JP2009081134A - Plasma electrode - Google Patents

Plasma electrode Download PDF

Info

Publication number
JP2009081134A
JP2009081134A JP2008231476A JP2008231476A JP2009081134A JP 2009081134 A JP2009081134 A JP 2009081134A JP 2008231476 A JP2008231476 A JP 2008231476A JP 2008231476 A JP2008231476 A JP 2008231476A JP 2009081134 A JP2009081134 A JP 2009081134A
Authority
JP
Japan
Prior art keywords
plasma electrode
plasma
electrode
dielectric film
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008231476A
Other languages
Japanese (ja)
Other versions
JP4460014B2 (en
Inventor
Kazuo Shimizu
一男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008231476A priority Critical patent/JP4460014B2/en
Publication of JP2009081134A publication Critical patent/JP2009081134A/en
Application granted granted Critical
Publication of JP4460014B2 publication Critical patent/JP4460014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma electrode capable of reducing power consumption by setting a gap between electrodes at a micrometer order and by operating in the vicinity of the Paschen minimum at atmospheric pressure and of reducing applied voltage and improving circulation of fluid. <P>SOLUTION: In the plasma electrode 10 wherein two metal boards 13, 14 with a plurality of through-holes 11, 12 are arranged in parallel so as positions of both through-holes to correspondingly coincide with each other, a porous dielectric film 16 is formed exposed on at least one surface of the opposed metal boards. Another embodiment of the plasma electrode is that two metal boards are arranged in parallel by sandwiching a non-conductive spacer 15 at their peripheral edges. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、室内空気清浄、オゾン生成、除菌・殺菌、排ガス浄化、水浄化、水中の殺菌等のためのプラズマ放電を生起せしめる、いわゆる誘電体バリア電極としてのプラズマ電極に関する。   The present invention relates to a plasma electrode as a so-called dielectric barrier electrode that causes plasma discharge for indoor air purification, ozone generation, sterilization / sterilization, exhaust gas purification, water purification, sterilization in water, and the like.

従来、このようなプラズマ放電を生起せしめる放電電極は、産業分野から民生分野までさまざまな分野で用いられており、それぞれの用途に適応したものの研究開発が各方面で進められている。   Conventionally, discharge electrodes for generating such plasma discharges have been used in various fields from industrial fields to consumer fields, and research and development of those suitable for each application has been promoted in various fields.

とりわけ、プラズマにより大気中の酸素からオゾンを生成せしめ、もって空気浄化を図ろうとする利用分野では、例えば、特許文献1や特許文献2に示されるように、民生用需要に適応させるべくさまざまな放電電極が開発されてきている。
特開昭63−190702号公報 特開2005−21319号公報
In particular, in the field of use in which ozone is generated from oxygen in the atmosphere by plasma to purify the air, for example, as disclosed in Patent Document 1 and Patent Document 2, various discharges are applied to adapt to consumer demand. Electrodes have been developed.
JP-A-63-190702 JP 2005-21319 A

しかし、従来技術に開示された放電電極は、空気などの流体をプラズマと接触させ処理するために十分な気体流通性を確保せんがために、放電電極間のギャップを数mm程度とし、そのためにプラズマを生起せしめるための印加電圧を数kV以上とすることが必要となり、そのため消費電力が大きくなるという問題点がある。   However, the discharge electrode disclosed in the prior art does not secure sufficient gas flow for contacting and processing a fluid such as air with the plasma, so that the gap between the discharge electrodes is about several millimeters. There is a problem that the applied voltage for generating the plasma needs to be several kV or more, and the power consumption increases accordingly.

また一方で、電極間のギャップをμmオーダーとし無声放電又は沿面放電を生起せしめ、低電圧で効率的なプラズマ生成を実現する技術(マイクロプラズマ技術)も開発も進められてはいるが、反面、そのプラズマ放電範囲が狭小化するために、空気などの流体を流通させるときに非常に大きな圧力差損が生じ、そのための特段の流体圧入手段等が必要とされるという問題点もある。   On the other hand, a technology (microplasma technology) that achieves efficient plasma generation at low voltage by generating silent discharge or creeping discharge by setting the gap between electrodes to the order of μm has been developed. Since the plasma discharge range is narrowed, a very large pressure differential loss occurs when a fluid such as air is circulated, and there is a problem that a special fluid press-fitting means for that purpose is required.

前述のように、従来技術では、気体流通性とエネルギー消費低減とを両立させることが困難であり、また、マイクロプラズマ技術ではプラズマ生成の機械的構成も微細部材の複合化が必要となっているため、民生用途向けなどでのプラズマ応用の大きな制約となっている。   As described above, in the conventional technology, it is difficult to achieve both gas flowability and energy consumption reduction, and in the microplasma technology, the mechanical configuration of plasma generation requires the combination of fine members. Therefore, it is a major limitation of plasma application for consumer use.

本発明は、前記従来技術の課題に鑑みて、電極間のギャップをμmオーダーとし、大気圧中でのパッシェンミニマム付近で作動することで、消費電力を低減するとともに、印加電圧の低減化、流体の流通性を向上させることができるプラズマ電極を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention reduces the power consumption, reduces applied voltage, fluids by setting the gap between electrodes to the μm order and operating near the Paschen minimum in the atmospheric pressure. An object of the present invention is to provide a plasma electrode that can improve the flowability of the plasma.

(1)本発明のプラズマ電極は、複数の貫通孔を有する金属基板2枚を、該貫通孔同士の位置が一致するように平行に配設したプラズマ電極であって、該金属基板の対向する少なくとも一方の表面にはポーラスな誘電体膜が露出して形成されていることを特徴とする。
(2)本発明のプラズマ電極は、前記(1)において、前記金属基板2枚が、その周縁に非導電体スペーサを介在させて平行に配設したことを特徴とする。
(3)本発明のプラズマ電極は、前記(2)において、前記非導電体スペーサの厚みが5〜500μmであることを特徴とする。
(4)本発明のプラズマ電極は、前記(1)〜(3)のいずれかにおいて、前記金属基板に形成されている貫通孔は、その全開口面積率が前記金属基板の片面の表面積に対して2%〜60%であり、かつ単独の貫通孔の開口面積率が前記金属基板の片面の表面積に対して0.05%〜5%であることを特徴とする。
(5)本発明のプラズマ電極は、前記(1)〜(4)のいずれかにおいて、前記誘電体膜に、疎水性物質が含浸されていることを特徴とする。
(6)本発明のプラズマ電極は、前記(1)〜(5)のいずれかにおいて、前記プラズマ電極にパルス状波形を印可することを特徴とする。
(1) The plasma electrode of the present invention is a plasma electrode in which two metal substrates having a plurality of through holes are arranged in parallel so that the positions of the through holes coincide with each other, and the metal substrates face each other. A porous dielectric film is exposed and formed on at least one surface.
(2) The plasma electrode according to the present invention is characterized in that, in the above (1), the two metal substrates are arranged in parallel with a non-conductive spacer interposed on the periphery thereof.
(3) The plasma electrode of the present invention is characterized in that, in the above (2), the non-conductive spacer has a thickness of 5 to 500 μm.
(4) In the plasma electrode according to any one of (1) to (3), the through hole formed in the metal substrate has a total opening area ratio relative to a surface area of one surface of the metal substrate. The opening area ratio of the single through hole is 0.05% to 5% with respect to the surface area of one side of the metal substrate.
(5) The plasma electrode of the present invention is characterized in that, in any one of the above (1) to (4), the dielectric film is impregnated with a hydrophobic substance.
(6) The plasma electrode of the present invention is characterized in that, in any of (1) to (5), a pulse waveform is applied to the plasma electrode.

本発明のプラズマ電極は、電極間のギャップをμmオーダーとし、大気圧中でのパッシェンミニマム付近で作動することで、消費電力を低減できる。また、印加電圧の低減化、流体の流通性を向上させることもできる。   The plasma electrode of the present invention can reduce power consumption by setting the gap between the electrodes to the order of μm and operating near the Paschen minimum in the atmospheric pressure. In addition, the applied voltage can be reduced and the fluidity of the fluid can be improved.

(実施形態1)
以下に本発明の実施形態1を図面を参照しながら詳しく説明する。図1は、実施形態1のプラズマ電極の概略構成図であり、(a)はプラズマ電極の断面図、(b)はプラズマ電極の平面図、(c)及び(d)はプラズマ電極の拡大断面図である。
(Embodiment 1)
Embodiment 1 of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a plasma electrode according to Embodiment 1, wherein (a) is a cross-sectional view of the plasma electrode, (b) is a plan view of the plasma electrode, and (c) and (d) are enlarged cross-sections of the plasma electrode. FIG.

図1に示すように、実施形態1のプラズマ電極10は、2枚の金属基板13,14を組合わせて平行に配設したものである。組合わせに際して、金属基板13,14に形成されている複数の貫通孔11,12が互いにその位置を一致するように配設されており、2枚の金属基板に形成されている貫通孔を通過させる流体を通りやすくしている。
また、図1(a)に示すように、プラズマ電極10は、その周縁部分に非導電体スペーサ15を介在させて平行に配設されている。
さらに、金属基板13,14の対向する表面には誘電体膜16が形成されており、誘電体膜16の表面は、ポーラス面が露出した凹凸状となっている。
As shown in FIG. 1, the plasma electrode 10 of Embodiment 1 is a combination of two metal substrates 13 and 14 and arranged in parallel. At the time of combination, the plurality of through holes 11 and 12 formed in the metal substrates 13 and 14 are disposed so as to coincide with each other, and pass through the through holes formed in the two metal substrates. Makes it easy to pass the fluid to be passed.
As shown in FIG. 1A, the plasma electrodes 10 are arranged in parallel at the peripheral portion with a non-conductive spacer 15 interposed therebetween.
Furthermore, a dielectric film 16 is formed on the opposing surfaces of the metal substrates 13 and 14, and the surface of the dielectric film 16 has an uneven shape with a porous surface exposed.

図1(b)に示すように、対向する金属基板には、その厚み方向に貫通させた貫通孔11,12が多数形成されており、開口部分の全面積を合計した開口面積率は、貫通孔が形成されない場合の金属基板の片面の表面積に対して2%〜60%とすることが好ましい。
2%未満であると、圧力損失が高くなり気体の導入に特別な付加装置(例えば高圧ポンプ)が必要になりコスト高になるという問題があり、60%を超えると、プラズマに流入気体が十分接触せず、有害物質、殺菌などの気相化学反応の効率低下となり好ましくない。
そして、単独の貫通孔の開口面積率は、貫通孔を形成する前の金属基板片面の表面積に対して0.05%〜5%であることが好ましい。0.05%未満であると圧力損失が高くなるという問題があり、5%を超えると、プラズマに流入気体が十分接触しなくなり好ましくない。
As shown in FIG. 1 (b), the opposing metal substrate has a large number of through-holes 11 and 12 penetrating in the thickness direction. It is preferable to be 2% to 60% with respect to the surface area of one side of the metal substrate when no hole is formed.
If it is less than 2%, there is a problem that the pressure loss becomes high and a special additional device (for example, a high pressure pump) is required for introducing gas, resulting in a high cost. It is not preferable because it does not come in contact and the efficiency of gas phase chemical reactions such as harmful substances and sterilization is reduced.
And it is preferable that the opening area rate of a single through-hole is 0.05%-5% with respect to the surface area of the metal substrate single side | surface before forming a through-hole. If it is less than 0.05%, there is a problem that the pressure loss becomes high. If it exceeds 5%, the inflowing gas does not sufficiently contact the plasma, which is not preferable.

(非導電体スペーサ)
図1(a)に示すように、プラズマ電極10は、電極間ギャップを所定の間隔に保つためにプラズマ電極10の周縁部分に非導電体スペーサ15を介在させて、平行に配設されている。
非導電体スペーサ15の形状としては、貫通孔を通じての電極間での流体の貫通を妨げないように中央部分をくり貫いたリング状とすることが好ましい。
非導電体スペーサ15は、その厚みが、5〜500μmであることが望ましい。この非導電体スペーサにより、電極間ギャップを保つことができる。5μm未満であると、スペーサとしての耐久性に乏しく、また薄くすることに対するコスト高を招き、500μmを超えると、放電電圧が高くなり、マイクロプラズマが形成されにくくなり、放電効率の低下を招くので好ましくない。
また、スペーサ15の材質としては、耐久性やコストの観点から、ポリエチレン樹脂、テフロン(登録商標)樹脂などの、合成樹脂フィルムが好ましく用いられる。
(Non-conductive spacer)
As shown in FIG. 1A, the plasma electrodes 10 are arranged in parallel with a non-conductive spacer 15 interposed in the peripheral portion of the plasma electrode 10 in order to keep the gap between the electrodes at a predetermined interval. .
As the shape of the non-conductive spacer 15, it is preferable to form a ring shape in which the central portion is cut so as not to prevent the fluid from passing between the electrodes through the through hole.
The non-conductor spacer 15 desirably has a thickness of 5 to 500 μm. The gap between the electrodes can be maintained by this non-conductive spacer. If the thickness is less than 5 μm, the durability as a spacer is poor, and the cost for thinning is increased. If the thickness exceeds 500 μm, the discharge voltage becomes high, and it is difficult to form microplasma, leading to a decrease in discharge efficiency. It is not preferable.
Moreover, as a material of the spacer 15, a synthetic resin film such as polyethylene resin and Teflon (registered trademark) resin is preferably used from the viewpoint of durability and cost.

(誘電体膜)
プラズマ電極断面の拡大図(図1(c))に詳細を示すように、金属基板13,14の対向する表面には、誘電体膜16が形成されており、誘電体膜16の表面は、誘電体膜のポーラス面が露出しており、その表面は凹凸状態となっている。また、図1(d)に示すように、その誘電体膜16には、疎水性物質が含浸されて含浸体17として残留していることが望ましい。
(Dielectric film)
As shown in detail in the enlarged view of the cross section of the plasma electrode (FIG. 1C), a dielectric film 16 is formed on the opposing surfaces of the metal substrates 13 and 14, and the surface of the dielectric film 16 is The porous surface of the dielectric film is exposed, and the surface is uneven. Further, as shown in FIG. 1 (d), the dielectric film 16 is preferably impregnated with a hydrophobic substance and remains as the impregnated body 17.

次に、実施形態1のプラズマ電極の各部をより詳細に説明する。
(金属基板)
金属基板13,14を構成する素材としては、大気を供給して大気圧プラズマを発生させる電極として用いるため、高温での耐酸化性を有する材料が好ましい。具体的には、マルテンサイト系ステンレス鋼(martensitic stainless steels)、フェライト系ステンレス鋼(ferritic stainless steels)、オーステナイト系ステンレス鋼(austenitic stainless steels)、オーステナイト・フェライト系ステンレス鋼(austenitic-ferritic stainless steels)、析出硬化系ステンレス鋼(precipitation hardening stainless steels)等のステンレス鋼が挙げられる。このうち、非磁性体のオーステナイト系の18%クロム−8%ニッケル(18−8)ステンレス鋼を好ましく採用することができる。
なお、本実施形態では、高温での耐酸化性を有する一例として上記のステンレス鋼を挙げたが、ステンレス鋼に限らず他の金属を用いることもできる。
Next, each part of the plasma electrode of Embodiment 1 will be described in more detail.
(Metal substrate)
The material constituting the metal substrates 13 and 14 is preferably a material having oxidation resistance at high temperatures because it is used as an electrode for supplying atmospheric air to generate atmospheric pressure plasma. Specifically, martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, austenitic-ferritic stainless steels, Examples include stainless steels such as precipitation hardening stainless steels. Among these, nonmagnetic austenitic 18% chromium-8% nickel (18-8) stainless steel can be preferably used.
In the present embodiment, the above stainless steel is given as an example having oxidation resistance at a high temperature. However, the present invention is not limited to stainless steel, and other metals can be used.

(金属基板の厚み)
また、金属基板13,14の厚みとしては、0.1〜2mmとすることが好ましい。厚みが0.1mm未満では、電極表面への加工が困難(若しくはコスト高)になるという問題点があり、2mmを超えると重量が重たくなり電極として取扱いが困難となり好ましくない。また、金属基板13,14の形状は、本実施形態では平板としているが、プラズマの安定性などに影響を及ぼさないのであれば、その形状は特に限定されない。例えば、所定の曲率をつけた管状とすることもできる。
(Metal substrate thickness)
The thickness of the metal substrates 13 and 14 is preferably 0.1 to 2 mm. If the thickness is less than 0.1 mm, there is a problem that it becomes difficult (or high in cost) to process the electrode surface, and if it exceeds 2 mm, the weight increases and handling as an electrode becomes difficult. Moreover, although the shape of the metal substrates 13 and 14 is a flat plate in this embodiment, the shape is not particularly limited as long as it does not affect the stability of the plasma. For example, it can also be a tube with a predetermined curvature.

(貫通孔)
プラズマ電極10は、複数の貫通孔を有した金属基板を2枚の電極を対向して組み合わせた構造となっている。電極に対して直角方向に流体を通過させるので、貫通孔の位置を互いに一致させて配設していることによって、流体を淀みなく通過させることができるのである。
(Through hole)
The plasma electrode 10 has a structure in which a metal substrate having a plurality of through holes is combined with two electrodes facing each other. Since the fluid is passed in a direction perpendicular to the electrodes, the fluid can be passed without stagnation by arranging the positions of the through holes so as to coincide with each other.

(貫通孔の形状)
貫通孔11は、種々の形状を採用することができる。図1(b)に示したように、円形が広く採用されるが、楕円、三角形、四角形、六角形、瓢箪形、またはこれらの組合せなど種々の形状を採用することができる。また、図2に示すように、貫通孔11は四角形を細長くしたスリット状としても良い。スリット状とする場合は、非貫通部分の幅と貫通孔部分の幅や、縦横の長さ比は使用の態様によって適宜最適なものとすることができる。
なお、貫通孔の断面形状は、金属基板の表裏で大きさが同じになるようにストレート形状とすることが、流体の流通抵抗を低減化させる観点から好ましい。ただし、本発明では必ずしもストレート形状に特定するものではない。
(Shape of the through hole)
Various shapes can be employed for the through hole 11. As shown in FIG. 1B, a circle is widely used, but various shapes such as an ellipse, a triangle, a quadrangle, a hexagon, a saddle, or a combination thereof can be adopted. Moreover, as shown in FIG. 2, the through-hole 11 is good also as the slit shape which elongated the square. In the case of a slit shape, the width of the non-penetrating portion and the width of the through-hole portion, and the length-to-width ratio can be appropriately optimized depending on the mode of use.
The cross-sectional shape of the through hole is preferably a straight shape so that the size is the same on the front and back of the metal substrate from the viewpoint of reducing the flow resistance of the fluid. However, the present invention does not necessarily specify a straight shape.

(誘電体膜)
また、金属基板13,14の対向する表面には誘電体膜16が形成されており、誘電体膜の表面は、ポーラス面が露出された凹凸状となっている。ポーラス面を露出させている理由は、プラズマの安定的な生成という理由である。すなわち、一部でもベースとなる金属基板が露出していると火花放電へ移行し、安定的なプラズマ生成が困難となる。
なお、誘電体膜をポーラスな面とするための手段としては、例えば溶射法が好適に採用できる。溶射法において、溶射材であるAl等の粒子の大きさを調整あるいは溶射電流を調整することで、誘電体膜の凹凸の山谷やポーラス部分の大きさを制御できる。
(Dielectric film)
In addition, a dielectric film 16 is formed on the opposing surfaces of the metal substrates 13 and 14, and the surface of the dielectric film is uneven with the porous surface exposed. The reason for exposing the porous surface is that the plasma is stably generated. That is, if a part of the base metal substrate is exposed, it shifts to spark discharge, and stable plasma generation becomes difficult.
As a means for making the dielectric film porous, for example, a thermal spraying method can be suitably employed. In the thermal spraying method, by adjusting the size of particles such as Al 2 O 3 which is a thermal spraying material or adjusting the thermal spray current, the size of unevenness and valleys of the dielectric film and the porous portion can be controlled.

誘電体膜を形成する固体誘電体としては、絶縁性、比誘電率、2次電子放出係数、耐スパッタ性、耐熱性、などがそれぞれ高いことが望ましい。絶縁性が低いと電極に印加された電圧により、誘電体が絶縁破壊し火花放電が発生し望ましくない。絶縁破壊電圧としては、5000V以上の材料が好ましい。比誘電率が低いと、放電時に外部電極と逆の極性の壁電圧が生じ、放電電流の時間的増加を抑制することが不可能となり安定な放電を維持できなくなるためである。よって、比誘電率が3以上の材料を用いることが好ましい。2次電子放出係数が低いと、放電開始電圧を下げることが不可能となるためである。よって、2次電子放出係数としては、Arより電離エネルギーの大きいガスのイオンに対して0.1以上の材料が好ましい。耐スパッタ性が低いと、プラズマ、ラジカル、イオン等のアタックによる誘電体膜の損耗を増加するからである。耐熱性が低いと、表面処理もしくは成膜処理に際し、ガス成分を電極に付着させないために電極を加熱することができなくなるからである。耐熱性としては、200℃以上の材料を使用することが好ましい。
膜厚については、絶縁性と誘電性と耐スパッタ性を総合的に勘案する必要がある。膜厚が薄いと絶縁性と耐スパッタ性は低下するが、誘電性は向上する。反対に、膜厚が厚いと絶縁性と耐スパッタ性は向上するが、誘電性は低下する。薄くても絶縁性と耐スパッタ性が高い材料を金属基板に形成し、誘電性を向上させることが必要であり、その膜厚は50μm以上500μm以下である。50μm未満であると電極劣化による火花放電への移行し易く、500μmを超えると、電極生成のコスト増を招き好ましくない。
なお、電極の表層に、誘電体膜がない場合は、火花放電が起こり易いため、少なくとも対向する一方の表面には誘電体膜が設けられていることが好ましい。
It is desirable that the solid dielectric forming the dielectric film has high insulating properties, relative dielectric constant, secondary electron emission coefficient, sputtering resistance, heat resistance, and the like. If the insulating property is low, the dielectric is broken down by the voltage applied to the electrode, and a spark discharge is generated, which is not desirable. As the dielectric breakdown voltage, a material of 5000 V or higher is preferable. If the relative dielectric constant is low, a wall voltage having a polarity opposite to that of the external electrode is generated at the time of discharge, so that it is impossible to suppress a temporal increase in the discharge current and a stable discharge cannot be maintained. Therefore, it is preferable to use a material having a relative dielectric constant of 3 or more. This is because if the secondary electron emission coefficient is low, it is impossible to lower the discharge start voltage. Therefore, a material having a secondary electron emission coefficient of 0.1 or more with respect to ions of a gas having a larger ionization energy than Ar is preferable. This is because if the sputtering resistance is low, the wear of the dielectric film due to the attack of plasma, radicals, ions and the like increases. This is because if the heat resistance is low, the electrode cannot be heated because the gas component does not adhere to the electrode during the surface treatment or film formation treatment. As heat resistance, it is preferable to use a material of 200 ° C. or higher.
Regarding the film thickness, it is necessary to comprehensively consider the insulating properties, dielectric properties, and sputtering resistance. If the film thickness is thin, the insulation and sputter resistance are reduced, but the dielectric properties are improved. On the other hand, when the film thickness is thick, the insulation and sputtering resistance are improved, but the dielectric property is lowered. Although it is thin, it is necessary to form a material having high insulation and sputtering resistance on a metal substrate to improve dielectric properties, and the film thickness is 50 μm or more and 500 μm or less. If it is less than 50 μm, it is easy to shift to spark discharge due to electrode deterioration, and if it exceeds 500 μm, the cost of electrode production increases, which is not preferable.
In the case where there is no dielectric film on the surface layer of the electrode, since a spark discharge is likely to occur, it is preferable that a dielectric film is provided on at least one of the opposing surfaces.

誘電体膜としては、SiO、Al、MgO、ZrO、Y、PbZrO−PbTiO、BaTiO、TiO、ZnO等が挙げられる。また、これらを混合して複合酸化物として用いることもできる。中でも、Al、BaTiO、TiOが、比誘電率、耐絶縁性、触媒効果という観点から好適に採用できる。 The dielectric film, SiO 2, Al 2 O 3 , MgO, ZrO 2, Y 2 O 3, PbZrO 3 -PbTiO 3, BaTiO 3, TiO 2, ZnO and the like. Moreover, these can also be mixed and used as complex oxide. Among these, Al 2 O 3 , BaTiO 3 , and TiO 2 can be suitably employed from the viewpoint of relative dielectric constant, insulation resistance, and catalytic effect.

(含浸)
また、ポーラスな誘電体膜16には、疎水性物質が含浸されて含浸体17として誘電体膜16のポーラス部分に残留していることが望ましい。疎水性物質とは、例えば、四フッ化エチレン樹脂などのフッ素樹脂やシリコーン樹脂などが挙げられる。フッ素樹脂やシリコーン樹脂などの疎水性樹脂を、ポーラスな誘電体膜16に含浸させることにより、電極表面に撥水効果を与え、例えば湿度が高い気体を貫通孔に流通させる場合においても安定的なプラズマ放電が可能となるという利点がある。
ポーラスな誘電体膜16に含浸させる方法としては、誘電体膜16の表面に疎水性樹脂をコーティングしたものを密閉容器に封入して減圧して、誘電体膜中に浸透させる、いわゆる真空含浸という手段を用いることができる。
(Impregnation)
The porous dielectric film 16 is preferably impregnated with a hydrophobic substance and remains as an impregnated body 17 in the porous portion of the dielectric film 16. Examples of the hydrophobic substance include fluororesins such as tetrafluoroethylene resin and silicone resins. By impregnating the porous dielectric film 16 with a hydrophobic resin such as a fluororesin or a silicone resin, the electrode surface is given a water repellent effect, and is stable even when, for example, a gas with high humidity is circulated through the through-hole. There is an advantage that plasma discharge is possible.
As a method of impregnating the porous dielectric film 16, so-called vacuum impregnation in which a surface of the dielectric film 16 coated with a hydrophobic resin is sealed in a sealed container and decompressed so as to penetrate into the dielectric film. Means can be used.

次に、プラズマ電極10への電圧の印加方法について説明する。プラズマ電極10は誘電体膜16を介在させているので、金属基板間に直流的な電流は流れない。そのため、プラズマ電極では、電圧を印加する2枚の金属基板13,14の間には相対的に交流となる電圧を供給する。その波形はトランス交流電圧を印可した正弦波でもパルス電圧を印可した矩形のパルス波、あるいは鋸歯状波などでもよい。電圧の波高値は、概ね500V〜2kV程度の範囲である。平均電流は電極の面積に依存するが、概ね20mA〜10A程度の範囲である。また、電源の周波数は1kHz〜1000MHzといった低周波から超高周波に至る領域のいずれの帯域でもよいが、電極温度上昇などを考慮して10kHz〜100kHz程度の帯域の周波数が好ましい。なお、プラズマ電極の加熱温度は、室温〜300℃が好ましく、より好ましくは、室温〜100℃の範囲内である。   Next, a method for applying a voltage to the plasma electrode 10 will be described. Since the plasma electrode 10 has the dielectric film 16 interposed, no direct current flows between the metal substrates. Therefore, in the plasma electrode, a relatively alternating voltage is supplied between the two metal substrates 13 and 14 to which the voltage is applied. The waveform may be a sine wave to which a transformer AC voltage is applied, a rectangular pulse wave to which a pulse voltage is applied, or a sawtooth wave. The peak value of the voltage is in the range of approximately 500V to 2kV. The average current depends on the area of the electrode, but is generally in the range of about 20 mA to 10 A. Further, the frequency of the power source may be any band in the region from 1 kHz to 1000 MHz from a low frequency to a very high frequency, but a frequency in the range of about 10 kHz to 100 kHz is preferable in consideration of an increase in electrode temperature. In addition, the heating temperature of the plasma electrode is preferably room temperature to 300 ° C, more preferably in the range of room temperature to 100 ° C.

(実施形態2)
次に、実施形態2のプラズマ電極について説明する。図3は、実施形態2のプラズマ電極の概略構成図であり、(a)はプラズマ電極の断面図、(b)はプラズマ電極の平面図、(c)はプラズマ電極の拡大断面図である。図3に示すように、実施形態2のプラズマ電極は、前記金属基板間に介在させる非導電体スペーサを設けていない点で実施形態1のプラズマ電極と異なり、その他の点では実施形態1のプラズマ電極と同一である。
実施形態2のプラズマ電極は、非導電体スペーサを介在させていないので、2枚の金属基板は、誘電体膜を介して密着して積層された状態となっている。この詳細を図3(c)を用いてさらに説明すると、金属基板の表面に形成された誘電体膜の表面粗さを30〜40μm程度(図3(c)のY)にし、これらの表面粗さを互いに有した誘電体膜どうしを対向させて積層してプラズマ電極とすると、一番山の高いところで誘電体膜が接触し、山の低い部分では未だ誘電体膜が接触していない状態となる。このような状態のプラズマ電極では、誘電体膜が接触していない部分ではプラズマは、無声放電状態となる(図3(c)のX)。
このような誘電体膜の凹凸やポーラス部分の大きさは、誘電体膜を溶射法で形成する際の誘電体粒子の大きさを調整あるいは溶射電流を調整することで、電極間ギャップをμmオーダーで制御することができる。
このように、非導電体スペーサを介在させていないプラズマ電極は、供給電源および放電電圧に見合った最適な距離の設定が可能となり、非導電体スペーサの設定によるコスト高の排除、非導電体スペーサの絶縁破壊電圧以上の電圧を印加することが可能となり、より高い電界強度が得られる、というような効果を有する。
(Embodiment 2)
Next, the plasma electrode of Embodiment 2 will be described. 3A and 3B are schematic configuration diagrams of the plasma electrode according to the second embodiment. FIG. 3A is a sectional view of the plasma electrode, FIG. 3B is a plan view of the plasma electrode, and FIG. 3C is an enlarged sectional view of the plasma electrode. As shown in FIG. 3, the plasma electrode of the second embodiment differs from the plasma electrode of the first embodiment in that a non-conductive spacer interposed between the metal substrates is not provided. Same as electrode.
Since the plasma electrode of Embodiment 2 does not interpose a non-conductive spacer, the two metal substrates are in close contact with each other via a dielectric film. The details will be further described with reference to FIG. 3C. The surface roughness of the dielectric film formed on the surface of the metal substrate is set to about 30 to 40 μm (Y in FIG. 3C). When the plasma electrodes are formed by stacking the dielectric films having thicknesses facing each other, the dielectric film is in contact at the highest peak, and the dielectric film is not yet in contact at the lower peak. Become. In the plasma electrode in such a state, the plasma is silently discharged in a portion where the dielectric film is not in contact (X in FIG. 3C).
The size of the unevenness and the porous part of the dielectric film can be adjusted by adjusting the size of the dielectric particles when the dielectric film is formed by the thermal spraying method or adjusting the thermal spray current so that the gap between the electrodes is on the order of μm. Can be controlled.
As described above, the plasma electrode without interposing the non-conductive spacer can set the optimum distance corresponding to the power supply and the discharge voltage, and the non-conductive spacer can be eliminated by setting the non-conductive spacer. It is possible to apply a voltage equal to or higher than the dielectric breakdown voltage, thereby obtaining an effect that a higher electric field strength can be obtained.

本実施形態のプラズマ電極を用いた処理装置を図4に示す。図示するように、本発明のプラズマ電極10を、筒状の流体導入パイプ21の中に流体導入パイプ21を仕切るように配設し、大気をプラズマ電極10の貫通孔11を通過させ、オゾンガスを送出するオゾンガス生成装置20とすることができる。大気を供給する機構としては、大気ガス導入管22を通じて、貫通孔11へ導く構造としたものであれば特に限定されない。また、実施形態で説明したプラズマ電極10を、筒状の処理装置20内に2組以上配設して、通過する流体の処理効率を向上させることもできる。   A processing apparatus using the plasma electrode of this embodiment is shown in FIG. As shown in the figure, the plasma electrode 10 of the present invention is disposed in a cylindrical fluid introduction pipe 21 so as to partition the fluid introduction pipe 21, and the atmosphere is passed through the through hole 11 of the plasma electrode 10, and ozone gas is supplied. It can be set as the ozone gas production | generation apparatus 20 to send out. The mechanism for supplying the atmosphere is not particularly limited as long as it has a structure that leads to the through hole 11 through the atmospheric gas introduction pipe 22. Further, two or more sets of plasma electrodes 10 described in the embodiment can be arranged in the cylindrical processing apparatus 20 to improve the processing efficiency of the fluid passing therethrough.

(実施例1)
以下、実施例を用いて、本発明を更に詳細に説明する。
金属基板の素材として、18−8ステンレス製の、厚み:0.5mm、外径:100mmの円板を作製した。この素材を、プレスにて打ち抜き多数の円形状の貫通孔を形成し電極用の金属基板を作成した。貫通孔のサイズは外径:0.2mmとし、開口面積率は50%とした。この金属基板表面に、溶射によって膜厚200μmのBaTiOを形成して、同一の電極を2枚作製した。次いで、電極基板2枚の間に、ポリエチレンフィルムからなるスペーサを挿入して、加熱接合して組電極とした。
なお、2枚の電極基板の貫通孔の位置は上下同じ位置となるように組み立てた。
Example 1
Hereinafter, the present invention will be described in more detail with reference to examples.
As a material for the metal substrate, a disk made of 18-8 stainless steel with a thickness of 0.5 mm and an outer diameter of 100 mm was produced. This material was punched out with a press to form a large number of circular through holes, and a metal substrate for an electrode was produced. The size of the through hole was an outer diameter: 0.2 mm, and the opening area ratio was 50%. On the surface of the metal substrate, BaTiO 3 having a film thickness of 200 μm was formed by thermal spraying to produce two identical electrodes. Next, a spacer made of a polyethylene film was inserted between the two electrode substrates, and was joined by heating to form a combined electrode.
In addition, it assembled so that the position of the through-hole of two electrode substrates might become the same position up and down.

実験では、大気ガスである100kPaのNとOの混合ガス(N:O=4:1)を電極の上部から貫通孔に供給した。電圧駆動条件として、電極基板間に放電開始電圧=0.68kVを印加して駆動したところ、プラズマは、無声放電状態であることが確認できた。 In the experiment, a mixed gas of N 2 and O 2 (N 2 : O 2 = 4: 1) of 100 kPa, which is an atmospheric gas, was supplied from the upper part of the electrode to the through hole. As a voltage driving condition, it was confirmed that the plasma was in a silent discharge state when driven by applying a discharge start voltage = 0.68 kV between the electrode substrates.

(実施例2)
また、本発明のプラズマ電極を用いて、パルス状波形を印可することによって、効率良くかつ省電力で、オゾン生成、臭い成分除去を行うことができることを実証した。
実施例2において、プラズマ電極に24kHzの正弦波を印可した場合の、トランス交流放電電圧と放電電流波形の関係を図5に示す。
また、プラズマ電極に矩形状のパルス状波形を印可した場合の、パルス電圧と電流波形の関係を図6に示す。
実施例2では、オゾン20ppm生成時のプラズマ電極間電力は、図5の正弦波形では900mW、図6のパルス状波形では115mWとなり、図6のパルス状波形の方がプラズマ電極間電力が少なくなり、効率良くかつ省電力で、オゾン生成、臭い成分除去を行うことができる。
(Example 2)
Moreover, it was demonstrated that ozone generation and odor component removal can be performed efficiently and with low power consumption by applying a pulse waveform using the plasma electrode of the present invention.
FIG. 5 shows the relationship between the transformer AC discharge voltage and the discharge current waveform when a sine wave of 24 kHz is applied to the plasma electrode in the second embodiment.
FIG. 6 shows the relationship between the pulse voltage and the current waveform when a rectangular pulse waveform is applied to the plasma electrode.
In Example 2, the plasma electrode power at the time of ozone 20 ppm generation is 900 mW in the sine waveform of FIG. 5 and 115 mW in the pulse waveform of FIG. 6, and the plasma electrode power is smaller in the pulse waveform of FIG. Ozone generation and odor component removal can be performed efficiently and with low power consumption.

この理由は、図5に示す正弦波の電流波形は、放電電流に加え、変位電流が流れていることが観測されるが、放電だけでなく、電極表面温度上昇にも影響を及ぼしていると考えられるからである。すなわち、本発明のプラズマ電極に、図5に示す正弦波の電流波形を印可すると、プラズマ反応に電力が使用されず、電極を加熱するだけに終わる部分があり、それが消費電力の差になっていることが分かる。
このことを実証するため、トランス交流電圧を印加した場合とパルス電圧を印加した場合での、オゾン20ppmを生成させた時のプラズマ電極の温度変化を測定した。
その結果を図7に示す。図7の左側に示すパターンは、パルス電圧を印加した場合のプラズマ電極の表面温度の変化であり、26℃を示している。図7の右側に示すパターンは、トランス交流電圧を印加した場合のプラズマ電極の表面温度の変化であり、40℃を示している。よって、トランス交流電圧を印加した場合のプラズマ電極の表面温度の方が、より高温となっている。
また、この場合のプラズマ電極の表面温度の時間変化を、図8に示す。図8から分かるように、パルス電圧を印加した場合のプラズマ電極の表面温度は、1分経過後は上昇がみられないが、トランス交流電圧を印加した場合のプラズマ電極の表面温度は、5分経過後でも上昇傾向にあることが分かった。
The reason for this is that although the current waveform of the sine wave shown in FIG. 5 is observed to have a displacement current in addition to the discharge current, it affects not only the discharge but also the electrode surface temperature rise. It is possible. That is, when the current waveform of the sine wave shown in FIG. 5 is applied to the plasma electrode of the present invention, power is not used for the plasma reaction, and there is a portion that only ends up heating the electrode, which is a difference in power consumption. I understand that
In order to prove this, the temperature change of the plasma electrode when ozone 20 ppm was generated when a transformer AC voltage was applied and when a pulse voltage was applied was measured.
The result is shown in FIG. The pattern shown on the left side of FIG. 7 is a change in the surface temperature of the plasma electrode when a pulse voltage is applied, and shows 26 ° C. The pattern shown on the right side of FIG. 7 is a change in the surface temperature of the plasma electrode when a transformer AC voltage is applied, and indicates 40 ° C. Therefore, the surface temperature of the plasma electrode when the transformer AC voltage is applied is higher.
Moreover, the time change of the surface temperature of the plasma electrode in this case is shown in FIG. As can be seen from FIG. 8, the surface temperature of the plasma electrode when the pulse voltage is applied does not increase after 1 minute, but the surface temperature of the plasma electrode when the transformer AC voltage is applied is 5 minutes. It turned out that it is in the rising tendency even after progress.

本発明のプラズマ電極は、消費電力を低減して効率的にプラズマを生起せしめるとともに、流体とプラズマの接触流通性を向上させることができるため、民生用用途などでのプラズマ利用を容易化することができる。   The plasma electrode of the present invention can generate plasma efficiently by reducing power consumption, and can improve the contact flow between fluid and plasma, so that it can facilitate the use of plasma in consumer applications. Can do.

実施形態1のプラズマ電極の概略構成図であり、(a)はプラズマ電極の断面図、(b)はプラズマ電極の平面図、(c)及び(d)はプラズマ電極の拡大断面図である。It is a schematic block diagram of the plasma electrode of Embodiment 1, (a) is sectional drawing of a plasma electrode, (b) is a top view of a plasma electrode, (c) And (d) is an expanded sectional view of a plasma electrode. 貫通孔の形状を、四角形を細長くしたスリット状とした例である。This is an example in which the shape of the through hole is a slit shape in which a quadrangle is elongated. 実施形態2のプラズマ電極の概略構成図であり、(a)はプラズマ電極の断面図、(b)はプラズマ電極の平面図、(c)はプラズマ電極の拡大断面図である。It is a schematic block diagram of the plasma electrode of Embodiment 2, (a) is sectional drawing of a plasma electrode, (b) is a top view of a plasma electrode, (c) is an expanded sectional view of a plasma electrode. 本実施形態のプラズマ電極を用いた処理装置の概略図である。It is the schematic of the processing apparatus using the plasma electrode of this embodiment. 実施例2において、プラズマ電極に24kHzの正弦波を印可した場合の、トランス交流放電電圧と放電電流波形の関係図である。In Example 2, it is a related figure of a transformer alternating current discharge voltage and a discharge current waveform at the time of applying a 24kHz sine wave to a plasma electrode. 実施例2において、プラズマ電極に矩形状のパルス状波形を印可した場合の、パルス電圧、電流波形の関係図である。In Example 2, it is a related figure of a pulse voltage and a current waveform at the time of applying a rectangular-shaped pulse waveform to a plasma electrode. トランス交流電圧を印加してオゾン20ppmを生成させた時のプラズマ電極の温度変化を測定した結果図である。It is a result figure which measured the temperature change of the plasma electrode when a transformer alternating voltage was applied and ozone 20ppm was generated. パルス電圧を印加してオゾン20ppmを生成させた時のプラズマ電極の温度変化を測定した結果図である。It is a result figure which measured the temperature change of the plasma electrode when a pulse voltage was applied and ozone 20ppm was generated.

符号の説明Explanation of symbols

10 プラズマ電極
11,12 貫通孔
13,14 金属基板
15 非導電体スペーサ
16 誘電体膜
17 含浸体
DESCRIPTION OF SYMBOLS 10 Plasma electrode 11, 12 Through-hole 13, 14 Metal substrate 15 Nonconductor spacer 16 Dielectric film 17 Impregnation body

Claims (6)

複数の貫通孔を有する金属基板2枚を、該貫通孔同士の位置が一致するように平行に配設したプラズマ電極であって、
該金属基板の対向する少なくとも一方の表面にはポーラスな誘電体膜が露出して形成されていることを特徴とするプラズマ電極。
A plasma electrode in which two metal substrates having a plurality of through holes are arranged in parallel so that the positions of the through holes coincide with each other,
A plasma electrode, wherein a porous dielectric film is exposed and formed on at least one surface of the metal substrate.
前記金属基板2枚が、その周縁に非導電体スペーサを介在させて平行に配設したことを特徴とする請求項1に記載のプラズマ電極。 2. The plasma electrode according to claim 1, wherein the two metal substrates are arranged in parallel with a non-conductive spacer interposed on the periphery thereof. 前記非導電体スペーサの厚みが5〜500μmであることを特徴とする請求項2に記載のプラズマ電極。 The plasma electrode according to claim 2, wherein the non-conductive spacer has a thickness of 5 to 500 μm. 前記金属基板に形成されている貫通孔は、
その全開口面積率が前記金属基板の片面の表面積に対して2%〜60%であり、
かつ単独の貫通孔の開口面積率が前記金属基板の片面の表面積に対して0.05%〜5%であることを特徴とする請求項1〜3のいずれかに記載のプラズマ電極。
The through hole formed in the metal substrate is
The total opening area ratio is 2% to 60% with respect to the surface area of one side of the metal substrate,
The plasma electrode according to any one of claims 1 to 3, wherein an opening area ratio of a single through hole is 0.05% to 5% with respect to a surface area of one side of the metal substrate.
前記誘電体膜に、疎水性物質が含浸されていることを特徴とする請求項1〜4のいずれかに記載のプラズマ電極。 The plasma electrode according to claim 1, wherein the dielectric film is impregnated with a hydrophobic substance. 前記プラズマ電極にパルス状波形を印可することを特徴とする請求項1〜5のいずれかに記載のプラズマ電極。 6. The plasma electrode according to claim 1, wherein a pulse waveform is applied to the plasma electrode.
JP2008231476A 2007-09-09 2008-09-09 Plasma electrode Expired - Fee Related JP4460014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231476A JP4460014B2 (en) 2007-09-09 2008-09-09 Plasma electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007233475 2007-09-09
JP2008231476A JP4460014B2 (en) 2007-09-09 2008-09-09 Plasma electrode

Publications (2)

Publication Number Publication Date
JP2009081134A true JP2009081134A (en) 2009-04-16
JP4460014B2 JP4460014B2 (en) 2010-05-12

Family

ID=40655710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231476A Expired - Fee Related JP4460014B2 (en) 2007-09-09 2008-09-09 Plasma electrode

Country Status (1)

Country Link
JP (1) JP4460014B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120768A (en) * 2010-12-10 2012-06-28 Samsung Electronics Co Ltd Deodorization and sterilization apparatus and method
JP2012120677A (en) * 2010-12-08 2012-06-28 Samsung Electronics Co Ltd Plasma generating method, and plasma generator
KR20120103415A (en) * 2011-03-09 2012-09-19 삼성전자주식회사 Plasma generating system and plasma generating method
JP2012182026A (en) * 2011-03-01 2012-09-20 Kazuo Shimizu Plasma electrode
JP2012187225A (en) * 2011-03-09 2012-10-04 Samsung Electronics Co Ltd Plasma generating apparatus and plasma generating method
JP2012204201A (en) * 2011-03-25 2012-10-22 Osaka Gas Co Ltd Method for manufacturing dielectric barrier discharging electrode
JP2012528452A (en) * 2008-05-30 2012-11-12 コロラド ステート ユニバーシティー リサーチ ファウンデーション Electrode surface materials and structures for plasma chemistry
JP2012226949A (en) * 2011-04-19 2012-11-15 Samsung Electronics Co Ltd Plasma generation device and plasma generation method
WO2013051730A1 (en) * 2011-10-07 2013-04-11 株式会社サムスン横浜研究所 Plasma generation device
WO2013077396A1 (en) * 2011-11-24 2013-05-30 株式会社サムスン横浜研究所 Plasma generating device
CN103857167A (en) * 2012-12-03 2014-06-11 三星电子株式会社 Plasma generating apparatus
JP5638678B1 (en) * 2013-09-10 2014-12-10 Pmディメンションズ株式会社 Liquid dielectric barrier discharge plasma apparatus and liquid purification system
US9220162B2 (en) 2011-03-09 2015-12-22 Samsung Electronics Co., Ltd. Plasma generating apparatus and plasma generating method
CN108290735A (en) * 2015-10-08 2018-07-17 阿卡伦塞以色列有限公司 A kind of cold plasma ozone generator
CN110662578A (en) * 2017-05-31 2020-01-07 奇诺格有限责任公司 Facial type application assembly

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528452A (en) * 2008-05-30 2012-11-12 コロラド ステート ユニバーシティー リサーチ ファウンデーション Electrode surface materials and structures for plasma chemistry
JP2012120677A (en) * 2010-12-08 2012-06-28 Samsung Electronics Co Ltd Plasma generating method, and plasma generator
JP2012120768A (en) * 2010-12-10 2012-06-28 Samsung Electronics Co Ltd Deodorization and sterilization apparatus and method
JP2012182026A (en) * 2011-03-01 2012-09-20 Kazuo Shimizu Plasma electrode
JP2012187225A (en) * 2011-03-09 2012-10-04 Samsung Electronics Co Ltd Plasma generating apparatus and plasma generating method
US9220162B2 (en) 2011-03-09 2015-12-22 Samsung Electronics Co., Ltd. Plasma generating apparatus and plasma generating method
KR20120103415A (en) * 2011-03-09 2012-09-19 삼성전자주식회사 Plasma generating system and plasma generating method
KR101954850B1 (en) * 2011-03-09 2019-03-06 삼성전자주식회사 Plasma generating system and plasma generating method
JP2012204201A (en) * 2011-03-25 2012-10-22 Osaka Gas Co Ltd Method for manufacturing dielectric barrier discharging electrode
JP2012226949A (en) * 2011-04-19 2012-11-15 Samsung Electronics Co Ltd Plasma generation device and plasma generation method
WO2013051730A1 (en) * 2011-10-07 2013-04-11 株式会社サムスン横浜研究所 Plasma generation device
WO2013077396A1 (en) * 2011-11-24 2013-05-30 株式会社サムスン横浜研究所 Plasma generating device
CN103988587A (en) * 2011-11-24 2014-08-13 三星电子株式会社 Plasma generating apparatus
CN103857167A (en) * 2012-12-03 2014-06-11 三星电子株式会社 Plasma generating apparatus
KR20140071250A (en) * 2012-12-03 2014-06-11 삼성전자주식회사 Plasma generating apparatus
KR102190030B1 (en) 2012-12-03 2020-12-14 삼성전자주식회사 Plasma generating apparatus
JP5638678B1 (en) * 2013-09-10 2014-12-10 Pmディメンションズ株式会社 Liquid dielectric barrier discharge plasma apparatus and liquid purification system
CN108290735A (en) * 2015-10-08 2018-07-17 阿卡伦塞以色列有限公司 A kind of cold plasma ozone generator
US11034582B2 (en) 2015-10-08 2021-06-15 Aquallence Ltd. Israel Cold plasma ozone generator
CN110662578A (en) * 2017-05-31 2020-01-07 奇诺格有限责任公司 Facial type application assembly

Also Published As

Publication number Publication date
JP4460014B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JP4460014B2 (en) Plasma electrode
JP4947807B2 (en) Fluid purification method and fluid purification apparatus using plasma
US9117616B2 (en) Dielectric barrier discharge-type electrode structure for generating plasma having conductive body protrusion on electrodes
KR100657476B1 (en) Surface discharge type air cleaning device
US8974735B2 (en) Air purification system
KR100624731B1 (en) Surface discharge type air cleaning device
KR100624732B1 (en) Surface discharge type air cleaning device
WO2014119349A1 (en) Plasma generator
KR101933258B1 (en) Plasma source comprising porous dieldctric
KR20170040654A (en) Hybrid dielectric barrier discharge electrode using surface discharge and volume discharge
JP2007250284A (en) Plasma electrode
JP3580294B2 (en) Creeping discharge electrode, gas processing apparatus and gas processing method using the same
JP6026079B2 (en) Plasma electrode
KR100600756B1 (en) Surface discharge type air cleaning device
JP2007265932A (en) Remote type plasma treatment device
KR100591343B1 (en) Sterilization module device
KR101692218B1 (en) Dielectric barrier plasma generation device for removing volatile organic compounds and method for removing them using same
CN206500015U (en) A kind of plasma Benitration reactor
KR100600755B1 (en) Surface discharge type air cleaning device
KR20170050121A (en) dielectric barrier discharge electrode using side surface discharge
KR101520471B1 (en) Dielectric barrier discharge reactor for surface treatment
US20220250907A1 (en) Apparatus For Highly Efficient Cold-Plasma Ozone Production
JP5603581B2 (en) Ozone gas generator and manufacturing method thereof
KR100797376B1 (en) A plate type ozonizer
JP2000239005A (en) Ozonizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090828

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4460014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160219

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees