml or more, more preferably 10 μg / ml or more, and still more preferably 50 μg / ml or more. If the egg white volume per egg is 30 ml and the yolk volume is 10 ml, the antibody content per egg is preferably 1 mg / egg or more. A method for collecting and purifying the produced fully human antibody is not particularly limited, but affinity purification with protein A or protein G is possible. Although it is possible to purify or prepare a fully human antibody produced by this technique and use it as an antibody drug or antibody drug raw material, its utilization method is not limited.

以下、実施例により本発明を詳述するが、本発明はこれらの実施例により限定されるものではない。遺伝子操作について特に記述のないものに関しては代表的な方法に従った(J,Samnrook,E.F.Fritsch,t.Maniatis;Molecular Cloning,A Laboratry Manual,2nd Ed,Cold Spring Harbor Laboratory)。細胞培養について特に記述のないものに関しては代表的な方法に従った。商品名を記載している場合は特に記述のない限り添付の説明書の指示に従った。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these Examples. For those not specifically described for genetic manipulation, representative methods were followed (J, Samnook, EF Fritsch, t. Maniatis; Molecular Cloning, A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratories). For cell cultures not specifically described, typical methods were followed. When the product name was described, the instructions in the attached manual were followed unless otherwise specified.

(実施例1)
抗TNF完全ヒト型抗体発現プラスミドpMSCV/GΔALIH(HUMIRA)の構築
抗ヒトCD2抗体pMSCV/GΔALIH(CD2)はJORNAL OF BIOSCIENCE AND BIOENGINEERING Vol.98,No.4,298−303.2004に開示されている。
抗ヒトTNFα抗体の配列(Adalimumab;HUMIRAO)を公開配列情報に基づいて全塩基配列を化学合成した。これを、pMSCV/GΔALIH(CD2)のCD2配列に置き換えて、pMSCV/GΔALIH(HUMIRA)とした。
Example 1
Construction of anti-TNF fully human antibody expression plasmid pMSCV / GΔALIH (HUMIRA) The anti-human CD2 antibody pMSCV / GΔALIH (CD2) was obtained from JORNAL OF BIOSCIENCE AND BIOENGINEERING Vol. 98, no. 4, 298-303.2004.
The entire nucleotide sequence was chemically synthesized based on; (HUMIRA O Adalimumab) public sequence information sequence of an anti-human TNFα antibody. This was replaced with the CD2 sequence of pMSCV / GΔALIH (CD2) to obtain pMSCV / GΔALIH (HUMIRA).

(実施例2)
pMSCV/GΔALIH(HUMIRA)とpVSV−Gを用いたレトロウイルスベクターの調整
以後、特に記述のない限り、培地は10%の牛胎児血清(Fetal Bovine Serum,FBS)と50units/mlのペニシリン、ストレプトマイシンを含むダルベッコ変法イーグル培地(Dulbecco‘s Modified Eagle Medium,DMEM)を用いた(ギブコ社製)。培養は37℃、CO5%で行った。レトロウイルスベクターに用いるプラスミドDNAはEndo Free Plasmid Maxi Kit(QIAGEN社製)を用いた。
実施例1で構築したプラスミドpMSCV/GΔALIH(HUMIRA)よりレトロウイルスベクターを調整するため、gag、pol遺伝子を持つパッケージング細胞GP293を、コラーゲンコートされた直径100mmの培養ディッシュに細胞数5×10個/ディッシュ(70%コンフルエント)になるように播種した(翌日90%コンフルエントとなるようにする)。次の日、培地を取り除き、7.2mlの培地と10μlの25mMクロロキン(シグマ社製)を加えて、さらに一時間培養した。56μlのLipofectamine.2000溶液(インビトロジェン社製)を1.4mlのOpti−MEMI培地(ギブコ社製)に懸濁し、室温で5分間置いた。12μgのpMSCV/GΔALIH(HUMIRA)と12μgのpVSV−Gを1.4mlのOpti−MEMI培地に懸濁した。Lipofectamine.2000溶液とプラスミドDNA溶液を混合し、室温で20分置いた。これを培養ディッシュに全量加え、6時間培養した。6時間後、培地を取り除き9mlの培地と200μlの1M HEPES Buffer Solution(ギブコ社製)を加えさらに24時間培養した。
培養上清を0.45μmのセルロースアセテートフィルター(アドバンテック社製)に通し、遠心管に集めた。超遠心機CS100GXL(日立工機社製)を用い、28,000rpm(50,000g)で1.5時間遠心分離した。上清を取り除き、沈殿に20μlのTNF緩衝液(50mM Tris−HCl(pH7.8)、130mM NaCl、1mM EDTA)を加え、4℃で一晩静置し、よく懸濁して小型高速遠心機で12,000rpmで一分間遠心分離し、上清を0.45μmのデュラポアウルトラフリーフィルター(アドバンテック社製)に通してウイルス液とした。
(Example 2)
Preparation of retroviral vector using pMSCV / GΔALIH (HUMIRA) and pVSV-G Hereinafter, unless otherwise specified, the medium is 10% fetal bovine serum (Fetal Bovine Serum, FBS), 50 units / ml penicillin and streptomycin. Dulbecco's Modified Eagle Medium (DMEM) was used (Gibco). The culture was performed at 37 ° C. and 5% CO 2 . Endo Free Plasmid Maxi Kit (manufactured by QIAGEN) was used as the plasmid DNA for the retroviral vector.
In order to prepare a retroviral vector from the plasmid pMSCV / GΔALIH (HUMIRA) constructed in Example 1, a packaging cell GP293 having gag and pol genes was placed in a collagen-coated culture dish having a diameter of 100 mm and the number of cells was 5 × 10 6. Seeds were made in pieces / dish (70% confluent) (the next day, 90% confluent). On the next day, the medium was removed, and 7.2 ml of medium and 10 μl of 25 mM chloroquine (manufactured by Sigma) were added and further cultured for 1 hour. 56 μl of Lipofectamine. A 2000 solution (manufactured by Invitrogen) was suspended in 1.4 ml of Opti-MEMI medium (manufactured by Gibco) and left at room temperature for 5 minutes. 12 μg of pMSCV / GΔALIH (HUMIRA) and 12 μg of pVSV-G were suspended in 1.4 ml of Opti-MEMI medium. Lipofectamine. The 2000 solution and the plasmid DNA solution were mixed and left at room temperature for 20 minutes. This was added to the culture dish and cultured for 6 hours. After 6 hours, the medium was removed, 9 ml of medium and 200 μl of 1M HEPES Buffer Solution (manufactured by Gibco) were added and further cultured for 24 hours.
The culture supernatant was passed through a 0.45 μm cellulose acetate filter (manufactured by Advantech) and collected in a centrifuge tube. Using an ultracentrifuge CS100GXL (manufactured by Hitachi Koki Co., Ltd.), centrifugation was performed at 28,000 rpm (50,000 g) for 1.5 hours. The supernatant was removed, and 20 μl of TNF buffer (50 mM Tris-HCl (pH 7.8), 130 mM NaCl, 1 mM EDTA) was added to the precipitate, allowed to stand at 4 ° C. overnight, well suspended, and suspended in a small high-speed centrifuge. Centrifugation was performed at 12,000 rpm for 1 minute, and the supernatant was passed through a 0.45 μm Durapore Ultra Free Filter (manufactured by Advantech) to obtain a virus solution.

(実施例3)
ウイルス力価の測定
ウイルス液の力価はNIH3T3細胞(アメリカン・タイプ・カルチャー・コレクション CRL−1658)にウイルス液を添加したとき、感染した細胞の数によって定義した。6ウェル培養プレートの各ウェル(底面積約9.4cm)に存在する5×10のNIH3T3細胞に10から10倍の希釈率で希釈したウイルス溶液を1ml加え、マーカーであるGFP(Green Fluorescent Proteins)遺伝子を発現している細胞の割合を調べることでウイルス液の力価を測定した。10倍希釈で4コロニー現れた場合、ウイルス力価は4×10cfu/mlとなる。
具体的には力価測定開始の前日にNIH3T3細胞を6ウェル培養プレートに5×10個/ウェルとなるように播種し培養した。翌日、細胞の培地を9μg/mlのポリブレン含有培地900μl/ウェルで交換し、ウイルス液を培地で10−1〜10−5に希釈し、それぞれ100μlをウェルに添加して感染させた(ポリブレン終濃度8μl/ml)。4〜6時間培養後、1mlの培地をさらに加えた。次の日、培地を交換し、以後3〜4日おきに培地交換した。感染から約1週間後GFPを発現しているコロニー数を測定し、力価を求めた。
(Example 3)
Measurement of virus titer The titer of virus solution was defined by the number of cells infected when virus solution was added to NIH3T3 cells (American Type Culture Collection CRL-1658). 1 ml of a virus solution diluted at a dilution ratio of 10 2 to 10 6 times is added to 5 × 10 4 NIH3T3 cells present in each well (bottom area of about 9.4 cm 2 ) of a 6-well culture plate, and the marker GFP ( The titer of the virus solution was measured by examining the proportion of cells expressing the Green Fluorescent Proteins gene. 10 6 fold when they appear 4 colonies at a dilution, the virus titer will be 4 × 10 6 cfu / ml.
Specifically, NIH3T3 cells were seeded on a 6-well culture plate at 5 × 10 4 cells / well on the day before the start of titration measurement and cultured. The next day, the cell culture medium was replaced with 900 μl / well of a 9 μg / ml polybrene-containing medium, the virus solution was diluted 10 −1 to 10 −5 with the medium, and 100 μl was added to each well to infect (polybrene end). Concentration 8 μl / ml). After 4-6 hours of culture, 1 ml of medium was further added. On the next day, the medium was changed, and thereafter the medium was changed every 3 to 4 days. About one week after infection, the number of colonies expressing GFP was measured to determine the titer.

(実施例4)
抗TNF完全ヒト型抗体発現安定パッケージング細胞の選択
ウイルス感染の前日に24ウェル培養プレートにGP293細胞を1.5×10個/ウェルとなるように播種し培養した。ウイルス感染の当日10μg/mlのポリブレン含有培地1ml/ウェルで交換した。これに実施例2で作製したウイルス液を感染させた。以後、細胞を限界希釈法によりクローン化する。具体的には、次の日、細胞を10個/mlになるように希釈した。希釈した細胞を96ウェル培養プレートに100μlづつ播種し(ウェルに1個の細胞が入るようにする)、細胞増殖速度が早く、GP293細胞と形態の近い細胞を選択し、抗TNF完全ヒト型抗体発現安定パッケージング細胞クローンを得た。
Example 4
Selection of anti-TNF fully human antibody-expressing stable packaging cells On the day before virus infection, GP293 cells were seeded on a 24-well culture plate at 1.5 × 10 4 cells / well and cultured. On the day of virus infection, the medium was replaced with 1 ml / well of 10 μg / ml polybrene-containing medium. This was infected with the virus solution prepared in Example 2. Thereafter, the cells are cloned by the limiting dilution method. Specifically, the next day, the cells were diluted to 10 cells / ml. The diluted cells are seeded 100 μl each in a 96-well culture plate (so that one cell is placed in the well), and a cell having a high cell growth rate and a cell that is similar in shape to GP293 cells is selected, and an anti-TNF fully human antibody An expression stable packaging cell clone was obtained.

(実施例5)
抗TNF完全ヒト型抗体発現安定パッケージング細胞とpVSV−Gを用いたレトロウイルスベクターの調製
直径100mmのコラーゲンコートされた培養デュッシュに抗TNF完全ヒト型抗体発現安定パッケージング細胞を5×10個(70%コンフルエント)になるように播種した(翌日90%コンフルエントとなるようにする)。翌日、培地を取り除き、7.2mlの培地と10μlの25mMクロロキンを加えて、更に1時間培養した。56μlのLipofectamine.2000溶液を1.4mlのOpti−MEMI培地に懸濁し、室温で5分間置いた。12μgのpVSV−Gを1.4mlのOpti−MEMI培地に懸濁した。Lipofectamine.2000溶液とプラスミドDNA溶液を混合し、室温で20分置いた。これを培養ディッシュに全量加え、6時間培養した。6時間後、培地を取り除き9mlの培地と200μlの1M HEPES Buffer Solutionを加えさらに24時間培養した。
培養上清を0.45μmのセルロースアセテートフィルターに通し、遠心管に集めた。超遠心機を用い、28,000rpm(50,000g)で1.5時間遠心分離した。上清を取り除き、沈殿に20μlのTNF緩衝液を加え、4℃で一晩静置し、よく懸濁して小型高速遠心機で12,000rpmで一分間遠心分離し、上清を0.45μmのデュラポアウルトラフリーフィルター(アドバンテック社製)に通してウイルス液とした。このようにすれば、10cuf/ml以上の力価を持つウイルス液が得られる。
(Example 5)
Preparation of anti-TNF fully human antibody-expressing stable packaging cells and retrovirus vector using pVSV-G 5 × 10 6 anti-TNF fully human antibody-expressing stable packaging cells in a collagen-coated culture dish having a diameter of 100 mm (70% confluent) was seeded (the next day 90% confluent). On the next day, the medium was removed, and 7.2 ml of medium and 10 μl of 25 mM chloroquine were added, followed by further incubation for 1 hour. 56 μl of Lipofectamine. The 2000 solution was suspended in 1.4 ml of Opti-MEMI medium and left at room temperature for 5 minutes. 12 μg of pVSV-G was suspended in 1.4 ml of Opti-MEMI medium. Lipofectamine. The 2000 solution and the plasmid DNA solution were mixed and left at room temperature for 20 minutes. This was added to the culture dish and cultured for 6 hours. After 6 hours, the medium was removed and 9 ml of medium and 200 μl of 1M HEPES Buffer Solution were added and further cultured for 24 hours.
The culture supernatant was passed through a 0.45 μm cellulose acetate filter and collected in a centrifuge tube. Centrifugation was performed at 28,000 rpm (50,000 g) for 1.5 hours using an ultracentrifuge. The supernatant was removed, 20 μl of TNF buffer was added to the precipitate, allowed to stand overnight at 4 ° C., well suspended, centrifuged at 12,000 rpm for 1 minute in a small high-speed centrifuge, and the supernatant was 0.45 μm. The virus solution was passed through a Durapore Ultra Free Filter (manufactured by Advantech). In this way, the virus solution with 10 8 cuf / ml or more titer is achieved.

(実施例6)
ニワトリ胚へのレトロウイルスベクターのマイクロインジェクションと人工孵化による抗
TNF完全ヒト型抗体産生トランスジェニックニワトリ作製
マイクロインジェクションと人工孵化は無菌条件化で行う。ニワトリ受精卵(城山種鶏場)の外側を消毒液(昭和フラン機社製)およびエタノールで除菌する。孵卵機P−008(B)型を38℃、湿度50〜60℃環境になるようにセットし、電源を入れた時刻を孵卵開始時刻(0時間)とし、以後15分毎に90°転卵しながら孵卵を行った。
孵卵開始から約55時間経過後、孵卵機の転卵を30分ごとに30°転卵に変更する。孵卵機から卵を取り出し、その鋭端部を直径3.5cmの円形にダイヤモンド刃(刃先径20mm、シャフト径2.35mm)をつけたミニルーター(プロクソン社製)で切り取った。ニワトリ二黄卵(城山種鶏場)の鋭端部を直径4.5cmに切り取り、中身を捨てた卵殻に受精卵の中身を移し、注射器の内筒で胚を上方へ移動させた。実体顕微鏡システムSZX12(オリンパス社製)下でフェムトチップII(エッペンドルフ社製)にウイルス液を注入し、フェムトジェット(エッペンドルフ社製)を用い、ウイルス溶液約2μlをマイクロインジェクションした。
卵白を糊として約8×8cm2に切ったサランラップ(旭化成社製)でこの穴を塞ぎ、孵卵機に戻し孵卵を続けた。孵卵開始から20日目にサランラップに20Gの注射針で20個程度穴を開け、孵卵機に60cc/minで酸素を供給し孵卵を行った。雛がハシ打ちを始めたら、卵殻を割って孵卵させた。この人工孵化による孵化率は7〜30%だった。
(Example 6)
Production of anti-TNF fully human antibody-producing transgenic chicken by microinjection of retroviral vector into chicken embryo and artificial hatching Microinjection and artificial hatching are performed under aseptic conditions. The outside of the chicken fertilized egg (Shiroyama Breeder) is sterilized with disinfectant (Showa Franc machine) and ethanol. Set the incubator P-008 (B) to 38 ° C and humidity 50-60 ° C, turn on the power as the start time of incubation (0 hour), and then turn 90 ° every 15 minutes While incubating.
After about 55 hours from the start of incubation, the incubator's turning is changed to 30 ° turning every 30 minutes. The egg was taken out from the incubator, and the sharp end portion was cut out by a mini router (manufactured by Proxon) having a 3.5 cm diameter circular diamond blade (blade diameter 20 mm, shaft diameter 2.35 mm). The sharp end of a chicken double yellow egg (Shiroyama breeding place) was cut to a diameter of 4.5 cm, the contents of the fertilized egg were transferred to an eggshell where the contents were discarded, and the embryo was moved upward with an inner cylinder of a syringe. Under a stereomicroscope system SZX12 (Olympus), a virus solution was injected into a femtochip II (Eppendorf), and about 2 μl of the virus solution was microinjected using a femtojet (Eppendorf).
The hole was closed with Saran wrap (manufactured by Asahi Kasei Co., Ltd.) cut into approximately 8 × 8 cm 2 using egg white as glue, and returned to the incubator to continue incubation. On the 20th day from the start of incubation, about 20 holes were made in Saran wrap with a 20G injection needle, and oxygen was supplied to the incubator at 60 cc / min for incubation. When the chicks started hammering, the eggshell was broken and incubated. The hatching rate by this artificial hatching was 7-30%.

(実施例7)
抗RSVヒト化抗体産生トランスジェニックニワトリおよび抗TNFマウス―ヒトキメラ抗体産生トランスジェニックニワトリの作製
抗RSVヒト化抗体の配列(Palivizunab;SYNASISO)を公開されているアミノ酸配列を基に全塩基配列を化学合成した。これをpMSCV/GΔALIH(CD2)のCD2配列に置き換えて、pMSCV/GΔALIH(抗RSV)とした。
抗TNFマウス―ヒトキメラ抗体の配列(infliximab;REMINADEO)を公開されている配列を基に全塩基配列を化学合成した。これをpMSCV/GΔALIH(CD2)のCD2配列に置き換えて、pMSCV/GΔALIH(抗TNFマウス―ヒトキメラ)とした。
これらを実施例2〜6に記載の方法でトランスジェニックニワトリを作製した。
(Example 7)
Production of Anti-RSV Humanized Antibody-Producing Transgenic Chicken and Anti-TNF Mouse-Human Chimera Antibody-Producing Transgenic Chicken Chemistry of all nucleotide sequences based on the published amino acid sequence of anti-RSV humanized antibody sequence (Palivizunab; SYNASIS O ) Synthesized. This was replaced with the CD2 sequence of pMSCV / GΔALIH (CD2) to obtain pMSCV / GΔALIH (anti-RSV).
The entire base sequence was chemically synthesized based on the publicly available sequence of the anti-TNF mouse-human chimeric antibody (inflimimab; REMINADE O ). This was replaced with the CD2 sequence of pMSCV / GΔALIH (CD2) to obtain pMSCV / GΔALIH (anti-TNF mouse-human chimera).
From these, transgenic chickens were produced by the method described in Examples 2-6.

(実施例8)
トランスジェニックニワトリの血中、卵中の発現量測定サンプルの作製
誕生した雛を飼育して成長させた、飼料として幼雛SXセーフティーおよびネオセーフティー17(豊橋飼料社製)を用いた。幼雛および成鶏からの採血は翼下静脈より行った。採血した血液はエッペンドルフチューブに入れ、室温で30分以上放置した後、小型高速遠心機で4℃、3,000rpmで5分間遠心分離し、血清と血餅を完全に分離し、上清を血清とした。卵からの抽出の際には、卵白および卵黄を分離した。卵黄からの抽出の際は、卵黄中央にシリンジを刺し、卵白が入らないように抜き取った。卵白は、超音波や物理的手法により全体を一様になるように調製した。調製したサンプルはアッセイ時まで−80℃で凍結保存した。融解は37℃で迅速に行い、凍結融解を繰り返すことは避けることが好ましい。
(Example 8)
Production of expression level measurement samples in blood and eggs of transgenic chickens Young SX Safety and Neosafety 17 (manufactured by Toyohashi Feed Co., Ltd.) were used as feeds that were bred and grown. Blood samples from young chicks and adult chickens were collected from the subwing vein. The collected blood is placed in an Eppendorf tube and allowed to stand at room temperature for 30 minutes or more, and then centrifuged at 4 ° C. and 3,000 rpm for 5 minutes in a small high-speed centrifuge to completely separate the serum and clot, and the supernatant is serum. It was. When extracting from eggs, egg white and egg yolk were separated. When extracting from the yolk, a syringe was inserted into the center of the yolk, and the yolk was extracted so that no egg white entered. The egg white was prepared so as to be uniform as a whole by ultrasonic and physical techniques. The prepared sample was stored frozen at −80 ° C. until assay. Thawing is preferably performed rapidly at 37 ° C., and repeated freezing and thawing is preferably avoided.

(実施例9)
ELISAによる免疫グロブリン分子濃度の定量
実施例8で回収した上清中、卵白中および卵黄中の免疫グロブリン分子の発現量を測定するために、enzyme―linked immunosorbent assay (ELISA)法を行った。抗体生産量は測定で用いた標準品より算出した。
測定方法は代表的な方法に従った(Immunochemistry、8、871−874(1971))。
Example 9
Quantification of immunoglobulin molecule concentration by ELISA In order to measure the expression level of immunoglobulin molecules in the supernatant collected in Example 8, egg white and egg yolk, enzyme-linked immunosorbent assay (ELISA) method was performed. The amount of antibody production was calculated from the standard product used in the measurement.
The measurement method followed a typical method (Immunochemistry, 8, 871-874 (1971)).

ウサギ抗ヒトIgG(Fc特異的)抗体(Organon Teknika, Durham, NC, USA)を一次抗体として、ペルオキシダーゼ標識ウサギ抗ヒトIgG抗体(Organon Teknika, Durham, NC, USA)を二次抗体として用いた。検出基質としてo‐phenylenediamineを用いて発色させ、吸光度をプレートリーダーで測定した。定量時のスタンダードとしてhuman IgG1(Athens Research and Technology, Athens, GA, USA)を用いた。
これらから、抗TNF完全ヒト型抗体発現トランスジェニックニワトリ(個体番号5−3)の血中発現量は最大で33μg/ml、卵白発現量は704.4μg/ml(21.1mg/egg)、卵黄発現量は196.4μg/ml(1.9mg/egg)であった。
結果を図1に示す。
Rabbit anti-human IgG (Fc specific) antibody (Organon Teknika, Durham, NC, USA) was used as a primary antibody, and peroxidase-labeled rabbit anti-human IgG antibody (Organon Teknika, Durham, NC, USA) was used as a secondary antibody. Color was developed using o-phenylenediamine as a detection substrate, and the absorbance was measured with a plate reader. Human IgG1 (Athens Research and Technology, Athens, GA, USA) was used as a standard for quantification.
From these, the maximum expression level in blood of the anti-TNF fully human antibody-expressing transgenic chicken (individual number 5-3) was 33 μg / ml, the expression level of egg white was 704.4 μg / ml (21.1 mg / egg), yolk The expression level was 196.4 μg / ml (1.9 mg / egg).
The results are shown in FIG.

抗TNF完全ヒト型抗体発現トランスジェニックニワトリと同手法により作製した抗RSVヒト化抗体発現トランスジェニックニワトリ卵白発現量は40μg/ml(1.2mg/egg)、抗TNFマウス―ヒトキメラ抗体発現トランスジェニックニワトリ卵白発現量は10μg/ml(0.3mg/egg)であった。これに比べ、TNF完全ヒト型抗体は20mg/eggを超えており非常に高い発現量であった。結果を図2に示す。   Anti-TNF fully human antibody-expressing transgenic chicken and anti-RSV humanized antibody-expressing transgenic chicken egg white expression level was 40 μg / ml (1.2 mg / egg), anti-TNF mouse-human chimeric antibody-expressing transgenic chicken The egg white expression level was 10 μg / ml (0.3 mg / egg). Compared with this, the TNF fully human antibody exceeded 20 mg / egg, and the expression level was very high. The results are shown in FIG.

また、抗TNF完全ヒト型抗体発現トランスジェニックニワトリの卵黄中発現量比は、抗RSVヒト化抗体発現トランスジェニックニワトリの卵黄中発現量比に比べ高いことがわかる。具体的には抗TNF完全ヒト型抗体発現トランスジェニックニワトリ5−3の卵白中発現量平均は551.4μg/ml(75.8%)、卵黄中発現量平均は176.4μg/ml(24.2%)である。これに比べて、抗RSVヒト化抗体発現トランスジェニックニワトリの卵白中発現量は40μg/ml(97.5%)、卵黄中発現量平均は1μg/ml(2.5%)である。ここから抗TNF完全ヒト型抗体発現トランスジェニックニワトリは卵黄中発現量比が高いことがわかる。この結果を図3に示す。   It can also be seen that the ratio of expression levels in the yolk of the anti-TNF fully human antibody-expressing transgenic chicken is higher than the ratio of expression levels in the yolk of the anti-RSV humanized antibody-expressing transgenic chicken. Specifically, the mean expression level in the egg white of the transgenic chicken 5-3 expressing the anti-TNF fully human antibody is 551.4 μg / ml (75.8%), and the mean expression level in the yolk is 176.4 μg / ml (24. 2%). In comparison, the expression level in the egg white of the transgenic chicken expressing the anti-RSV humanized antibody is 40 μg / ml (97.5%), and the average expression level in the yolk is 1 μg / ml (2.5%). It can be seen from this that the anti-TNF fully human antibody-expressing transgenic chicken has a high expression ratio in egg yolk. The result is shown in FIG.

(実施例10)
ニワトリ卵白中及び卵黄中発現抗体の糖鎖分析
実施例8で回収した卵白及び卵黄中抗体の糖鎖分析を行った。標準品はPA−Sugar chain 001(バイアンテナ)(タカラバイオ)、PA−Sugar chain 021(モノシアロバイアンテナ)(タカラバイオ)、PA−Sugar chain 023(ジシアロバイアンテナ)(タカラバイオ)、PA−Sugar chain 024(トリシアロバイアンテナ)(タカラバイオ)、PA−Sugar chain 012(アガラクトバイアンテナ)(タカラバイオ)、PA−Sugar chain 013(アガラクトトリアンテナ)(タカラバイオ)、PA−Sugar chain 014(アガラクトテトラアンテナ)(タカラバイオ)、PA−Sugar chain 015(アガラクトペンタアンテナ)(タカラバイオ)、PA−Glucose Oligomer(タカラバイオ)、を用いた。
ヒドラジン分解後、N−アセチル化し、2−アミノピリジンで蛍光標識した。調製したピリジンアミノ化糖鎖をイオン交換(DEAE)カラム及び逆相(ODS)カラムで分析し、糖鎖マップを作成した。
(Example 10)
Sugar chain analysis of antibody expressed in chicken egg white and egg yolk The sugar chains of the antibody recovered in Example 8 were analyzed. Standard products are PA-Sugar chain 001 (bi-antenna) (Takara Bio), PA-Sugar chain 021 (Monosialo by antenna) (Takara Bio), PA-Sugar chain 023 (Dicialo antenna) (Takara Bio), PA -Sugar chain 024 (Tricia Loby antenna) (Takara Bio), PA-Sugar chain 012 (Agaracto by antenna) (Takara Bio), PA-Sugar chain 013 (Agaractotri antenna) (Takara Bio), PA-Sugar chain 014 (Agaractotetra antenna) (Takara Bio), PA-Sugar chain 015 (Agaractopenta antenna) (Takara Bio), PA-Glucose Oligomer (Takaraba) E), it was used.
After decomposing hydrazine, it was N-acetylated and fluorescently labeled with 2-aminopyridine. The prepared pyridine-aminated sugar chain was analyzed with an ion exchange (DEAE) column and a reverse phase (ODS) column to prepare a sugar chain map.

この結果、卵白中発現抗体に比べ卵黄中発現抗体に付加されるシアル酸の含量が多いことがわかった(7%)。つまり、卵黄中ではシアル酸含量が高く、NANAのみの糖鎖付加が起こることから、本研究では血中で分解されにくく血中半減期が長い、免疫応答が起こりにくいより高効果な完全ヒト型抗体を産生することができた。結果を図4に示す。   As a result, it was found that the content of sialic acid added to the antibody expressed in egg yolk was higher than the antibody expressed in egg white (7%). In other words, since sialic acid content is high in egg yolk and glycosylation of only NANA occurs, in this study, it is difficult to be degraded in blood, has a long half-life in blood, and is more effective fully human than immune response. The antibody could be produced. The results are shown in FIG.

抗TNF完全ヒト型抗体発現トランスジェニックニワトリの血清および卵黄、卵白中の発現量を示した結果である。It is the result which showed the expression level in serum, egg yolk, and egg white of an anti-TNF fully human-type antibody expression transgenic chicken. 完全ヒト型抗体とヒト化及びキメラ抗体との発現量の差を示した結果である。It is the result which showed the difference in the expression level of a fully human antibody and a humanized and chimeric antibody. 1卵あたりの卵黄中、卵白中発現量比の結果である。It is a result of the expression level ratio in egg yolk and egg white per egg. ニワトリ卵白及び卵黄中に含まれるシアル酸含量(%)を示した結果である。It is the result which showed the sialic acid content (%) contained in a chicken egg white and egg yolk.

Claims (10)

完全ヒト型抗体をコードする遺伝子を鳥類に導入し、前記遺伝子を発現させ、前記遺伝子を導入した鳥類の卵白中及び卵黄中から前記完全ヒト型抗体を回収することを特徴とする、完全ヒト型抗体を生産する方法。 A fully human type, wherein a gene encoding a fully human antibody is introduced into a bird, the gene is expressed, and the fully human antibody is recovered from egg white and egg yolk of the bird into which the gene is introduced A method of producing antibodies. 卵黄中から完全ヒト型抗体を回収、精製する請求項1記載の方法。 The method according to claim 1, wherein the fully human antibody is collected and purified from the yolk. 卵白中に完全ヒト型抗体を40μg/ml以上含む請求項1に記載の方法。 The method according to claim 1, wherein the egg white contains 40 μg / ml or more of a fully human antibody. 卵黄中に完全ヒト型抗体を1μg/ml以上含む請求項1に記載の方法。 The method according to claim 1, wherein the human yolk contains 1 μg / ml or more of a fully human antibody. 卵中に完全ヒト型抗体を1mg/egg以上含む請求項1に記載の方法。 The method according to claim 1, wherein the egg contains 1 mg / egg or more of a fully human antibody. 鳥類が家禽類である、請求項1に記載の方法。 The method according to claim 1, wherein the birds are poultry. 鳥類がニワトリである請求項6に記載の方法。 The method according to claim 6, wherein the bird is a chicken. 請求項1〜7に記載の方法で産生された完全ヒト型抗体。 A fully human antibody produced by the method according to claim 1. 卵黄中にシアル酸を1つ以上含む完全ヒト型抗体を7%以上含む鶏卵。 A chicken egg containing 7% or more of a fully human antibody containing one or more sialic acids in the yolk. 前記完全ヒト抗体が抗TNF抗体である請求項6記載の鶏卵。 The egg of claim 6, wherein the fully human antibody is an anti-TNF antibody.
JP2007253917A 2007-09-28 2007-09-28 Method for producing completely human antibody Pending JP2009082033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253917A JP2009082033A (en) 2007-09-28 2007-09-28 Method for producing completely human antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253917A JP2009082033A (en) 2007-09-28 2007-09-28 Method for producing completely human antibody

Publications (1)

Publication Number Publication Date
JP2009082033A true JP2009082033A (en) 2009-04-23

Family

ID=40656364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253917A Pending JP2009082033A (en) 2007-09-28 2007-09-28 Method for producing completely human antibody

Country Status (1)

Country Link
JP (1) JP2009082033A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046218A1 (en) 2009-10-16 2011-04-21 株式会社カネカ Hansenula polymorpha capable of producing antibody, process for production of antibody utilizing same, and antibody produced from same
WO2012102171A1 (en) 2011-01-27 2012-08-02 株式会社カネカ Yeast for transformation and process for producing protein
WO2012124567A1 (en) 2011-03-11 2012-09-20 株式会社カネカ Method for producing heterologous protein using yeast having knocked out vps gene
WO2013042426A1 (en) 2011-09-21 2013-03-28 富士レビオ株式会社 Antibody against affinity complex
WO2014175164A1 (en) 2013-04-25 2014-10-30 株式会社カネカ Fd chain gene or l chain gene each capable of increasing secretion amount of fab-type antibody
WO2014208584A1 (en) 2013-06-26 2014-12-31 株式会社カネカ Novel polypeptide, and use thereof
WO2014208583A1 (en) 2013-06-26 2014-12-31 株式会社カネカ Novel polypeptide, and use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029131A1 (en) * 1996-02-09 1997-08-14 Basf Aktiengesellschaft HUMAN ANTIBODIES THAT BIND HUMAN TNF$g(a)
WO1999010505A2 (en) * 1997-08-22 1999-03-04 University Of Guelph Production of proteins in eggs
US20020108132A1 (en) * 2001-02-02 2002-08-08 Avigenics Inc. Production of a monoclonal antibody by a transgenic chicken
US20040250307A1 (en) * 2000-06-19 2004-12-09 Sujay Singh Transgenic avian species for making human and chimeric antibodies
WO2005065450A1 (en) * 2004-01-08 2005-07-21 Kaneka Corporation Transgenic bird and method of constructing the same
WO2006089231A2 (en) * 2005-02-18 2006-08-24 Medarex, Inc. Monoclonal antibodies against prostate specific membrane antigen (psma) lacking in fucosyl residues
JP2009532034A (en) * 2006-03-31 2009-09-10 メダレックス インコーポレーティッド Transgenic animals expressing chimeric antibodies for use in preparing human antibodies

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029131A1 (en) * 1996-02-09 1997-08-14 Basf Aktiengesellschaft HUMAN ANTIBODIES THAT BIND HUMAN TNF$g(a)
WO1999010505A2 (en) * 1997-08-22 1999-03-04 University Of Guelph Production of proteins in eggs
US20040250307A1 (en) * 2000-06-19 2004-12-09 Sujay Singh Transgenic avian species for making human and chimeric antibodies
US20020108132A1 (en) * 2001-02-02 2002-08-08 Avigenics Inc. Production of a monoclonal antibody by a transgenic chicken
WO2005065450A1 (en) * 2004-01-08 2005-07-21 Kaneka Corporation Transgenic bird and method of constructing the same
WO2006089231A2 (en) * 2005-02-18 2006-08-24 Medarex, Inc. Monoclonal antibodies against prostate specific membrane antigen (psma) lacking in fucosyl residues
JP2009532034A (en) * 2006-03-31 2009-09-10 メダレックス インコーポレーティッド Transgenic animals expressing chimeric antibodies for use in preparing human antibodies

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6012034314; J. Biosci. Bioeng. Vol.98, No.4, 2004, p.298-303 *
JPN6012034316; 化学工学会第69年会研究発表講演要旨集 , 2004, p.704, Q114 *
JPN6012034317; 日本生物工学会大会講演要旨集 , 2004, p.181, 2F09-1 *
JPN6012034319; 日本生物工学会大会講演要旨集 , 2005, p.214, 1H14-3 *
JPN6012034320; 日本生物工学会大会講演要旨集 , 200708, p.196, 2I11-5 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046218A1 (en) 2009-10-16 2011-04-21 株式会社カネカ Hansenula polymorpha capable of producing antibody, process for production of antibody utilizing same, and antibody produced from same
WO2012102171A1 (en) 2011-01-27 2012-08-02 株式会社カネカ Yeast for transformation and process for producing protein
JP6073138B2 (en) * 2011-01-27 2017-02-01 株式会社カネカ Yeast for transformation and method for producing protein
WO2012124567A1 (en) 2011-03-11 2012-09-20 株式会社カネカ Method for producing heterologous protein using yeast having knocked out vps gene
WO2013042426A1 (en) 2011-09-21 2013-03-28 富士レビオ株式会社 Antibody against affinity complex
WO2014175164A1 (en) 2013-04-25 2014-10-30 株式会社カネカ Fd chain gene or l chain gene each capable of increasing secretion amount of fab-type antibody
US10570197B2 (en) 2013-04-25 2020-02-25 Kaneka Corporation Fd chain gene or L chain gene capable of increasing secretion amount of fab-type antibody
WO2014208584A1 (en) 2013-06-26 2014-12-31 株式会社カネカ Novel polypeptide, and use thereof
WO2014208583A1 (en) 2013-06-26 2014-12-31 株式会社カネカ Novel polypeptide, and use thereof

Similar Documents

Publication Publication Date Title
JP5815631B2 (en) Production method of target protein
JP2009082033A (en) Method for producing completely human antibody
Koo et al. Tetracycline-dependent expression of the human erythropoietin gene in transgenic chickens
Kwon et al. Generation of transgenic chickens that produce bioactive human granulocyte‐colony stimulating factor
US20090064351A1 (en) Transgenic bird producing erythropoietin and method of constructing the same
JP2006512062A (en) Protein production in transgenic birds
Kawabe et al. Production of scFv-Fc fusion protein using genetically manipulated quails
EP1672076A1 (en) Method of constructing transgenic bird using lentivirus vector and transgenic bird obtained thereby
EP1712126A1 (en) Transgenic bird and method of constructing the same
WO2009142186A1 (en) Cytotoxic composition
CN113388586A (en) Oncolytic virus NDV-NRP1 and construction method and application thereof
JP4995574B2 (en) Methods for producing transgenic birds
JP2010111595A (en) Manufacturing method of protein by gene recombinant birds
KR100921226B1 (en) Retrovirus expression vector containing ??-??? human granulocyte-colony stimulating factor gene and Transgenic poultry thereby
EP2752112A1 (en) Transgenic bird expressing foreign gene using endoplasmic reticulum chaperone promoter
JP2006271266A (en) Highly expressing and efficient transgenic birds
KR20160041090A (en) Method of production of transgenic avian producing human epidermal growth factor
KR20110099421A (en) Method of production of transgenic avian producing urokinase-type plasminogen activator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120