JP2009081905A - Apparatus and method for detecting break in distribution line - Google Patents

Apparatus and method for detecting break in distribution line Download PDF

Info

Publication number
JP2009081905A
JP2009081905A JP2007247480A JP2007247480A JP2009081905A JP 2009081905 A JP2009081905 A JP 2009081905A JP 2007247480 A JP2007247480 A JP 2007247480A JP 2007247480 A JP2007247480 A JP 2007247480A JP 2009081905 A JP2009081905 A JP 2009081905A
Authority
JP
Japan
Prior art keywords
phase
disconnection
current
θbc
θca
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007247480A
Other languages
Japanese (ja)
Inventor
Naoki Masuda
直毅 増田
Toshio Nomura
俊夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007247480A priority Critical patent/JP2009081905A/en
Publication of JP2009081905A publication Critical patent/JP2009081905A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a break detector capable of detecting a disconnection fault that occurs on the load side of a point of installation of a current sensor. <P>SOLUTION: A signal processing unit 40 detects the current phase differences (θab, θbc, θca) between phases of three-phase current measured with a current sensor 30 installed in a distribution line 10 and determines the occurrence of a break as follows: (1) when θab<120°, θbc>120°, and θca<120° or when θbc≈180°, it determines that the break has occurred in (a) phase; (2) when θab<120°, θbc<120°, and θca>120° or when θca≈180°, it determines that the break has occurred in (b) phase; and (3) when θab>120°<θbc<120°<θca<120° or when θab≈180°, it determines that the break has occurred in (c) phase. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、配電線の断線検出装置あるいは配電線の断線検出方法、特に、センサ設置点より負荷側の配電線の断線を検出する断線検出装置あるいは断線検出方法に関するものである。   The present invention relates to a disconnection detection device or a disconnection detection method for a distribution line, and more particularly to a disconnection detection device or a disconnection detection method for detecting disconnection of a distribution line on the load side from a sensor installation point.

従来の配電線の断線検出方式または断線検出装置では、電圧センサで検出した三相電圧から逆相電圧あるいは零相電圧を算出し、算出した逆相電圧または零相電圧が所定の値を超過した場合に、当該センサ設置点より電源側に断線が発生しているものと判定しているものが多い。
また、電流センサで検出した三相電流で検出する方式としては、例えば、特開昭61−73516号公報(特許文献1)に示されているように、断線発生時に断線事故相の相電流と逆相電流の位相差が±180°になることを利用した方式がある。
特開昭61−73516号公報(第2頁右上欄)
In a conventional distribution line disconnection detection method or disconnection detection device, the reverse phase voltage or zero phase voltage is calculated from the three-phase voltage detected by the voltage sensor, and the calculated reverse phase voltage or zero phase voltage exceeds a predetermined value. In many cases, it is determined that a disconnection has occurred on the power supply side from the sensor installation point.
In addition, as a method of detecting with a three-phase current detected by a current sensor, for example, as disclosed in Japanese Patent Application Laid-Open No. 61-73516 (Patent Document 1), the phase current of the disconnection accident phase when a disconnection occurs There is a method using the fact that the phase difference of the negative phase current becomes ± 180 °.
JP 61-73516 A (2nd page, upper right column)

特許文献1(特開昭61−73516号公報)に示す方式では、各相電流から逆相電流を求めているため、逆相電流を導出するための回路または演算が必要になると共に、負荷のアンバランスまたは各相電流を検出する電流センサの測定精度のアンバランスの影響を受けやすいという問題がある。
また、電圧要素で断線を検出方式では、センサ設置点よりも電源側に発生した断線しか検出できない。
そのため、当該配電線の電力供給エリア内での断線事故検出可能エリアを広くしようとすれば、配電線の幹線および分岐線の末端に電圧センサ付きの子局を設置しなければならないため、断線検出装置の台数が増えるという問題がある。
In the method shown in Patent Document 1 (Japanese Patent Laid-Open No. Sho 61-73516), the reverse phase current is obtained from each phase current, so that a circuit or calculation for deriving the reverse phase current is required, and the load There is a problem that it is easily influenced by imbalance of measurement accuracy of a current sensor that detects unbalance or current of each phase.
Further, in the detection method of disconnection by a voltage element, only disconnection that occurs on the power supply side from the sensor installation point can be detected.
Therefore, if an attempt is made to widen the area where the disconnection accident can be detected in the power supply area of the distribution line, a slave station with a voltage sensor must be installed at the end of the main line and branch line of the distribution line. There is a problem that the number of devices increases.

この発明は、上述の課題を解決するためになされたもので、三相の電流情報を使って、電流センサより負荷側の断線事故を検出することが可能な配電線の断線検出装置あるいは配電線の断線検出方法を提供すること目的とする。   DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the above-described problems, and a disconnection detecting device or a distribution line for a distribution line that can detect a load-side disconnection accident from a current sensor using three-phase current information. An object of the present invention is to provide a disconnection detection method.

この発明に係る配電線の断線検出装置は、三相(a相、b相、c相)の配電線を区間に分割するために設置された開閉器の負荷側に配置され、上記配電線を流れる各相の電流を計測する電流センサと、上記電流センサが計測する各相(a相、b相、c相)の電流の電流値データを収集する計測データ収集処理部と、上記計測データ収集処理部で収集される三相電流の各相関の電流位相差(θab、θbc、θca)を検出する電流位相差検出処理部と、上記電流位相差検出処理部が検出する各相関の電流位相差差に基づいて上記配電線の断線および断線相を判定する断線判定処理部を備え、
上記断線判定処理部は、
(1) “θab<120°、θbc>120°、θca<120°”のとき、または“θbc≒180°”のときは、a相で断線発生、
(2) “θab<120°、θbc<120°、θca>120°”のとき、または“θca≒180°”のときは、b相で断線発生、
(3) “θab>120°<θbc<120°<θca<120°”のとき、または“θab≒180°”のときは、c相で断線発生
と判定するものである。
The distribution wire breakage detection device according to the present invention is arranged on the load side of a switch installed to divide a three-phase (a phase, b phase, c phase) distribution line into sections, and A current sensor for measuring a current of each phase flowing, a measurement data collection processing unit for collecting current value data of a current of each phase (a phase, b phase, c phase) measured by the current sensor, and the measurement data collection A current phase difference detection processing unit for detecting a current phase difference (θab, θbc, θca) of each correlation of the three-phase current collected by the processing unit, and a current phase difference of each correlation detected by the current phase difference detection processing unit A disconnection determination processing unit that determines the disconnection and disconnection phase of the distribution line based on the difference,
The disconnection determination processing unit
(1) When “θab <120 °, θbc> 120 °, θca <120 °” or “θbc≈180 °”, a disconnection occurs in the a phase.
(2) When “θab <120 °, θbc <120 °, θca> 120 °” or “θca≈180 °”, disconnection occurs in the b-phase,
(3) When “θab> 120 ° <θbc <120 ° <θca <120 °” or “θab≈180 °”, it is determined that a disconnection has occurred in the c phase.

また、この発明に係る配電線の断線検出方法は、開閉器より負荷側の三相(a相、b相、c相)の配電線の各相の電流を計測するステップと、計測された各相の電流値データを収集するステップと、計測された三相電流の各相関の電流位相差(θab、θbc、θca)を検出するステップと、検出された各相関の電流位相差差に基づいて上記配電線の断線および断線相を判定するステップを有し、
上記配電線の断線および断線相を判定するステップは、
(1) “θab<120°、θbc>120°、θca<120°”のとき、または“θbc≒180°”のときは、a相で断線発生、
(2) “θab<120°、θbc<120°、θca>120°”のとき、または“θca≒180°”のときは、b相で断線発生、
(3) “θab>120°<θbc<120°<θca<120°”のとき、または“θab≒180°”のときは、c相で断線発生
と判定するものである。
Moreover, the disconnection detection method of the distribution line which concerns on this invention is the step which measures the electric current of each phase of the distribution line of three phases (a phase, b phase, c phase) of a load side from a switch, and each measured Collecting current value data of phases, detecting a current phase difference (θab, θbc, θca) of each correlation of the measured three-phase current, and based on the detected current phase difference of each correlation Determining the disconnection and disconnection phase of the distribution line,
The step of determining the disconnection and disconnection phase of the distribution line includes:
(1) When “θab <120 °, θbc> 120 °, θca <120 °” or “θbc≈180 °”, a disconnection occurs in the a phase.
(2) When “θab <120 °, θbc <120 °, θca> 120 °” or “θca≈180 °”, disconnection occurs in the b-phase,
(3) When “θab> 120 ° <θbc <120 ° <θca <120 °” or “θab≈180 °”, it is determined that a disconnection has occurred in the c phase.

この発明によれば、開閉器の負荷側に配置された電流センサで配電線の三相電流を計測・監視することにより、電流センサ設置点より負荷側で発生した断線事故の検出および断線事故相の判定ができるので、配電線の断線による停電の検出、三相機器の過熱および誤動作を防止することができると共に、断線した電線による感電事故を防止できるという効果がある。
また、断線事故相が判別できるため、保守作業員による断線個所の探査時間が短縮されるという効果がある。
According to this invention, by measuring and monitoring the three-phase current of the distribution line with the current sensor arranged on the load side of the switch, the detection of the disconnection accident occurring on the load side from the current sensor installation point and the phase of the disconnection accident Therefore, it is possible to prevent a power failure due to disconnection of the distribution line, overheating and malfunction of the three-phase equipment, and to prevent an electric shock accident due to the disconnected wire.
In addition, since the disconnection accident phase can be determined, there is an effect that the search time for the disconnection portion by the maintenance worker is shortened.

以下、図面に基づいて、本発明の一実施の形態例について説明する。
なお、各図間において、同一符号は、同一あるいは相当のものであることを表す。
実施の形態1.
図1は、本実施の形態による配電線の断線検出装置が適用された配電線システムの要部の構成を示す図である。
図1において、10は三相(a相、b相、c相)の配電線(例えば、高圧配電線)、20は三相の配電線10を区間に分割するために設置された開閉器、30は開閉器20の負荷側に配置されて三相の配電線10を流れる各相の電流を計測する電流センサである。
40は、電流センサ30が計測する各相(a相、b相、c相)の電流の電流値データを定周期で収集し、断線判定処理を行う信号処理部である。なお、信号処理部40の構成と動作については後述する。
信号処理部40で判定された判定結果は、通信回線50、通信親局60を介して計算機70へ伝送される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In the drawings, the same reference numerals indicate the same or equivalent ones.
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a main part of a distribution line system to which a distribution line disconnection detection apparatus according to the present embodiment is applied.
In FIG. 1, 10 is a three-phase (a-phase, b-phase, c-phase) distribution line (for example, a high-voltage distribution line), 20 is a switch installed to divide the three-phase distribution line 10 into sections, A current sensor 30 is arranged on the load side of the switch 20 and measures the current of each phase flowing through the three-phase distribution line 10.
Reference numeral 40 denotes a signal processing unit that collects current value data of currents of each phase (a phase, b phase, and c phase) measured by the current sensor 30 and performs disconnection determination processing. The configuration and operation of the signal processing unit 40 will be described later.
The determination result determined by the signal processing unit 40 is transmitted to the computer 70 via the communication line 50 and the communication master station 60.

本実施の形態による配電線の断線検出装置は、三相の配電線10を流れる各相の電流を計測する電流センサ30と信号処理部40とで構成されたものである。
なお、信号処理部40と開閉器20の間の信号線は、信号処理部40によりいずれかの相の断線が判定された場合に、開閉器20を「開」とする信号を送信するための信号線である。
また、図1では、電流センサ30は開閉器20の外部に設けられている場合を示しているが、電流センサ30は開閉器20に内蔵されていてもよい。
また、図1では、1つの開閉器20に対応して電流センサ30および信号処理部40を配置している場合を示しているが、配電線10に所定の間隔を有して複数個の開閉器20を配置し、それぞれの開閉器20に対応して電流センサ30および信号処理部40を配置してもよい。
即ち、配電線10に所定の間隔を有して本実施の形態による配電線の断線検出装置を複数個配置してもよい。
複数個の断線検出装置装置からの断線事故情報や各電流センサ30の設置箇所を示す開閉器データは、通信回線50および通信親局60を介して計算機70に送られる。
複数個の断線検出装置のそれぞれで検出した断線事故事故情報を活用して断線事故箇所の判定と復旧を行う場合には、各電流センサ30の設置箇所を示す開閉器データを使って計算機70で処理することが可能となる。
The distribution line disconnection detection apparatus according to the present embodiment is configured by a current sensor 30 and a signal processing unit 40 that measure currents of respective phases flowing through the three-phase distribution line 10.
The signal line between the signal processing unit 40 and the switch 20 is used to transmit a signal for opening the switch 20 when the signal processing unit 40 determines that one of the phases is disconnected. It is a signal line.
1 shows the case where the current sensor 30 is provided outside the switch 20, the current sensor 30 may be built in the switch 20.
FIG. 1 shows a case where the current sensor 30 and the signal processing unit 40 are arranged corresponding to one switch 20. However, the distribution line 10 has a plurality of switches with a predetermined interval. A device 20 may be arranged, and a current sensor 30 and a signal processing unit 40 may be arranged corresponding to each switch 20.
That is, a plurality of distribution line disconnection detection devices according to the present embodiment may be arranged at predetermined intervals on the distribution line 10.
Disconnection accident information from a plurality of disconnection detection devices and switch data indicating the installation location of each current sensor 30 are sent to the computer 70 via the communication line 50 and the communication master station 60.
When the disconnection accident information is detected and recovered using the disconnection accident information detected by each of the plurality of disconnection detection devices, the computer 70 uses the switch data indicating the installation location of each current sensor 30. It becomes possible to process.

図2は、図1に示した信号処理部40の構成を示すブロック図である。
図2において、計測データ収集処理部41は定周期で三相の配電線10の各相を流れる電流の電流値データを収集する。
電流位相差検出処理部42は、計測データ収集処理部41で収集された三相電流の各相間の位相差を求める。
断線判定処理部43は、電流位相差検出処理部42で得られる位相差3要素(即ち、後述するθab、θbc、θca)の関係から、配電線10の断線発生の有無および断線相を判定する。
判定結果通知処理部44は、前線判定処理部43で断線発生と判定された場合に、判定結果を計算機70または運転員に通知する。
FIG. 2 is a block diagram showing a configuration of the signal processing unit 40 shown in FIG.
In FIG. 2, the measurement data collection processing unit 41 collects current value data of currents flowing through the respective phases of the three-phase distribution line 10 at regular intervals.
The current phase difference detection processing unit 42 obtains a phase difference between the phases of the three-phase current collected by the measurement data collection processing unit 41.
The disconnection determination processing unit 43 determines the presence / absence of disconnection of the distribution line 10 and the disconnection phase from the relationship between the three phase difference elements (that is, θab, θbc, θca described later) obtained by the current phase difference detection processing unit 42. .
The determination result notification processing unit 44 notifies the determination result to the computer 70 or the operator when the front line determination processing unit 43 determines that a disconnection has occurred.

図3は、本実施の形態において、断線相検出の原理を説明するための電流ベクトル図である。
図3のベクトル図において、Ia1、Ib1、Ic1は、それぞれ断線発生前のa相、b相、c相電流であり、Ia2、Ib2、Ic2はa相で断線が発生した後のa相、b相、c相電流である。
図3のケースのように、a相で断線が発生した場合、各相の電流ベクトルの動きは次のようになる。
a相は、線分OA上をO側に移動する。b相は、線分AB上をBからPへ事故発生前のベクトル方向から0〜30°進み方向へ移動する。c相は、線分CA上をCからQへ事故発生前のベクトル方向から0〜30°遅れ方向へ移動する。
従って、θabとθcaは120°より減少し、θbcは120°より増大する。
即ち、以下の条件式が成立する。
θab < 120°
θbc > 120°
θca < 120°
FIG. 3 is a current vector diagram for explaining the principle of detection of a disconnected phase in the present embodiment.
In the vector diagram of FIG. 3, Ia1, Ib1, and Ic1 are the a-phase, b-phase, and c-phase currents before the occurrence of disconnection, and Ia2, Ib2, and Ic2 are the a-phase and b after the occurrence of disconnection in the a-phase, b Phase c-phase current.
When a disconnection occurs in the a phase as in the case of FIG. 3, the movement of the current vector in each phase is as follows.
The a phase moves on the line segment OA to the O side. The b phase moves on the line segment AB from B to P in the direction of 0 to 30 ° from the vector direction before the accident. The c-phase moves on the line segment CA from C to Q in the direction of 0 to 30 ° behind the vector direction before the accident.
Therefore, θab and θca decrease from 120 °, and θbc increases from 120 °.
That is, the following conditional expression is satisfied.
θab <120 °
θbc> 120 °
θca <120 °

図4は、本実施の形態において、電流センサの直近で断線が発生した場合の電流ベクトル図である。
電流センサ30の直近でa相断線が発生した場合、断線発生後の各電流ベクトルIa2、Ib2、Ic2は、図4のようになる。
即ち、“Ia2=0”となり、Ib2とIc2は逆位相となり、以下の条件式が成立する。
θbc≒180°
FIG. 4 is a current vector diagram when a disconnection occurs in the immediate vicinity of the current sensor in the present embodiment.
When an a-phase disconnection occurs in the immediate vicinity of the current sensor 30, the current vectors Ia2, Ib2, and Ic2 after the disconnection are as shown in FIG.
That is, “Ia2 = 0”, Ib2 and Ic2 are in opposite phases, and the following conditional expression is satisfied.
θbc ≒ 180 °

なお、負荷変動により相電流が変化した場合は、以下のようになり負荷変動による相電流の変化と断線による相電流の変化を混同することは無い。
例えば、bc相間の負荷が変動した場合、図5に示すようにb相電流、c相電流は線分BC上を動くため、各相電流の位相関係は次のようになる。
(1)a相電流を基準に考えた場合、遅れ相との位相差が120°より大、進み相との位相差が120°より大、遅れ相と進み相の位相差が120°より小となる。
従って、断線検出の判定条件には該当しない。
(2)また、b相電流を基準に考えた場合、遅れ相との位相差が120°より小、進み相との位相差が120°より大、遅れ相と進み相の位相差が120°より大となる。
従って、断線検出の判定条件には該当しない。
(3)また、c相電流を基準に考えた場合、遅れ相との位相差が120°より大、進み相との位相差が120°より小、遅れ相と進み相の位相差が120°より大となる。
従って、断線検出の判定条件には該当しない。
Note that when the phase current changes due to load fluctuation, the change in phase current due to load fluctuation and the change in phase current due to disconnection are not confused as follows.
For example, when the load between bc phases fluctuates, the b-phase current and the c-phase current move on the line segment BC as shown in FIG.
(1) When considered based on the a-phase current, the phase difference with the lagging phase is larger than 120 °, the phase difference with the leading phase is larger than 120 °, and the phase difference between the lagging phase and the leading phase is smaller than 120 °. It becomes.
Therefore, it does not correspond to the determination condition for disconnection detection.
(2) When the b-phase current is considered as a reference, the phase difference from the delayed phase is smaller than 120 °, the phase difference from the advanced phase is larger than 120 °, and the phase difference between the delayed phase and the advanced phase is 120 °. Become bigger.
Therefore, it does not correspond to the determination condition for disconnection detection.
(3) When considering the c-phase current as a reference, the phase difference with the lagging phase is larger than 120 °, the phase difference with the leading phase is smaller than 120 °, and the phase difference between the lagging phase and the leading phase is 120 °. Become bigger.
Therefore, it does not correspond to the determination condition for disconnection detection.

以上説明したように、本実施の形態による配電線の断線検出装置は、三相(a相、b相、c相)の配電線10を区間に分割するために設置された開閉器20の負荷側に配置され、配電線10を流れる各相の電流を計測する電流センサ30と、電流センサ30が計測する各相(a相、b相、c相)の電流の電流値データを収集する計測データ収集処理部41と、計測データ収集処理部41で収集される三相電流の各相関の電流位相差(θab、θbc、θca)を検出する電流位相差検出処理部42と、電流位相差検出処理部42が検出する各相関の電流位相差差に基づいて配電線10の断線および断線相を判定する断線判定処理部43を備え、
断線判定処理部43は、
(1) “θab<120°、θbc>120°、θca<120°”のとき、または“θbc≒180°”のときは、a相で断線発生、
(2) “θab<120°、θbc<120°、θca>120°”のとき、または“θca≒180°”のときは、b相で断線発生、
(3) “θab>120°<θbc<120°<θca<120°”のとき、または“θab≒180°”のときは、c相で断線発生
と判定する。
As described above, the distribution line disconnection detection device according to the present embodiment is a load of the switch 20 installed to divide the distribution line 10 of three phases (a phase, b phase, c phase) into sections. Current sensor 30 that is arranged on the side and that measures the current of each phase flowing through distribution line 10, and measurement that collects current value data of the current of each phase (a phase, b phase, and c phase) that current sensor 30 measures A data collection processing unit 41, a current phase difference detection processing unit 42 for detecting a current phase difference (θab, θbc, θca) of each correlation of the three-phase current collected by the measurement data collection processing unit 41, and a current phase difference detection A disconnection determination processing unit 43 for determining disconnection and disconnection phase of the distribution line 10 based on the current phase difference of each correlation detected by the processing unit 42,
The disconnection determination processing unit 43
(1) When “θab <120 °, θbc> 120 °, θca <120 °” or “θbc≈180 °”, a disconnection occurs in the a phase.
(2) When “θab <120 °, θbc <120 °, θca> 120 °” or “θca≈180 °”, disconnection occurs in the b-phase,
(3) When “θab> 120 ° <θbc <120 ° <θca <120 °” or “θab≈180 °”, it is determined that a disconnection has occurred in the c phase.

また、本実施の形態による配電線の断線検出方法は、開閉器20より負荷側の三相(a相、b相、c相)の配電線10の各相の電流を計測するステップと、計測された各相の電流値データを収集するステップと、計測された三相電流の各相関の電流位相差(θab、θbc、θca)を検出するステップと、検出された各相関の電流位相差差に基づいて上記配電線の断線および断線相を判定するステップを有し、
配電線10の断線および断線相を判定するステップは、
(1) “θab<120°、θbc>120°、θca<120°”のとき、または“θbc≒180°”のときは、a相で断線発生、
(2) “θab<120°、θbc<120°、θca>120°”のとき、または“θca≒180°”のときは、b相で断線発生、
(3) “θab>120°<θbc<120°<θca<120°”のとき、または“θab≒180°”のときは、c相で断線発生
と判定する。
Moreover, the disconnection detection method of the distribution line by this Embodiment measures the electric current of each phase of the distribution line 10 of the three phases (a phase, b phase, c phase) of the load side from the switch 20, and measurement. Collecting the current value data of each detected phase, detecting the current phase difference (θab, θbc, θca) of each correlation of the measured three-phase current, and the current phase difference of each detected correlation Determining the disconnection and disconnection phase of the distribution line based on
The step of determining the disconnection and disconnection phase of the distribution line 10
(1) When “θab <120 °, θbc> 120 °, θca <120 °” or “θbc≈180 °”, a disconnection occurs in the a phase.
(2) When “θab <120 °, θbc <120 °, θca> 120 °” or “θca≈180 °”, disconnection occurs in the b-phase,
(3) When “θab> 120 ° <θbc <120 ° <θca <120 °” or “θab≈180 °”, it is determined that a disconnection has occurred in the c phase.

このように、本実施の形態による配電線の断線検出装置あるいは配電線の断線検出方法においては、配電線の三相電流の位相差をもとに断線事故の発生有無および断線事故相の判定を行うため、断線検出装置を配電線の末端に設置する必要がない。
そのため、断線検出装置と計算機間の通信線が少なくてすむと共に、断線検出装置の個数を減らすことができる。
また、断線による需要家機器の誤動作、不動作を防止できると共に、断線時の逆相電圧による需要家機器の過熱損傷を防止できる。
つまり、開閉器の負荷側に配置された電流センサで配電線の三相電流を計測・監視することにより、電流センサ設置点より負荷側で発生した断線事故の検出および断線事故相の判定ができる。
従って、配電線の断線による停電の検出、三相機器の過熱および誤動作を防止することができると共に、断線した電線による感電事故を防止できるという効果がある。
また、断線事故相が判別できるため、保守作業員による断線個所の探査時間が短縮されるという効果がある。
Thus, in the distribution line disconnection detection device or distribution line disconnection detection method according to this embodiment, the presence or absence of a disconnection accident and the determination of the phase of the disconnection accident are performed based on the phase difference of the three-phase current of the distribution line. Therefore, it is not necessary to install a disconnection detector at the end of the distribution line.
Therefore, the number of communication lines between the disconnection detection device and the computer can be reduced, and the number of disconnection detection devices can be reduced.
In addition, it is possible to prevent malfunctions and malfunctions of customer equipment due to disconnection, and it is possible to prevent overheating damage of customer equipment due to reverse-phase voltage during disconnection.
In other words, by measuring and monitoring the three-phase current of the distribution line with the current sensor arranged on the load side of the switch, it is possible to detect a disconnection accident that occurred on the load side from the current sensor installation point and to determine the disconnection accident phase. .
Therefore, it is possible to prevent power failure due to disconnection of the distribution line, overheating and malfunction of the three-phase equipment, and to prevent an electric shock accident due to the disconnected wire.
In addition, since the disconnection accident phase can be determined, there is an effect that the search time for the disconnection portion by the maintenance worker is shortened.

この発明は、三相の電流情報を使って電流センサより負荷側の断線事故を検出することが可能な配電線の断線検出装置の実現に有用である。   The present invention is useful for realizing a disconnection detecting device for a distribution line capable of detecting a load-side disconnection accident from a current sensor using three-phase current information.

実施の形態1による配電線の断線検出装置が適用された配電線システムの要部の構成を示す図である。It is a figure which shows the structure of the principal part of the distribution line system with which the disconnection detection apparatus of the distribution line by Embodiment 1 was applied. 実施の形態1における信号処理部40の構成を示すブロック図である。3 is a block diagram illustrating a configuration of a signal processing unit 40 according to Embodiment 1. FIG. 実施の形態1における断線相検出の原理を説明するための電流ベクトル図である。FIG. 5 is a current vector diagram for explaining the principle of detection of a broken phase in the first embodiment. 実施の形態1において、電流センサの直近で断線が発生した場合の電流ベクトル図である。In Embodiment 1, it is an electric current vector figure when a disconnection generate | occur | produces in the immediate vicinity of a current sensor. 実施の形態1において、bc相間で負荷変動があった場合の電流ベクトル図である。In Embodiment 1, it is an electric current vector figure when there exists load fluctuation between bc phases.

符号の説明Explanation of symbols

10 配電線 20 開閉器
30 電流センサ 40 信号処理部
41 計測データ収集処理部 42 電流位相差検出処理部
42 断線判定処理部 44 判定結果通知処理部
50 通信回線 60 通信親局
70 計算機
DESCRIPTION OF SYMBOLS 10 Distribution line 20 Switch 30 Current sensor 40 Signal processing part 41 Measurement data collection process part 42 Current phase difference detection process part 42 Disconnection determination process part 44 Judgment result notification process part 50 Communication line 60 Communication master station 70 Computer

Claims (2)

三相(a相、b相、c相)の配電線を区間に分割するために設置された開閉器の負荷側に配置され、上記配電線を流れる各相の電流を計測する電流センサと、上記電流センサが計測する各相(a相、b相、c相)の電流の電流値データを収集する計測データ収集処理部と、上記計測データ収集処理部で収集される三相電流の各相関の電流位相差(θab、θbc、θca)を検出する電流位相差検出処理部と、上記電流位相差検出処理部が検出する各相関の電流位相差差に基づいて上記配電線の断線および断線相を判定する断線判定処理部を備え、
上記断線判定処理部は、
(1) “θab<120°、θbc>120°、θca<120°”のとき、または“θbc≒180°”のときは、a相で断線発生、
(2) “θab<120°、θbc<120°、θca>120°”のとき、または“θca≒180°”のときは、b相で断線発生、
(3) “θab>120°<θbc<120°<θca<120°”のとき、または“θab≒180°”のときは、c相で断線発生
と判定することを特徴とする配電線の断線検出装置。
A current sensor which is arranged on the load side of a switch installed to divide a distribution line of three phases (a phase, b phase, c phase) into sections, and measures a current of each phase flowing through the distribution line; Measurement data collection processing unit that collects current value data of currents of each phase (a phase, b phase, c phase) measured by the current sensor, and each correlation of three-phase currents collected by the measurement data collection processing unit Current phase difference detection processing unit for detecting current phase differences (θab, θbc, θca), and disconnection and disconnection phase of the distribution line based on the current phase difference of each correlation detected by the current phase difference detection processing unit A disconnection determination processing unit for determining
The disconnection determination processing unit
(1) When “θab <120 °, θbc> 120 °, θca <120 °” or “θbc≈180 °”, a disconnection occurs in the a phase.
(2) When “θab <120 °, θbc <120 °, θca> 120 °” or “θca≈180 °”, disconnection occurs in the b-phase,
(3) Disconnection of distribution line characterized in that when “θab> 120 ° <θbc <120 ° <θca <120 °” or “θab≈180 °”, it is determined that a disconnection has occurred in phase c. Detection device.
開閉器より負荷側の三相(a相、b相、c相)の配電線の各相の電流を計測するステップと、計測された各相の電流値データを収集するステップと、計測された三相電流の各相関の電流位相差(θab、θbc、θca)を検出するステップと、検出された各相関の電流位相差差に基づいて上記配電線の断線および断線相を判定するステップを有し、
上記配電線の断線および断線相を判定するステップは、
(1) “θab<120°、θbc>120°、θca<120°”のとき、または“θbc≒180°”のときは、a相で断線発生、
(2) “θab<120°、θbc<120°、θca>120°”のとき、または“θca≒180°”のときは、b相で断線発生、
(3) “θab>120°<θbc<120°<θca<120°”のとき、または“θab≒180°”のときは、c相で断線発生
と判定することを特徴とする配電線の断線検出方法。
The step of measuring the current of each phase of the distribution line of the three phases (a phase, b phase, c phase) on the load side from the switch, the step of collecting the current value data of each measured phase, was measured Detecting a current phase difference (θab, θbc, θca) of each correlation of the three-phase current, and determining a disconnection and a disconnection phase of the distribution line based on the detected current phase difference of each correlation. And
The step of determining the disconnection and disconnection phase of the distribution line includes:
(1) When “θab <120 °, θbc> 120 °, θca <120 °” or “θbc≈180 °”, a disconnection occurs in the a phase.
(2) When “θab <120 °, θbc <120 °, θca> 120 °” or “θca≈180 °”, disconnection occurs in the b-phase,
(3) Disconnection of distribution line characterized in that when “θab> 120 ° <θbc <120 ° <θca <120 °” or “θab≈180 °”, it is determined that a disconnection has occurred in phase c. Detection method.
JP2007247480A 2007-09-25 2007-09-25 Apparatus and method for detecting break in distribution line Withdrawn JP2009081905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247480A JP2009081905A (en) 2007-09-25 2007-09-25 Apparatus and method for detecting break in distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247480A JP2009081905A (en) 2007-09-25 2007-09-25 Apparatus and method for detecting break in distribution line

Publications (1)

Publication Number Publication Date
JP2009081905A true JP2009081905A (en) 2009-04-16

Family

ID=40656265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247480A Withdrawn JP2009081905A (en) 2007-09-25 2007-09-25 Apparatus and method for detecting break in distribution line

Country Status (1)

Country Link
JP (1) JP2009081905A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081937A (en) * 2007-09-26 2009-04-16 Chugoku Electric Power Co Inc:The Open circuit protection relay
WO2014125590A1 (en) * 2013-02-14 2014-08-21 三菱電機株式会社 Determining device, determining method, and program
JP2016053489A (en) * 2014-09-03 2016-04-14 関西電力株式会社 Disconnection detecting apparatus, disconnection detecting method, and disconnection section identifying system
JP2017112724A (en) * 2015-12-16 2017-06-22 関西電力株式会社 Disconnection direction determination device, disconnection direction determination method, and disconnection section specification system
JP2017112723A (en) * 2015-12-16 2017-06-22 関西電力株式会社 Disconnection section specification system and disconnection section specification method
JP2019124552A (en) * 2018-01-16 2019-07-25 日立Geニュークリア・エナジー株式会社 Electric path failure detection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081937A (en) * 2007-09-26 2009-04-16 Chugoku Electric Power Co Inc:The Open circuit protection relay
WO2014125590A1 (en) * 2013-02-14 2014-08-21 三菱電機株式会社 Determining device, determining method, and program
JP5901832B2 (en) * 2013-02-14 2016-04-13 三菱電機株式会社 Determination device, determination method, and program
US9557359B2 (en) 2013-02-14 2017-01-31 Mitsubishi Electric Corporation Device, method and program for determining misplacement of a current transformer on a power line
JPWO2014125590A1 (en) * 2013-02-14 2017-02-02 三菱電機株式会社 Determination device, determination method, and program
JP2016053489A (en) * 2014-09-03 2016-04-14 関西電力株式会社 Disconnection detecting apparatus, disconnection detecting method, and disconnection section identifying system
JP2017112724A (en) * 2015-12-16 2017-06-22 関西電力株式会社 Disconnection direction determination device, disconnection direction determination method, and disconnection section specification system
JP2017112723A (en) * 2015-12-16 2017-06-22 関西電力株式会社 Disconnection section specification system and disconnection section specification method
JP2019124552A (en) * 2018-01-16 2019-07-25 日立Geニュークリア・エナジー株式会社 Electric path failure detection device
WO2019142574A1 (en) * 2018-01-16 2019-07-25 日立Geニュークリア・エナジー株式会社 Electric circuit failure detecting device

Similar Documents

Publication Publication Date Title
JP6132919B2 (en) DC power generation system and method for protecting DC power generation system
JP5875734B2 (en) Diagnostic device and switching device for electric motor
KR100883777B1 (en) Method for Disorder Display of Terminal Unit in Power Distribution Automation System
JP6246062B2 (en) DC power generation system and method for protecting DC power generation system
CN103004048B (en) Fault protection of HVDC transmission lines
JP2009081905A (en) Apparatus and method for detecting break in distribution line
KR100835388B1 (en) Apparatus and method for monitoring ground fault of high resistance
CN104412478B (en) A power bay protection device and a method for protecting power bays
JP2007116893A (en) Device and method for detecting fault section by comparison of phase difference, and magnitude of zero-phase current in non-grounded distribution system
CN102279340A (en) Direct-grounding insulation fault detection device and method
US9728955B2 (en) Zone selective interlocking (ZSI) power distribution operating a ZSI power distribution system
KR20100047066A (en) Over current relay protection device for preventing mal-operation by reverse power and the driving method thereof
JP2011061911A (en) Grid stabilizing system
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
CN110687443B (en) Primary equipment state discrimination method and system
JP6958146B2 (en) Arc detector
JP2008206321A (en) Power converter
KR101325998B1 (en) Insulated housing with voltage detection and power switching apparatus using that
JP6834334B2 (en) Arc failure detection system
JP5288757B2 (en) Electronic circuit breaker
KR101325996B1 (en) Insulated housing with voltage detection and power switching apparatus using that
JP3172845B2 (en) Method and apparatus for predicting the life of a segmented switch
KR101325997B1 (en) Insulated housing with voltage detection and power switching apparatus using that
JP2018100877A (en) Arc fault detection system
JP5589917B2 (en) Distribution line monitoring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100617